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APPENDIX A | INFORMATION QUALITY AND PEER REVIEW PROCEDURES 

A.1 Ensuring Information Quality  

The development of the technical documentation, Framework, Tool, and underlying analyses were 

conducted in accordance with EPA’s Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, 

and Integrity of Information Disseminated by the Environmental Protection Agency,1
 which follows Office of 

Management and Budget (OMB) guidelines2
 and implements the Information Quality Act (IQA) (Section 515 

of Public Law 106–554).3
 The following section this Appendix describes the independent peer review that 

was performed on the technical documentation materials.  

In accordance with OMB definitions, EPA defines the basic standard of information “quality” by the 

attributes objectivity, integrity, utility, and transparency. For products meeting a higher standard of quality, 

like this product, the Agency requires an appropriate level of transparency regarding data and methods in 

order to facilitate the reproducibility of information by qualified third parties. The EPA uses various 

established Agency processes (e.g., the Quality System, peer review requirements and processes) to ensure 

the appropriate level of objectivity, utility, integrity, and transparency for its products is based on the 

intended use of the information and the resources available.  

Objectivity focuses on whether the disseminated information is being presented in an accurate, clear, complete, 

and unbiased manner, and as a matter of substance, is accurate, reliable, and unbiased. The technical 

documentation meets the standard for objectivity, due to activities described in the following:  

a)    The information disseminated was determined to be complete, accurate, and reliable based on 

internal quality control measures adopted by the expert modeling teams. This included quality 

checks throughout the chain of analytic steps, including developing and processing climate 

projections, calibrating and validating the sectoral impact models, and checking data to ensure that 

no errors occurred in the process to compile and summarize results.  

 

 
1 EPA, 2002: Guidelines for ensuring and maximizing the quality, objectivity, utility, and integrity of information disseminated by the 

Environmental Protection Agency. United States Environmental Protection Agency, EPA/260R-02-008. Available online at 

http://www.epa.gov/quality/informationguidelines/documents/EPA_InfoQualityGuidelines.pdf  

2 OMB, 2002: Office of Management and Budget Information Quality Guidelines. Executive Office of the President, Office of Management 

and Budget. Available online at http://www.whitehouse.gov/sites/default/files/omb/inforeg/iqg_oct2002.pdf   

3 The IQA requires the Office of Management and Budget and federal agencies to issue guidelines that “ensur[e] and maximize[e] the 
quality, objectivity, utility, and integrity of information (including statistical information) disseminated by Federal agencies” (Public Law 
106-554; 44 U.S.C. 3516, note). The IQA does not impose its own standard of “quality” on agency information; instead, it requires only 
that an agency “issue guidelines” ensuring data quality. Following guidelines issued by the Office of Management and Budget, EPA 
released its own guidelines to implement the IQA: “Guidelines for Ensuring and Maximizing the Quality, Objectivity, Utility, and Integrity 
of Information Disseminated by the Environmental Protection Agency.” 

http://www.epa.gov/quality/informationguidelines/documents/EPA_InfoQualityGuidelines.pdf
http://www.whitehouse.gov/sites/default/files/omb/inforeg/iqg_oct2002.pdf
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b)    The information disseminated was determined to be clear, complete, and unbiased based on 
multiple rounds of independent review. Consistent with guidelines described in EPA’s Peer Review 
Handbook,4

 the underlying sectoral modeling methodologies were peer-reviewed through scientific 
journal publication processes. In addition, the Temperature Binning Framework was subject to an 
external journal publication process. Citations for these publications can be found throughout the 
main sector chapters of the technical documentation and its appendices.  

 
The technical documentation in full was subject to a public comment period to ensure that the 
information summarized by EPA was technically supported, competently performed, properly 
documented, consistent with established quality criteria, and communicated clearly. This public 
review period was also intended to provide feedback and comments on the utility of the 
Framework. 
 
The technical documentation in full was subject to an independent, external peer review to ensure 
that the information summarized by EPA was technically supported, competently performed, 
properly documented, consistent with established quality criteria, and communicated clearly. 

 

Integrity refers to security of information, such as the protection of information from unauthorized access 

or revision, to ensure that the information is not compromised through corruption or falsification. The 

technical documentation, Framework, Tool, and underlying analyses meet the standard for integrity due to 

the strategic steps taken to ensure that the data and information remained secure. These steps included 

the use of password protected data storage repositories, password protected data transfer technology, and 

multiple layers of data validation checks to ensure that the integrity was not compromised.  

Utility is the usefulness of the information to the intended users. The technical documentation, 

Framework, Tool, and underlying analyses meet the standard for utility because the information 

disseminated provides insights (technical methods for quantifying physical and economic impacts) 

regarding the potential magnitude of the impacts of climate change. Understanding the risks posed by 

climate change can inform broader assessment reports and policy decisions designed to address these risks.  

Transparency ensures access to and description of (1) the source of the data, (2) the various assumptions 

employed, (3) the analytic methods applied, and (4) the statistical procedures used. The report and its 

underlying analyses meet the standard for transparency for the following reasons:  

a)  The underlying datasets, sectoral impact models, and the methods supporting the Temperature 

Binning Framework have been published with open access in the peer-reviewed scientific literature, 

and are cited throughout the report. These papers, along with their online supplementary materials, 

provide detailed information on the sources of data used, assumptions employed, the analytic and 

 
4 EPA, 2015: Peer Review Handbook, 4th Edition, 2015. United States Environmental Protection Agency, Programs of the Office of the 

Science Advisor.  
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statistical methods applied, and important limitations regarding the approaches and/or how the 

results should be interpreted.  

b) Appendix A for this Technical Documentation provides details on how results and output from each 

sectoral impact model (or impacts study) are formatted and adapted for usage in the Framework 

and Tool. This Appendix contains descriptions of the methodologies used in estimating impacts, 

assumptions used, and citations to the underlying literature where the reader can go for more 

information.  

c)  The technical documentation in full was subject to a public comment period to ensure the 

interested stakeholders had an opportunity to review and provide input on the methods of the 

Framework and Tool. 

d)   All data output associated with the illustrative analyses of this Technical Documentation have been 

posted on the following website.  See https://www.epa.gov/cira/FrEDI   

e) The R package for FrEDI has been posted on the following website.  See 

https://www.github.com/USEPA/FrEDI   

f)   Reponses to all comments received during the public comment period. See 

https://cfpub.epa.gov/si/. Search using the report title. 

g) Responses to all comments received during independent, expert peer review have been posted on 

the report’s website. See https://cfpub.epa.gov/si/. Search using the report title. During their review 

period, expert peer reviewers were provided a copy of all comments received from the public 

comment period.  

 

A.2 Consideration of Assessment Factors  

When evaluating the quality, objectivity, and relevance of scientific and technical information, the 

considerations that EPA takes into account can be characterized by five general assessment factors, as 

found in A Summary of General Assessment Factors for Evaluating the Quality of Scientific and Technical 

Information, and the Guidance for Evaluating and Documenting the Quality of Existing Scientific and 

Technical Information.5 The following section lays out how the assessment factors are considered to 

determine whether models and data are acceptable for their intended use in the technical documentation, 

Framework, Tool, and underlying analyses. 

 
5 USEPA. 2003. A Summary of General Assessment Factors for Evaluating the Quality of Scientific and Technical Information, and the 

Guidance for Evaluating and Documenting the Quality of Existing Scientific and Technical Information. Science Policy Council U.S. 

Environmental Protection Agency Washington, DC. EPA 100/B-03/001 

 

https://www.epa.gov/cira/FrEDI
https://www.github.com/USEPA/FrEDI
https://cfpub.epa.gov/si/
https://cfpub.epa.gov/si/
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Factor  How the Factor was Considered 

Soundness The extent to which the 

scientific and technical 

procedures, measures, 

methods or models 

employed to generate the 

information are 

reasonable for, and 

consistent with, the 

intended application. 

 

• Used publicly available (to the maximum extent 
practicable) data reviewed for quality and accuracy with 
complete metadata available. Used data included in peer-
reviewed publications. Ensured evaluation of the scientific 
and technical procedures, measures, and methods 
employed to generate the estimates produced by the 
sectoral impact models.  

• Considered the capabilities of integrated assessment, 
simple climate model, and sectoral impacts models to 
examine the key analytical questions of this report (i.e., 
physical effects, economic damages, and changes in risk 
from climate change) in a manner consistent with sound 
scientific theory and accepted approaches.  

• Considered the extent to which the models had been 
previously applied in projects of similar scope as the 
Climate change Impacts and Risk Analysis (CIRA) project. 
For example, the BenMAP model has been used in similar 
climate and health impact analyses, and the labor analysis 
has been employed in other multi-sector modeling 
projects (e.g., Hsiang et al. 2017). 

• Considered whether the data and code is available, made 
available by EPA, or determined to not be feasible as it is 
claimed as proprietary by a non-federal business. 

• Ensured soundness by selecting sectoral impacts models 
with the following criteria: sufficient understanding of how 
climate change affects the sector; the existence of data to 
support the methodologies; availability of modeling 
applications that could be applied in the CIRA-FrEDI 
framework; based on peer reviewed literature and 
datasets; and the economic, iconic, or cultural significance 
of impacts and damages in the sector to the U.S. 

Applicability 

and Utility 

The extent to which the 

information is relevant for 

the Agency’s intended 

use. 

 

• Ensured that CIRA-FrEDI uses applicable and relevant 
inputs and considers the capabilities of the integrated 
assessment, simple climate model, and sectoral impacts 
models to examine the key analytical questions of CIRA 
(i.e., changes in physical effects, economic damages, and 
risk associated with climate change). 

• Ensured that CIRA-FrEDI and its underlying analyses are 
relevant to their intended use so that the information 
disseminated provides insights and methods for 
quantifying the physical and economic impacts of climate 
change at national and regional levels.  

• Ensured sectoral impacts models are reasonable for, and 
consistent with, the intended application by being 
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Factor  How the Factor was Considered 

sufficiently flexible to ensure consistency in inputs and 
monetizing physical impacts.  

• Ensured that models have been applied in peer-reviewed, 
published studies of similar scope and rigor as CIRA, 
including those described in the Fourth National Climate 
Assessment. 

Clarity and 

Completeness 

The degree of clarity and 

completeness with which 

the data, assumptions, 

methods, quality 

assurance, sponsoring 

organizations and analyses 

employed to generate the 

information are 

documented. 

• Ensured use of clear and complete inputs by considering 
the extent to which sectoral impacts models documented 
their key methods, assumptions, parameter values, 
limitations, sponsoring organizations/author affiliations, 
and funding information.  

• Ensured publications clearly and comprehensively describe 
analytic methods used and how they apply and build off 
existing bodies of research and underlying scientific 
and/or economic theories. 

Uncertainty 

and Variability 

The extent to which the 

variability and uncertainty 

(quantitative and 

qualitative) in the 

information or in the 

procedures, measures, 

methods or models are 

evaluated and 

characterized. 

 

• Ensured inputs that appropriately characterize uncertainty 
and variability by considering the capabilities of sectoral 
impacts models to evaluate and characterize key sources 
of variability and uncertainty. Results of these analyses are 
described in the underlying journal articles, and also 
demonstrated in this report.  

• Reviewed the model documentation and peer-reviewed 
publications and determine if a model is sufficiently 
flexible and capable of evaluating important sources of 
uncertainty for climate change impacts analysis.  

• Addressed key sources of uncertainty such as projected 
emissions (high versus low); regional climate variability 
(uncertainty across general circulation models); climate 
sensitivity (different values for equilibrium climate 
sensitivity); structural uncertainty (multiple methods used 
to project climate, and models to estimate sectoral 
impacts); ability to capture variability in temperature and 
precipitation outcomes; and effects that increasing 
population and income can have on impact estimates.  

• Documented outcomes of sensitivity and uncertainty 
analyses, where applicable, in the presentation of results 
using ranges and confidence intervals. 

Evaluation and 

Review 

The extent of independent 

verification, validation and 

peer review of the 

information or of the 

• Ensured use of independently verified and validated inputs 
by considering the extent to which models have been 
independently peer reviewed.  

• Reviewed the documentation associated with each model 
and determined if they have been independently peer 
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Factor  How the Factor was Considered 

procedures, measures, 

methods or models. 

 

reviewed and published in scientific journals with 
procedures to ensure that the methods are technically 
supportable, properly documented, and consistent with 
established quality criteria.  

• Used scenarios and projections that have been 
independently verified and validated (e.g. scenarios and 
projections developed for the IPCC and its assessments, 
and then downscaled for the U.S. for used in the Fourth 
National Climate Assessment by the USGCRP Scenarios 
Working Group). 

 

A.3 Peer Review of the Technical Documentation  

Consistent with guidelines described in EPA’s Peer Review Handbook,6,7
 this Technical Documentation was 

subject to a public review comment period, and an independent, external expert peer review. The Technical 

Documentation was subject to a public comment period to ensure that the information summarized by EPA was 

technically supported, competently performed, properly documented, consistent with established quality 

criteria, and communicated clearly. This public review period was also intended to provide feedback and 

comments on the utility of the Framework.  

Similarly, the purpose of the expert peer review by independent, qualified, and objective experts was to ensure 

that the information summarized by EPA was technically supported, competently performed, properly 

documented, consistent with established quality criteria, and communicated clearly. The sectoral impact models 

and underlying the Technical Documentation, as well as the Temperature Binning Framework were previously 

peer reviewed and published in the research literature. However, the Technical Documentation provides 

comprehensive detail of the design, structure, and potential application of the Framework, and is therefore the 

focus of the public and expert review processes.  

Public Review Period 

A 30-day public comment period was held from April 15th through May 17th, 2021. All comments received were 

carefully reviewed, considered, and responded to. 

Expert Peer Review 

The expert review was managed by a contractor (ICF International) under the direction of a designated EPA peer 

review leader, who prepared a peer review plan, the scope of work for the review contract, and the charge for 

 
6 EPA, 2015: Peer Review Handbook, 4th Edition, 2015. United States Environmental Protection Agency, Programs of the Office of the 
Science Advisor. Available online at https://www.epa.gov/osa/peer-review-handbook-4th-edition-2015  
7 EPA has determined that this report falls under the classification of “influential scientific information,” as defined by OMB and further 

described in the EPA Peer Review Handbook. This product is for science dissemination and communication purposes only and does not 
reflect analysis of nor recommendations regarding any particular policy. 
 

https://www.epa.gov/osa/peer-review-handbook-4th-edition-2015
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the reviewers. Importantly, the EPA peer review leader played no role in producing any portion of the report. 

Reviewers worked individually (i.e., without contact with other reviewers, colleagues, or EPA) to prepare written 

comments in response to the charge questions. The reviewers were also provided with the public review 

comments for informational purposes. 

The contractor identified, screened, and selected five reviewers who had no conflict of interest in performing 

the review, and who collectively met the technical selection criteria provided by EPA. 

The peer review charge directed reviewers to provide responses to the following questions during the main 

review: 

1. Does the introductory chapter clearly explain the purpose of the report and provide appropriate 

context for the rest of the documentation? If not, please provide recommendations for 

improvement. 

2. The report has been written for an educated and semi-technical audience. Are the writing level and 

graphics appropriate for these audiences? 

3. Does the report adequately explain the overall analytic framework of the temperature binning 

approach? 

4. Do the text, figures, and tables clearly communicate the framework’s structure and design? Are the 

requirements for input data, and the options for output/results summaries, clearly stated? 

5. Does the report clearly convey both the conceptual basis for temperature binning and the specific 

data processing and analytic steps taken to execute the concept?  Is it clear how both the EPA-

sponsored CIRA sector studies, and other non-CIRA studies, can be incorporated in the framework? 

6. Is the sector-specific approach to account for the role of socioeconomic driver data clear? Is it 

reasonable and well-supported? 

7. Is the approach to estimating sector-specific and aggregate economic impact (damages) of specified 

temperature trajectories reasonable and suitable for the stated purposes? 

8. Does the report adequately inform the reader about how uncertainty is addressed in the 

framework, including how results should be interpreted and used given the limitations? 

9. Has EPA objectively used, applied, and documented the underlying data of the temperature binning 

framework? Has the Agency appropriately described the sensitivity of the findings to analytic 

assumptions? 

10. Is the draft technical documentation report missing important information based on your review of 

the report? 

11. Report Format: Please comment on whether any aspects of the layout help or hinder the reader to 

understand the content and key messages of the report. 
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APPENDIX B | DETAILS OF SECTORAL IMPACT STUDIES 

 

B.1 Sector Data Overview .................................................................................................... B-1 

B.2 Health Sectors Data Processing ..................................................................................... B-4 

Air Quality .......................................................................................................................... B-4 

Extreme Temperature ....................................................................................................... B-8 

Labor ................................................................................................................................ B-12 

Southwest Dust ............................................................................................................... B-14 

Valley Fever ..................................................................................................................... B-18 

Wildfire ............................................................................................................................ B-22 

B.3 Infrastructure Sectors Data Processing ....................................................................... B-28 

Coastal Properties ........................................................................................................... B-28 

High Tide Flooding and Traffic ........................................................................................ B-30 

Rail ................................................................................................................................... B-33 

Roads ............................................................................................................................... B-35 

Asphalt Roads .................................................................................................................. B-39 

Urban Drainage ............................................................................................................... B-42 

Inland Flooding ................................................................................................................ B-44 

Hurricane Wind Damage ................................................................................................. B-47 

B.4 Water Resources Sectors Data Processing .................................................................. B-51 

Water Quality .................................................................................................................. B-51 

Winter Recreation ........................................................................................................... B-53 

B.5 Electricity Sectors Data Processing .............................................................................. B-58 

Electricity Demand and Supply ....................................................................................... B-58 

Electricity Transmission and Distribution Infrastructure ................................................ B-60 

 

B.1 Sector Data Overview  

This appendix provides additional detail on the sectoral studies currently processed for the Framework and 

outlines the processing required to prepare the sectoral study results for inclusion in the Tool. This 

appendix will be updated over time as additional sectoral studies and their functions are incorporated into 

the Temperature Binning Framework. The sectors are presented in four groups: Health Sectors, 

Infrastructure Sectors, Water Resources Sectors, and Electricity Sectors. Sectors within each group often 

share data processing methods. Table B-1 lists the 16 sectors by the four groups and summarizes the 

regional coverage of the sectoral impacts as well as identifies the GCMs used in the sectoral impact models. 

Table 2 (impact types, socioeconomic drivers, adaptation scenarios), Table 4 (links to population and GDP 

inputs), Table 5 (time dependent scalars), and Table 6 (valuation measures) in the main text also provide 

summarized information about the 16 sectors.  
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Application of the Framework is not limited to the sectors currently processed for the Tool. New sectors 

that meet the requirements outlined in Section 2 can be added to the tool following the process 

documented in this report. EPA is currently working with study authors to add three additional research 

studies to the sectoral scope of the Tool: 1) Two new sectors (violent and property crime; agriculture) and 

three sectors that overlap with estimates already in the Tool (labor, extreme temperature mortality, and 

coastal property) from Hsiang et al. (2017); 2) Coastal wind damage from changes in tropical storm activity, 

derived from Dinan (2017); and 3) Inland riverine flooding from an in-process update to Wobus et al. 

(2019).  This expansion in sectoral scope remains a high priority option for inclusion in a future revision to 

the Tool. 

TABLE B-1. REGIONAL COVERAGE AND GCMS USED BY SECTOR 

  Regional Coverage GCMs Used 
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Air Quality          1 1         
Extreme Temperature        1 1 1 1 1 1   
Labor        1 1 1 1 1 1   
Southwest Dust        1 1 1 1 1 1   
Valley Fever        1 1 1 1 1 1   
Wildfire        1 1  1 1 1   
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Asphalt Roads        * *       *   
Coastal Properties                    1 
High Tide Flooding and Traffic                    1 
Rail        1 1 1 1 1 1   
Roads        1 1 1 1 1 1   
Urban Drainage        1 1   1 1 1   
Inland Flooding *               
Hurricane Wind Damage               

Water 
Resources 

Water Quality        1 1   1 1 1   
Winter Recreation        1 1 1 1 1 1   

Electricity 

Electricity Demand and Supply        1 1 1 1 1 1   
Electricity Transmission and 
Distribution        1 1 1 1 1 1   

*The Asphalt Roads sector was not a part of the CIRA project but utilized three GCMs in common with the CIRA2.0 set of scenarios. 
The climate data for Asphalt Roads was bias corrected and downscaled using a different process than the method used in CIRA, 
therefore although the GCMs are the same, the integer degree arrival times differ slightly for this sector. The Inland Flooding sector 
used an ensemble of 14 GCMs (list provided in detailed write-up below), which includes four of the six GCMs listed in the table. The 
authors estimated arrival times and provided estimates of impacts by degree of warming for the mean of 14 GCM results for use in 
this work.. 
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For each sector, the sections that follow provide a summary of the impact model as well as a citation to the 

underlying study, which can be referred to for more information. Next, the sub-impacts are presented for 

two socioeconomic scenarios (2010 and 2090, for sectors with differentiated impacts over time; see 

Sections 2.3 and 2.4 of the Technical Documentation for a description of the socioeconomic scenarios used 

in the underlying sectoral impacts modeling.). A flow diagram outlines the results processing steps. Finally, 

limitations introduced by the data processing steps are listed for each sector.  
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B.2 Health Sectors Data Processing  

Air Quality 

This sectoral study estimates mortality risk 

associated with changing air quality; 

specifically, ozone and fine particulate matter 

(PM2.5) concentrations. 

This analysis uses air quality surfaces (i.e., concentrations in response to changes in meteorology and 

emissions) and concentration-response functions employed by Fann et al. (2021) to quantify PM2.5- and 

ozone-attributable premature mortality. Mortality is monetized using the value of statistical life (VSL). Two 

simulated air pollutant emissions inventories are considered as adaptation scenarios: a 2011 dataset that 

estimates unrestricted pollution burden from all sources as of that year, and a 2040 dataset that accounts 

for the implementation of a suite of regulatory policies on stationary and mobile emissions sources. 

Summaries of impacts by temperature bin degree in 2010 and 2090, the endpoints of socioeconomic 

modeling, and emissions inventory are included in Figure B-1 below. 

UNDERLYING DATA SOURCES AND LITERATURE 

Fann, N. L., Nolte, C. G., Sarofim, M. C., Martinich, J., & 

Nassikas, N.J. (2021). Associations between simulated future 

changes in climate, air quality, and human health. JAMA 

Network Open, 4(1). 

Doi:10.1001/jamanetworkopen.2020.32064 
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FIGURE B-1. AIR QUALITY IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 
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B. 2090 SOCIOECONOMICS 

 
 

Processing steps  

Processing steps are illustrated in Figure B-2. Data inputs from Fann et al. (2021) are compiled using U.S. 

EPA’s Benefits Mapping and Analysis Program – Community Edition (BenMAP-CE) to generate results at the 

regional level. The original air quality data was provided by study authors with the dimension era—GCM—

36-km grid cell—pollutant (ozone/PM2.5)—emissions inventory (2011/2040). Data is available for four eras 
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(2030, 2050, 2075, 2095) and two climate models (CCSM4 and GFDL-CM3). Concentration-response 

functions employed by Fann et al. (2021) are based on risk model information for those age 30-99 for PM2.5 

and those age 0-99 for ozone. Within BenMAP-CE, impacts are aggregated to the regional level for each 

era, GCM, pollutant, and emissions inventory scenario. The original results provided already account for 

baseline incidence; therefore, no additional processing is needed to isolate climate impacts. 

The third step divides total regional impacts by dynamic Integrated Climate and Land Use Scenarios, v2 

(ICLUSv2) regional population to acquire per capita mortality estimates for each era. The calculations utilize 

total regional population anticipating alternative population inputs would be unlikely to contain age-

stratified population projections. Next, era costs are assigned to the central year of the era (i.e., 2030, 

2050, 2075, and 2095), and costs per era are transformed to annual costs by interpolating linearly between 

era impacts. Finally, yearly impacts for each pollutant impact type (ozone/PM2.5) are averaged across the 

GCM-specific eleven-year windows around the first arrival times of integer degrees of warming relative to 

the baseline.  

FIGURE B-2. AIR QUALITY PROCESSING FRAMEWORK 

 

Final mortality estimates are produced by applying the per capita mortality rates to the input population 

scenario and GDP input-adjusted VSLs. VSL is adjusted for changes in GDP per capita using an income 

elasticity function8:  

 
8 This is a generic elasticity function that can be used in a time-series fashion, as used here, or for cross-sectional benefits transfers, as in 
the  example in Masterman and Viscusi (2018), “The Income Elasticity of Global Values of a Statistical Life: Stated Preference Evidence”, 
Journal of Benefit-Cost Analysis, 9(3):407-434. Note that the default elasticity used here is 0.4, consistent with current EPA policy but 
substantially lower than estimates provided in Masterman and Viscusi (2018). 
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𝑉𝑆𝐿𝑡 =  𝑉𝑆𝐿2010 × (
𝐺𝐷𝑃𝑐𝑎𝑝

𝑡

𝐺𝐷𝑃𝑐𝑎𝑝
2010

)

0.4

 

Limitations and Assumptions 

• PM2.5-attributable premature mortality is quantified for those age 30 and older, and this analysis 

assumes the impacts for those under 30 to be zero. Doing so underestimates the risk of premature 

mortality experienced by those under 30. Additionally, doing so assumes that age demographics 

remain proportional over the century. 

• This analysis does not quantify morbidity effects associated with changes in PM2.5 and ozone, which 

are likely to increase as temperature increases. Changes in air quality can provoke hospital 

admissions for respiratory diseases and worsen other conditions. 

• For further discussion of the limitations and assumptions in the underlying sectoral modeling 

approach, see Fann et al. (2021). 

Extreme Temperature 

This sector addresses the impact of extreme 

temperature on premature mortality in 49 

major U.S. cities. In the 2010 Census, the 49 

cities accounted for 91.3 million of the total 

US population of 309.3 million, or nearly 30 

percent. 

Economic damages are based on extreme heat and cold mortality rates, monetized by applying the VSL. 

The VSL trajectory through the simulation period changes as a function of per capita income. 

The underlying epidemiologic model includes runs with and without adaptation scenarios. The adaptation 

scenario does not reflect a benefit-cost calculation but an assumption that U.S. cities will gradually adapt to 

a hotter environment through physical acclimatization of their residents, infrastructure replacement with 

more heat suitable shading and air conditioning, and behavioral changes, so that the stressor-response will 

look like that of the current Dallas context.9  The original estimates are provided for 49 cities. Figure B-3 

provides a summary of the results for heat and cold related mortality, for both adaptation scenarios and six 

GCMs at the endpoints of the socioeconomic scenarios; 2010 and 2090. 

  

 
9 The adaptation scenario was considered in Mills et al. (2015) and U.S. EPA (2017). More refined adaptation scenarios for this sector, 
including the costs and efficacy of increased air conditioning market penetration, are the subject of active and ongoing research. Some 
research has found the efficacy of cooling centers can be high in preventing extreme heat mortality, but surveys and current experience 
suggest that many residents are unwilling to use formal cooling centers. For at least some of the cities evaluated in Mills et al. (2015), the 
empirical data reflects the availability, if not the widespread use, of cooling centers to residents. 

UNDERLYING DATA SOURCES AND LITERATURE 

Mills, D., Schwartz, J., Lee, M., Sarofim, M., Jones, R., Lawson, 

M., Duckworth, M., & Deck, L. (2014). Climate Change Impacts 

on Extreme Temperature Mortality in Select Metropolitan Areas 

in the United States. Climatic Change, 131, 83-95. 

Doi:10.1007/s10584-014-1154-8 
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FIGURE B-3. EXTREME TEMPERATURE IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOEONOMICS 
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B. 2090 SOCIOECONOMICS 

 

Processing steps 

Processing steps are shown in Figure B-4. The original data was provided by the study authors with the 

dimension degree – GCM – city – damage type (heat/cold mortality) – base population (2010/2090). The 

first processing step was to sum the city damages to regional damages. Next, the incremental impacts of 

climate change are isolated by subtracting the 0-degree bin mortality results from each warming bin.  
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The model was run under two constant population assumptions: 2010 and 2090 estimates from ICLUSv2 

(EPA 2017; Bierwagen et al., 2010). In addition to having different total populations, these two scenarios 

vary in the distribution of population across modeled cities. In the third processing step, regional mortality 

in each scenario is divided by total population in each scenario to obtain a mortality per capita estimate for 

each population base. Both estimates, as well as an interpolation between the two, are available for impact 

estimations.  

FIGURE B-4. EXTREME TEMPERATURE DATA PROCESSING FRAMEWORK 

 
 

Final economic damage estimates are produced by applying the per capita mortality rates to the input 

population scenario and GDP input-adjusted VSLs. Regional population inputs are translated to city 

populations using factors derived from the ICLUSv2 population scenarios in 2010, 2050, and 2090, and 

interpolated for years in between. VSL scales relative to changes in GDP per capita to general impact 

estimates.   

Limitations and Assumptions 

• National per capita averages are based on the total population of modeled cities with heat and cold 

impacts. There are certain cities in the Southeast (Atlanta, Broward-Ft. Lauderdale, Miami, 

Orlando), Southern Plains (Austin, Dallas), and Southwest (Albuquerque, Los Angeles, Phoenix, San 

Diego) regions that are modeled for adaptation to heat but are not modeled for adaptation to 

extreme cold. It is assumed that these cities have minimal extreme cold damages, and therefore 

their populations are included in the denominator as part of the total population over which cold 

damages are averaged. 
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• This analysis only covers considers health impacts to individuals living in 49 cities within the 

contiguous U.S., and therefore omits a large majority of the population vulnerable to extreme 

temperatures. 

• Cities that only experienced extreme cold in the historic period, notably those in the Northwest 

region, do not show an increase in extreme-temperature related mortality in this analysis. This 

result is an artifact of the methodology, which relies on observed temperature thresholds based on 

a historic period.  With increased temperatures, it is likely that many of these Northwestern cities 

could experience heat-related mortality as well, which might be reflected if a different impact 

estimation methodology had been applied. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, please 

see Mills et al. (2014) and EPA (2017). 

Labor 

The labor sector addresses economic 

damages of changes in labor hours as a result 

of climate change. The analysis estimates 

changes in labor allocation, with both positive 

and negative responses of changes in hours 

worked in weather-exposed industries (e.g., 

agriculture, construction, manufacturing). The study finds the relationship between temperature and hours 

worked is not significant during recession periods, and therefore projected losses are adjusted to account 

for the probability of recession. Damages are based on a physical measure of average hours worked by 

workers in high risk industries, which is monetized in Neidell et al. (2021) by average wages across at-risk 

industries10. A summary of impacts by temperature bin degree at 2010 and 2090, the endpoints of 

socioeconomic modeling, is included in Figure B-5.  

  

 
10 Hourly wages are based on average wages across at-risk industries: agriculture, forestry, fishing, hunting, mining, construction, and 
manufacturing.    

UNDERLYING DATA SOURCES AND LITERATURE 

Neidell, M., Graff-Zivin, J., Sheahan, M., Willwerth, J., Fant, C., 

Sarofim, M., & Martinich, J. (2021). Temperature and work: Time 

allocated to work under varying climate and labor market 

conditions. PLoS ONE 16(8): e0254224. 

https://doi.org/10.1371/journal.pone.0254224 

 

https://doi.org/10.1371/journal.pone.0254224


Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) 

 

     Page B-13 

FIGURE B-5. LABOR IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS     B. 2090 SOCIOECONOMICS 

  

 
 

Processing steps 

Processing steps are shown in Figure B-6. Forgone wages due to climate-induced temperature increase are 

calculated by combining an average hourly wage rate, high-risk worker population, and per high-risk worker 

hours lost. The original data includes forgone hours for each year, GCM, and region combination. In the first 

step, state-level data is summed to the NCA region level. The second step is bypassed; these results already 

account for baseline hours lost, so no additional processing is needed to isolate climate impacts. The third 

step divides these estimates by high-risk worker population to acquire per high-risk worker estimates. The 

population of high-risk workers varies by region but is assumed to remain constant over the course of the 

century. Per high-risk worker hours lost are stored as the underlying impact, and final economic damage 

estimates are produced by multiplying these rates by a regional population and an average wage.  
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FIGURE B-6. LABOR DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• High risk worker population is assumed to remain constant over the course of the century. 

• This analysis does not evaluate the potential for new adaptations (behavioral or technological) by 

workers or employers to mitigate the effects of extreme temperatures on labor allocation. Adaptations 

present in the baseline period upon which the econometric analysis is based are assumed to be part of 

the modeled response to future temperature changes, however, new adaptation behaviors or 

technology are not evaluated.  

• For further discussion of the limitations and assumptions in the underlying sectoral model see Neidell 

et al. (2021). 

Southwest Dust 

This sectoral study estimates health 

burden and the economic value of that 

burden resulting from changes in fine 

and coarse airborne dust exposure due 

to climate change in the Southwest.  

UNDERLYING DATA SOURCES AND LITERATURE 

Achakulwisut, P., Anenberg, S. C., Neumann, J. E., Penn, S. L., Weiss, N., 

Crimmins, A., Fann, N., Martinich, J., Roman, H. A., & Mickley, L. J. 

(2019). Effects of increasing aridity on ambient dust and public health in 

the U.S. southwest under climate change. GeoHealth, 3(5), 127-144. 

Doi:10.1029/2019GH000187 
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Damages are based on the change in incidence of a range of morbidity and mortality outcomes, which are 

monetized using direct hospitalization costs, indirect loss of income from hospitalization, costs of 

emergency department visits, and (for premature mortality) the VSL.  

Estimates of health costs are available by impact type: Emergency Department visits due to Asthma, 

Cardiovascular, Respiratory, Mortality, and Acute Myocardial Infarction. A summary of impacts by 

temperature bin degree in 2010 and 2090, the endpoints of socioeconomic modeling, is included in Figure 

B-7. 

FIGURE B-7. SOUTHWEST DUST IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 
 

 

  Model 
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B. 2090 SOCIOECONOMICS 

 
 

 

 

Processing steps  

Processing steps are illustrated in Figure B-8. The health burden and costs incurred as a result of increased 

dust exposure due to climate change are calculated by combining average cost-of-illness and mortality 

costs, population, and average number of cases.  

The original results already account for baseline incidence; therefore no additional processing is needed to 

isolate climate impacts. Original results are presented as increases in health impacts from baseline levels 

for affected populations — for example, cardiovascular disease impacts are considered only for people over 

65. To calculate costs across all considered impacts, damages per capita are calculated for the total 

population by impact type; implicitly, damages for age groups not modeled are assumed to be zero. Per 

Model 
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capita estimates are calculated using total regional populations in 2010 and 2090. These damages are 

produced across integer degree, health impact, and GCM.  

Both estimates (2010/2090), as well as an interpolation between the two, are available for impact 

estimation. Per capita estimates of health impacts are multiplied by regional population and average 

medical cost. Medical costs are variable across health impacts. For all mortality, the VSL is utilized, which 

scales relative to changes in GDP per capita. Final damages are calculated based off the temperature 

trajectory assigned in the tool.  

FIGURE B-8. SOUTHWEST DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• While dust exposures are known to be large in the southwestern U.S., this analysis does not 

consider health effects from coarse and fine dust in other regions of the U.S.  

• This sector relies on population for a section of the Southwest region (Arizona, Colorado, New 

Mexico, Utah) to calculate damages across impact types. The scaling of damages by this population 

allows for custom inputs of socio-economic estimates but may introduce error if the age 

demographics of the population are not roughly constant over the simulation period.  

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 

Achakulwiset et al. (2019). 
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Valley Fever 

This sectoral study estimates the health 

burden and economic value associated with 

climate change-related Valley fever 

incidence. Valley fever is a prevalent disease 

in the hot and dry Southwest region of the 

U.S. but is expected to expand in geographic 

scope with warming. Therefore, this analysis 

quantifies Valley fever impacts across the contiguous U.S., with most of the burden focused in the 

Southwest. 

Impacts are based on the change in number of Valley fever cases and the probability of a range of 

morbidity outcomes, which are monetized using direct hospitalization costs, costs of emergency 

department visits, costs of physician visits, and indirect cost of lost productivity from hospitalization. 

Mortality is valued using the VSL. Summary of impacts by temperature bin degree in 2010 and 2090, the 

endpoints of socioeconomic modeling, are included in Figure B-9. 

  

UNDERLYING DATA SOURCES AND LITERATURE 

Gorris, M. E., Neumann, J. E., Kinney, P. L., Sheahan, M., & 

Sarofim, M. C. (2020). Economic Valuation of Coccidioidomycosis 

(Valley Fever) Projections in the United States in Response to 

Climate Change. Weather, Climate, and Society, 13(1), 107-123. 

Doi:10.1175/WCAS-D-20-0036.1 
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FIGURE B-9. VALLEY FEVER IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 

Model 
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B. 2090 SOCIOECONOMICS 

  

Model 
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Processing steps  

Processing steps are illustrated in Figure B-10. Projected Valley fever incidence at the county-level was 

provided by study authors for 10-year eras centered on 2030, 2050, 2070, and 2090, for six GCMs. In step 2, 

baseline incidence by county is subtracted from projected incidence for Southwest counties that met an 

endemicity threshold for Valley fever in the baseline period (112 Southwest counties out of 216). The 

modeled CIRA baseline based on LOCA weather data is used in place of the Precipitation-Elevation 

Regressions on Independent Slopes Model (PRISM) baseline from the underlying study. The PRISM baseline 

provides total regional incidence and does not line up temporally with the modeled CIRA baseline. The CIRA 

baseline for the period of 1995 (1986-2005) provides incidence by county and allows for comparison of 

impacts by degree across sectors. A baseline of zero is assumed for all other counties with projected 

incidence.11 This includes counties in the Southwest that did not meet the endemicity threshold in the 

baseline period and counties outside of the Southwest region which, similarly, did not meet the endemicity 

threshold in the baseline period. The resulting county-level incidence identifies cases of Valley fever 

attributable to climate change. 

Next, county-level impacts are summed to the regional level, resulting in a total count of Valley fever cases 

per region. In step 3, total impacts are divided by dynamic ICLUSv2 regional population to calculate a case 

per capita value for each era, GCM, and region. Finally, an annual time series is constructed by linearly 

interpolating between era values, and yearly impacts are temperature binned by GCM-specific eleven-year 

windows. 

A range of morbidity and mortality outcomes of varying severity associated with Valley fever cases are 

valued to calculate a weighted average cost based on likelihood of outcome. Based on prior literature, 

morbidity outcomes are expected to occur in 96 percent of Valley fever cases. Valued morbidity impacts 

include direct hospitalization, emergency room visit with discharge, emergency room visit with 

hospitalization, and physician visit. Lost productivity costs associated hospitalizations are monetized using 

likelihood of outcome and wage rate. Finally, mortality is expected to occur in 4 percent of Valley fever 

cases and is valued using VSL. To generate impact estimates, cases per capita are multiplied by regional 

population and a weighted average valuation that accounts for likelihood and value of each outcome (the 

last step in Figure B-10 below). 

 
11 Note that climate-attributed excess cases are estimated by comparison of the modeled future climate to the model baseline, using the 
two-stage approach developed in the paper. Incidence is only calculated in counties that meet an endemicity threshold. Therefore there 
are two ways that cases can be attributed to climate change: 1. Endemicity thresholds are met in both the baseline and future climate, 
and so excess cases are the difference between the calculated incidence in future minus baseline; 2. Climate change causes a county to 
cross the endemicity threshold, in which all future cases are attributed to climate change. This approach is consistent with the current 
understanding of Valley fever incidence, which is that the fungus must first be established in the soil before a case attributed to exposure 
in the county can be inferred. 
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FIGURE B-10. VALLEY FEVER PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• This analysis assumes a baseline of zero cases for counties that did not meet the endemicity 

threshold in the Southwest region during the baseline period as well as all counties with projected 

Valley fever cases outside of the Southwest region. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 

Gorris et al. (2020). 

 

Wildfire 

This sectoral study estimates health impacts 

from wildfire emissions and response costs 

from wildfire suppression. Neumann et al. 

(2021) models change in wildfire activity for 

the western region of CONUS. As such, 

response costs are limited to this area, but 

this study models health impacts of the 

particulate matter from western wildfires across the CONUS (as these emissions typically travel eastward 

across the continent). 

UNDERLYING DATA SOURCES AND LITERATURE 

Neumann, J. E., Amend, M., Anenberg, S., Kinney, P. L., Sarofim, M., 

Martinich, J., Lukens, J., Xu, J., & Roman, H. (2021). Estimating 

PM2.5-related premature mortality and morbidity associated with 

future wildfire emissions in the western US. Environmental Research 

Letters, 16(3). Doi:10.1088/1748-9326/abe82b 
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Health impacts are based on the change in incidence of a range of morbidity and mortality outcomes, which 

are monetized using direct hospitalization costs, costs of emergency department visits, lost productivity, 

and (for mortality) the VSL. Response costs are estimated based on average wildfire response costs per acre 

burned, by NCA region. Summaries of impacts by temperature bin degree in 2010 and 2090, the endpoints 

of socioeconomic modeling, are included in Figure B-11 below. 
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FIGURE B-11. WILDFIRE IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 

  

Model 
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B. 2090 SOCIOECONOMICS 

 
  

Model 
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Processing steps  

Processing steps are illustrated in Figure B-12. Data for each impact type (mortality, morbidity, and 

response costs) are each processed separately, and summed to estimate total cost across impact types. 

Regional mortality incidence attributable to climate change-related changes in PM2.5 concentrations 

resulting from wildfires is provided by study authors for two 10-year eras centered on 2050 and 2090 and 

five climate models. This analysis considers mortality estimated using a concentration-response function 

based on risk model information specific to those age 30 and older. A synthetic “no wildfires” mortality 

scenario that isolates the impact of projected climate (using the Localized Constructed Analogs, or LOCA 

data) on wildfires is subtracted from projected incidence to isolate the excess health burden associated 

with climate-induced changes in wildfire activity. This technique allows identification of air quality and 

health effects associated solely with wildfire. The climate change-related mortality incidence is divided by 

dynamic ICLUSv2 regional population for each era to calculate mortality per capita for each 

era/GCM/region scenario. Finally, an annual time series is constructed by linearly interpolating between era 

values, and yearly impacts are temperature binned by GCM-specific eleven-year windows. 

Regional morbidity incidence and valuation was provided by study authors for the same 10-year eras 

centered on 2050 and 2090 and five climate models. This analysis sums valuation across a set of health 

endpoints to determine one value associated with all morbidity impacts, representing cost of illness and 

lost productivity for each era/GCM/region scenario.12 Baseline valuation is subtracted from 2050 and 2090 

projected valuation to isolate the impact of climate change on wildfire-related morbidity. Morbidity 

valuation is then divided by population, interpolated, and temperature binned as described above for 

mortality. 

Acres burned with baseline implicitly accounted for was available from authors with the dimension year—

GCM—region, excluding the Midwest, Northeast, and Southeast regions. Acres burned per region is 

averaged across the GCM-specific eleven-year windows around the first arrival times of integer degrees of 

warming relative to the baseline. Regional response costs per acre are inputted into the tool as a scalar 

multiplied by acres burned to calculate total impacts. Response costs per acre remain constant across the 

century.  

Mortality incidence per capita is multiplied by total regional population and VSL to calculate total mortality 

valuation. Morbidity valuation per capita is multiplied by total regional population to calculate total 

morbidity valuation. Acres burned is multiplied by response costs per acre to calculate total response costs. 

The total cost for each impact type is summed to calculate total regional impacts.  

 
12 Full list of health endpoints includes: acute bronchitis, nonfatal acute myocardial infarction, asthma exacerbation (cough, wheeze, 
shortness of breath), asthma emergency room visits, cardiovascular hospital admissions, asthma hospital admissions, chronic lung 
disease hospital admissions (less asthma), respiratory hospital admissions, lower respiratory symptoms, upper respiratory symptoms, 
work loss days, and minor restricted activity days. 
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FIGURE B-12. WILDFIRE PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• Mortality incidence is quantified for those age 30 and older, and this analysis assumes the impacts 

for those under 30 to be zero. Doing so underestimates the risk of premature mortality experienced 

by those under 30. Additionally, doing so assumes that age demographics remain proportional over 

the century. 

• Similarly, the morbidity health endpoints included in this analysis are associated with various age 

distributions. Total valuation is divided by total regional population, assuming that the health 

burden outside of included age ranges is zero. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Neumann et al. (2021). 
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B.3 Infrastructure Sectors Data Processing  

Coastal Properties 

This sector study estimates future 

property value damages as a result of 

sea level rise combined with storm 

surge attributed to climate change.  

Damages are estimated for all real 

properties (land and structure) in all 

coastal counties that contain land with 

a hydraulic connection to the ocean 

and containing property that is within 

20 m elevation above sea level for the 

year 2000. Property values for potentially vulnerable structures and land are “market adjusted” assessed 

values that reflect 2017 property values for 302 counties along the CONUS coast – see Neumann et al. 

(2021) for details. Within the model, real property values appreciate over the century by GDP per capita 

projections. 

The underlying damage simulation model includes cost estimates for no adaptation and two adaptation 

scenarios (reactive and proactive), as defined in the underlying study. Under the no adaptation scenario, 

properties are abandoned once inundated. Reactive adaptation loosely reflects structural adaptation 

options that can be adopted without collective action (e.g., elevation of structures and land near 

structures), while proactive adaptation includes consideration of options that likely require collective action 

(such as beach nourishment and construction of seawalls).13 The model conducts a series of benefit-cost 

calculations at the level of a 150m x 150m grid cell to assess where and when adaptation could be cost-

effective in mitigating property damage due to sea level rise and storm surge. Summaries of impacts by 

integer degrees of warming in 2010 and 2090, the endpoints of socioeconomic modeling, and by 

adaptation scenario is included in Figure B-13. 

  

 
13 The underlying study (Neumann et al. 2021) outlines the logic for classifying measures as reactive or proactive. The general concept is 
that reactive measures are either responsive to events (without foresight about future events) or can be undertaken without coordinated 
action between individuals and governments. Elevation, for example, is modeled at the individual property level in response to highly 
localized hazards, not as a collective action of municipal governments to modify building codes.  

UNDERLYING DATA SOURCES AND LITERATURE 

Neumann, J. E., Chinowsky, P., Helman, J., Black, M., Fant, C., Strzepek, 

K., & Martinich, J. (2021).  Climate effects on US infrastructure: the 

economics of adaptation for rail, roads, and coastal development. 

Climatic Change. https://doi.org/10.1007/s10584-021-03179-w 

Lorie, M., Neumann, J. E., Sarofim, M. C., Jones, R., Horton, R. M., 

Kopp, R. E., Fant, C., Wobus, C., Martinich, J., O’Grady, M., Gentile, L. 

E. (2020). Modeling coastal flood risk and adaptation response under 

future climate conditions. Climate Risk Management, 29. 

Doi:10.1016/j.crm.2020.100233 
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FIGURE B-13. COASTAL PROPERTIES IMPACTS BY SLR SCENARIO OVER TIME 

 

Processing steps 

Processing steps are shown in Figure B-14. In step one, a trajectory of property damages that represent an 

11-year rolling average of annual results from the underlying study are estimated for each sea level rise 

scenario, year, region, adaptation scenario, and for two static socioeconomic scenarios; 2010 and 2090. 

Residential and commercial properties, as well as energy infrastructure, are considered to calculate 

potential damages in the model. For this sector, the baseline is anchored at 2000, as the National Coastal 

Property Model (NCPM) starts with zero damages in this year. As with the temperature bin indexing, 

regional and local sea levels are mapped to GMSL based on the localized sea level rise projections from 

Sweet et al. (2017), which include effects such as land uplift or subsidence, oceanographic effects, and 

responses of the geoid and the lithosphere to shrinking land ice. When custom sea level rise scenarios are 

used in the Framework, the relationship between GMSL and regional sea levels, and ultimately 

regional impacts, are mapped implicitly based on the underlying models. 

As noted in the main report text, SLR is estimated from a reduced complexity model that incorporates the 

time- and trajectory-dependent qualities of SLR response to temperature. That implies that damages 

should be estimated along the trajectory using both the sea level height and the year that the sea-level 

height is reached (and therefore, that year’s implicit socioeconomics). Damages for any year therefore use 

the 11-year rolling average damages for each sea level rise scenario, and the input sea level rise trajectory, 

and a damage trajectory is interpolated between the two underlying sea level rise scenarios that have sea 

level rise heights closest to the input scenario in any given year. For example, if the SLR trajectory reaches 

175 cm in 2080, the damage estimate would fall between the 150cm and 200cm scenarios.   

Because of the decision-tree structure of the NCPM, population and GDP cannot be disentangled as drivers 

of impacts. A linear interpolation between impact estimates associated with runs of the NCPM where 

socioeconomics are held constant in 2010 and 2090 is used to model changes in socioeconomic drivers for 

this sector.   
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FIGURE B-14. COASTAL PROPERTIES DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• Damages are limited to land and structures within the study domain (i.e., flooding impacts to 

structures inland of 20m elevation are not quantified), and exclude the value of public 

infrastructure, which was not considered in the underlying sectoral study. 

• Adaptation response decisions in the coastal zone are not typically made with strict cost-benefit 

decision rules, particularly at the local level. Other factors may include local zoning bylaws, future 

land use plans, the presence of development-supporting infrastructure, or proximity to sites with 

high cultural value. However, the analytical framework of this coastal property model provides a 

simple, benefit-cost decision framework that can be consistently applied for regional and national-

scale analysis. 

• The underlying study does not consider the effects of climate on storm surge activity (although 

impacts on wind damage are considered in a separate sector study included in the tool). The only 

non-climate change driven change to coastline considered was an increase in land and existing 

structure value over time. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Neumann et al. (2021), Lorie et al. (2020), and USEPA (2017). 

High Tide Flooding and Traffic 

This sector study estimates the cost of delays 

to passenger and freight traffic on coastal 

roads that experience flooding due to 

combinations of high tides and sea level rise, 

and costs of adaptation in the form of 

infrastructure improvements.  

UNDERLYING DATA SOURCES AND LITERATURE 

Fant, C., Jacobs, J. M., Chinowsky, P., Sweet, W., Weiss, N., 

Martinich, J. & Neumann, J. E. (2021). Mere nuisance or growing 

threat? The physical and economic impact of high tide flooding 

on US road networks. Journal of Infrastructure Systems. doi: 

10.1061/(ASCE)IS.1943-555X.0000652 
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Delay damages are in terms of passenger and freight vehicle-hours. These are monetized based on the 

value of travel time savings (VTTS) for passenger traffic, and the National Cooperative Highway Research 

Program’s (NCHRP) inputs for cost of delay for freight traffic. Infrastructure improvements include building 

sea walls or elevating the elevation of the roadway surface. Infrastructure improvement costs include 

estimates of material, labor, and construction delays.  

This sector considers three adaptation scenarios: no adaptation, reasonably anticipated adaptation, and 

direct adaptation. These adaptation scenarios differ from scenarios modeled for other infrastructure 

sectors. The no adaptation, reactive adaptation, and proactive adaptation scenarios of other infrastructure 

sectors are based on infrastructure development for an unchanging, current, or future climate in a given 

model time step. For this sector, the no adaptation scenario estimates costs of delays associated with 

flooding of roadways with the assumption that drivers do not re-route and instead wait until the roadway is 

clear to travel. The reasonably anticipated adaptation scenario assumes drivers re-route to avoid flooded 

roadways, with only slight delay due to increased travel time. This scenario also includes ancillary 

protection; in cases where flooded roadways are near properties that would be protected by sea walls or 

beach nourishment, this scenario assumes those roadways would also be protected and thus no longer 

flood.14 In the direct adaptation scenario, where delay costs are high enough, roadways are either 

protected from flooding through the construction of a sea wall or elevation of the road profile. Figure B-15 

provides a summary of results by integer degree of warming and adaptation scenario in 2010 and 2090, the 

endpoints of socioeconomic modeling, and representing the static runs for each SLR scenario. 

FIGURE B-15. HIGH TIDE FLOODING AND TRAFFIC IMPACTS BY INTEGER DEGREE OF WARMING 

 

 
14 Note that the including of ancillary protection of properties with sea walls in the “reasonably anticipated” category, consistent with the 
underlying Fant et al. (2021) study, may seem inconsistent with the classification of sea walls as “proactive” adaptation in the coastal 
properties sector. As outlined in the Fant et al. (2021) high-tide flooding paper, however, the impact of this potential inconsistency is 
slight - Figure 3 and accompanying text in that paper notes that alternative routing reduces the no adaptation impacts by 77%, while the 
marginal additional impact of ancillary sea wall protection increases the total to an 80% reduction. 
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Processing steps 

Processing steps are seen in Figure B-16. In step one, damages at the county level are aggregated to the 

regional level. These damages are available for all SLR scenario, year, and adaptation scenario combinations 

for both the 2010 and 2090 static socioeconomic runs.  

Similar to the Coastal Properties sector, this sector “zeroes out” in 2000, and thus has no baseline for which 

to adjust, and also relies on an interpolated damage estimate technique. Damages for any year use the 11-

year rolling average damages for each sea level rise scenario, and the input sea level rise trajectory, and a 

damage trajectory is interpolated between the two underlying sea level rise scenarios that have sea level 

rise heights closest to the input scenario in any given year. For example, if the SLR trajectory reaches 175 

cm in 2080, the damage estimate would fall between the 150cm and 200cm scenarios.   

FIGURE B-16. HIGH TIDE FLOODING AND TRAFFIC DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• The underlying sectoral analysis is limited to road segments within the flood extent for the current 

minor flood level. This extent is expected to migrate further inland as sea levels rise. This analysis 

also omits consideration of impacts to underground roads. 

• Flooding as a result of rainfall or riverine flooding is not modeled and may exacerbate flood events 

or durations in the coastal zone if they occur simultaneously. 

• Many direct adaptation options (e.g., hydrologic infrastructure) are not considered. 

• The economic cost per hour of delay per passenger or freight vehicle is assumed to be constant 

over the century.  

• For further discussion of the limitations and assumptions in the underlying sectoral model see Fant 

et al. (2021).    
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Rail 

This analysis estimates repair, equipment, and 

delay costs to rail infrastructure due to rail 

track buckling or the risk of buckling associated 

with elevated temperatures.  

Damages are based on costs of repair, including 

equipment and labor, and delay costs. These 

costs are then scaled using total track miles in 

each region of CONUS. 

The analysis is completed for each of three 

adaptation scenarios: no adaptation, proactive adaptation, and reactive adaptation. The no adaptation 

scenario incorporates no speed restrictions but results in a higher risk of track buckling associated with 

continued use of trains during high temperature events. Track buckling events require repair that create 

delays. The reactive scenario considers reduced train speeds at higher temperatures to reduce likelihood of 

track buckling. The proactive scenario includes installation of temperature sensors to monitor probabilities 

of track buckling and modify train speeds as necessary (and therefore prevent delays associated with their 

unexpected need for repair). A summary of results by temperature bin degree and adaptation scenario in 

2010 and 2090, the endpoints of socioeconomic modeling, is included in Figure B-17. 

  

UNDERLYING DATA SOURCES AND LITERATURE 

Neumann, J. E., Chinowsky, P., Helman, J., Black, M., Fant, C., 

Strzepek, K., & Martinich, J. (2021).  Climate effects on US 

infrastructure: the economics of adaptation for rail, roads, 

and coastal development. Climatic Change. 

https://doi.org/10.1007/s10584-021-03179-w 

Chinowsky, P., Helman, J., Gulati, S., Neumann, J., & 

Martinich, J. (2019). Impacts of climate change on operation 

of the US rail network. Transport Policy, 75, 183-191. 

Doi:10.1016/j.tranpol.2017.05.007   
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FIGURE B-17. RAIL IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 
B. 2090 SOCIOECONOMICS 

 

Processing steps 

Processing steps are shown in Figure B-18. In step one, the impact model for this sector is run at the 

Climatic Research Unit (CRU) grid cell level, and damages are aggregated to the NCA region level. This 

impact model assumes that the spatial extent and distribution of rail infrastructure remains constant across 

the 21st century. In step two, baseline costs associated with delays and costs under a control climate 

scenario are subtracted for all adaptation scenarios. Thus, damages presented are due to climate change.   

Annual damages are then temperature binned. Total damages are then divided by total miles of rail within 

a region to produce damages per mile.  

Damages per mile are scaled with the number of rail miles in a region as well as a socioeconomic growth 

scalar, with 2010 as the base year. The model assumes rail traffic increases linearly with GDP growth for 

freight traffic, and linearly with population growth for passenger traffic. Freight traffic represents 96 
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percent of rail traffic, and passenger traffic the remaining 4 percent. This analysis assumes that rail traffic 

can be modified with custom GDP and/or population projections. 

FIGURE B-18. RAIL DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• The model assumes the number of rail miles is fixed and does not grow over time, though rail traffic 

over the existing rail network grows with a weighted average of population growth (for the 

passenger rail component) and economic growth (for the much larger freight rail component). 

• Equipment, labor, and repair supply costs are assumed to remain constant.  

• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Neumann et al. (2021), Chinowksy et al. (2017), and EPA (2017). 

Roads 

This sector study estimates the cost of 

road repair, user costs (vehicle 

damage), and road delays due to 

changes in road surface quality as a 

result of climate change (specifically 

changes in temperature, precipitation, 

and flooding).  

Damages are based on the cost of 

repairs and delays associated with 

UNDERLYING DATA SOURCES AND LITERATURE 

Neumann, J. E., Chinowsky, P., Helman, J., Black, M., Fant, C., Strzepek, 

K., & Martinich, J. (2021).  Climate effects on US infrastructure: the 

economics of adaptation for rail, roads, and coastal development. 

Climatic Change. https://doi.org/10.1007/s10584-021-03179-w 

Neumann, J. E., Price, J., Chinowsky, P., Wright, L., Ludwig, L., Streeter, 

R., Jones, R., Smith, J. B., Perkins, W., Jantarasami, L., & Martinich, J. 

(2014). Climate change risks to US infrastructure: impacts on roads, 

bridges, coastal development, and urban drainage. Climatic Change, 

131, 97-109. Doi:10.1007/s10584-013-1037-4 
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either deteriorated road surfaces or road shutdowns to complete repairs, and delays are scaled by current 

period traffic, which in turn is adjusted for future changes in population (described further below). The per 

mile impacts are then multiplied by total regional road miles, and adjusted to reflect the likelihood of delay 

mitigation as proxied by an index of road density in each ½ degree by ½ degree grid cell, to produce a total 

damage estimate in a region.  

Similar to the rail and coastal properties studies, the analysis models three adaptation scenarios: no 

adaptation, proactive adaptation, and reactive adaptation. In the no adaptation scenario, repairs to roads 

are limited to historic repair budgets; damages in this scenario are based on the cost of repairs to road 

surfaces, damage to vehicles associated with incompletely maintained roads, and delays associated with 

repairs to road surfaces or speed limitations attributed to poorly maintained roads.15 Under the reactive 

adaptation scenario, repair budgets are increased to repair all damages in a given year to re-establish the 

pre-repair level of service. In the proactive scenario, roads are pre-emptively strengthened to prevent 

damage with consideration of future climate changes in the design and materials used for repair. Under the 

reactive and proactive adaptation scenarios, damages are based on the cost of repairs to road surfaces and 

the delays associated with repairs or speed limitations due to poorly maintained roads. The model 

considers three types of environmental stressors: temperature, precipitation, and flooding. Damages differ 

by road surface; road surfaces are either unpaved, paved, or gravel. This impact model runs at the quarter-

degree grid cell level, and each grid cell is assigned adaptation-scenario specific budget for repairs. Figure 

B-19 provides a summary of results by temperature bin degree and adaptation scenario in 2010 and 2090 

(the endpoints of socioeconomic modeling). Note that the proactive adaptation results generally reflect a 

much lower damage estimate overall than no adaptation or reactive costs, but that in some scenarios the 

timing of those costs may be accelerated (and actually be triggered by relatively modest levels of warming) 

because of optimization of the capital cost of resilience investments and the high payoff to these 

investments in terms of avoiding future repairs and delays. 

 
15 The budget constraint in the no adaptation scenario can be thought of as a resilience threshold. For small amounts of warming, roads 
and their maintenance systems are adequate to meet increased stress.  Once that resilience threshold is exceeded, costs increase quickly 
as road damage occurs.   



Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) 

 

     Page B-37 

FIGURE B-19. ROADS IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 
B. 2090 SOCIOECONOMICS 

 

Processing steps 

Processing steps are seen in Figure B-20. In step one, damages at the quarter-degree grid cell level are 

aggregated to the regional level. These damages are available for all GCM, year, and adaptation scenario 

combinations.  

Baseline damages are then subtracted from projected damages for each GCM to arrive at damages 

associated with climate change from the baseline period for each adaptation scenario. Damages associated 

with climate change from the baseline period are then temperature binned — temperature binned 

damages are average annual damages from eleven-year windows around first arrival times of integer 

degrees of warming from the baseline period for each GCM. Total damages are then divided by total miles 

of road within a region to produce damages in terms of dollars per mile.  



Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) 

 

     Page B-38 

Damages per mile are scaled using total regional road miles. To account for additional repair due to 

increased traffic on damaged roads, a population-dependent scalar is applied to damage trajectories. This 

scalar is based on the percent increase in damages across the century when the underlying model is run 

with population growth compared to a run with static population. Impact estimates are calculated using 

temperature binned damages multiplied by road miles and adjusted based on changes in road traffic. Note 

that because repair under the proactive scenario strengthens road surfaces pre-emptively, before damage 

occurs and with a planned road closure, delay times under the proactive adaptation scenario are 

approximately half the projected delays for no adaptation and reactive adaptation– see Neumann et al. 

(2021) for details. 

FIGURE B-20. ROADS DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• The model assumes a fixed capital and maintenance expense budget, which is usually exhausted at 

some point under the no-adaptation scenario. This time dependency of the no adaptation scenario 

is difficult to eliminate in the data processing steps, which could bias the estimate up or down, 

depending on the speed of warming relative to the underlying scenarios. This bias is expected to be 

relatively small and the use of GCM average results minimizes this potential bias. 

• Damages to vehicles associated with incompletely maintained roads are modeled only in the no 

adaptation scenario; the model assumes roads are completed repaired and thus vehicles receive no 

damage under the reactive and proactive adaptation scenarios.  

• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Neumann et al. (2021), Neumann et al. (2014), and EPA (2017).    
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Asphalt Roads 

This sector study estimates the cost of 

asphalt road maintenance associated with 

climate change. Unlike the CIRA roads 

sector, this sector does not model any 

adaptation scenarios.  

Future impacts are quantified by comparing historical asphalt grades (values associating pavement 

temperature and performance) and those associated with future climate projections. This analysis includes 

four roadway types: interstates, national routes, state routes, and local roads. Impacts are based on the 

cost of maintaining the standard practice of material selection for asphalt road maintenance rather than 

employing proactive pavement adaptation. Costs per lane mile are multiplied by total regional asphalt lane 

miles to produce a total damage estimate in a region. A summary of results by temperature bin is included 

in Figure B-21 below. Note that asphalt lane miles are constant throughout the century, therefore only one 

set of impacts is shown in the figure. 

FIGURE B-21. ASPHALT ROADS IMPACTS BY TEMPERATURE BIN DEGREE  

 

 

Climate Data Processing 

This study was not part of the CIRA project and relies on different climate data that needed to be processed 

for this sector to be included in the Framework. Underwood et al. (2017) select 19 climate models from 

CMIP5, three of which (CanESM2, CCSM4, and MIROC5) overlap with the CIRA suite of GCMs, from the 

archives of the Climate Analytics Group. Although this study used the same GCMs, the bias correction and 

downscaling processes used by Climate Analytics Group differed from those used in the LOCA climate 

dataset; therefore, new temperature bins are defined for the relevant new climate scenarios. RCP8.5 

results are used for consistency with CIRA sectors. Maximum and minimum daily temperature data for 

these three GCMs were processed in the 30-year periods employed by the study to determine future 

annual temperatures associated with the era-level GCM-specific asphalt road damage estimates available 

UNDERLYING DATA SOURCES AND LITERATURE 

Underwood, B. S., Guido, Z., Gudipudi, P., & Feinberg, Y. (2017). 

Increased costs to US pavement infrastructure from future 

temperature rise. Nature Climate Change, 7, 704-707. 

Doi:10.1038/nclimate3390  
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from the study. The CONUS baseline mean temperature was calculated from downscaled LOCA data that 

matches the CIRA baseline period of 1986-2005, rather than the 1966-1995 U.S. Historical Climatology 

Network (USHCN) baseline data employed by Underwood et al. (2017). The USHCN baseline data is 

available by station location and aggregating to CONUS may introduce error relative to the underlying 

methodology. The LOCA data serves as the best available proxy for USHCN station data while also allowing 

for comparison by degree across sectors, which use the same baseline. The LOCA baseline mean 

temperature was subtracted from yearly projected temperature to identify GCM-specific integer degree 

arrival years that were used for temperature binning. 

Processing steps 

Processing steps are seen in Figure B-22. In step one, total undiscounted costs and total lane miles by 

weather station are aggregated to the regional level. These impacts are available for all GCMs and regions 

for three eras: 2010 (2010-2039), 2040 (2040-2069), and 2070 (2070-2099), as well as a baseline era, which 

are assigned to 1995 (1986-2005). Total costs, which refer to the sum of impacts over each 30-year era, are 

divided by 30 to reflect an annual cost. 

Baseline impacts are then subtracted from projected impacts for each GCM to arrive at maintenance costs 

associated with climate change for each era. Total costs attributable to climate change are divided by total 

lane miles per region, resulting in a cost per lane mile for each era and GCM scenario. Next, era costs are 

assigned to the central year of the era (i.e., 2025, 2055, and 2085), and costs per era are transformed to 

annual costs by interpolating linearly between era impacts. Finally, costs per lane mile are binned in GCM-

specific eleven-year windows around the first arrival times of integer degrees of warming relative to the 

baseline. Costs per lane mile are scaled using total regional lane miles. Final impact estimates are calculated 

based on regional lane miles and temperature-binned damages per road mile. 
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FIGURE B-22. ASPHALT ROADS DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• The underlying study uses a different set of climate projections (Climate Analytics Group) from most 

of the sectors that use LOCA, and a different baseline. While using a difference from the baseline 

and adjusting temperature arrival times is an attempt to correct any bias introduced, it is possible 

that these different climate projections and differences in the baseline create inconsistencies 

between this non-CIRA sector and other CIRA sectors.   

• The underlying study includes a suite of 19 climate models, three of which are part of the CIRA suite 

of GCMs (CanESM2, CCSM4, and MIROC5). These three models reach warmer temperatures more 

quickly than the average across all 19 models in Underwood et al. (2017), and thus result in a higher 

average estimate of damages compared to the results presented in the paper. However, compared 

to the full suite of 38 CMIP5 GCMs, the three models are relatively close to the median temperature 

change values in 2090. 

• The model references, but does not quantify, impacts of a proactive adaptation scenario. Therefore, 

uncertainty exists in how the modeled maintenance costs may be reduced as a result of adaptive 

actions or technologies. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Underwood et al. (2017). 
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Urban Drainage 

This sector study estimates the costs of 

proactive adaptation for urban drainage 

systems in 100 major coastal and non-

coastal cities of the contiguous U.S. to 

meet future demands of increased runoff 

associated with more intense rainfall 

under climate change.  

Adaptive actions focus on the use of best management practices to limit the quantity of runoff entering 

stormwater systems and maintain current level of service (i.e., proactive adaptation to avoid damages), 

instead of expanding formal drainage networks of basins and conveyance systems. These best management 

practices generally include temporary storage above or below ground (e.g., bioswales, retention ponds), or 

infiltration (e.g., permeable pavement), and are based on EPA guidelines and construction cost estimates 

(see Price et al., 2014 for additional details). 

Specifically, the analysis uses a reduced-form approach for projecting changes in flood depth and the 

associated costs of flood prevention under future climate scenarios, based an approach derived from EPA’s 

Storm Water Management Model (SWMM). The approach assumes that the systems are able to manage 

runoff associated with historical climate conditions and estimates the costs of implementing the adaptation 

measures necessary to manage increased runoff due to climate change. Impacts are estimated in units of 

average adaptation costs per square mile for a total of 100 cities across the contiguous U.S. for three 

categories of 24-hour storm events (those with precipitation intensities occurring every 10, 25, and 50 

years—metrics commonly used in infrastructure planning) and four future eras periods: 2030 (2020-2039), 

2050 (2040-2059), 2070 (2060-2079), and 2090 (2080-2099). A summary of results by temperature bin 

degree is included in Figure B-23 below. Note that urban drainage impacts by degree are constant 

throughout the century, therefore only one set of impacts is shown in the figure. 

FIGURE B-23. URBAN DRAINAGE IMPACTS BY TEMPERATURE BIN DEGREE 

 

 

UNDERLYING DATA SOURCES AND LITERATURE 

Price, J., Wright, L., Fant, C., & Strzepek, K. (2014). Calibrated 

Methodology for Assessing Climate Change Adaptation Costs for 

Urban Drainage Systems. Urban Water Journal, 13 (4), 331-344. 

Doi:10.1080/1573062X.2014.991740  
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Processing steps 

Processing steps are seen in Figure B-24. First, the adaptation costs per square mile (weighted by area) for 

the 50-year storm for each GCM, city, scenario, and era combination, are aggregated to the regions used in 

NCA4 (and the Temperature Binning Tool).16 Unlike most other underlying studies, the Urban Drainage 

study does not produce an annual time series of results, due in part to the impact of extreme events which 

are not well-characterized at an annual scale. The binning process requires an annual time series from 

which the 11-year windows of damages corresponding to each integer degree arrival by GCM can be pulled; 

therefore, linear interpolation is used to create an annual time series of values for each GCM, scenario, and 

region combination for the period 1995-2099, using the known damage values at each of the four eras. 

Values are extrapolated for 2090-2099 using the linear trend observed between the 2070 and 2090 eras, 

and values for years prior to 2030 are estimated by using 1995 as a baseline year; i.e., impacts are assumed 

to be zero in 1995 and results are interpolated linearly between 1995 and 2030. Finally, impacts are binned 

by integer degrees of warming for each GCM, scenario, and region combination. No physical or economic 

scaling is required since analytic results are scaled to the NCA region level in Step 2.  

FIGURE B-24. URBAN DRAINAGE DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• The underlying analysis assumes that the systems are able to manage runoff associated with 

historical climate conditions and estimates the costs of implementing the adaptation measures 

necessary to manage increased runoff due to climate change. 

 
16 For example, for a region with 2 cities, each with an area of 100 square miles, each city’s area is divided by the sum of the areas, 
resulting in a proportion value of 0.5 for each city. This proportion value is then multiplied by each calculation of per-square-mile 
adaptation costs (calculated by storm, scenario, and year) to produce a weighted average adaptation cost per square mile. Note that the 
intensity/size of the 50-year storm varies with GCM, city, scenario, and era. The method yields changes in the absolute size of the storm 
over time and space, rather than the change in the frequency of the base period 50-year storm event. 
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• Inclusion of all U.S. cities with stormwater conveyance systems would provide a more 

comprehensive characterization of future impacts. The underlying study is limited to 100 major 

U.S. cities. Therefore the current estimates included for this sector represent underestimates of 

potential damages. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Neumann et al. (2014), Price et al. (2014), and EPA (2017).    

Inland Flooding 

This sector study estimates the impact of riverine flooding attributable to climate change on property 

value.  

The analysis uses change in expected 

annual damage (EAD) from flooding at each 

property in the United States under 

different temperature scenarios to value 

riverine flood impacts. The underlying data 

considers flooding for return intervals of 

two years through 500 years. Study authors 

calculate a frequency-loss curve for each 

property and integrate under the curve 

between flood frequencies of 0.0001 and 

0.10 to calculate the EAD. The data excludes flooding events associated with urban drainage, quantifying 

only riverine floods instead. As a result, this sector does not account for all flooding events in cities and 

other urban areas; pluvial floods (associated with localized high rainfall events) are assessed in the Urban 

Drainage sector. The method applied estimates the baseline annual EAD using current structure 

characteristics (e.g., ground level floor elevation17, replacement cost, market value), the flood depths 

associated with baseline conditions for varying return periods18, and depth-damage functions available 

from FEMA’s HAZUS documentation.19 The underlying study model provides estimates of projected 

property damage at multiple spatial scales – for this work, results were provided at the Census block group 

level; properties were grouped by Census block group and EAD values summed under baseline and future 

climate scenarios. Property values are held constant over the course of the century, and impacts are 

projected under a “no adaptation” scenario.  

 
17 These characteristics were made available to the study team by the First Street Foundation.  Details of the dataset are provided in: First 
Street Foundation, 2020a. The First National Flood Risk Assessment: Defining America’s Growing Risk. Available at 
https://assets.firststreet.org/uploads/2020/06/first_street_foundation__first_national_flood_risk_assessment.pdf 
18 Details of the “current climate” baseline flood risk modeling can be found in First Street Foundation, 2020b. First Street Foundation 
Flood Model: Technical Methodology Document. Available: 
https://assets.firststreet.org/uploads/2020/06/FSF_Flood_Model_Technical_Documentation.pdf 
19 FEMA, undated. Multi-hazard Loss Estimate Methodology: Flood Model Technical Manual. 
https://www.fema.gov/sites/default/files/2020-09/fema_hazus_flood-model_technical-manual_2.1.pdf 

UNDERLYING DATA SOURCES AND LITERATURE 

Wobus, C.W., Porter, J., Lorie, M., Martinich, J., & Bash, R. (2021). 

Climate change, riverine flood risk and adaptation for the 

conterminous United States. Environmental Research Letters.  doi: 

10.1088/1748-9326/ac1bd7. 

Wobus, C.W., Zheng, P., Stein, J., Lay, C., Mahoney, C., Lorie, M., 

Mills, D., Spies, R., Szafranski, B., & Martinich, J. (2019). Projecting 

Changes in Expected Annual Damages From Riverine Flooding in 

the United States. Earth’s Future, 7(5), 516-527. 

Doi:10.1029/2018EF001119 

 



Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) 

 

     Page B-45 

Figure B-25 provides a summary of national impacts by integer degrees of warming for an averaged GCM 

ensemble at the endpoints of the socioeconomic scenarios; 2010 and 2090. 

FIGURE B-25. INLAND FLOODING IMPACTS BY TEMPERATURE BIN DEGREE 

 

 
Processing steps 

Processing steps are shown in Figure B-26. Study authors provided impacts by degree by Census block 

group, as well as baseline EAD for the period 2001-2020. Impacts are averaged for one “GCM Ensemble”, 

which includes fourteen models: ACCESS1-0, CanESM2, CESM1-CAM5, CMCC-CM, CSIRO-Mk3-6-0, FGOALS-

g2, GFDL-CM3, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, IPSL-CM5B-MR, MIROC-ESM-CHEM, MIROC-

ESM, and NorESM1-M. In the underlying study, authors use the projected hydrology for each climate model 

to extract an annual maximum flow timeseries for a 20-year window centered on the year that the model 

reaches temperature thresholds of 1°C through 5°C above the 2001-2020 baseline. 

The first processing step was to sum block group damages to regional damages. Next, the baseline EAD was 

subtracted from projected EAD by degree to isolate impacts attributable to climate change. Finally, values 

were adjusted from 2020 dollars to 2015 dollars.  
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FIGURE B-26. INLAND FLOODING DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• The analysis does not evaluate the potential for adaptation measures to mitigate flood risk at the 

property or community levels. 

• The analysis does not account for changes in population and development within flood risk zones. 

Without a reasonable method to predict future floodplain development or policies governing 

development, these factors are held constant. 

• This analysis relates increases in CONUS temperatures to changes in economic impacts of riverine 

floods. While climate science indicates that warming temperatures accelerate the hydrologic cycle, 

which in turn increase river flows, changes in near-surface temperatures do not necessarily 

characterize local or regional precipitation changes, or river flows, with a consistent signal.  Local 

precipitation changes may also be correlated with other drivers that are not necessarily well 

correlated with CONUS or regional scale temperature changes, e.g., the El Nino Southern Oscillation 

(ENSO). The study used here, however (Wobus et al., 2021) finds a monotonic trend of increases in 

the economic impact of floods at the regional scale (aggregated from the property level) as regional 

scale temperatures rise, supporting the relationship between U.S. regional temperature changes 

and flood impacts.   

• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Wobus et al. (2021) and Wobus et al. (2019).  
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Hurricane Wind Damage 

This sector study estimates the impact of 

changes in the frequency of hurricane 

strength wind damage to coastal 

properties. The results are primarily based 

on analysis by Dinan (2017), which 

projects hurricane damage from both 

wind and storm surge to properties in the 

Gulf and Atlantic coast states using a 

proprietary model developed by the firm 

Risk Management Solutions (RMS). Dinan 

(2017) projected changes in future 

hurricane frequency by hurricane category 

(Saffir-Simpson scale of Category 1 to 

Category 5) using a Monte Carlo aggregation of results from Emanuel (2013) for RCP8.5 and Knutson (2013) 

for RCP4.5.20 The hurricane projections used in Dinan (2017) do not readily convert to an impact-by-degree 

warming indexing, so as part of processing this analysis instead relies on results from more recent Marsooli 

et al. (2019) study which provides change in return periods, maximum wind speed, and Category 5 storm 

frequency for the a late century period using an updated version of the Emanuel (2013) model, to project 

future hurricane activity by degree of warming for a set of GCMs. Further, because the detailed spatial and 

climate stressor specific results are not publicly accessible, we worked with Dinan, RMS, and other publicly 

available data to generate an estimate of damages attributable to climate change induced changes in wind 

damage to properties. Results by degree of warming are shown in Figure B-27 below. 

  

 
20 See Emanuel, K., 2013. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. 
Acad. Sci. 110 (30), 12219–12224, and Knutson, T., et al., 2013. Dynamical downscaling projections of twenty-first-century Atlantic 
hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Clim. 26 (17), 6591–6617. 
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FIGURE B-27. HURRICANE WIND DAMAGE IMPACTS BY TEMPERATURE BIN DEGREE BY GCM 

 

Processing steps 

Three data processing steps are used to develop estimates suitable for use in FrEDI: 1. Estimating baseline 

expected annual wind damage to exposed properties; 2. Projecting changes in wind profile as a result of 

climate change; 3. Estimating economic damage from the change in wind profile from baseline to future 

periods. 

Baseline wind damage is calculated by parsing Dinan’s total hurricane damage by state, reported in CBO 

(2016), into wind and storm surge components by state, using data on the ratio of wind to storm surge 

damage by state provided by the author (with permission from RMS). Wind damages by state are then 

allocated to the county scale by using weights derived from the National Coastal Property Model for 

county-level storm surge damage attributed to hurricanes in the year 2000 (base year with no SLR). This 

allocation method assumes that storm surge and wind damage are correlated but exclude some non-

coastal inland counties which might be expected to incur wind damage (albeit with significant decay of 

wind speed relative to coastal counties). 

Wind profile changes are projected using estimates reported in Marsooli et al. (2019), which provides 

gridded estimates of the max wind speed and frequency of the 90th percentile event from an ensemble of 

simulated tropical cyclones for the Gulf and Atlantic Coasts for both the baseline of 1980–2005 to the 

future period of 2070–2095. The grid-cell results are spatially reaggregated to coastal counties. Future 

damages are projected using ratios of future damage to baseline damage for each coastal county that 

employ a logistic function proposed by Emanuel et al. (2012) for the baseline and each of six GCMs 

evaluated in Marsooli et al. (2019). These ratios are then applied to the baseline damage estimated above, 

and baseline damages are subtracted to estimate future damages attributed to climate change. Damages 

by degree aggregated at the region level are estimated as a linear function of warming for each of the 

relevant GCMs. B-The results indicate good agreement for four of the five models, with the fifth (GFDL) 

showing much higher damages than the other four. We considered applying skill weighting of the GCMs 
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using weights provided in Marsooli et al. (2019) – the results using skill-weighting down-weight GFDL 

relative to other models, reducing the mean damages across all GCMs by about one-third – but the skill 

weights were calculated for wind speed rather than damage (damage is a non-linear logistic function of 

wind speed, capped at the high end by total structure value).  The non-skill weighted results are used here 

for consistency with other sectoral analyses. 

FIGURE B-28. HURRICANE WIND DAMAGE IMPACT PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• Hurricanes are relatively rare extreme events and are observed infrequently, which both limits the 

observed damage data on which estimates can be based and complicates estimates of projected 

hurricane activity. The Marsooli et al. (2019) study used here employs a well-regarded model of 

projected hurricane activity which provides results needed to estimate projected damages on a 

spatially disaggregated basis, but other models could yield different results. 

• The underlying economic impact study relies on a proprietary model of hurricane wind and storm 

surge damages; the detailed county and scenario specific results from the model are not available 

for use in the Framework. The published results are therefore disaggregated from publicly available 

total estimates into storm surge and wind using storm surge estimates from the Coastal Properties 

sector. This procedure ensures that damage estimates are not double-counted, but introduces error 

and uncertainty in the estimates used here. 

• Results from the underlying study were made available only at the state level, but analyses of 

projected storm surge damages are at the county level, and estimates of future hurricane activity 
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are at a grid cell level. Adjustments made for spatial mismatches also introduce error and 

uncertainty in the estimates used here. 

• This analysis interpolates linearly between the baseline period and late century (2070-2095) 

projection with no intermediate damage estimates, so mid-century values are less precise than 

other sectors. 

• For further discussion of the limitations and assumptions in the underlying sectoral model see 

Dinan et al. (2017) and Marsooli et al. (2019).  
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B.4 Water Resources Sectors  Data Processing  

Water Quality 

This analysis estimates damages in 

terms of the change in willingness to 

pay to avoid changes in water quality. 

This analysis estimates climate change 

effects on water quality at the eight-

digit HUC scale of the contiguous U.S. 

using the Hydrologic and Water 

Quality System (HAWQS) biophysical 

model. Note that the damages 

estimated for this sector only cover 

the change in value of recreation 

opportunities and do not include the 

value of health effects or other 

amenities associated with clean water. 

HAWQS advances the functionality of the widely used and accepted Soil and Water Assessment Tool 

(SWAT), providing a platform for water quality modeling, primarily by minimizing the necessary 

initialization time. Originally developed by the U.S. Department of Agriculture (USDA), SWAT has been the 

core simulation tool for numerous U.S. national and international assessments of soil and water resources. 

The use of HAWQS over SWAT improves the ease of application to national scale analyses while still 

simulating a large array of watershed processes for a defined period of record. 

The HAWQS model follows a broad modeling sequence: (1) the landscape phase, where the primary 

processes are climate, soil water balance, nutrient and sediment transport and fate, land cover, plant 

growth, farm management, and (2) the main channel phase, where the main processes are river routing, 

and sediment and nutrient transport through the rivers and reservoirs.  

The HAWQS model projects changes in water quality parameters and simulated changes in river flow for 

five climate models under RCP8.5 and RCP4.5. These projections include future municipal wastewater 

treatment plant loadings (point source) scaled to account for population growth. Changes in overall water 

quality are estimated using changes in a Climate-oriented Water Quality Index (CWQI), a metric that 

combines multiple pollutant and water quality measures. Four water quality parameters (water 

temperature, dissolved oxygen, total nitrogen, and total phosphorus) are aggregated from the eight-digit 

HUC level to the Level-III Ecoregions, weighted by area.21 Finally, a relationship between changes in the 

 
21 Designed to serve as a spatial framework for environmental resource management, ecoregions denote areas within which ecosystems 
(and the type, quality, and quantity of environmental resources) are generally similar. Ecoregions were originally created to support the 
development of regional biological criteria and water quality standards, and to set management goals for nonpoint source pollution. 
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CWQI and changes in the willingness to pay for improving water quality is used to estimate the economic 

implications of projected water quality changes. For more information on the approach and results for the 

water quality sector, please refer to Fant et al. (2017), Boehlert et al. (2015), and Yen et al. (2016). 

Specifically, impacts are estimated as per capita change in the willingness to pay to improve water quality 

for two future eras: 2050 (2040-2059) and 2090 (2080-2099). A summary of results by temperature bin 

degree in 2010 and 2090 (the endpoints of socioeconomic modeling) is included in Figure B-29 below. 

FIGURE B-29. WATER QUALITY IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS    B.  2090 SOCIOECONOMICS 

 

 

Processing steps 

Processing steps are seen in Figure B-30. The per capita willingness to pay for each EPA Level 3 Ecoregion, 

GCM, and era combinations are first aggregated to the state-level and then to the regions used in NCA4 

(and the Temperature Binning Tool). These climate change impacts are relative to a “control” scenario (one 

with socioeconomic growth and historical climate) to isolate the climate change impacts from the impacts 

of socioeconomic growth. Like the Urban Drainage sector described above, the Water Quality study also 

does not produce an annual time series of results. Therefore, an annual time series of damages needs to be 

constructed for each GCM and region combination based on available data (i.e., for the 2050 and 2090 

eras). Linear interpolation is used to create an annual time series of values for each GCM and region 

combination for the period 1995-2099. Values are extrapolated for 2090-2099 using the linear trend 

observed between 2050 and 2090, and values for years prior to 2050 are estimated by using 1995 as a 

baseline year; i.e., impacts were assumed to be zero in 1995 and results are interpolated linearly between 

1995 and 2050. Finally, impacts are binned by integer degrees of warming for each GCM and region 

combination. Impact estimates are calculated by applying regional population as a physical scalar. 
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FIGURE B-30. WATER QUALITY DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• Decreases in water quality due to climate change will likely have adverse effects on human health 

and the environment that are not represented in the results of this section. For example, climate 

change impacts to water quality may affect ecological dynamics of freshwater systems, with 

cascading effects on ecosystem services and recreational opportunities. 

• This analysis only considers four water quality parameters, and omits other constituents, such as 

sediment and heavy metals, that may be affected by changes in the climate system. 

• The methods underlying the analysis do not consider the effects of climate change-induced extreme 

events on water quality, such as increased siltation and runoff following wildfire events. 

• The analysis considers only a subset of all use/non-use values linked to water quality changes, 

therefore the damages reported here are likely underestimates of future impacts. 

• By creating an annual time series for the period 1995 to 2100 based on values from 2050 and 2090 

only, the Temperature Binning processing does not capture any non-linearities in the relationship 

between damages and temperature, particularly in the early years of the century. 

• For further discussion of the limitations and assumptions in the underlying sectoral model, see Fant 

et al. (2017) and Boehlert et al. (2015). 

Winter Recreation 

This sector estimates lost revenue due to climate 

change to suppliers of three types of winter 

recreation occurring at 247 sites across the U.S.: 

alpine skiing, Nordic skiing, and snowmobiling.  

Damages are based on the number of visits to winter 

recreational sites, entrance fees, and state-level 

UNDERLYING DATA SOURCES AND LITERATURE 
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average ticket prices. The model was run using both 2010 and 2090 ICLUSv2 population. A summary of 

results by temperature bin degree in 2010 and 2090 (the endpoints of socioeconomic modeling) is included 

in Figure B-31. 
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FIGURE B-31. WINTER RECREATION IMPACTS BY TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

  

Model 
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B. 2090 SOCIOECONOMICS 

  

Model 
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Processing steps 

Processing steps are shown in Figure B-32. In step one, lost ticket sales are estimated across recreational 

activities (alpine skiing, Nordic skiing, and snowmobiling), GCMs, degrees, and regions, for both a 2010 and 

2090 population.    

In the second step, both the 2010 and 2090 regional estimates produced in step one are divided by regional 

population. Regional population estimates are based on ICLUSv2 population data. This produces a per 

capita estimate of forgone ticket sales for alpine skiing, Nordic skiing, and snowmobiling. The per capita 

cost estimates are multiplied against regional population to produce total lost revenue estimates.  

FIGURE B-32. WINTER RECREATION DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• The scope of winter recreation loss for the tool is derived only from analysis of the alpine skiing, 

Nordic skiing, and snowmobile sub-sectors of the industry. Potential losses to other winter 

recreation activities (e.g., tubing) are not quantified in this study. 

• Potentially compensating adaptations from the lost opportunity to engage in winter recreation (for 

example, with other forms of outdoor recreation, or with indoor recreation) are not considered.  

• For further discussion of the limitations and assumptions in the underlying sectoral model, see 

Wobus et al. (2017) and EPA (2017). 
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B.5 Electricity Sectors Data Processing  

Electricity Demand and Supply 

This sector estimates increases in system 

costs to the power sector. These system 

costs include capital, fuel, variable 

operation and maintenance (O&M), and 

fixed O&M costs.  

Increased costs are based on projected 

changes in demand for and supply of 

electricity across generation types. Effects on energy demand reflect the net impact of increased demand 

for residential, commercial, and industrial space cooling during summer/warmer months, and decreased 

demand for space heating during winter/cooler months. Effects on supply reflect the decreased production 

capacity of thermal power plants, and transmission capacity of the transmission system, associated with 

higher temperatures.22 The complex interplay of supply and demand, coupled with forecast changes in fuel 

and energy production technology availability and prices, are modeled using the Global Change Assessment 

Model (GCAM-USA), a detailed service-based building energy model with a 50-state domain.   

Costs are provided for a static baseline run, in which climate is held as constant to the CIRA baseline while 

socioeconomic variables are dynamic, and a projection run in which both climate and socioeconomic 

variables are changing. Estimates of costs with- and without-climate change are provided in five-year 

intervals. A summary of results by temperature binning degree in 2010 and 2090 (the endpoints of 

socioeconomic modeling) is provided in Figure B-33. 

FIGURE B-33. ELECTRICITY DEMAND AND SUPPLY IMPACTS BY TEMPERATURE BIN DEGREE 
A. 2010 SOCIOECONOMICS   B.  2090 SOCIOECONOMICS 

 

 
 

 
22 Note that the transmission system effects in this sector are separate from those modeled in the Electricity Transmission and 
Distribution Infrastructure sector. 
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Processing steps 

Processing steps for this sector are shown in Figure B-34. System costs for the power sector are provided 

for each GCM and a climate reference scenario for each region in 5-year intervals. Annual costs are 

interpolated between the 5-year interval data and costs are binned by degrees of warming for each GCM 

and region. To remove time dependencies, the final temperature binned estimates are the percentage 

change in costs from the reference scenario for each temperature bin, GCM, and region.  

For a given input temperature trajectory, the percentage changes in system cost are multiplied by the 

reference scenario costs to produce total cost estimates across the century. That is, damages in a given 

year are dependent on warming, which maps a percentage change in costs from the reference scenario 

based on temperature binned damages, and the baseline system costs in the reference scenario for that 

year. 

FIGURE B-34. ELECTRICITY DEMAND AND SUPPLY DATA PROCESSING FRAMEWORK 

 

Limitations and Assumptions 

• Projected changes in heating degree days (HDD) and cooling degree days (CDD) are based on a 

temperature set-point of 65°F, a common convention that may lead to a conservative energy 

demand estimate. 

• The temporal aggregation of the underlying electricity supply model is too coarse to assess the 

impact of extreme temperature events that occur on only the very hottest days of the year. As a 

result, the underlying study focuses on a single aspect of climate change: average ambient air 

temperature, and therefore omits effects of extreme temperature effects on peak demands and the 

loads required to meet those changes. Effects from future changes in the frequency and magnitude 

of extreme temperatures may stress electric power systems, and these economic risks are not 

captured in this study. 
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• For further discussion of the limitations and assumptions in the underlying sectoral model, see 

McFarland et al. (2015). 

Electricity Transmission and Distribution Infrastructure 

This analysis estimates damages to the 

electric transmission and distribution 

infrastructure due to climate change. This 

multi-dimensional analysis considers a 

wide range of climate stressors, including 

extreme temperature, extreme rain, 

lightning, vegetation growth, wildfire activity, and coastal flooding. Impact receptors include transmission 

and distribution lines, poles/towers, and transformers. 

Monetized damages for this sector are the costs of repair or replacement of damaged infrastructure. The 

impact model for this sector was run under two infrastructure system scenarios: one with expansion of 

infrastructure associated with demand growth, and one with static infrastructure. Increases in demand 

growth may be due to population growth, or increased demand due climatic change — in particular, 

warmer temperatures increase usage of air-conditioning. The model identifies changes in performance and 

longevity of physical infrastructure, such as power poles and transformers, and quantifies these impacts in 

economic terms. While certain climate stressors do cause power outages which have associated direct and 

indirect economic costs, these damages are not included in damage estimates. 

Like other infrastructure sectors, the analysis is based on three adaptation scenarios. These include 

proactive adaptation, reactive adaptation, and no adaptation. Repair costs are also allocated based on the 

activity being performed. These activities include transmission line capacity, wildfire repair, tree trimming, 

substation seB-level rise, substation storm surge, wood pole decay, transmission transformer lifespan, and 

distribution transformer lifespan. Figure B-31 below provides a summary of the results by temperature 

binning degree and adaptation scenario in 2010 and 2090 (the endpoints of socioeconomic modeling). 
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FIGURE B-35. ELECTRICITY TRANSMISSION AND DISTRIBUTION INFRASTRUCTURE IMPACTS BY 
TEMPERATURE BIN DEGREE 

A. 2010 SOCIOECONOMICS 

 
 

B. 2090 SOCIOECONOMICS 

 

 

Processing steps 

Processing steps are seen in Figure B-36. The underlying impact model produces damage estimates for 

each infrastructure type, GCM, and adaptation scenario. There are nine infrastructure types, seven of which 

grow with electricity demand. Therefore, damage estimates for these seven infrastructure types are 

influenced by both population and climate. To isolate damages associated with warming, damages 

associated with static demand are scaled by growth of demand attributable to warming. Demand 

attributable to warming is calculated based on the percentage increase in demand across the century for 

each GCM from a baseline demand across the century with a constant climate, as seen in Figure B-37. 
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After damages associated with climate driven infrastructure growth are calculated, results are aggregated 

for each GCM, infrastructure type, degree, and region combination. These costs are calculated for each 

adaptation scenario. Costs are then aggregated from individual infrastructure types to the sector total.  

A population driven demand scalar is implemented to account for increases in demand for the grid as 

population grows. Thus, final damage estimates include expansion of electric grid infrastructure associated 

with a warming climate and with population growth. Note that because these damage estimates rely on an 

empirical relationship between damages with and without infrastructure growth in the underlying impact 

model, these damage estimates cannot be adjusted for custom input population trajectories. 

FIGURE B-36. ELECTRICITY TRANSMISSION AND DISTRIBUTION INFRASTRUCTURE DATA PROCESSING 
FRAMEWORK 

 
 

FIGURE B-37. ELECTRICITY TRANSMISSION AND DISTRIBUTION INFRASTRUCTURE DEMAND GROWTH 
SCALAR PROCESSING 
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Limitations and Assumptions 

• The model assumes that grid demand is controlled by population change and climatic factors; grid 

demand is assumed to not be influenced by economic growth. Future changes in the design and 

structure of electric grids are not considered in this study. 

• Two of the nine infrastructure types considered in this study do not scale with changes in 

population; they are included in the overall results but not adjusted for population.  

• For further discussion of the limitations and assumptions in the underlying sectoral model, see Fant 

et al. (2020) 
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APPENDIX C | EXAMPLE APPLICATION OF THE FREDI FRAMEWORK 

This appendix presents example applications of FrEDI for evaluating impacts under a defined climate 

scenario and evaluating benefits of various emissions reduction scenarios compared to a reference 

scenario. The first section describes the emissions scenarios and climate models used to develop the global 

temperature trajectories evaluated in this example. The next section reports economic impacts associated 

with the temperature trajectories, following an evaluating in FrEDI. Finally, results are compared across 

scenarios to report the benefits of emissions reduction. 

C.1  Climate Scenarios  and Emissions Pre-processing  

FrEDI requires analysts to define a temperature trajectory (global or CONUS), although many analyses may 

start from emissions trajectories. Analysts can use a variety of climate models to convert emissions 

scenarios into temperature trajectories. In this example, we use Hector, an open-source, object-oriented, 

reduced-form global carbon-cycle climate model (Hartin et al., 2015) to model temperatures associated 

with emissions scenarios from the Global Change Analysis Model v5.3 (GCAM). This step is not considered a 

part of the FrEDI framework, as analysts can use any model to process emissions scenarios.  

Description of Hector  

Hector, like other reduced form climate models, calculates concentrations of greenhouse gases from a 

given emissions pathway while modeling the carbon cycle and other gas cycles. Global emissions of 

greenhouse gases (CO2, CH4, N2O, halocarbons) and aerosols (BC, OC, SO2) are passed to Hector. Emissions 

are converted to concentrations where necessary and are used to calculate radiative forcing and then a 

global mean temperature change along with other Earth system variables (Hartin et al., 2015).  

Hector has a three-part carbon cycle: atmosphere, land, and ocean. The atmosphere is treated as a single 

well-mixed box, where a change in atmospheric carbon is a function of anthropogenic fossil fuel and 

industrial emissions, land-use change emissions, and carbon fluxes between the atmosphere and ocean and 

the atmosphere and land. In Hector's default terrestrial carbon cycle, vegetation, detritus, and soil are 

linked to one another and to the atmosphere by first-order differential equations. Net primary production 

is a function of atmospheric CO2 and temperature. Carbon flows from vegetation to the detritus and then 

down to soil, where some fraction is lost due to heterotrophic respiration.   

The surface ocean carbon flux is dependent upon the solubility of CO2 within high and low latitude surface 

boxes which are calculated from an inorganic chemistry submodule (Hartin et al., 2016). Hector 

calculates pCO2, pH, and carbonate saturations in the surface boxes; once carbon enters the surface boxes, 

it is circulated through the intermediate and deep ocean layers via water mass advection and exchanges, 

simulating a simple thermohaline circulation.  

Radiative forcing is calculated from each individual atmospheric constituent; CO2, halocarbons, non-

methane volatile organic carbons (NMVOCs), black carbon, organic carbon, sulfate aerosols, CH4, 
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and N2O, and forcing from tropospheric ozone and stratospheric water vapor. CO2, CH4, N2O, and 

halocarbons are converted to concentrations, while NMVOC, and aerosols are left as emissions (Hartin et 

al., 2015). 

Global atmospheric temperature is a function of a user-specified climate feedback parameter, 

which represents the equilibrium climate sensitivity for a doubling of CO2 concentrations, total radiative 

forcing, and oceanic heat flux. Atmosphere–ocean heat exchange in Hector consists of a one-dimensional 

diffusive heat and energy-balance model, DOECLIM (Kriegler 2005; Vega‐Westhoff et al., 2019). The code 

and detailed documentation can be found at https://jgcri.github.io/hector/   

Description of GCAM  

The Global Change Analysis Model v5.3 (GCAM) is an open source model that represents the linkages 

between energy, water, land, climate and economic systems (Calvin et al., 2019). GCAM is a market 

equilibrium model, global in scale and subdivided into 32 geopolitical energy and economic regions and 283 

agriculture and land-use regions. GCAM is calibrated to a historical base year of 2010 and projects key 

variables forward in time through 2100. GCAM is a partial equilibrium model, representing the supply, 

demand and price for a variety of goods and services in the energy, agriculture and water sectors. A more 

complete documentation of GCAM is available at http://jgcri.github.io/gcam-doc/toc.html   

Prices of energy, agriculture, and forest products are adjusted until supply and demand are in equilibrium. 

As a dynamic-recursive model, decision-makers base decisions on present prices assuming they will remain 

constant at those levels indefinitely as investment choices are made. GCAM computes emissions of 16 

gases and short-lived species (CO2, CH4, N2O, F-gases, SO2, BC, OC, NOx, CO, NMVOCs) from a variety of 

human activities. These emissions are passed to a simple climate model, Hector, to calculate global mean 

temperature among other climate variables.   

Description of climate scenarios used in this case study  

This technical documentation provides a case study to illustrate the function and capabilities of FrEDI. The 

scenarios used in this case study are illustrative in nature and do not represent any actual policies or 

programs at domestic or international levels.   

The GCAM v5.3 reference used in this case study represents a scenario with no additional future climate 

policies (for more information on GCAM see Calvin et al., 2019 and JGCRI 2020). When the emissions are 

run through Hector with an equilibrium climate sensitivity of 3°C the end of century radiative 

forcing is 4.66 Wm-2 and global mean temperature is 2.69 °C relative to a 1986-2005 baseline. Comparing 

the GCAM reference to EIA projections, GCAM fossil fuel and industrial CO2 emissions are up to 2 GtC higher 

in 2025.23  

 
23 World carbon dioxide emissions by region:  

 

https://jgcri.github.io/hector/
http://jgcri.github.io/gcam-doc/toc.html
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For the emission reduction scenario used in this case study, CO2 emission reductions were 

linearly interpolated between 2025 and 2100 based on the GCAM reference 2100 CO2 emissions and run 

through Hector v2.5. Reductions begin in the next time step after 2025 (i.e., 2026). Only CO2 emissions 

from fossil fuel and industry are reduced, not land use change emissions or other GHGs. The scenarios 

represent a reduction in emissions by 90 percent in 2100. For all scenarios, equilibrium climate sensitivity 

was varied [2.0, 2.5, 3.0, 4.0, 5.0], with an ECS value of 3.0 C as the default Hector parameter.   

Figure C-1 shows the GCAMv5.3 reference scenario, with five different climate sensitivities (ECS) calculated 

within Hector. The bold line represents the central scenario (ECS 3 – reflecting global warming of 3oC for a 

doubling of atmospheric CO2 concentrations), and the dotted lines show temperature pathways for the 

same scenario under alternative climate sensitivities (ECS 2, ECS 2.5, ECS 4, and ECS 5). The efficiency of the 

Framework allows for evaluation of multiple temperature pathways, which supports uncertainty analysis, 

for example, across climate sensitivities. The scenarios evaluated are for illustration purposes only, do not 

reflect analysis of any particular policy or action. Results should be interpreted with a consideration of the 

uncertainties and limitations described in Sections 2.6 and 2.7. 

FIGURE C-1. EXAMPLE TEMPERATURE PATHWAYS FOR IMPACT EVALUATION FOR SIX CLIMATE 
SENSITIVITIES 

 
CONUS degrees of warming relative to a 1986-2005 baseline for the GCAMv5.3 reference scenario, across five climate 
sensitivities (ECS). ECS 3 is the central case. 

Figure C-2 shows the GCAMv5.3 reference scenario along with five emissions reduction scenarios, ranging 

from 20 to 90 percent emissions reductions by the end of the century (ECS 3). The ability of the Framework 

 
https://www.eia.gov/outlooks/aeo/data/browser/?src=-f1#/?id=10-IEO2019&region=0-
0&cases=Reference&start=2010&end=2050&f=A&linechart=~Reference-d080819.26-10-
IEO2019&map=&ctype=linechart&sid=Reference-d080819.26-10-IEO2019&sourcekey=0  
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to efficiency evaluate impacts of multiple temperature trajectories allows analysts to compare impacts 

across various scenarios, or under various policies.  

FIGURE C-2. EXAMPLE TEMPERATURE PATHWAYS FOR VARIOUS EMISSIONS REDUCTION SCENARIOS 

 
CONUS degrees of warming relative to a 1986-2005 baseline for the GCAMv5.3 reference scenario and five emissions 
reduction scenarios (ECS 3). 

C.2  Evaluating Impacts of Climate Change   

We first use FrEDI to evaluate impacts under the five climate sensitivity runs of the reference scenario. 

Running each of the five sensitivities through the Framework with the default socioeconomic inputs (see 

Appendix D), results in the impacts trajectories shown in Figure C-3. The impacts shown are annual impacts, 

summed across sectors and regions, that reflect the combination of temperature and socioeconomic 

condition trajectories. Sea level rise results are estimated using the temperature to sea level rise conversion 

function described in Section 2.1. The projections represent impacts across 17 modeled sectors (excluding 

Asphalt Roads which is an alternative method to the “All Roads” sector). Results from the underlying 

sectoral studies measure impacts through widely varying methods, including welfare economic measures, 

expenditure/direct cost measures, or a mix of these. These measures may not be strictly additive but are 

presented as a sum here consistent with practices for regulatory benefits analyses in EPA’s Guidelines for 

Preparing Economic Analyses (2014). While the shapes of the impact curves appear similar to the shape of 

the temperature trajectories, they are much steeper. For the central case (ECS 3), temperatures range from 

0.4 degrees to 3.4 degrees of warming through 2090 (a range of a factor of about nine), while impacts 

range from $23 billion to $530 billion (a factor of about 23) reflecting non-linearities of impacts in response 

to temperatures and changing socioeconomic conditions. Figure C-4 shows total modeled impacts for each 

of the emissions reduction scenarios.  
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FIGURE C-3. PROJECTED NATIONAL ANNUAL ECONOMIC IMPACTS ASSOCIATED WITH THE GCAM 
REFERENCE SCENARIO  

 
CONUS total annual impacts across 17 modeled sectors (excluding Asphalt Roads) for the GCAMv5.3 reference case with five 
climate sensitivities (ECS). ECS 3 is the central case. Impacts presented in billions of $2015. 

 

FIGURE C-4. PROJECTED NATIONAL ANNUAL ECONOMIC IMPACTS ASSOCIATED WITH THE GCAM 
REFERENCE AND EMISSIONS REDUCTION SCENARIOS  

 
CONUS total annual impacts across 17 modeled sectors (excluding Asphalt Roads) for the GCAMv5.3 reference case and five 
emissions reductions scenarios (ECS 3). Impacts presented in billions of $2015. 
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FrEDI calculates impacts by year, region, sector, sub-impact, and adaptation scenario, allowing for analysis 

of custom scenarios across any of these dimensions. For example, Figure C-5 shows projected annual 

impacts of the GCAMv5.3 reference scenario by sector.32 Under this illustrative scenario, health-related 

impacts of climate change on Air Quality are the largest impacts in 2050 (28 percent of total modeled 

impacts). Air Quality experiences a 2.7-fold increase between 2050 and 2090 while High Tide Flooding and 

Traffic, the second largest modeled sector in 2050, increases 4-fold over the same period to become the 

largest impact sector by 2090.  The largest five sectors make up approximately 74 percent of total annual 

impacts in 2090, though it is important to note that the modeled sectors only represent a portion of all 

impacts from climate change. 

FIGURE C-5. CONUS ANNUAL ECONOMIC IMPACTS ASSOCIATED WITH A CUSTOM SCENARIO BY SECTOR  

 
CONUS annual impacts by modeled sectors (excluding Asphalt Roads) for the GCAMv5.3 reference case for the central 
climate sensitivity (ECS 3). Impacts presented in billions of $2015. 

C.3 Evaluating the Economic Benefits of Emission Reduction  

This section demonstrates how FrEDI can be used to compare impacts between scenarios, using a 

comparison of the GCAMv5.3 reference and emissions reduction scenarios presented in the previous 

section. Figure C-6 shows the decrease in temperatures associated with the emissions reduction scenarios 

compared to the reference scenario. The pathways begin diverging in 2030 and in 2090 represent a range 

of 0.3 to 1.0 degrees less of warming compared to the reference scenario (20 percent and 90 percent 

emission reduction, respectively). Figure C-7 shows the resulting difference in projected economic impact 

between the illustrative emissions scenarios.24 The projected difference in annual impacts reaches over $10 

billion in all emissions reduction scenarios by 2050. The economic benefits per degree reduction from the 

 
24 Note that differences in annual impacts are calculated as the difference in projected impacts, not the impacts associated with the 
difference in temperature, the latter of which would not account for non-linearities in the sectoral impact functions. 
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reference scenario also increase over the century as impacts are non-linear, with more pronounced 

acceleration of benefits per degree at higher temperatures. 

FIGURE C-6. DECREASE IN CONUS TEMPERATURE RELATIVE TO THE REFERENCE SCENARIO FOR 
EMISSIONS REDUCTION SCENARIOS  

Decrease in CONUS degrees of warming relative to a 1986-2005 baseline for five emissions reduction scenarios defined by 
CO2 emissions reduction in 2100 compared to the GCAMv5.3 reference scenario.  

 
 
FIGURE C-7. PROJECTED NATIONAL ANNUAL ECONOMIC EFFECTS OF EMISSIONS REDUCTIONS  

 
Reduction in CONUS total annual impacts across 17 modeled sectors (excluding Asphalt Roads) for five emissions reduction 
scenarios defined by CO2 emissions reduction in 2100 compared to the GCAMv5.3 reference scenario. Reduction in impacts 
presented in billions of $2015. 

Figure C-8 shows the projected effects of emissions mitigation under each reduction scenario by sector. 

While the High Tide Flooding and Traffic sector is projected to experience the impacts in the reference 

scenario (see Figure C-4), both the Air Quality and Extreme Temperatures have larger benefits (i.e., avoided 
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damages) of mitigation. SLR-driven sectors show less sensitivity to mitigation measures due to the ways in 

which GMSL rise and temperature change interact over time. The ability to  

FIGURE C-8. PROJECTED NATIONAL ANNUAL ECONOMIC BENEFITS OF HYPOTHETICAL EMISSIONS 
REDUCTIONS BY SECTOR ($BILLIONS) 

Reduction in CONUS annual impacts by modeled sectors (excluding Asphalt Roads) for the illustrative GCAMv5.3 emissions 
reduction scenarios relative to the reference case for the central climate sensitivity (ECS 3). Sectors are ordered by 
magnitude of impacts under the reference scenario. Reduction in impacts presented in billions of $2015. 
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APPENDIX D | METHODS DETAILS 

D.1 Calculation of global mean sea level  

To calculate global mean sea level from global mean temperature we use a semiempirical sea level model 

from Kopp et al., 2006.  This model relates the rate of global mean sea level rise (dh(t)/dt) to global mean 

temperature at time T(t), an equilibrium temperature Te(t), and a small residual trend arising from the long-

term response to earlier climate change ∅(t), relative to 2000 using equation 10 from Kopp et al., 2016. 

𝑑ℎ(𝑡)

𝑑𝑡
= 𝑎 ∗ (𝑇(𝑡) − 𝑇𝑒(𝑡)) + ∅(𝑡)  

In the equation above, Te(t) and ∅(t) are functions of time, where: 

𝑑𝑇𝑒(𝑡)

𝑑𝑡
=  

(𝑇(𝑡) − 𝑇𝑒(𝑡))

𝑡𝑎𝑢1

 

𝑑∅(𝑡)

𝑑𝑡
=  

−∅(𝑡)

𝑡𝑎𝑢2

  

The parameter vales are estimated from the probability distributions of the semiempirical model 

parameters in Figure S5, and Dataset S1j, focusing on the posterior distribution calculated with the Mann et 

al., 2009 temperature data set. We use the median parameter values across the distributions for this 

calculation. We used HadCrUT4 to determine the appropriate temperature offset between the actual 

temperature and the equilibrium temperature in 2000.  

TABLE D-1: PARAMETER VALUES USED IN THIS ANALYSIS, FROM KOPP ET AL., 2016, MEDIAN AND 5TH 
AND 95TH PERCENTILES. 

Parameter Value Units 

∅(2000) 0.14 (0.05, 0.29) mm/yr 

tau1 174 (87, 366) Year 

tau2 4175 (1140, 

17670) 

Year 

a 4.0 (3.2, 5.4) mm/yr/K 

Te(2000) -0.05 (-0.12, 0.07) K 

Future versions of FrEDI may use several different approaches for addressing uncertainty. Some of these 

approaches include: using the  parameter distributions in S1j using a Monte Carlo approach to sample the 

parameters distributions provided in Kopp et al., 2016, both Mann et al., 2009 and Marcott et al.,; 



Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) 

 

       Page D-2 

calibrating Te(2000) and alpha parameters to emulate the range of sea level rise from AR6; and examine 

low-probability high impact outcomes such as the sea level rise projection including ice sheet instability 

from AR6 or the higher Sweet et al., 2017 scenarios.  Some approaches (such as using the normal 

distributions for parameters or the alternate parameter set calibrated against Marcott et al.) will be 

straightforward, but others may be more challenging to implement. The semi-empirical approach was not 

designed to incorporate future sea level rise processes that were not observed in historical data such as ice 

sheet instability and may not be accurate for multi-century applications.  We note that the user can supply 

FrEDI with exogenous global mean sea level rise scenarios instead of calculating them from global mean 

temperature. 

Figure D-1 shows the projected global mean sea level rise from RCP 2.6, RCP 4.5 and RCP 8.5 using the 

updated sea level rise model. Global mean temperature was calculated with Hector v2.5. The colored bars 

represent the 5th and 95th percentile projections of global mean sea level driven by the Mann et al., 2009 

temperature data set (Table S1i in the supplementary material of Kopp et al., 2016).  

FIGURE D-1. GLOBAL MEAN SEA LEVEL RISE PROJECTIONS 

 
Global mean sea level rise projections using the updates method for RCP 2.6, 4.5, and 8.5. The colored bars represent the 5th 
and 95th percentile and the symbols represent the median projections using the calibration to the Mann et al., 2009 
temperature data set. 

D.2 Global to CONUS Temperature Translation  

One of the flexibilities of FrEDI is its ability to generate impact estimates from either global or CONUS 

temperature inputs. FrEDI contains a translation function, derived from global and CONUS temperatures 

from six CMIP5 GCMs (i.e., the suite of GCMs used in the CIRA project). Figure D-2 plots the global and 

CONUS temperatures for the six GCMs, under RCP8.5 (the pathway used in FrEDI analyses), where each 
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point represents an era (i.e., 2030, 2050, 2070, 2090) and GCM combination. All temperature changes 

presented are relative to the 1985-2006 baseline period.  

FIGURE D-2. GLOBAL AND CONUS TEMPERATURES, RCP8.5 

 
This plot shows global and CONUS temperatures for the six GCMs, under RCP8.5. Each data point is an era-GCM 
combination.  

The relationship between CONUS and global temperatures is relatively stable across GCMs and over time, 

allowing us to use these available datapoints to develop a generalized relationship between global and 

CONUS temperature anomalies. Using this data, we estimate a linear translation function specified as: 

∆𝑇𝐶𝑂𝑁𝑈𝑆 = 𝛽1∆𝑇𝐺𝐿𝑂𝐵𝐴𝐿 + 𝜀 

The coefficients of this equation are as follows, in Table X. Using the estimated coefficients, FrEDI calculates 

CONUS temperatures from Global temperatures as: 

∆𝑇𝐶𝑂𝑁𝑈𝑆 = 1.42∆𝑇𝐺𝐿𝑂𝐵𝐴𝐿 

TABLE D-2. CONUS TO GLOBAL TEMPERATURE TRANSLATION COEFFICIENT ESTIMATES 

Regression estimates relating CONUS and global temperature changes, relative to a 1986-2005 baseline. 

 ∆𝑇𝐶𝑂𝑁𝑈𝑆  
∆𝑇𝐺𝐿𝑂𝐵𝐴𝐿 1.421 *** 

 
(0.000) 

 
R-squared 0.990  
Adjusted R-
squared 0.990  
N 24  
Standard errors listed below coefficients, in 
parentheses. * p<0.05; ** p<0.01; *** p<0.001 
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These coefficients are used most commonly in the Tool to translate global temperature inputs into CONUS 

temperatures for binning indexing, however if a user inputs CONUS temperatures, the inverse of the 

formula can be used to generate global temperatures, which are used to derive GMSL as described in the 

previous section. 
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APPENDIX E | METHODS SENSITIVITY TESTS 

E.1 Sensitivity to GHG emissions scenarios  

Since FrEDI uses only RCP8.5 results to establish impacts at integer degrees of national warming, it is 

important to understand the sensitivity of the results to a single GHG emissions scenarios—i.e., would the 

impacts by degree of warming be significantly different under a more moderate GHG emissions scenario? It 

is possible that using RCP8.5 results only may bias the results because of the land-sea warming differences 

that have been established (Herger et al. 2015) between higher and lower GHG mitigation, among other 

potential differences.1 

The roads sector is ideal for this comparison because it includes both precipitation and temperature 

drivers, as most of the sectors in FrEDI are largely temperature-driven with some that are entirely 

precipitation-driven. Table E-1 shows the impacts for the roads sector for CONUS for six GCMs and two 

GHG emissions scenarios by integer degrees. Note that none of the RCP4.5 GCMs exceed 4 degrees of 

national (CONUS) warming and two of the GCMs (CCSM4 and GISSE2R) never exceed 2 degrees of warming. 

For each GCM, there are differences between the RCPs at the same degrees of warming. Of the four GCMs 

with values for all three degrees of warming, two of the GCMs (CanESM and HadGEM2ES) show higher 

impacts for RCP8.5 than RCP4.5 and the other two GCMs (MIROC5 and GFDLCM3) show lower impacts for 

RCP8.5 than RCP4.5. In addition, differences between impacts across the two RCPs for the same GCM are 

well within the range of differences between GCM results with the same RCP, indicating that uncertainty is 

similar between GCMs and these two RCPs.  

Differences in the mean across the six GCMs for the two RCPs are similar for 1 through 3 degrees, where 

RCP4.5 is higher by 16% for 1 degree, lower by 27% for 2 degrees, and higher by 6% for 3 degrees. As such, 

there is not a clear bias, high or low, in using a single RCP for the roads sector.   

  

 
1 Herger, N., B. M. Sanderson, and R. Knutti (2015), Improved pattern scaling approaches for the use in climate impact studies, Geophys. 
Res. Lett., 42, 3486–3494, doi:10.1002/2015GL063569 
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TABLE E-1. CONUS IMPACTS FOR ROADS SECTOR BY GCM AND GHG EMISSIONS SCENARIO 

Roads impacts (bill. $2015 / year) for six GCMs and two GHG emissions scenarios (RCP4.5 and RCP8.5), as well as the mean 
across the six GCMs for each GHG emissions scenario for 1-3 degrees of national (CONUS) warming (Celsius) from 1986-2005 
average baseline. Difference between the RCP means are also shown. 

GCM RCP 

Impacts ($2015 bill. / year) 

1 Deg 2 Deg 3 Deg 

CanESM RCP4.5 -$4 $10 $62 

CanESM RCP8.5 -$1 $15 $105 

CCSM4 RCP4.5 $33   

CCSM4 RCP8.5 $1 $103 $196 

GISSE2R RCP4.5 $7   

GISSE2R RCP8.5 $1 $20 $74 

HadGEM2ES RCP4.5 $59 $131 $302 

HadGEM2ES RCP8.5 $80 $211 $325 

MIROC5 RCP4.5 $2 $21 $102 

MIROC5 RCP8.5 $4 $28 $51 

GFDLCM3 RCP4.5 $5 $35 $149 

GFDLCM3 RCP8.5 $2 $28 $116 

Mean RCP4.5 $17 $49 $154 

Mean RCP8.5 $15 $68 $145 

Difference between RCP mean 16% -27% 6% 
Note: none of the RCP4.5 GCMs exceed 4 degrees of national (CONUS) warming and two of the 

GCMs (CCSM4 and GISSE2R) never exceed 2 degrees of warming. 

E.2 Sensitivity to binning window  

The FrEDI Framework uses an 11-year binning window, which is essentially an 11-year moving average, for 

assigning integer degrees of warming. The main purpose of the binning window is to smooth out inter-

annual variability to establish the arrival year of integer degrees of warming. An 11-year window is 

composed of a center year with 5 years on each side. 11 years are used because this provides a balance 

between longer windows that use temperatures from years far from the center year and shorter windows 

that may reach or not reach temperature thresholds because of the noise from year-to-year temperature 

variability. Longer windows, especially a 30-year period, often used to establish a climatology, would cause 

issues or at least inconsistencies near the end or the beginning of the timeseries. For example, the first 

degree of warming is often within the first 10 years of the projection, which would not allow a full 30-year 

window. However, it is important to establish the consequences of using 11 years instead of using a shorter 

or longer period.  
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FIGURE E-1. CONUS DEGREES OF WARMING WITH 11-YEAR MOVING AVERAGE 

 
Annual degrees of warming (Celsius) from 1986-2005 average baseline for CONUS after an 11-year moving average is 
applied. All six CIRA GCMs are shown.  

Figure E-1 shows the 11-year moving average CONUS temperature trajectory as a difference from the 1986-

2005 baseline. As shown, the majority of the inter-annual variability is removed with an 11-year averaging 

window. However, some variability remains. To investigate the effect of an 11-year moving average as 

opposed to a shorter or longer period, the following tables indicate how the arrival years would differ for a 

5-year window (Table E-2) or a 15-year window (Table E-3). As shown, in most cases, arrival years only 

differ by 1 to three years and differences are greater for the 5-year window than the 15-year window.  
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 TABLE E-2. DIFFERENCE IN ARRIVAL TIMES FOR A 5-YEAR WINDOW 

Differences between arrival times (years) if a 5-year window is used compared to an 11-year window. 

GCM 

Difference between arrival times for a 5-year window (years) 

1 Deg 2 Deg 3 Deg 4 Deg 5 Deg 6 Deg 

CanESM2 2 1 0 3 1 1 

CCSM4 2 1 3 2 1 N/A 

GISS-E2-R 3 1 3 N/A N/A N/A 

HadGEM2-ES 1 3 1 1 0 1 

MIROC5 3 3 1 0 0 0 

GFDL-CM3 1 3 0 1 3 1 

 
TABLE E-3. DIFFERENCE IN ARRIVAL TIMES FOR A 15-YEAR WINDOW 

Differences between arrival times (years) if a 15-year window is used compared to an 11-year window. 

GCM 

Difference between arrival times for a 5-year window (years) 

1 Deg 2 Deg 3 Deg 4 Deg 5 Deg 6 Deg 

CanESM2 2 2 1 2 1 0 

CCSM4 2 0 1 0 0 N/A 

GISS-E2-R 1 0 0 N/A N/A N/A 

HadGEM2-ES 0 0 0 0 1 0 

MIROC5 2 0 0 1 0 N/A 

GFDL-CM3 0 0 0 0 2 1 

E.3 Sensitivity to socioeconomic factors  

Two primary socioeconomic factors are explicitly incorporated into FrEDI: projected total population 

changes and projected changes in GDP. The Framework was designed based on a conclusion that these two 

are the primary drivers of socioeconomic change on the resulting economic impact. For some sectors, these 

are the only socioeconomic drivers—e.g., Roads, Labor, High Tide Flooding, and Coastal Properties. For 

some other sectors, secondary socioeconomic factors are embedded in the underlying study results. For 

example, the sectoral studies underlying Southwest Dust, Valley Fever, and Temperature Mortality include 

projections of population age distribution. Temperature Mortality impacts are based on city-specific 

functions, each of which capture demographic information embedded in the functional relationships that 

relate mortality to weather conditions, such as age distribution and baseline mortality rates. For this 

reason, and because Extreme Temperature mortality impacts tend to be larger in magnitude than many of 

the other sectors, Extreme Temperature mortality is a suitable sector to evaluate the influence of these 
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secondary socioeconomic factors, comparing them to the influence of the two primary factors: population 

and GDP.   

Table E-4 shows the drivers of changes from the 2010 impacts to the 2090 values as ratios (or factors) of 

2090 impacts to 2010 impacts where a 1.2 would indicate 2090 values are 20 percent higher than the 

equivalent 2010 values. This table effectively isolates the socioeconomic influence on the final impacts into 

three categories. As such, multiplying the Population, GDP/Capita, and Secondary Socioeconomic columns 

gives the value in the Total Socioeconomic column. Note that GDP/Capita, which influences VSL, uses 

national scale GDP and population (rather than regional or city-scale population) so is consistent across 

regions.  

Secondary socioeconomic factors influence the total socioeconomic influence factor by about 2 to 5 

percent across regions. In contrast, the two primary socioeconomic factors each influence the total factor 

by 20 to 76 percent, indicating that the influence of the two factors used explicitly in the framework—

population and GDP—are considerably higher than the secondary factors. Note that the effects of 

secondary socioeconomic factors will vary by sector. However, temperature mortality provides a relatively 

straightforward means to test the influence of these factors since they are implicitly imbedded in the 

underlying relationship of weather conditions and mortality, which vary by location.  

TABLE E-4. FACTORS OF CHANGE BETWEEN 2010 AND 2090 IMPACTS FOR TEMPERATURE MORTALITY AT 
2-DEGREES 

Factors of change (2090 over 2010 value) for all socioeconomic conditions that influence temperature mortality impacts at 2 
degrees of warming above the 1986-2005 CIRA baseline, mean across the six GCMs. 

Region Population GDP/Capita 
Secondary 

Socioeconomic 
Total 

Socioeconomic  

Midwest 1.20 1.55 1.04 1.95 

Northeast 1.44 1.55 0.95 2.11 

Northwest 1.24 1.55 0.98 1.90 

Southeast 1.52 1.55 0.97 2.29 

Southern Plains 1.71 1.55 1.02 2.71 

Southwest 1.76 1.55 1.02 2.80 

Total 1.50 1.55 0.98 2.27 

E.4 Errors from year-specific adjustment factors  

This section attempts to quantify errors associated with using 2010 and 2090 year-specific socioeconomic 

adjustment factors. There are three sectors that use this approach—Temperature Mortality, Valley Fever, 

and Southwest Dust. Since all of these are health sectors, the primary socioeconomic drivers are population 

growth and GDP/capita, which effects VSL. Both of these drivers are used in all three sectors.  

In FrEDI, a linear interpolation between 2010 and 2090 is used to estimate the effect of socioeconomic 

growth on impacts between these two points in time. Using a linear approach will result in some 

discrepancy in FrEDI estimated impacts between 2010 and 2090 and estimates that use annual projections 
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of population and GDP. Figure E-2 shows the factors that influence impacts when a population projection is 

used compared to a linear version on the left and the same for VSL on the right. The VSL factor is calculated 

as the ratio of change in GDP per capita from 2010 raised to an elasticity of 0.4, which follows the VSL 

equation in Appendix B.  

FIGURE E-2. PROJECTED AND LINEAR FACTORS OF POPULATION GROWTH AND VSL 

  

Growth factors for population and VSL with a projection of population and GDP and the linear counterpart. Growth factors 
represent the multiplier on impacts to account for socioeconomic growth from 2010. The VSL factor is calculated as the ratio 
of change in GDP per capita from 2010 raised to an elasticity of 0.4, which follows the VSL equation in Appendix B. 

As shown in Figure E-2, the population projection is inreasing at a decreasing rate and the linear 

approximation underestimates the factor for all years. The projected VSL, on the other hand, almost follows 

a linear approximation. Figure E-3 shows the difference in the linear approximation from the projection, 

where positive values indicate the linear approximation overestimates the growth factor and negative 

values indicate the linear approach underestimates the growth factor. The linear approach underestimates 

the population growth factor by slightly less than zero in years close to 2010 or 2090 and up to 4.8 percent 

in 2035. For VSL, the linear approach only slightly overestimates the growth factor peaking in 2015 at 1.1 

percent. This indicates that the linear approach is less impactful for VSL than population although even for 

the population growth factor the difference is relatively small. 
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FIGURE E-3. DIFFERENCE IN LINEAR APPROACH TO POPULATION AND VSL PROJECTION 

 

Percent difference in socioeconomic growth factors between a linear approach and a projection approach (used in most 
underlying studies) for 5-year increments from 2010 to 2090. Negative values indicate the linear approach produces an 
underestimate compared to the projection approach and positive values indicate the linear approach overestimates the 
growth factor. 
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APPENDIX F | R CODE DOCUMENTATION 

The EPA has implemented the FrEDI framework in an R package called `FrEDI`, which consists of one main 

function, several pre- and post- processing functions, and additional helper functions. The package is 

currently available for download through GitHub and may eventually be submitted for dissemination 

through the Comprehensive R Archive Network (CRAN).26 The `FrEDI` package depends on several 

additional, widely used R packages - `dplyr`, `tidyr`, and `ggplot2`. All package dependencies are 

available through CRAN.  

The FrEDI package implements the Framework described in this report. The first section in this appendix 

presents an overview of the main elements of the FrEDI package. The second section provides detailed 

descriptions of each of the functions in the package. For more details on the underlying methodology, refer 

to the main documentation report. 

F.1 `FrEDI’ Overview  

The R package implements the FrEDI framework in one main function (`run_fredi()`) and provides 

additional pre- and post-processing functions. The primary functions and their main arguments are highlighted 
in the table below. The function dependencies are shown in the following figure. 
 

Function Name Function Type Inputs 
run_fredi Main temperature- and SLR-

projection function 
Custom scenarios for temperature, global mean sea 
level rise (GMSL), population, and gross domestic 
product (GDP) 

import_inputs Function for importing custom 
scenarios from CSV files 

Paths to CSV files containing custom scenarios 

get_plots Create plots of impacts produced 
using `run_fredi()` 

(heatmaps and impacts over 
time) 

Outputs of FrEDI, aggregated to impact types 

 
Function dependencies are shown in the Figure F-1. 

 
26 For more information on CRAN, visit https://cran.r-project.org/.  
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FIGURE F-1 FUNCTION DEPENDENCIES IN THE `FREDI’ R PACKAGE 

 

Main function for projecting climate impacts 

• `run_fredi()` - Project annual average climate change impacts throughout the 21st century for 
available sectors. 

Pre-processing functions 

Primary functions: 

• `import_inputs()` - Import custom scenarios for climate and socioeconomics (temperature and 

global mean sea level rise (GMSL), population, and GDP) from user-specified file names. 
Helper functions: 

• `convertTemps()` - Convert contiguous U.S. (CONUS) temperatures to global temperatures or vice 
versa. 

• `temps2slr()` - Convert global temperature change in degrees Celsius to global mean sea level rise 
(GMSL) in centimeters. 

• `get_sectorInfo()` - Access information about sectors in FrEDI as a vector or dataframe. 

Post-processing functions 

Primary functions: 

• `get_plots()` - Create plots for FrEDI outputs. 

• `aggregate_impacts()` - Summarize and aggregate impacts from FrEDI. Calculate national totals, 
average across models, sum impact types, and interpolate between impact year estimates. 
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Included datasets (default outputs) 

The FrEDI R package contains a dataset with default results `defaultResults`, which contains annual 

impacts produced by `run_fredi()` for the default scenarios (i.e., default temperature, GDP and 

regional population trajectories), and can be loaded into the R workspace (`load(defaultResults))`. 

F.2 `FrEDI’ Function Details  

F.2.1 Primary Functions 

 

F.2.1.1 run_fredi 
Project annual average climate change impacts throughout the 21st century for available sectors. 
 

 
Description 

This function allows users to project annual average climate change impacts throughout the 21st 
century (2010-2090) for available sectors. Users may specify an optional list of custom scenarios using 
`inputsList`. The output of `run_fredi()` is an R data frame object containing annual average 
impacts, by year, for each sector, adaptation, impact type, model (GCM or SLR scenario), and region. 

Usage 

run_fredi(inputsList=NULL, sectorsList=NULL, aggLevels=“all”, 

pv=FALSE, baseYear=2010, rate=0.03, silent=TRUE) 

Arguments 

inputsList A list of named elements (names(`inputsList)= 
c(“tempInput”, “slrInput”, “gdpInput”, 

“popInput”)`), each  containing dataframes of custom temperature, 
global mean sea level rise (GMSL), gross domestic product (GDP), and/or 
population scenarios, respectively, over the period 2010 to 2090. For 
more information, see `import_inputs()`. Values for each scenario 
type must be within reasonable ranges. For more information, see the 
details, below, for `run_fredi()` and documentation for 

`import_inputs()`. 
sectorsList A character vector indicating a selection of sectors for which to calculate 

results. If `NULL`, all sectors are included. 
aggLevels  Levels of aggregation at which to summarize data: one or more of 

`c(“national”, “modelaverage”, “impactyear”, 
“impacttype”, “all”)`. Defaults to all levels (i.e., 
`aggLevels=“all”`). Uses the same aggregation levels as 

`aggregate_impacts()`). 
pv A `TRUE/FALSE` value indicating whether to calculate present values 

for the annual impacts. Defaults to `pv=FALSE`.  
baseYear Base year used for calculating present values of annual impacts (i.e., 

discounting). Defaults to `baseYear=2010`. 
rate Annual discount rate used in calculating present values (i.e., discounting) 

annual impacts. Defaults to `rate=0.03` (i.e., 3% per year). 
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silent A `TRUE/FALSE` value indicating the level of messaging desired by the 

user (default=`FALSE`). 

 
Details 

This function allows users to project annual average climate change impacts throughout the 21st 
century for available sectors. `run_fredi()` is the main function in the FrEDI R package. The FrEDI 
package implements the methods of the Framework, as described in this report. 
 
Users can specify an optional list of custom scenarios with `inputsList` and specify a selection of 
sectors with `sectorsList`. `run_fredi()` uses default scenarios for temperature, population, 
and GDP when no inputs are specified (i.e., `inputsList` is `NULL`) or for empty elements of the 
inputs list. If the user does not specify an input scenario for GMSL (i.e., `inputsList= 
list(slrInput=NULL)`) , `run_fredi()` first converts the CONUS temperature scenario to 

global temperatures and then converts the global temperatures to a global mean sea level rise (GMSL) 
height in centimeters. For more information on the conversion of CONUS temperatures to global 
temperatures, see `convertTemps()`. For more information on the conversion of global 
temperatures to GMSL, see `temps2slr()`. 

 
Values for input scenarios must be within reasonable ranges. If a user inputs a custom scenario with 
values outside the allowable ranges, `run_fredi()` will not run the scenarios and will instead stop 

and return an error message. Temperature and GMSL inputs must begin in 2000 or earlier. Values for 
population and GDP scenarios can start in 2010 or earlier. For more information, see F.2.1.2 
`import_inputs()`. 
 
The input temperature scenario (passed to `run_fredi()` via the `inputsList` argument) 
requires temperatures for the contiguous U.S. (CONUS) in degrees Celsius relative to 1995 (degrees of 
warming relative to the baseline year). Temperature values must be greater than or equal to zero and 
less than or equal to 10 degrees Celsius (CONUS temperatures). Users can convert global temperatures 
to CONUS temperatures using `convertTemps(from="global")` or by specifying 
`import_inputs(temptype="global")` when importing a temperature scenario from a CSV 
file. 
 
Values for the sea level rise (SLR) scenario are for global mean sea level rise (GMSL) must be in 
centimeters (cm) and values must be greater than or equal to zero and less than or equal to 250 cm.  
 
Population and gross domestic product (GDP) values must be greater than or equal to zero. 
 
If `inputsList=NULL`,  `run_fredi()` uses defaults for all scenarios. Otherwise, 
`run_fredi()` looks for a list object passed to the argument `inputsList`. Within that list, 

`run_fredi()` looks for list elements `tempInput`, `slrInput`, `gdpInput`, and `popInput` 
containing dataframes with custom scenarios for temperature, GMSL, GDP, and regional population, 
respectively. `run_fredi()` will default back to the default scenarios for any list elements that are 

`NULL` or missing. In other words, running `run_fredi(inputsList= list())` returns the 
same outputs as running `run_fredi()`. For help importing custom scenarios from CSV files, refer to 

the pre-processing function `import_inputs()`.  
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For all inputs, `run_fredi()` linearly interpolates missing annual values using non-missing data 

points. Temperatures are interpolated using 1995 as the baseline year (i.e., the central year of the 1986-
2005 baseline period). The temperature input series must begin in 2000 or earlier. GMSL is interpolated 
using 2000 as the baseline year. In other words, the temperature (in degrees Celsius) is set to zero for 
the year 1995 and GMSL is set to zero for the year 2000. The interpolated temperature and GMSL 
scenarios are combined into a column called `driverValue`,  along with additional columns for the 
driver unit (`driverUnit` in “degrees Celsius” and “cm” for temperature and GMSL, respectively). 

FrEDI joins the driver scenarios with annual values for each sector by  the model type associated with 
the sector (“GCM” or “SLR”).  
 
The population scenario must provide annual regional values for population, with national totals 
calculated from regional values. FrEDI uses the national population scenario and the GDP scenario to 
calculate GDP per capita. Values for regional population, national population, national GDP (in 2015$), 
and national per capita GDP (in 2015$/capita) are provided in the results dataframe in columns 
“reg_pop”, “national_pop”, “gdp_usd”, and “gdp_percap”, respectively.  
 
Annual impacts for each sector, adaptation, impact type, and impact year combination included in the 
model are calculated by multiplying scaled climate impacts by a physical scalar and economic scalars  
and multipliers.  
 
`run_fredi()` aggregates or summarizes results to levels of aggregation specified by the user 

(passed to `aggLevels`) using the post-processing helper function `aggregate_impacts()` (see 
`aggregate_impacts()`). Users can specify a single aggregation level or multiple aggregation levels 
by passing a single character string or character vector to `aggLevels`. Options for aggregation 

include calculating national totals (`aggLevels=“national”`), averaging across model types and 
models (`aggLevels=“modelAverage”`), summing over all impact types (`aggLevels= 

“impacttype”`), and interpolate between impact year estimates (`aggLevels=“impactyear”`). 
Users can specify all aggregation levels at once by specifying `aggLevels=“all”` (default) or no 

aggregation levels (`aggLevels=“none”). 
 
For each of the `aggLevels`,  `run_fredi()` performs the following summarization (using 
`aggregate_impacts()`): 

• `”national”`: Annual values are summed across all regions present in the data. I.e., data is 

grouped by columns `”sector”`, `“adaptation”`, `”impactType”`, 
`”impactYear”` , `“model_type”`, `“model”`, and `“year”`. Years which have 
missing column data for all regions return as `NA` (missing). The rows of the dataframe of national 

values (with column `region=“National Total”`) are then added as rows to the regional 
values. 

• `”modelAverage”`: Annual results are averaged across all models present in the data, i.e., data is 

grouped by columns `”sector”`, `“adaptation”`, `”impactType”`, 
`”impactYear”` , `“model_type”`, `“region”`, and `“year”` and averaged across 
models. Averages exclude missing values. Years which have missing column data for all models 
return as `NA` (missing). The rows of the dataframe of model averages (with `model=“Average”` 
for temperature-driven sectors and `model=“Interpolation”` for SLR-driven sectors) are then 
added as rows to individual model results. 

• `”impactType”`: Annual results are summed across all impact types by sector present in the 
data. I.e., data is grouped by columns `”sector”`, `“adaptation”`, `”impactYear”` , 



Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) 

 

       Page F-6 

“model_type”, “model”, “region”, and  “year”` and summed across impact types. 

Mutates column `impactType=“all”` for all values. Years which have missing column data for 

all impact types return as `NA` (missing). If results are aggregated across impact types, information 
about physical impacts (dataframe columns `”physicalmeasure”` and 
`”physical_impacts”`) are dropped. 

• `”impactYear”`: Annual results for sectors with only one impact year estimate (i.e., 
`impactYear==“N/A”`) are separated from those with multiple impact year estimates. For 
sectors with multiple impact years, annual results are interpolated between impact year estimates 
for applicable sectors  i.e., data is grouped by columns `”sector”`, `“adaptation”`, 
`”impactType”` , `“model_type”`, `“model”`, `“region”`, and `“year”` and 
interpolated across years with the 2010 run assigned to year 2010 and the 2090 run assigned to year 
2090. The interpolated values are bound back to the results for sectors with a single impact year 
estimate, and column `impactYear` set to `impactYear=“Interpolation”` for all values. 

 
Users can choose to calculate present values of annual impacts (i.e., discounted impacts), by setting 
`pv=TRUE` (defaults to `pv=FALSE`). Discounted impacts are calculated using a base year and annual 
discount rate as `discounted_impacts=annual_impacts/(1+rate)^(year-baseYear)`. 
Set  base year and annual discount rate using `baseYear` (defaults to `baseYear=2010`) and 

`rate` (defaults to 3% i.e., `rate=0.03`), respectively. 
 
Outputs 

The output of `run_fredi()` is an R data frame object containing annual average impacts, by year 
(2010-2090), for each sector, adaptation, model (GCM or SLR scenario), and region.  

 
Examples 

### Path to example scenarios 

scenariosPath <- system.file(package=“FrEDI”) %>% 

file.path(“extdata”,”scenarios”) 

### View example scenario names 

scenariosPath %>% list.files 

### Temperature Scenario File Name 

tempInputFile <- scenariosPath %>% file.path(“GCAM_scenario.csv”) 

### SLR Scenario File Name 

slrInputFile  <- scenariosPath %>% file.path(“slr_from_GCAM.csv”) 

### Population Scenario File Name 

popInputFile  <- scenariosPath %>% file.path(“pop_scenario.csv”) 

### Import inputs 

example_inputsList <- import_inputs( 

  tempfile = tempInputFile, 

  slrfile  = slrInputFile, 

  popfile  = popInputFile 

) 

### Run custom temperature scenario and output impacts without aggregation 

and with present values (default base year and discount rate) 

df_tempExOut <- run_fredi(inputsList= tempBin_inputs, aggLevels=“none”, 

pv=TRUE, silent=TRUE) 
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F.2.1.2 import_inputs 
Import custom scenarios for temperature, sea-level rise, population, and GDP from user-specified file 

names. 
 

 
Description 

This function enables users to import data on custom scenarios for use with FrEDI (supplied as to 
`run_fredi()`. Users specify path names to CSV files containing temperature, global mean sea level 
rise (GMSL), gross domestic product (GDP), and population scenarios. `import_inputs()`reads in 

and formats any specified files as data frames and returns a list of dataframes for imported scenarios.  
Usage 

import_inputs(tempfile=NULL, slrfile=NULL, popfile=NULL, gdpfile=NULL, 

popform=“wide”, temptype=“conus”) 

Arguments 

tempfile A character string indicating the location of a CSV file containing a 
custom temperature scenario (first column contains years in the interval 
2000 to 2090; second column contains temperatures, in degrees Celsius, 
above the 1995 baseline year). The temperature scenario must start in 
2000 or earlier. 

slrfile A character string indicating the location of a CSV file containing a 
custom sea level rise scenario (first column contains years in the interval 
2000 to 2090; second column contains values for global mean sea level 
rise (GMSL), in centimeters, above the 2000 baseline year). The SLR 
scenario must start in 2000 or earlier. 

popfile A character string indicating the location of a CSV file containing a 
custom population scenario for NCA regions. The first column contains 
years in the interval 2010 to 2090. The number of additional columns, 
column names, and column contents depend on the population format 
set by `popform`. For more details, see `popform `. 

gdpfile A character string indicating the location of a CSV file containing a 
custom scenario for gross domestic product (GDP) (first column contains 
years in the interval 2010 to 2090; second column contains values for 
GDP, in total 2015$). 

temptype A character string indicating whether the temperature values in the 
temperature input file (specified by `tempfile` represent global 
temperature change (`temptype= “global”`) or temperature 

change for the contiguous U.S. (`temptype=“conus”`) in degrees 
Celsius. By default, the model assumes temperatures are CONUS 
temperatures (i.e., `default=“conus”`). 

popform A character string indicating whether the populations in the population 
input file specified by `popfile` are spread across multiple columns 
(wide format i.e., `popform=“wide”`) or are combined in a single 
column (long format i.e., `popform=“long”`). For both formats 
(`popform=“wide”` or `popform=“long”`), the first column 
contains values for the associated value year. If `popform= “wide”` 
(default), the second through eighth columns of `popfile` must 
contain population values for each NCA region, with the associated NCA 
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region as the column name. If `popform= “long”`, the second 

column must contain NCA region names and the third column must 
contain values for the associated region population.  

 
Details 

This function enables users to import data on custom scenarios for use with FrEDI (supplied as to 
`run_fredi()`. Users specify path names to CSV files containing temperature, global mean sea level 
rise (GMSL), population, and gross domestic product (GDP) scenarios (`tempfile`, `slrfile`, 

`gdpfile`, and `popfile`, respectively). `import_inputs()` reads in and format any specified 
files as data frames and returns a list of dataframes for imported scenarios. Users can specify whether 
the temperature input is for the contiguous U.S. (CONUS) or global using `temptype` 
(`temptype=”cons”` or `temptype=”global”`, respectively) and specify the format of the 
population scenario using `popform` (`popform=”wide”` or `popform=”long”`).  

 
Values for input scenarios must be within reasonable ranges. Temperatures must be in degrees Celsius 
and values must be greater than or equal to zero and less than or equal to 10 degrees of warming. 
Values for GMSL must be in centimeters (cm) and values must be greater than or equal to zero and less 
than or equal to 250 cm. Population and GDP values must be greater than or equal to zero. If a user 
inputs a custom scenario with values outside the allowable ranges, `import_inputs()` will not 

import that scenario and will instead stop and return an error message. 
 
`import_inputs()` drops missing values . The main function, `run_fredi()`, linearly 

interpolates missing values between available data points. For more information, see `run_fredi()`. 
 
If the temperature type is specified as global (`temptype=“global”`), `import_inputs()` 
converts input global temperatures in to CONUS temperatures (both in degrees Celsius relative to the 
baseline year of 1995) using `convertTemps()`. For more information, see F.2.2.1. 
`convertTemps()`. 
 
If the population input is spread across multiple columns (wide format i.e., `popform=“wide”`), 

columns must be named according to the NCA regions. If the population input is in the long format (i.e., 
`popform=“long”`), the region value must be in the second column.  The NCA region names for 

population inputs must be in the following character vector: `c(“Midwest”, “Northeast”, 
“Northern.Plains”, “Northwest”, “Southeast”, “Southern.Plains”, 

“Southwest”)`. All regions must be present in the population input file. 
 
`import_inputs()` outputs a list of dataframes that can be passed to `run_fredi()`  using the 
`inputList` argument. For example, specify `run_fredi(inputsList=x)` to generate impacts 

for a custom scenario `x` (where `x` is a list of dataframes such as that output from 

`import_inputs()`) . For more information and examples, see `run_fredi()`. All inputs to 
`import_inputs()` are optional. If the user does not specify a file path for `tempfile`, 
`slrfile`, `gdpfile`, or `popfile` (or if there is an error reading in inputs from those file paths), 

`import_inputs()` outputs a list with a `NULL` value for the associated list element. When the 
resulting list is passed as an argument to `run_fredi()`, `run_fredi()` defaults back to the 
default scenarios for any list elements that are `NULL` or missing. In other words, running 
`run_fredi(inputsList=list())` returns the same outputs as running `run_fredi()`. 
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Outputs 

`import_inputs()` returns a list of named elements containing dataframes with custom scenarios for 
temperature, GMSL, GDP, and regional population, respectively: 
tempInput Dataframe containing a custom temperature scenario imported from the 

CSV file specified by `tempfile`, with missing values removed. 
`tempInput` has two columns with names `c(“year”, 
“temp_C”)` containing the year and CONUS temperatures in degrees 
Celsius, respectively. 

slrInput Dataframe containing a custom GMSL scenario imported from the CSV 
file specified by `slrfile`, with missing values removed. `slrInput` 
has two columns with names `c(“year”, “slr_cm”)` containing 
the year and global mean sea level rise (GMSL) in centimeters, 
respectively. 

gdpInput Dataframe containing a custom GDP scenario imported from the CSV file 
specified by `gdpfile`, with missing values removed. `gdpInput` has 
two columns with names `c(“year”, “gdp_usd”)` containing the 
year and the U.S. national GDP in 2015$, respectively. 

popInput Dataframe containing a custom temperature scenario imported from the 
CSV file specified by `popfile`, with missing values removed. 

`popInput` has and three columns with names `c(“year”, 
“region”, “reg_pop”)` containing the year, the NCA region 

name, and the NCA region population, respectively. 
 

Examples 

### Path to example scenarios 

scenariosPath <- system.file(package=“FrEDI”) %>% 

file.path(“extdata”,”scenarios”) 

### View example scenario names 

scenariosPath %>% list.files 

### Temperature Scenario File Name 

tempInputFile <- scenariosPath %>% file.path(“GCAM_scenario.csv”, sep=“/”) 

### SLR Scenario File Name 

slrInputFile  <- scenariosPath %>% file.path(“slr_from_GCAM.csv”, sep=“/”) 

### Population Scenario File Name 

popInputFile  <- scenariosPath %>% file.path(“pop_scenario.csv”) 

### Import inputs 

example_inputsList <- import_inputs( 

  tempfile = tempInputFile, 

  slrfile  = slrInputFile, 

  popfile  = popInputFile 

) 

 

A snapshot of the dataframes comprising the output list from the example above 
(`example_inputsList`) is shown below: 
 



Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) 

 

       Page F-10 

 

 

 

 
 
 

F.2.1.3 get_plots 
Create and save plots for summarized FrEDI outputs. 

Description 

This function creates plots for the summarized FrEDI outputs. `get_plots()` returns a list with 
heatmaps for model types present in the data (GCMs and SLR scenarios) and annual results for all 
sectors and adaptations. Results from FrEDI must be summed across impact types before using 
`get_plots()` (use `run_fredi()` with the defaults, use `run_fredi(aggLevels= 

”impacttype”)`, or run `aggregate_impacts(aggLevels=”impacttype”)` on the output 
from `run_fredi()`). 

Usage 

get_plots(data, column=“annual_impacts”, undiscounted=TRUE,  

directory=NULL, save=FALSE, plotTypes=“all“) 
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Arguments 

data Dataframe of summarized outputs produced by `run_fredi()`. Do 
not change column names of the `run_fredi()` output before 
running `get_plots()`. 

column A character string indicating the name of the numeric column in the data 
for which to create plots (e.g., `”annual_impacts”`). 

undiscounted A `TRUE/FALSE` value indicating whether the values in specified 
column represent undiscounted values (e.g., if  `column= 
“annual_impacts”`) or discounted values (i.e., present values). 
Defaults to `undiscounted=TRUE`. 

directory A character string indicating the location of a directory in which to save 
the report objects. No default (i.e., `directory=NULL`). 

save A `TRUE/FALSE` value indicating whether to save results. If a directory 

value is supplied (i.e., `!is.null(directory)`), defaults to 
`save=TRUE`. Otherwise, default is `save=FALSE`. 

plotTypes Character string or character vector indicating which types of plots to 
produce. Options are `c(“heatmaps”, “ribbon”, “all”)`. Set 
`plotTypes=“all”` (default) to produce both types of plots. 

Details 

This function processes the results from FrEDI (outputs from `run_fredi()`) after the results have 

been summarized for impact year estimates and impact types (use `run_fredi()` with the defaults, 
use `run_fredi(aggLevels= ”impacttype”)`, or run `aggregate_impacts( 

aggLevels=”impacttype”)` on the output from `run_fredi()`). 
 

By default, `get_plots()` plots results from the `”annual_impacts”` column. Alternatively, 
users can specify a column name in the data with `column` (defaults to (`column= 

“annual_impacts”` for undiscounted impacts or `column=“discounted_impacts”` for 
discounted impacts). 
 
The argument `undiscounted` is used by `get_plots()` for plot labels and in file and directory 

names for saving results. 
 
Users can specify which plot types to produce by setting `plotTypes`. Set `plotTypes=“all”` 
(default) to produce both heat maps and annual results) or specify a single type (`plotTypes= 

“heatmaps”` and `plotTypes=“ribbon”`, respectively). `get_plots()` produces heatmaps 
(`plotTypes=“heatmaps”`) for the outputs of FrEDI and/or plots the average value and range of 
impacts as a time series (`plotTypes=“ribbon”`) for each sector-adaptation-region combination. 
 
The heatmaps display the numeric values in the specified column (e.g., “annual_impacts”) as a grid 
of colored pixels. Each row in the grid corresponds to a sector-adaptation combination (e.g., “Coastal 
Properties, No Adaptation”), while columns in the grid correspond to years. In other words, 
the heatmaps display the relative intensity of the impacts of a sector and adaptation compared to 
others. The colors in the heatmap are a gradient ranging from dark blue (impacts with values below 
zero) to dark red (impacts with values above zero), with a midpoint at zero (missing values appear as 
grey pixels). The scale of the gradient is determined from the underlying data, with the darkest points 
corresponding to the minimum and maximum values.  
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If temperature-driven (GCM sectors) and SLR-driven (SLR sectors) sectors are both present in the data, 
`get_plots()` will produce a separate heatmap for each. Each heatmap displays panels for each 
region (stacked vertically) and underlying models (organized horizontally). An example heatmap for the 
SLR-driven sectors is shown in Figure F-2 (SLR sectors have a single model value, “Interpolation”). 
 

FIGURE F-2 EXAMPLE OF A HEATMAP PRODUCED BY `get_plots()` FOR THE SLR-DRIVEN SECTORS 

 
 
Annual values (`plotTypes=“ribbon”`) plots the annual impacts as time series: 



Technical Documentation on the Framework for Evaluating Damages and Impacts (FrEDI) 

 

       Page F-13 

• For temperature-driven sectors, the model average is plotted as a line and the range of model 

values (minimum and maximum) are plotted as a ribbon or area plot. Figure F-3 shows an example 

of a plot of annual impacts produced by `get_plots()` for a temperature-driven sector (Labor) 

with a single adaptation (i.e., `adaptation=“N/A”`), with the model average plotted as a line 

and the model range plotted above and below the average. 

• For the SLR-driven sectors, the interpolated impacts are plotted as a line. Figure F-4 shows an 
example of a plot of annual impacts produced by `get_plots()` for a SLR-driven sector (Coastal 
Properties) with multiple adaptations, with interpolated values plotted as a line. 
For sectors with multiple adaptations, seen in Figure F-4, impacts for individual adaptations are 
displayed in separate panels (organized horizontally). 

 

FIGURE F-3 EXAMPLE OF A PLOT OF ANNUAL IMPACTS PRODUCED BY `get_plots()` FOR A 

TEMPERATURE-DRIVEN SECTOR (LABOR) 
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FIGURE F-4 EXAMPLE OF A PLOT OF ANNUAL IMPACTS PRODUCED BY `get_plots()` FOR A SLR-

DRIVEN SECTOR (COASTAL PROPERTIES) 

 
 
 

If `save=TRUE` and the user supplies a path to a directory (i.e., `!is.null(directory)`), 

`get_plots()` will try to save the images as PDF files in the specified directory. `get_plots()` will 
create separate directories within the specified directory for heatmaps and annual results. 

Outputs 

heatmaps List of heatmaps with list elements for all unique values for model types 
present in data (i.e., `”GCM”` for results calculated with temperature as 
the driver value and `”SLR”` for results calculated with GMSL as the 
driver value. 

ribbon List of lists of annual results. List of annual plots contains a list of sectors. 
Each sector contains a list of adaptations for that sector. Each sector-
adaptation combination contains a list of nested regional plots. 

 

Examples 

### Create input scenarios for FrEDI 

df_tempExOut <- run_fredi(aggLevels=“none”, pv=TRUE, silent=TRUE) 

 

### Aggregate FrEDI impacts for multiple columns 

agg_tempExOut <- df_tempExOut %>% 

aggregate_impacts(columns=c(“annual_impacts”, “discounted_impacts”)) 
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### Create list of plots for aggregated results 

agg_plotList <- agg_tempExOut %>% get_plots() 

 

### Create list of heatmaps for regional values only: 

reg_plotList <- agg_tempExOut %>% filter(region!=“National Total”) %>% 

get_plots(plotTypes=“heatmaps”) 

 

### Create list of annual plots for national values only: 

nation_plotList <- agg_tempExOut %>% filter(region==“National Total”) %>% 

get_plots(plotTypes=“annual”) 

 

 

F.2.2 Helper Functions 

 

F.2.2.1 convertTemps 
Convert contiguous U.S. (CONUS) temperatures to global temperatures or vice versa. 

 
Usage  

convertTemps(temps, from=c(“conus”, “global”)) 

Arguments 

temps A numeric vector of CONUS or global temperatures in degrees Celsius. 
The temperature series and corresponding years must begin in 2000 or 
earlier. 

from=c(“conus”, 

“global”) 

A character string (one of  `c(“conus”, “global”)`), indicating 
whether users are converting from CONUS to global temperatures 
(`from=“conus”`) or from global to CONUS (`from=“global”`). 

Description/Details 

This pre-processing helper function converts a list of warming temperatures in degrees Celsius 
(`temps`) from global to CONUS (`from=“global”`) or vice versa (`from=“global”`). The 

equations for converting between CONUS and global temperatures and back again are described 
elsewhere in this report. 

Outputs 

Outputs a numeric vector of temperatures in degrees Celsius. 
Examples 

### Create a numeric vector of CONUS integer temperatures from  

### 1 to 7 degrees of warming (degrees Celsius) 

conusTemps  <- seq(1:7) 

### Convert from CONUS temperatures to global temperatures 

globalTemps <- conusTemps %>% convertTemps(from=“conus”) 

 

F.2.2.2 temps2slr 
Convert global temperature change to global mean sea level rise (GMSL) in centimeters 

 

Arguments 

temps A numeric vector of global temperatures in degrees Celsius. 
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years A numeric vector of years (common era) corresponding to the 
temperatures provided to `temps`. The temperature series and 

corresponding years must begin in 2000 or earlier. 
Description/Details 

This function converts a temperature scenario (global temperatures in degrees Celsius) into an SLR 
scenario to use for estimate impacts of global mean sea level rise (GMSL) on affected sectors. 
`temps2slr()` implements the method described by Kopp et al., 2016, "Temperature-driven global 
sea-level variability in the Common Era" (see references, below). 

Outputs 

Outputs a dataframe with two columns: `year`, which has the years from the `years` input that fall 
within the range from 2000 through 2090 (interpolated to annual values) and a second column, 
`slr_cm`, which has the GMSL in centimeters. 

Examples 

### Path to example scenarios 

scenariosPath <- system.file(package="FrEDI") %>% 

file.path("extdata","scenarios") 

 

### View example scenario names 

scenariosPath %>% list.files 

 

### Temperature Scenario File Name 

tempInputFile <- scenariosPath %>% file.path("GCAM_scenario.csv") 

 

### Import example temperature scenario 

example_inputsList <- import_inputs(tempfile = tempInputFile) 

 

### Extract the example temperature scenario dataframe from the list 

### Example has global temperatures in degrees Celsius 

x_tempInput <- example_inputsList$tempInput 

 

### Calculate global mean sea level rise in cm from global 

temperatures 

x_slr <- temps2slr(temps=x_tempInput$temp_C, years=x_tempInput$year) 

 

F.2.2.3 get_sectorInfo 
Get information about the sectors in FrEDI 

 
Usage  

get_sectorInfo(description=FALSE, gcmOnly=FALSE, slrOnly=FALSE) 

Arguments 

description Logical value indicating whether to return the list of sectors as a 
character vector (`description=FALSE`, default) or to include 
information about each sector (`description=TRUE`, returns a 
dataframe).  

gcmOnly Logical value indicating whether to return only temperature-driven 
sectors (`gcmOnly=TRUE`). Defaults to `gcmOnly=FALSE`. 

slrOnly Logical value indicating whether to return only SLR-driven sectors 
(`slrOnly=TRUE`). Defaults to `slrOnly=FALSE`. 
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Description/Details 

If `description=FALSE` (default), this helper function returns a character vector of sector names, 
which the user can supply to the `sectorList` argument to `run_fredi()`. If 
`description=TRUE`, `get_sectorInfo()` returns dataframe of sectors with related 
information returns a dataframe containing the sectors available for FrEDI along with additional 
information. Sector names are in the first column, with additional columns for the associated model 
type (“GCM” or “SLR”), adaptations, impact years, and impact types in the remaining columns. 
Adaptations, impact years, and impact types vary by sector.  
 
Users can specify whether to return only GCM (temperature-driven) sectors or SLR (SLR-driven) sectors 
by setting `gcmOnly=TRUE` or `slrOnly=TRUE`, respectively. `get_sectorInfo()` will return 
the sectors in the form specified by `description` (see above). 

Outputs 

• If `description=FALSE` (default), outputs a character vector containing the names of 

sectors available for FrEDI. 

• If `description=TRUE`, outputs a dataframe containing the names of sectors available for 
FrEDI in one column, with information about the sector model type, adaptations, impact years, 
and impact types in the remaining columns. 

Examples 

### Return a character vector with the names of all of the sectors in FrEDI: 

get_sectorInfo() 

 

### Return a dataframe of all of the sectors in FrEDI (sector names and 

additional information) 

get_sectorInfo(description=T, gcmOnly=T) 

 

### Return a character vector with only the names of the temperature-driven 

sectors: 

get_sectorInfo(gcmOnly=T) 

 

### Run FrEDI for only the temperature-driven sectors and view results: 

df_x <- run_fredi(sectorList=get_sectorInfo(gcmOnly=T)) 

 
 

F.2.2.4 aggregate_impacts 
Summarize and aggregate impacts from FrEDI (calculate national totals, average across models, sum impact 

types, and interpolate between impact estimate years). 

Usage 

aggregate_impacts(data, columns= c(“annual_impacts”),  

aggLevels=c(“all”)) 

Arguments 

data Dataframe of results from FrEDI (outputs from `run_fredi()` 
columns Character vector of columns for which to aggregate results (defaults to 

columns=c(“annual_impacts”)) 
aggLevels Levels of aggregation at which to summarize data: one or more of 

`c(“national”, “modelaverage”, “impactyear”, 
“impactType”, “all”, “none”)`. Defaults to all levels (i.e., 
`aggLevels=“all”`). 
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Description/Details 

This post-processing helper function aggregates and summarizes the FrEDI results to levels of 
aggregation specified by the user (passed to `aggLevels`). Users can specify a single aggregation 

level or multiple aggregation levels by passing a single character string or character vector to 
`aggLevels`. Options for aggregation include calculating national totals (`aggLevels= 

“national”`), averaging across model types and models (`aggLevels=“modelaverage”`), summing 
over all impact types (`aggLevels=“impacttype”`), and interpolate between impact year estimates 
(`aggLevels=“impactyear”`). Users can specify all aggregation levels at once by specifying 
`aggLevels=“all”` (default) or no aggregation levels (`aggLevels=“none”`). 

 
Before aggregating impacts for national totals and/or model averages, `aggregate_impacts()` will 
drop any pre-summarized results  (i.e., values for which `region=“National Total”`  and/or for 

which `model=“Average”`, respectively) that are already present in the data and then reaggregate 
at those levels.  
 
For each of the `aggLevels`,  `run_fredi()` performs the following summarization (using 

`aggregate_impacts()`): 

• `”national”`: Annual values are summed across all regions present in the data. I.e., data is 
grouped by columns `”sector”`, `“adaptation”`, `”impactType”`, 

`”impactYear”` , `“model_type”`, `“model”`, and `“year”`. Years which have 
missing column data for all regions return as `NA` (missing). The rows of the dataframe of national 
values (with column `region=“National Total”`) are then added as rows to the regional 

values. 

• `”modelAverage”`: Annual results are averaged across all models present in the data, i.e., data is 

grouped by columns `”sector”`, `“adaptation”`, `”impactType”`, 
`”impactYear”` , `“model_type”`, `“region”`, and `“year”` and averaged across 

models. Averages exclude missing values. Years which have missing column data for all models 
return as `NA` (missing). The rows of the dataframe of model averages (with `model=“Average”` 
for temperature-driven sectors and `model=“Interpolation”` for SLR-driven sectors) are then 
added as rows to individual model results. 

• `”impactType”`: Annual results are summed across all impact types by sector present in the 

data. I.e., data is grouped by columns `”sector”`, `“adaptation”`, `”impactYear”` , 

“model_type”, “model”, “region”, and  “year”` and summed across impact types. 
Mutates column `impactType=“all”` for all values. Years which have missing column data for 
all impact types return as `NA` (missing). If results are aggregated across impact types, information 
about physical impacts (dataframe columns `”physicalmeasure”` and 
`”physical_impacts”`) are dropped. 

• `”impactYear”`: Annual results for sectors with only one impact year estimate (i.e., 

`impactYear==“N/A”`) are separated from those with multiple impact year estimates. For 
sectors with multiple impact years, annual results are interpolated between impact year estimates 
for applicable sectors  i.e., data is grouped by columns `”sector”`, `“adaptation”`, 
`”impactType”` , `“model_type”`, `“model”`, `“region”`, and `“year”` and 
interpolated across years with the 2010 run assigned to year 2010 and the 2090 run assigned to year 
2090. The interpolated values are bound back to the results for sectors with a single impact year 
estimate, and column `impactYear` set to `impactYear=“Interpolation”` for all values. 
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Note that `aggregate_impacts()` drops columns not used in grouping or aggregation. 
Outputs 

Outputs a dataframe of results produced using FrEDI, summarized at the specified aggregation levels. 
Examples 

### Run FrEDI using the default scenario 

df_tempExOut <- run_fredi(aggLevels=“none”, pv=TRUE, silent=TRUE) 

 

### Aggregate FrEDI results for multiple columns 

agg_tempExOut <- df_tempExOut %>% 

aggregate_impacts(columns=c(“annual_impacts”, “discounted_impacts”)) 


