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<vEPA Motivation (Questions)

* Fully developed vs. Partially developed dispersion profile
What is the effective dispersion coefficient for premise plumbing systems?

* How big of an impact will dispersion have in premise
plumbing systems?

 Can we ignore it?
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EPA Previous Work
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2

\v,EPA Assuming Re < 20,000 might require dispersion calc.

Most fixtures in homes are only allowing
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«FPA Pressure’s Impact on Flow

What is the actual flow rate in PPSs? What is pressure’s impact?
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«vEPA EPANET Compatible Approach

Developed EPANET compatible Lagrangian approach
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Fig. 8. Simulated fluoride tracer concentrations against field measurements at four junctions within Cherry Hill/Brushy Plains network.

Fig. 3. Impact of a pipe’s junction concentrations on its segment concentrations.

Can run entire network, rather than
segmenting only dead-end sections Shang et al. (2021), JWRPM 147(9): 04021057.
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EPA 2D Random Walk Particle Tracking

Wanted faster model than 3D CFD, that was more accurate than 1D advection-dispersion in EPANET-MSX
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< EPA

Impact of Initial Distribution: Laminar

Impact of initial particle distributions - Re: 364
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< EPA

Impact of Initial Distribution: Turbulent

Impact of initial particle distributions - Re: 969,818
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EPA EPANET-MSX

Lagrangian approach integrated into EPANET-MSX 2.0 Model with and without dispersion, with associated reaction
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«FEPA Planned Future Work

* Flushing Study

Contaminate and flush out the single-family home simulator

Model system to test effectiveness of flushing protocols and compare with
experimental data

» Effective 1D Dispersion Study

Monitor conductivity sensor response associated with a contaminated slug
under various PPS relevant flow rates

Introduce tees and elbows to assess their impact on effective 1D dispersion in
PPSs, focusing on relevant lengths and flow rates

Goal is to provide better dispersion coefficients for PPS modeling

Office of Research and Development 1 2



Questions

Jonathan Burkhardt: Burkhardt.Jonathan@epa.gov

Feng Shang: Shang.Feng@epa.gov

Models Used
https://github.com/USEPA/EPANETMSX
https://github.com/USEPA/EPANET2.2
https://github.com/USEPA/msx tools
https://github.com/USEPA/WNTR
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