

Transforming Water Systems Towards A More Sustainable Future

- Implications of Water-Energy Nexus

Cissy Ma

US EPA ORD Center for Environmental Solutions and Emergency Response Water Infrastructure Division

Office of Research and Development Center for Environmental Solutions and Emergency Response

Date: April 26, 2023

A system is more than the sum of its parts.

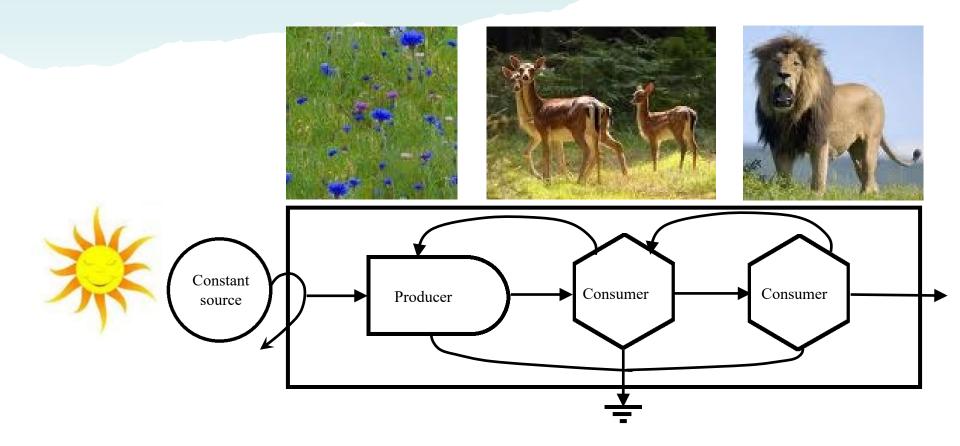
- Aristotle

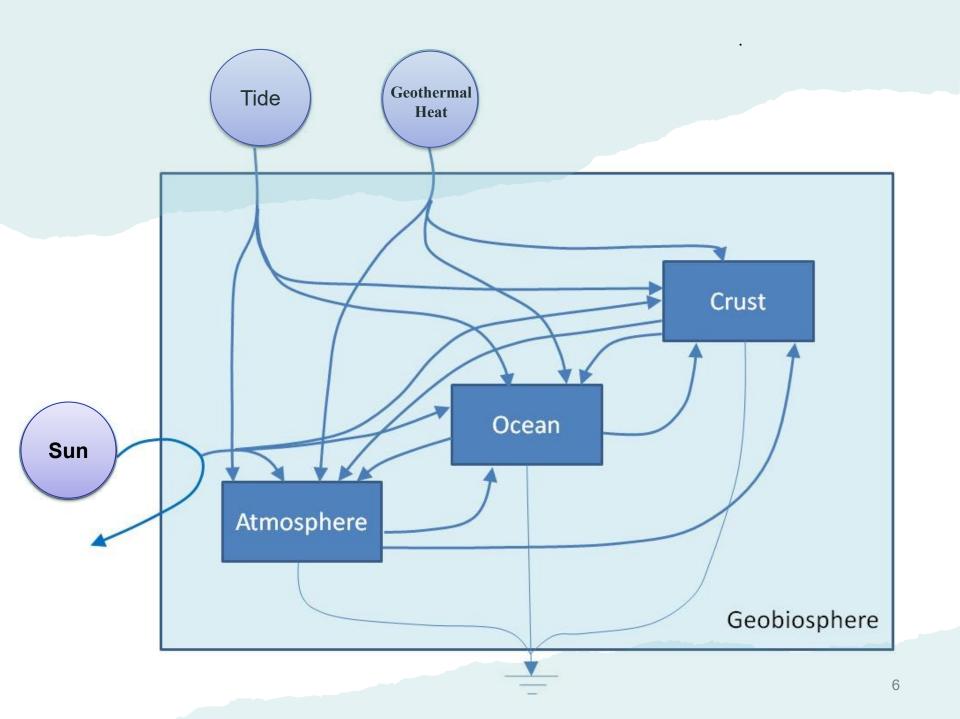
- Tools and metrics: emergy and LCA (life cycle assessment)
- System analyses examples
 - Nutrient recovery and removal
 - Energy recovery
 - Water reuse
 - City of Tomorrow

Tools and metrics: emergy and LCA (life cycle assessment)

- System analyses examples
 - Nutrient recovery and removal
 - Energy recovery
 - Water reuse
 - City of Tomorrow

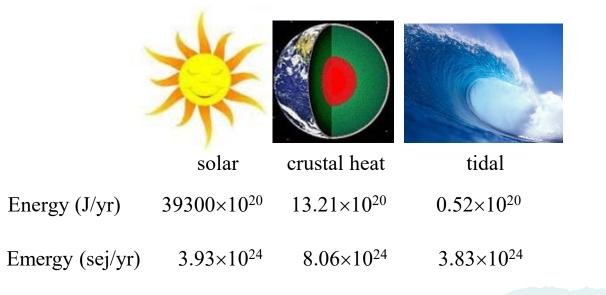
Ę


Emergy is the available energy of any kind previously used both directly and indirectly to make another form of energy, product or service. (Odum, 1996)


What is EMERGY?

Emergy might be thought of as energy memory.

Emergy analysis is an environmental accounting method.


What is EMERGY?

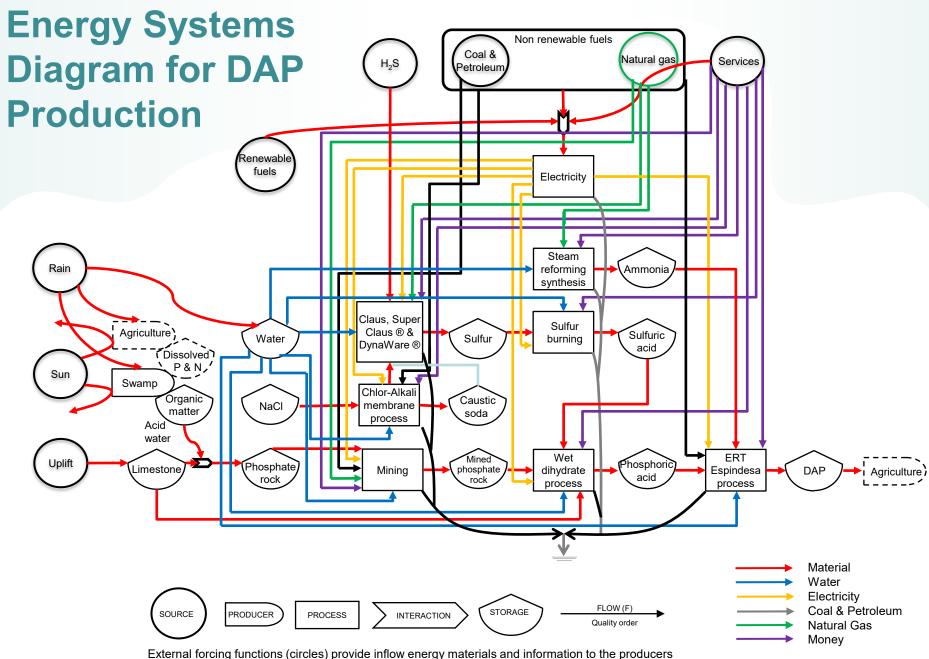
What is EMERGY?

- Its unit is the emjoule.
- In this global system, use the solar emjoule (sej).
- 3 primary energy sources: solar, crustal heat, tidal energy
- Annual energy and emergy input for geobiosphere

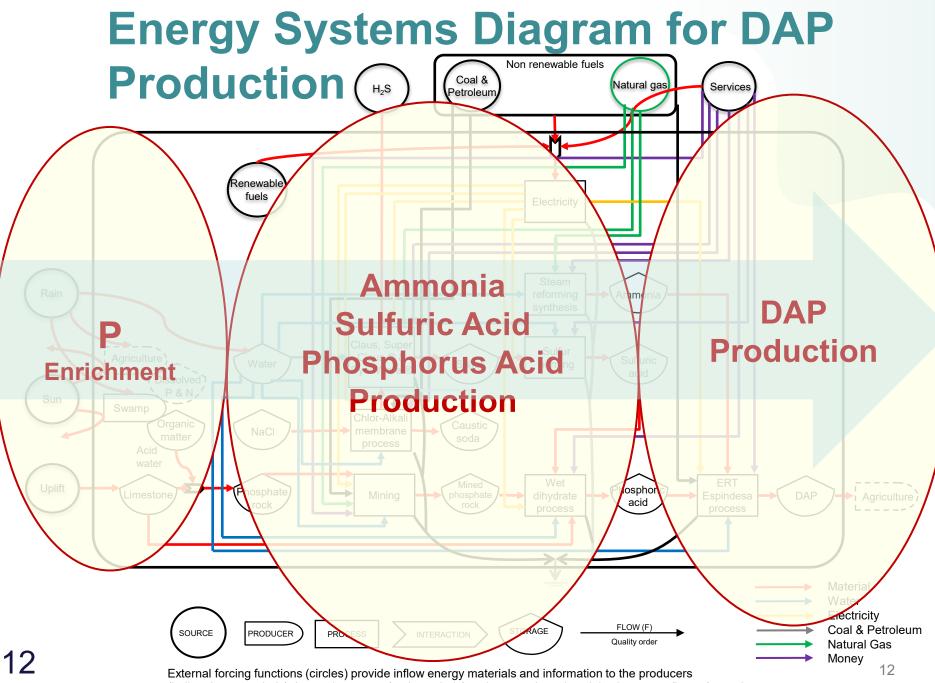
Unit Emergy Value (UEV)

Material (per mass) – specific emergy

 $\frac{\text{total emergy input}}{\text{mass output}} = \frac{\text{sej/g}}{\text{sej/g}}$

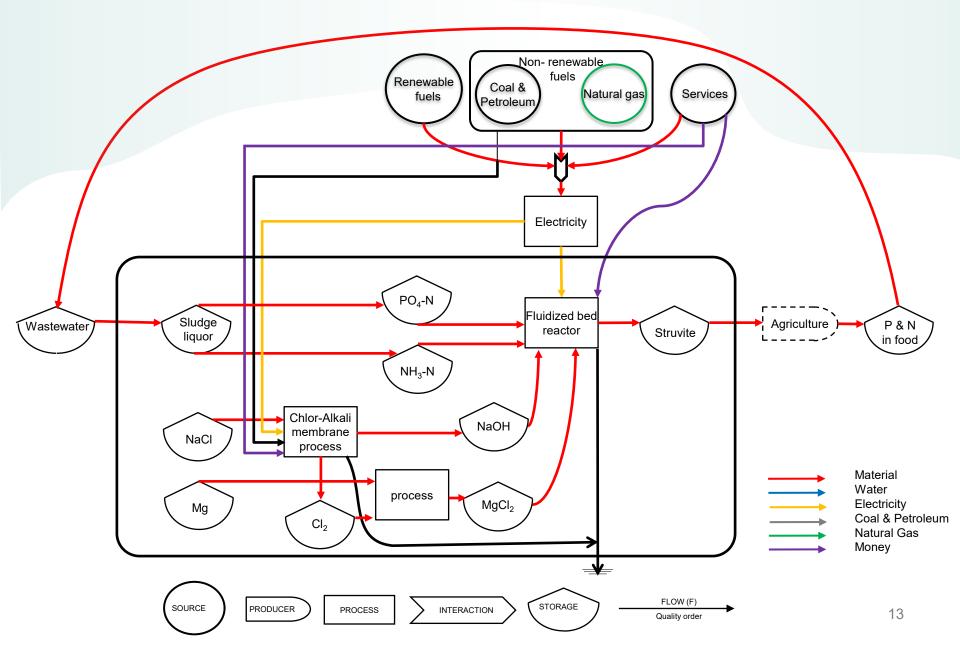

• Energy (per joule) – Transformity

 $\frac{\text{total emergy input}}{\text{energy output}} = \frac{\text{sej/J}}{\text{sej/J}}$


Transformity

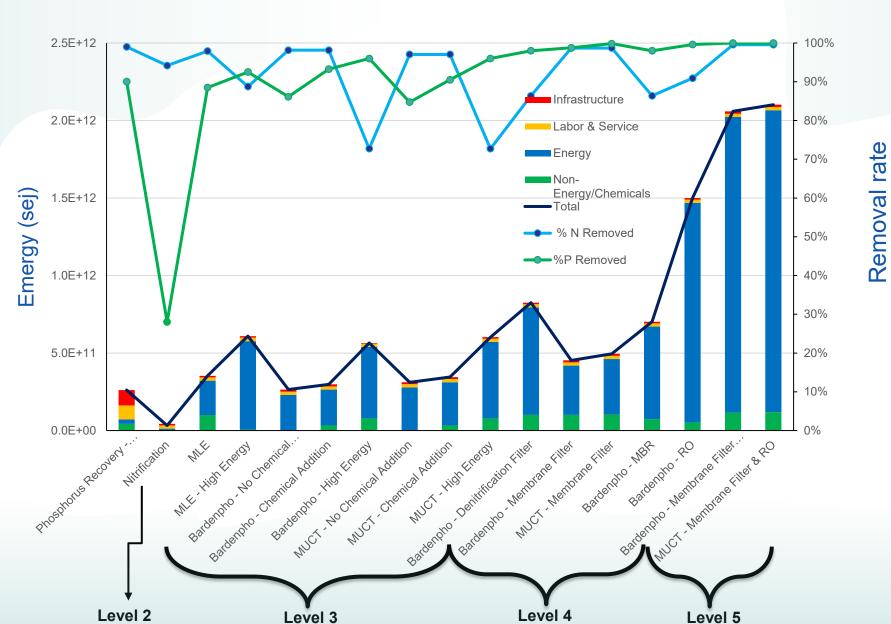
- High transformity = high hierarchical order
- Agricultural Pesticides Fertilizer Creeks Lakes Estuaries 10⁴ sej/J
- High transformity = high territory of influence
- High transformity = more emergy required to make product flow
- High transformity = less efficient

- Tools and metrics: emergy and LCA (life cycle assessment)
- System analyses examples
 - -Nutrient recovery and removal
 - Energy recovery
 - Water reuse
 - City of Tomorrow

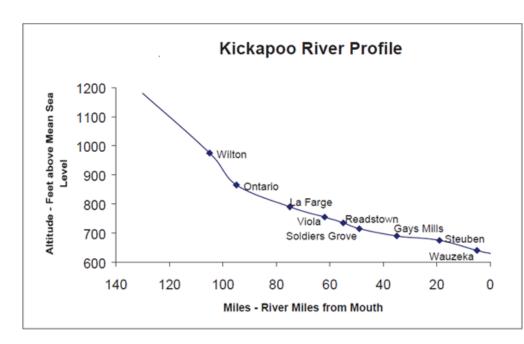


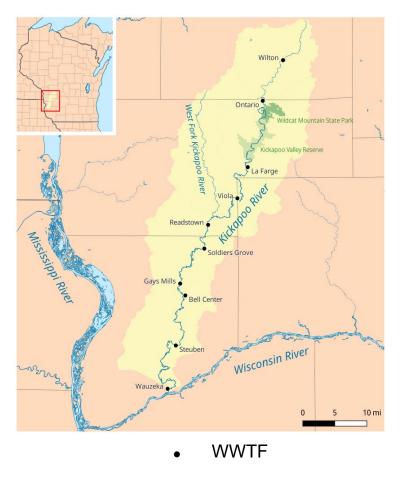
(bullet-shape symbols). Internal storages (tank symbols) and economic and social subsystems (boxes) are shown

(bullet-shape symbols). Internal storages (tank symbols) and economic and social subsystems (boxes) are shown


Emergy Systems Diagram for Nutrient Recovery

Removal Processes Considered for the Study

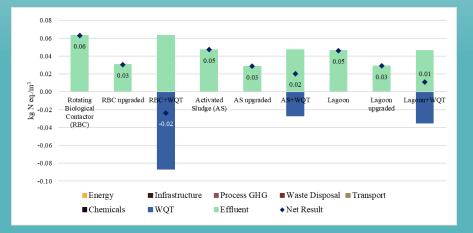

Treatment Level (Effluent Limits)	Nutrient Removal/Recovery Process	Energy (kWh/m³)	Influent Ammonia (mg/L as NH ₃ -N)	Influent P (mg/L as P)
Recovery	Phosphorus Recovery - Anammox	ox 0.14		7
Level 2 (TN – 8 mg/L, TP – 1 mg/L)	Nitrification	0.23	24	10
	MLE	0.28	23	8
	MLE - High Energy	0.59	32	8
	Bardenpho - No Chemical Addition	0.29	23	8
Level 3	Bardenpho - Chemical Addition	0.29	23	8
(TN – 4-8 mg/L, TP – 0.1-0.3 mg/L)	Bardenpho - High Energy	0.58	22	5
	MUCT - No Chemical Addition	0.35	23	8
	MUCT - Chemical Addition	0.35	23	8
	MUCT - High Energy	0.56	22	5
	Bardenpho - Denitrification Filter	0.53	22	5
Level 4 (TN – 3 mg/L, TP – 0.1 mg/L)	Bardenpho - Membrane Filter	0.4	23	8
	MUCT - Membrane Filter	0.45	23	8
	Bardenpho - MBR	0.53	22	5
Level 5 (TN - <2 mg/L, TP<0.02 mg/L)	Bardenpho - RO	0.60	22	5
	Bardenpho - Membrane Filter & RO	2.4	23	8
	MUCT - Membrane Filter & RO	2.45	23	8

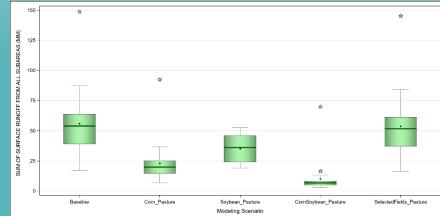

Total Emergy Comparison between Different Nutrient Removal and Recovery Technology

Kickapoo River Watershed Integrated Study

- Nutrient compliance
- Flood risk
- Non-point source pollution from ag land
- Groundwater/aquifer recharge

Overview of WWTPs in Kickapoo Watershed

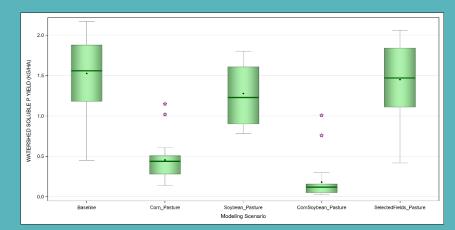

			2016-2020 Average ¹¹				
Facility Name	Population Served	Biological Process	Average Flow (Design flow)	Effluent P Concentration	WQBEL		
			MGD	mg/L	mg/L		
ONTARIO WWTF ¹	554	RBC	0.041 (0.086)	4.6	0.075		
VIOLA WWTF ²	699	Aerated Lagoon	0.084 (0.10)	2.5	0.1		
READSTOWN WWTF ³	415	not available	0.091 (0.094)	1.0	0.1		
SOLDIERS GROVE WWTF⁴	592	Activated Sludge	0.046 (0.114)	3.7	0.1		
GAYS MILLS WWTF⁵	504	Activated Sludge	0.073 (0.087)	1.9	0.1		
WAUZEKA WWTF ⁶	250	Activated Sludge	0.051 (0.08)	2.7	0.1		
WILTON WWTF ⁷	504	Aerated Lagoon	0.043 (0.089)	5.6	0.075		
LA FARGE WWTF ⁸	746	Activated Sludge	0.149 (0.172)	0.57	0.1		
NORWALK WWTF ⁹	638	Activated Sludge	0.048 (0.138)	3.0	0.075	HAY FRSD	
VPP GROUP WWTF ¹⁰	not available	not available	0.061 (0.081)	0.03	0.075	P Credit	


Sources: 1 - (Davy Engineering Co. 2016b), 2 - (Delta 3 Engineering 2016), 3 - (Delta 3 Engineering 2018a), 4 - (Davy Engineering Co. 2018), 5 - (Davy Engineering Co. 2019), 6 - (Delta 3 Engineering 2018b), 7 - (Delta 3 Engineering 2017; Delta 3 Engineering 2019), 8 - (MSA 2017), 9 - (Davy Engineering Co. 2016a), 10 - (McMahon 2016), 11 - (Hartenbower 2021) Acronyms: P – phosphorus, WQBEL – water quality based effluent limit, MGD – million gallons per day, WWTF – wastewater treatment facility

Integrated Watershed Management of Kickapoo

Eutrophication Impact (Nutrient Pollution)

Surface Runoff

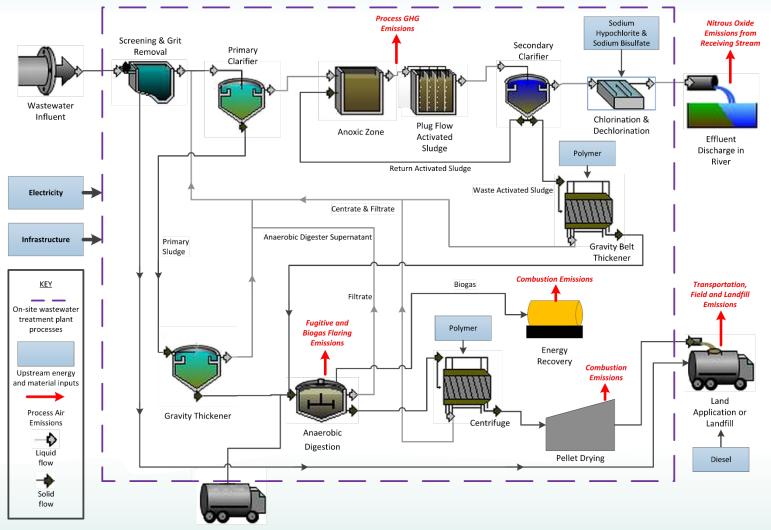


Life Cycle Cost Comparison

Soluble P Yields

Preliminary Results. Do Not Reproduce.

- Tools and metrics: emergy and LCA (life cycle assessment)
- System analyses examples
 - Nutrient recovery and removal
 - Energy recovery
 - Water reuse
 - City of Tomorrow

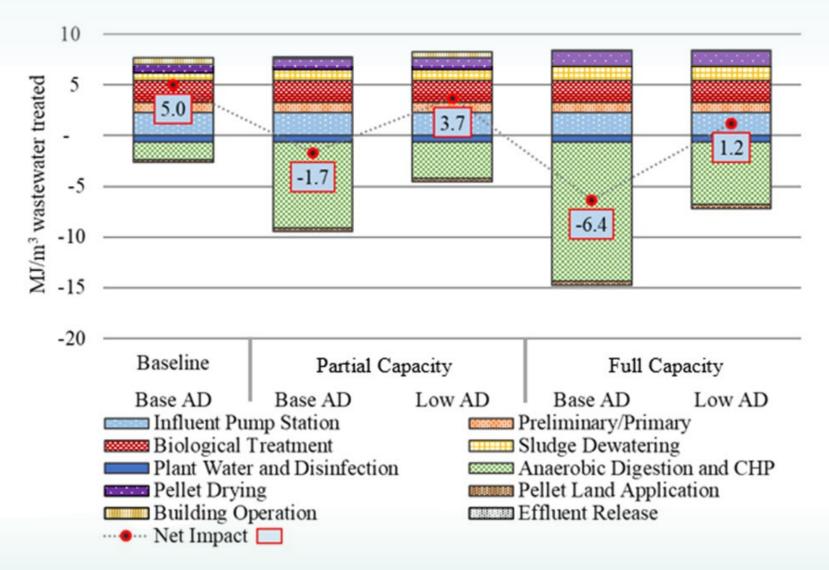


Study Objectives

Assess environmental and cost impact of:

- Expanding anaerobic digester (AD) capacity for food waste co-digestion.
- Installing combined heat and power (CHP).
- Variable digester performance.
- Avoided waste scenarios.

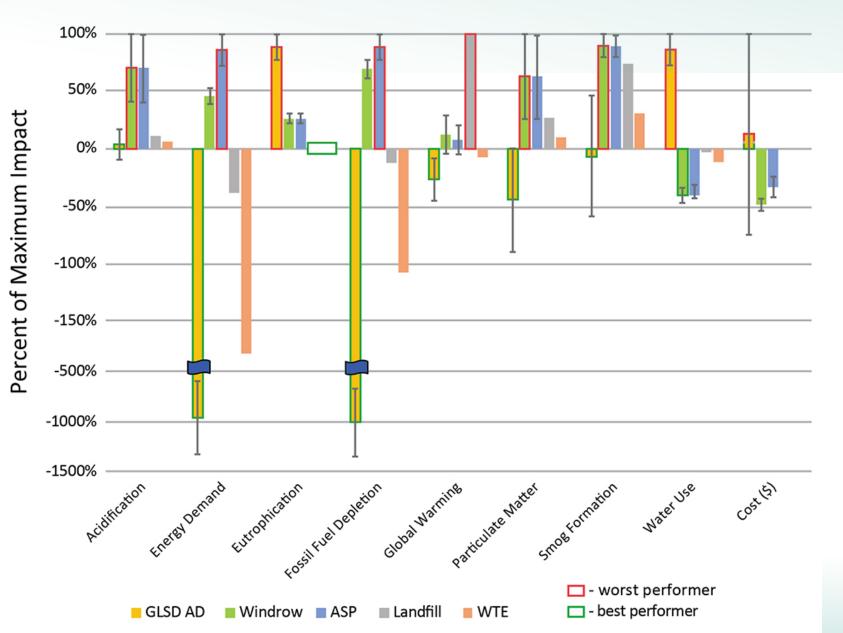
Process Flow Diagram


Source Separated Organics

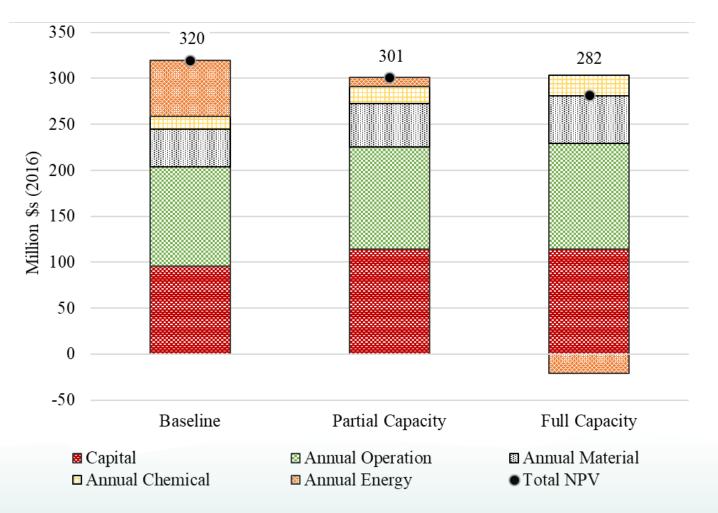
Waste Scenarios Analyzed

	Scenario	Waste Type	Quantity (gpd)
	All Scenarios	Septage	80,000
	All Scenarios	Municipal Solids*	8,000
	Scenario 1: Base	Primary & WAS	172,000
	(2016)	SSO	-
	Scenario 2: 50% SSO Capacity	Primary & WAS	179,000
Partial Capacity		SSO	46,000
Full Capacity	Scenario 3: 100% SSO Capacity	Primary & WAS	188,000
		SSO	92,000

*Municipal Solids: Trucked in primary and waste activated sludge.


Cumulative Energy Demand

*⇒***EPA**

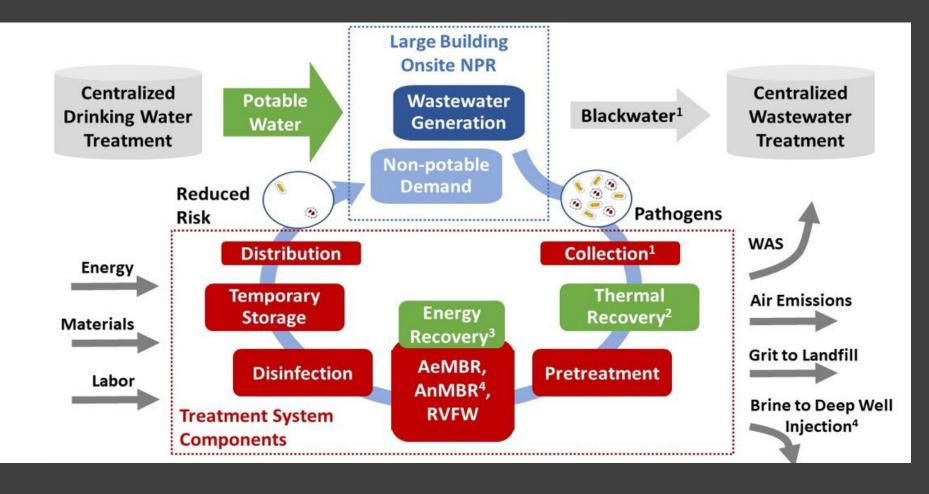

(Base AD Results by Treatment Group)

End-of-Life Process Impacts

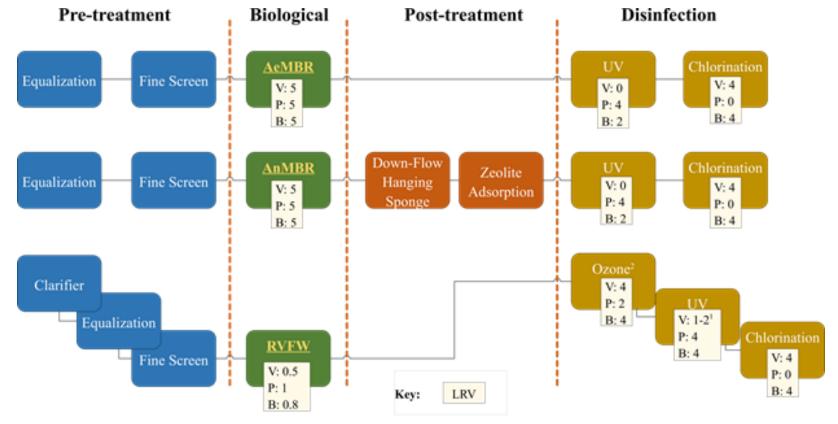
Cost Analysis Results

Indicate a 7 and 14 year payback period for the investment in AD and CHP systems for the full and partial capacity scenarios.

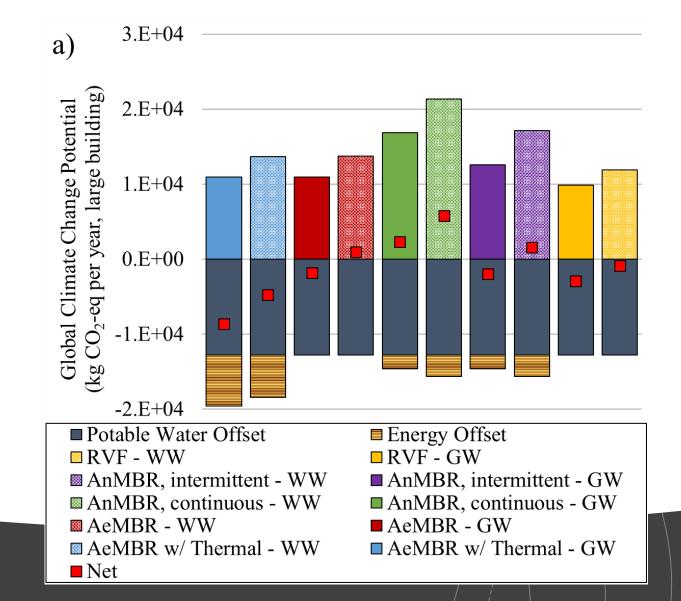
- Tools and metrics: emergy and LCA (life cycle assessment)
- System analyses examples
 - Nutrient recovery and removal
 - Energy recovery
 - Water reuse (NPR)
 - City of Tomorrow


Project Background

Project team has completed several life cycle assessment (LCA) and cost studies on decentralized NPR configurations

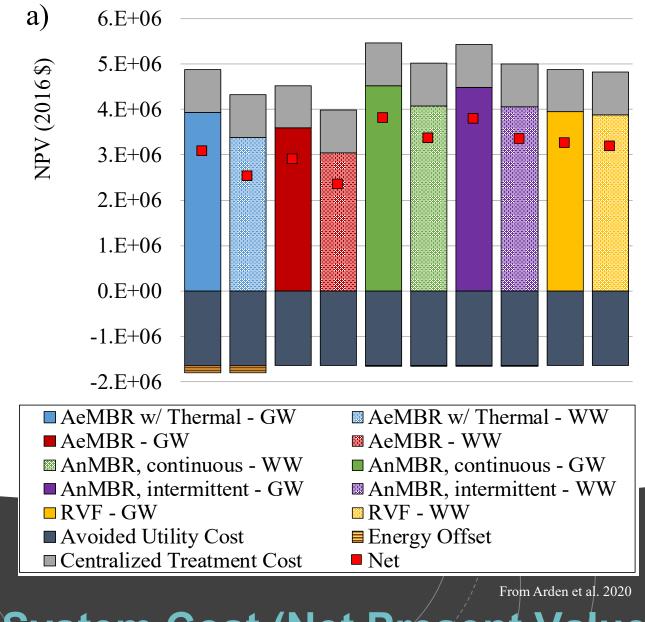

Latest study focused on large urban buildings in San Francisco, treating mixed wastewater or source separated graywater with aerobic membrane bioreactor (MBR)

Work expanded to an EPA web-based calculator


Life Cycle Approach

Analyze cost and environmental impact of systems treating mixed wastewater and source separated graywater for onsite NPR (0.01-0.016 MGD). Integrated results with microbial risk assessment.

¹ UV virus LRV varies due to application of different UV doses for mixed WW and GW RVFWs.
² The ozone disinfection process only applies to the RVFW system treating mixed wastewater.


Life Cycle Approach Analyze cost and environmental impact of systems treating mixed wastewater and source separated graywater for onsite NPR (0.01-0.016 MGD). Integrated results with microbial risk assessment.

F

Global Warming Potential

Ţ

System Cost (Net Present Value)

Non-Potable Environmental and Economic Water Reuse (NEWR) Calculator

Non-Potable Environmental and Economic Water Reuse (NEWR) Calculator


Identify Source Water Options for Non-Potable Reuse

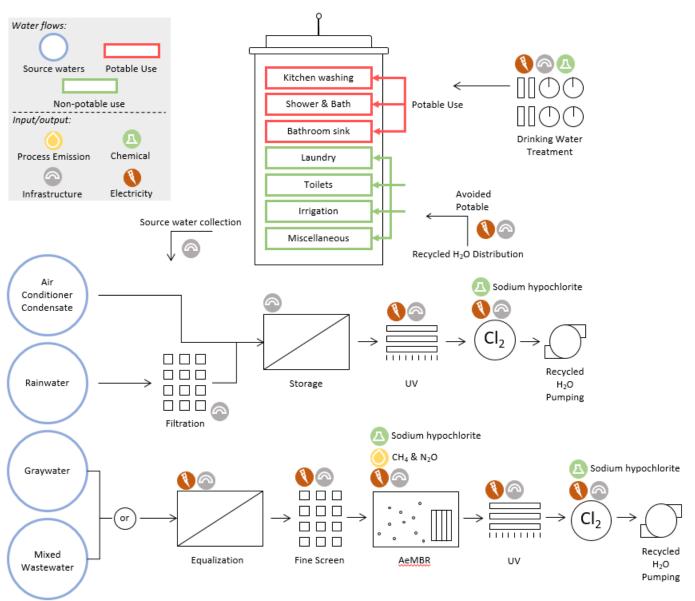
The Non-Potable Environmental and Economic Water Reuse (NEWR) Calculator is a simple to use web-based tool for screening-level assessments of source water options for any urban building location across the United States that is considering onsite non-potable reuse.

Platform and Compatibility

NEWR is a single page web application that requires an internet connection and JavaScript enabled in the browser. The web-based application can be used on desktop devices and on mobile devices, such as smartphones and tablets. It is compatible using modern browsers with Windows and Mac operating systems.

Disclaimer: Any mention of trade names, manufacturers, or products does not imply an endorsement by EPA. EPA and its employees do not endorse commercial products, services, or enterprises.

Calculator Goal


NEWR – <u>N</u>on-potable <u>E</u>nvironmental and Economic <u>W</u>ater <u>R</u>euse Calculator

- Build on previous LCA and cost studies on NPR options for urban case studies and create a simple calculator to develop screening-level assessments for any large building location across the US.
- Research Questions: What is the most environmentally and cost-effective source water(s) to meet large building non-potable water needs?
 - As a function of location
 - As a function of building type/size

System Types

- The calculator assesses the following system types:
 - -Rainwater Harvesting
 - -Air Conditioning Condensate Harvesting
 - -Graywater Aerobic Membrane Bioreactor
 - -Mixed Wastewater Aerobic Membrane Bioreactor
- All systems designed to meet NPR log reduction targets
- Option for recovery of thermal energy for hot water heating

System Types

Intended Audience

- Building developers can use the calculator as an initial screening tool prior to a more detailed engineering design analysis
- Urban communities interested in implementing NPR at the building-scale
- Research scientists investigating NPR options

User Entry: Location

Non-Potable Reuse Building-Scale Calculator

Specify ZIP Code Enter a 5 digit ZIP Code to start: 55403 The Non-Potable Reuse (NPR) Building-Scale Calculator can help identify environmentally and cost effective options for on-site NPR based on user selected geography, building specifications, source water type, and end use. Follow the prompts to explore building-scale NPR opportunities in your region. The Calculator is intended for buildings with 50 or more residential and/or office occupants.

Next

User Entry: Building Characterization

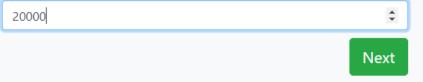
Non-Potable Reuse Building-Scale Calculator

Building Characterization

Select Building Type ()

- Mixed Use (30% commercial, 70% residential)
- Residential
- Commercial

Specify # Floors in Building ()


4

Previous

Specify # Building Occupants ()

- Large Building (1100)
- Medium Building (550)
- Small Building (110)
- Number of Occupants (recommended minimum value is 50)

Enter Building Footprint ()

User Entry: Source Water Characterization

Non-Potable Reuse Building-Scale Calculator

Source Water Characterization

Select Source Water Option ()

🗹 Rainwater

Enter portion of the building footprint that is allocated to rainwater harvesting:

20000

Air Conditioning Condensate

Wastewater

Incorporate Thermal Recovery Unit? ()

- Yes, Natural Gas Hot Water Heater
- Yes, Electric Hot Water Heater

No

Previous

Select Wastewater Collection Type ①

- Mixed Wastewater (treated with Aerobic MBR)
- Separated Graywater (treated with Aerobic MBR)

Specify Building Water Use Efficiency (i)

- High Efficiency
- Standard Efficiency

User Entry: End Use Characterization

Non-Potable Reuse Building-Scale Calculator

End Use Characterization								
Select Recycled Water Use Type 🛈	Does Recycled Water Displace Drinking Water? 🛈							
Toilet Flushing	Yes							
Outdoor Irrigation	O No							
High Water Use 🛈	Define Energy Use of Drinking Water Treatment 🛈							
1000	Zip Code Default	5						
Medium Water Use 🛈	 Lower Energy Demand Higher Energy Demand 							
Enter irrigated area in sf								
Low Water Use 🛈	Custom							
Enter irrigated area in sf	Define Characteristics of Wa	Define Characteristics of Water Service Utility 🛈						
✓ Laundry	Water Type	Acquisition Efficiency						
Other (gpd)	Default	Default						
Optional inclusion for any	Regional Topography Default	Distribution Efficiency						
	Treatment System Energy Use	Network Leakage						
'Other' end use of recycled water		Default - 18.7%						
Previous	\wedge	Calculate						
	Optional customization of avoided drinking water impacts							

Results: Zip Code Data

Non-Potable Reuse Building-Scale Calculator Results

ZIP Code D	ata Avail	/ater ability & mand	Global Warming Potential	Total Energy Demand	Fossil Fuel Depletion	Water Consumption	Water Scarcity		t (Net nt Value)	Methods & Resources
ZIP Cod	de Dat	a for s	55403							
Month	Rainfall (inches)	Harvest	ondensate ing Potential al/cfm)	Reference Evapotranspir (inches)	-		Scarcity Factor () tural Gas Rate ()		\$/1000	cf
January February	0.00		0	0.6695			lectricity Rate () er Supply Rate ()		\$/kWh \$/1000	gallons
March April	0.00 0.00		0.0011 0.0188	2.1945 3.8789	eGR	-	on - MRO V lectric Grid Re			
May June	3.46 4.25		0.1343 0.8455	5.4589 5.9582		Othe	r Unknown: 0.2%	Jource		
July August	3.98 3.98		1.5081 1.2179	6.4559 5.4194	Oti	Solar: 0.0 Geothermal: 0.0% her Fossil: 0.0%				
September October	2.99 2.09		0.675).0147	4.0626 2.6382		Wind: 21.1%				
November December	0.00	(0.0008	1.2239 0.5977	н	łydro: 5.0%				Coal: 52.7%
December	0.00		0	0.5577		Nuclear: 12.8%				

Gas: 6.7%

Oil: 0.2%

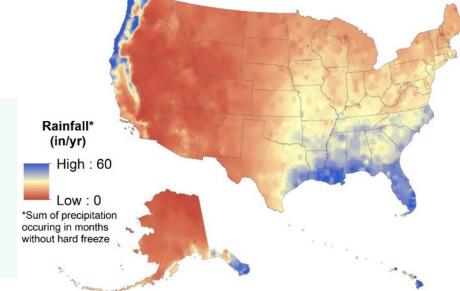
Results: Water Availability and Demand

Non-Potable Reuse Building-Scale Calculator Results Show data entered New Calculation Water Global Total Energy Fossil Fuel Water Cost (Net Methods & ZIP Code Data Water Scarcity Availability & Warming Depletion Present Value) Resources Demand Consumption Demand Potential Water Availability & Demand By Source Water Type Or Combined Source Water Types Monthly Supply and Demand \equiv 600k 400k Gallons 200k 0 March April May September January February June July August October November December Month

🔵 Rainwater 🛛 🌒 AC Condensate 🛛 🛑 Graywater 🛛 🛥 Non-potable demand

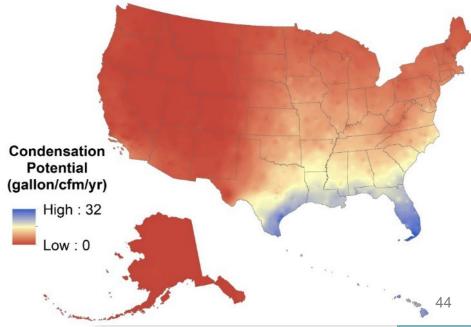
Results: Global Warming Potential (per gallon)

Non-Potable Reuse Building-Scale Calculator Results

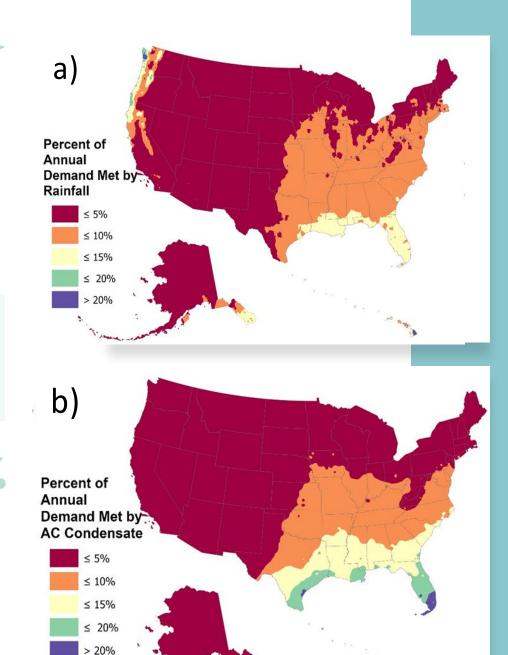


Infrastructure = all capital equipment for treatment, collection, and distribution

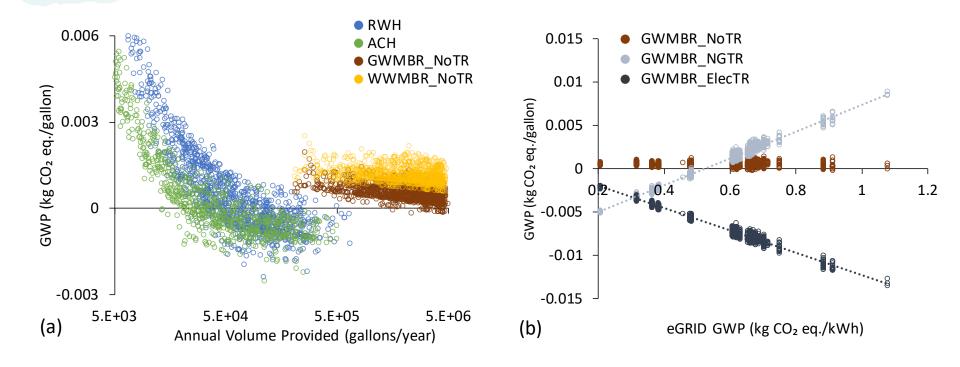
Operation = electricity and chemicals for treatment and disinfection **Avoided products** = displaced drinking water requirements and hot water <u>heating requirements (MBR with thermal recovery)</u>


RWH and ACH Availability Models

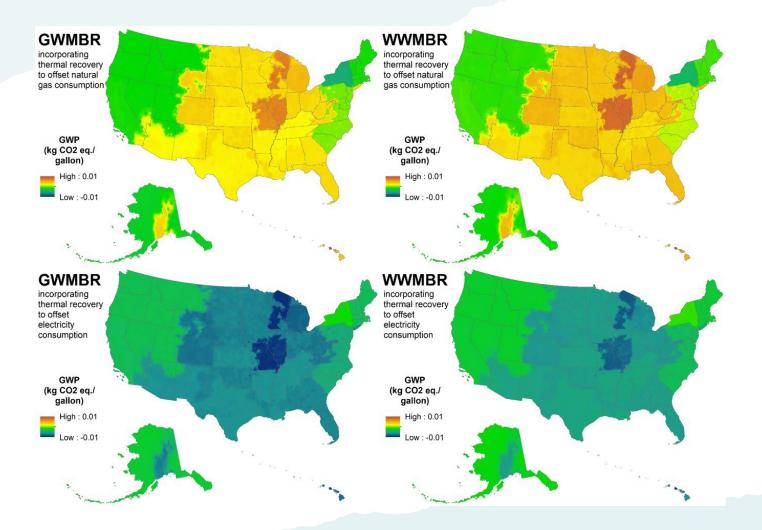
- Long-term monthly data
- Filtered for hard freeze (TMY3 data, >4 consecutive hours with temperatures <28°F)


- Relative humidity (RH) model
- Function of outdoor RH, indoor RH, % outdoor air
- TMY3 data used (~2000 stations)

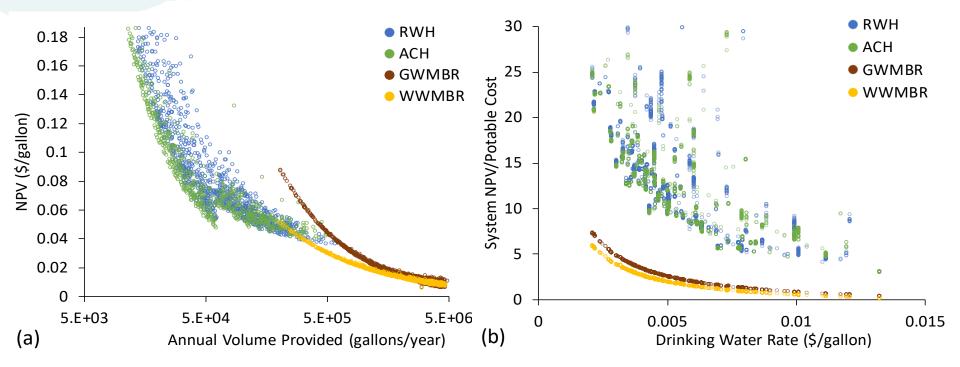
SEPA


Percent of Annual Non-Potable Demand Met

Mixed WW and GW systems always meet non-potable demand under modeled conditions.



Global Warming Potential Across Source Waters, Variable Location and Building Characteristics



Fixed Building Global Warming Potential Across Source Waters

(With thermal recovery offsetting NG (top) and electricity (bottom))

Net Present Value Across Source Waters, Variable Location and Building Characteristics

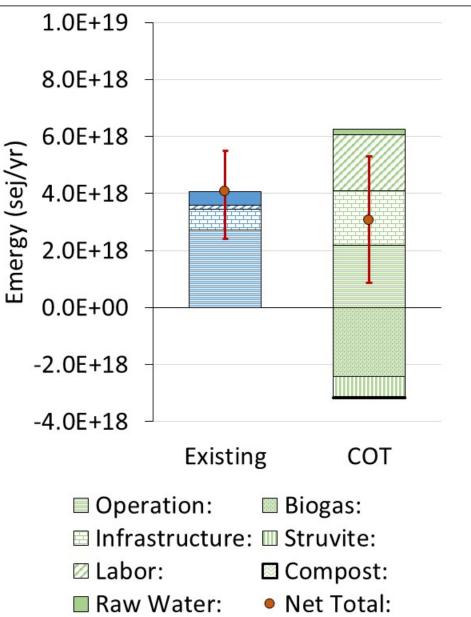
Tools: emergy and LCA (life cycle

assessment)

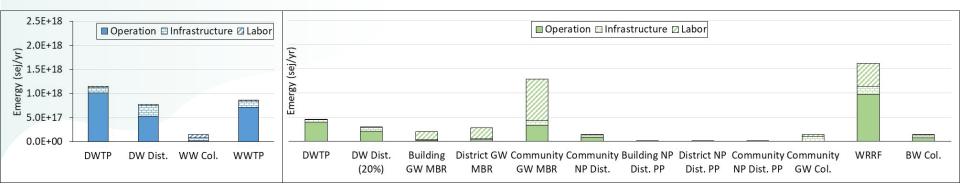
- System analyses examples
 - Nutrient recovery and removal
 - Energy recovery
 - Water reuse
 - City of Tomorrow

New concepts

- Fit for purpose
- Source separation and resource recovery
- Nutrient recovery
- Energy recovery
- Decentralization



Water Systems for the City of Tomorrow


Ma, X., Xue, X., Gonzalez-Mejia, A., Garland, J., and Cashdollar, J. (2015). "Sustainable Water Systems for the City of Tomorrow — A Conceptual Framework." <u>Sustainability</u> 7(9): 12071

Results – Emergy

- 10,000 simulations run with random selections within predefined range for each UEV
- Error bars represent min/max of Net Total results
- Net totals are slightly less under COT conditions
- Note large difference in labor inputs – economies of scale
- Biogas is most important resource recovery pathway

Results – Emergy

- Total emergy inputs to each major system component
- Existing system dominated by DWTP, WWTP
- COT dominated by labor to MBRs and WRRF (economies of scale)
- WRRF has relatively large resource requirements, but is responsible for production of all beneficial products (biogas, struvite, compost)

Take Home Messages

- Adopt system thinking in environmental management (water-energy nexus)
- Apply integrated assessment metrics on innovative technologies
- Design for resilience and sustainability

Questions?

Disclaimer

SEPA

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency (EPA). The research described in this presentation has been funded in part by EPA under contract EP-C-15-010 to Resource Environmental Solutions and Eastern Research Group. Portions of the research were conducted by EPA and Eastern Research Group under a memorandum of understanding for cooperative research. This presentation has been reviewed in accordance with EPA policy and approved for release. Any mention of trade names, manufacturers or products does not imply an endorsement by the United States Government or the U.S. Environmental Protection Agency.