#### Exposure and Effects of PFAS on Birds

Twin Ports Freshwater Folk Meeting - Wednesday February 1st, 2023

# What are Per- and polyfluoroalkyl substances (PFAS)?



A prototypical PFAS structure: PFOS=perfluorooctane sulfonate Multi-carbon backbone substituted with fluorine atoms

• C-Fl bond very stable and strong – hard to break

#### Charged functional group

 Acts as a surfactant – which decreases the surface tension between liquids and other substances

Fully synthetic

- Several thousand structural variants
  - >7800 currently identified by the EPA

### A Brief History of PFAS



### What items contain PFAS?

PFAS are widespread in many different products that are used in industrial, commercial, and consumer products

#### Industrial

- Manufacturing and oil industries
- Electronic manufacturing

#### Commercial

- Fire-fighting foams
- Pesticides
- Fuel additives

#### Consumer

- Food packaging
- Non-stick products
- Polishes, waxes, paints, cleaning products
- Water and stain repellent coatings and substances





### PFAS: A Significant National Impact

PFAS are known as "forever chemicals" that are persistent and break down very slowly over time.

- Bioaccumulation and biomagnification in the environment
- May be linked to harmful health effects
- Present in 98% of human blood samples from 2000-2014.



### **PFAS: Local Impacts**

#### 97% of assessed closed landfills have PFAS contamination



#### Local impacts of PFAS

- Found in fish such as smelt, creating consumption advisories in Lake Superior
- Contamination found in private wells and in surrounding ground water
- MPCA found high levels of PFAS in closed landfill sites in Minnesota

#### MPCA rings alarm: Old landfills leaking contaminants in Northland, across state

The "forever chemicals" have been found in high levels at closed landfills in Duluth, Ely and in 96 other sites across the state, said the Minnesota Pollution Control Agency on Thursday.

Written By: Brady Slater | 2:58 pm, Mar. 18, 2021

https://www.pca.state.mn.us/air-water-land-climate/pfas-and-closed-landfills

### Avian Field Study Motivating Observations

Laboratory and field studies together suggest that exposure to PFOS (and perhaps other PFAS) may impair avian reproduction

Wetland-associated insectivorous birds may be at particular risk though substantial uncertainties remain, including:

- The specific dietary pathways leading to avian exposure
- The role of bioaccumulation and biomagnification within invertebrate communities leading to avian exposure
- The specific endogenous systems and the toxic mechanisms of PFAS exposure
- The fitness consequences of exposure at realistic environmental concentrations



#### Study Sites:

| Site (established) | Classification |
|--------------------|----------------|
| Boulder Lake       | Reference      |
| Rice Lake          | Impacted       |
| Martin Road        | Impacted       |
| Airbase (DANGB)    | Impacted       |
| Boy Scout Landing  | Impacted       |
| UMD Farm           | Experimental   |
| EPA                | Experimental   |

### Technical Approach



### Study Species

#### Tree Swallow (Tachycineta bicolor)



- Insectivore
- Feeds while flying
- Strongly associated with aquatic environments

House Wren (Troglodytes aedon)



- Insectivore
- Feeds on ground, shrubs & low trees
- Likes aquatic edges

Black-capped Chickadee (*Poecile atricapillus*)



- Omnivore
- Feeds on mostly insects during breeding season.
- Terrestrial trees & shrubs

#### **More Aquatic**

#### DIET

#### **More Terrestrial**

### 2022 Field Season





### Nest Box Monitoring

- May 16<sup>th</sup> August 10<sup>th</sup>
- Checked boxes twice a week
- Recorded the following data:
  - Species
  - Number of eggs and nestlings
  - Estimated egg hatch date
  - Age of nestlings
  - Nest failure events

### Nest Box Summary

|                   | Boxes per | r TRES HOWR BCCH |          | Nests per |      |
|-------------------|-----------|------------------|----------|-----------|------|
|                   | site      | occupied         | occupied | occupied  | site |
| Rice Lake         | 40        | 8                | 0        | 0         | 8    |
| UMD Farm          | 30        | 8                | 10       | 0         | 18   |
| Boulder Lake      | 20        | 11               | 0        | 1         | 12   |
| Airbase (DANGB)   | 53        | 15               | 0        | 3         | 18   |
| DANGB A           | 23        | 6                | 0        | 1         | 7    |
| DANGB B           | 20        | 6                | 0        | 2         | 8    |
| DANGB C           | 10        | 3                | 0        | 0         | 3    |
| Martin Road       | 35        | 5                | 8        | 0         | 13   |
| Boy Scout Landing | 21        | 5                | 7        | 2         | 14   |
| GLTED LAB         | 20        | 1                | 4        | 0         | 5    |
| TOTAL             | 219       | 53               | 29       | 6         | 88   |

### Nest Box Occupancy & Success

| Sites             | % Occupancy | % Successful Nests* |
|-------------------|-------------|---------------------|
| Rice Lake         | 20%         | 88%                 |
| UMD Farm          | 60%         | 78%                 |
| Boulder Lake      | 60%         | 83%                 |
| Airbase (DANGB)   | 34%         | 72%                 |
| DANGB A           | 30%         | 57%                 |
| DANGB B           | 40%         | 100%                |
| DANGB C           | 30%         | 33%                 |
| Martin Road       | 37%         | 85%                 |
| Boy Scout Landing | 67%         | 93%                 |
| GLTED LAB         | 25%         | 100%                |
| TOTAL             | 40%         | 83%                 |

\*Successful Nest = at least one nestling survived to day 12

### Eggs

- PFAS analysis
- 1-2 eggs were randomly collected and dissected from each clutch
- Dead eggs were collected opportunistically



### Nestlings

- 1-2 nestlings collected per brood
- Nestling exposure and potential PFAS effects
  - Morphology (weight, feather length)
  - Whole carcass (PFAS & legacy contaminants)
  - Plasma (hormone analysis)
  - Liver (RNA analysis)
  - Stomach contents (PFAS & diet)







### Fecal sacs

- Collected from nestlings during nest box monitoring
- Dissected fecal sac used for DNA-based assessment of diet composition

### Field Respirometry

- Eggs and nestlings
- Does PFAS exposure correspond to changes in metabolism?





#### Field Respirometer Qubit Qbox RP1LP & RP2LP

Picture source: https://qubitbiology.com/products/respirometry,



### Environmental Sampling

- Water, sediment, and soil
- Taken every 2 weeks throughout the field season
- Passive samplers
  - Water and sediment
  - 3 PFAS samplers and a temperature logger on each mooring



### Plants

- Stable isotope analysis ( $\delta^{15}N$ ,  $\delta^{13}C$ )
- Target levels:
  - •overstory
  - •forbs and herbaceous
  - •emergent floating-leaf
  - submerged
  - free-floating
  - adhered substrate
  - •floating algae



### Invertebrates

#### **Aquatic Invertebrates**

- D-net sampling
- PFAS & stable isotope ( $\delta^{15}N$ ,  $\delta^{13}C$ ) analysis

#### **Spiders**

- Night sampling
- Four 50 m transects at two shoreline scenarios: lake and stream
- Target species: Orb-weavers

### Fish

- Sampled by electro-fishing and seining
- PFAS & stable isotope ( $\delta^{15}N$ ,  $\delta^{13}C$ ) analysis
- Targeted feeding levels:
  - Benthic (bottom)
  - Pelagic (water column)
  - Piscivorous (carnivorous)



#### Pilot PFAS Data (2020 & 2021)

Table 1. Sample Size by Site

| SiteList | Eggs | Nestlings | Diet |
|----------|------|-----------|------|
| BoyScout | 6    | 6         | 1    |
| Airbase  | 5    | 5         | 1    |
| MartinRd | 3    | 5         | 1    |
| RiceLake | 3    | 6         | 1    |
| Boulder  | 5    | 5         | 0    |
| UMD      | 2    | 1         | 0    |



## Mean PFAS tissue concentrations across all samples

|    | Compound | N egg | Av egg | Geo egg | N nestling | Av nestling | Geo nestling | N Diet | Av Diet | Geo Diet |
|----|----------|-------|--------|---------|------------|-------------|--------------|--------|---------|----------|
| 16 | PFOS     | 24    | 411.8  | 59.6    | 28         | 54.0        | 24.4         | 4      | 42.2    | 27.8     |
| 36 | 7.3.FTCA | 15    | 106.0  | 23.0    | 5          | 18.8        | 7.4          | 1      | 2.9     | 2.9      |
| 35 | 5.3.FTCA | 2     | 58.2   | 43.6    | 1          | 26.7        | 26.7         | 0      | NaN     | NaN      |
| 21 | 6.2.FTS  | 10    | 55.3   | 3.1     | 13         | 1.3         | 1.1          | 4      | 12.0    | 3.1      |
| 14 | PFHS     | 22    | 33.5   | 3.7     | 27         | 5.0         | 2.5          | 4      | 1.4     | 1.0      |
| 22 | 8.2.FTS  | 2     | 10.1   | 7.6     | 1          | 1.1         | 1.1          | 3      | 0.8     | 0.8      |
| 17 | PFNS     | 3     | 7.3    | 1.8     | 1          | 0.4         | 0.4          | 0      | NaN     | NaN      |
| 5  | PFOA     | 23    | 6.5    | 1.0     | 28         | 2.1         | 1.2          | 4      | 0.9     | 0.7      |
| 6  | PFNA     | 24    | 5.8    | 2.1     | 28         | 1.2         | 1.0          | 4      | 0.7     | 0.6      |
| 15 | PFHpS    | 17    | 5.2    | 1.0     | 19         | 0.5         | 0.4          | 1      | 0.4     | 0.4      |
| 9  | PFDoA    | 24    | 4.1    | 1.0     | 11         | 0.2         | 0.1          | 0      | NaN     | NaN      |
| 29 | N.EtFOSE | 17    | 4.0    | 2.7     | 4          | 1.6         | 1.5          | 2      | 1.1     | 1.1      |
| 8  | PFUnA    | 24    | 3.9    | 1.7     | 28         | 0.3         | 0.3          | 1      | 0.3     | 0.3      |
| 7  | PFDA     | 24    | 3.7    | 1.3     | 27         | 0.5         | 0.4          | 4      | 0.3     | 0.3      |
| 10 | PFTrDA   | 24    | 3.2    | 1.2     | 21         | 0.1         | 0.1          | 0      | NaN     | NaN      |
| 11 | PFTeDA   | 24    | 2.1    | 0.6     | 3          | 0.2         | 0.2          | 0      | NaN     | NaN      |
| 23 | PFOSA    | 2     | 2.0    | 1.8     | 5          | 0.5         | 0.2          | 1      | 0.2     | 0.2      |
| 18 | PFDS     | 20    | 1.8    | 0.5     | 5          | 0.2         | 0.2          | 0      | NaN     | NaN      |

Table 2 Summary Statistics by Compound in Pilot Data.

#### Analysis by SGS/Axys using MLA110 (EPA 1633)

#### PFOS



### **PFAS Summary**

- PFOS is the most abundant PFAS in eggs, nestlings, and diet at our sites
- PFOS concentrations are lowest at Boulder and UMD
- PFOS concentrations are highest at Airbase, Martin Rd, and Rice Lake
- Some evidence for increasing PFOS concentration from Airbase to Martin Rd to Rice Lake

#### PFAS in Food Web Pathways + Composition and Quality of Diet

### TO3. Characterize invertebrate prey diets of breeding birds using $\underline{DNA}$ metabarcoding and $\delta 13C$



#### PFAS in Food Web Pathways + Composition and Quality of Diet



#### 2022 Invertebrate Samples

Order

# Post-season Analyses & New Activities in 2023

### <u>Acknowledgements</u>







#### Chemical Safety for Sustainability (CSS) Research Program

The views expressed in this presentation are those of the authors and do not necessarily represent the views or the policies of the U.S. Environmental Protection Agency.



### **Questions?**

Odegard.Abigail@epa.gov Pavlovic.Emily@epa.gov Pesano.Alexandra@epa.gov