

An Introduction to the USEPA Storm Water Management Model (SWMM)

Michelle Simon August 29-31, 2022 Udon Thani, Thailand

Disclaimer

The U.S. Environmental Protections Agency through its Office of Research and Development funded and managed the research described in this presentation. It has been subjected to the Agency's review and has been approved for release. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Speaker Introduction

Michelle Simon, Ph.D., P.E. Chemical Engineer, Office of Research and Development Cincinnati, OH

20 Years Superfund Site Technical Support

Became EPA Technical POC for SWMM (after the retirement of Lew Rossman April 2017)

- Ph.D. The University of Arizona
- M.S. Colorado School of Mines
- B.S. Notre Dame University

Presentation Outline

- 1. SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. New Hydraulic Features to SWMM
- 5. Building the Hydrologic Model
- 6. History of SWMM
- 7. Using SWMM for Low Impact Development
- 8. Building LID Model
- 9. Demonstration of EPA Stormwater Calculator
- **10.** Ground-truthing SWMM
- **11. Interpreting More Complicated SWMM Results**
- 12. Where to get Data
- 13. SWMM Climate Adjust Tool
- 14. Conclusions

SEPA United States Environmental Protection Agency

- **1.** SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. New Features in SWMM
- 5. Building the Hydrologic Model
- 6. Day One wrap-up

- 1. History of SWMM
- 2. Using SWMM for Low Impact Development
- 3. Building LID Model
- 4. Demonstration of EPA Stormwater Calculator
- 5. Ground-truthing SWMM
- 6. Day Two Wrap-up

- 1. Interpreting More Complicated SWMM Results
- 2. Where to get Data
- 3. SWMM Climate Adjust Tool
- 4. Ground Truthing SWMM
- 5. Course Wrap Up

Urbanization Changes the Hydrologic Cycle

- Soils and vegetation are replaced with impervious surfaces
- Impervious surfaces are connected to dense drainage networks
- Runoff drains directly into streams, lakes, wetlands, and coastal waters
- Even small storms generate significant runoff

Hydrologic, Geomorphic, and Biological Impacts:

- Increased stormwater volume and velocity causes flooding, erosion, and sewer overflows.
- Impaired habitat and water quality impact fisheries and shellfish harvesting due to pathogens, metals, PAHs, and other pollutants.
- Reduced groundwater recharge impacts water supplies.

What is SWMM?

SWMM is a public domain, distributed, dynamic hydrologic - hydraulic water quality model used for continuous simulation of runoff quantity and quality from primarily urban areas.

SEPA United States Environmental Protection Agency

How does SWMM Model?

SWMM is a **distributed**, **dynamic rainfall-runoff** simulation model used for **single event** or long-term (**continuous**) simulation of runoff quantity and quality from **primarily urban** areas.

Hydraulic Model

12

SEPA United States Environmental Protection Agency

Why We Need SWMM (CSO, MS4, TMDL, NPDES)

Design and sizing of drainage system.

Control of combined and sanitary sewer overflows.

Modeling Inflow & Infiltration in sanitary sewer systems.

Generating non-point source pollutant loadings for waste load allocation studies.

Evaluating green infrastructure.

Total Maximum Daily Loads Tool

https://occviz.com/tmdl/

SWMM's Process Models

SWMM's Conceptual Model

SEPA United States Environmental Protection Agency

Idealized Subcatchment (Courtesy of Rob James, CHI Water)

https://www.youtube.com/watch?v=HZnX_GsABUA

Subcatchment parameters

- Parameters may be averaged (lumped) over a coarse number of subcatchments
- Or further sub-divided (distributed) into a finer number of subcatchments

Idealized Subcatchment

Subcatchment - Time of Concentration

Natural Resources Conservation Service Part 630 Hydrology National Engineering Handbook

Figure 15–3 The relation of time of concentration (T_c) and lag (L) to the dimensionless unit hydrograph

Chapter 15 Time of Concentration

(e) Relation between lag and time of concentration

Various researchers (Mockus 1957; Simas 1996) found that for average natural watershed conditions and an approximately uniform distribution of runoff:

 $L = 0.6T_c$ (eq. 15–3)

where:

 $\begin{array}{ll} L &= lag, \, h \\ T_c &= time \ of \ concentration, \, h \end{array}$

When runoff is not uniformly distributed, the watershed can be subdivided into areas with nearly uniform flow so that equation 15–3 can be applied to each of the subareas.

19

where:

- L = Lag, h
- T_c = time of concentration, h
- T_p = time to peak, h
- ΔD = duration of excess rainfall, h
- t/T_p = dimensionless ratio of any time to time to peak
- q = discharge rate at time t, ft³/s
- $q_p = peak discharge rate at time T_p, ft^3/s$
- $Q_a = runoff volume up to t, in$
- Q = total runoff volume, in

Infiltration

Horton

$$F(t_p) = \int_{0}^{t} f_p dt = f_{\infty} t_p + \frac{(f_0 - f_{\infty})}{k_d} (1 - e^{-k_d t_p})$$

Modified Horton

$$f_p = f_\infty + (f_0 - f_\infty)e^{-k_d t}$$

Green_Ampt, Modified Green_Ampt

$$F = K_s + \psi_s \theta_d ln \left(1 + \frac{F}{\psi_s \theta_d} \right)$$

Curve_Number

$$S_{max} = \frac{1000}{CN} - 10$$

20 20

Hydrology – Governing equations

First Principle Conservation of Mass

$$\frac{\partial d}{\partial t} = r - i - e - f - q \qquad (\text{modified 3-1})$$

where:

r = runoff from upgradient subcatchment (if present), (m/s)

- i = rate of rainfall + snowmelt (m/s)
- e = surface evaporation rate (m/s)
- f = infiltration rate (m/s)
- q = runoff rate (m/s).

Note that the fluxes *i*, *e*, *f*, and *q* are expressed as flow rates per unit area $(m3/sec/m^2 = m/s)$.

Hydrology Reference Manual Volume I

Ę

Hydraulic Governing Equations

Continuity

where

- A =flow cross sectional area (m²)
- Q = flow rate (m³/sec)
- t = time(sec)
- x = distance (m)

SWMM - Manning Equation

$$Q = \frac{1.49}{n} A R^{2/3} S^{1/2}$$

where

- $Q = \text{flow rate (m^3/\text{sec})}$
- n = Manning roughness coefficient
- $A = \text{flow cross sectional area } (\text{m}^2)$
- R = hydraulic radius (m)
- S = slope (m/m)

Pipes with Circular Force Main Cross sections

Hazen-Williams

Darcy-Weisbach

$$Q = 1.318 C A R^{0.63} S^{0.54}$$

$$Q = flow rate$$

- C = Hazen Williams C-factor
- A = cross sectional area
- R = hydraulic radius
- S = slope

Q = flow rate g = gravity acceleration f = Darcy-Weisbach friction factor A = cross sectional area R = hydraulic radius S = slope

 $Q = \sqrt{\frac{8g}{f}} A R^{1/2} S^{1/2}$

Governing Equations

Momentum

$$\frac{\partial Q}{\partial t} + \frac{\partial (Q^2/A)}{\partial x} + gA\frac{\partial H}{\partial x} + gAS_f = 0$$

where

- X = distance (ft)
- t = time(sec)

$$A =$$
flow cross-sectional area (ft²)

- Q = flow rate (cfs)
- H = hydraulic head of water in the conduit (Z + Y) (ft)
- Z = conduit invert elevation (ft)
- Y =conduit water depth (ft)
- S_f = friction slope (head loss per unit length)
- g = acceleration of gravity (ft/sec²)

Assumptions

- Assumes varied, unsteady flow (Saint Venant Equations)
- Level of Sophistication

 Steady Flow Routing
 Kinematics Wave Routing
 Dynamic Wave Routing

Kinematic Wave

Cannot have

- Looped networks
- Backwater effects
- Pressure-flow conditions

https://www.youtube.com/watch?v=ziWy5qbVIWo

Dynamic Wave Routing

Used for

- Branched or looped networks
- Backwater due to tidal or other conditions
- Free-surface flow
- Pressure flow or surcharge
- Flow reversals

https://slideplayer.com/slide/6357250/

Pollutant Buildup and Wash off

- 1. SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. New Features in SWMM
- 5. Building the Hydrologic Model
- 6. Day One wrap-up

Storm Water Management Model

https://www.epa.gov/water-research/storm-water-management-model-swmm

SEPA United States Environmental Protection Agency

SWMM Webpage, continued

https://www.epa.gov/water-research/storm-water-management-model-swmm

Date	Description
02/01/2022	Self-extracting Installation Program for SWMM 5.2.0 (32-bit) (exe)
02/01/2022	Self-Extracting Installation Program for SWMM 5.2.0 (64-bit) (exe)
12/11/2014	SWMM-CAT Download Version 1 (zip)

Source Codes and Bug Fixes

Date	Description
02/01/2022	SWMM 5 Update Bugs and Fixes (txt)
02/01/2022	Source Code for the SWMM 5.2.0 Computational Engine (zip)
02/01/2022	Source Code for the SWMM 5.2.0 Graphical User Interface (zip)
02/01/2022	SWMM 5.2.0 API Guide (zip)

SWMM Webpage, continued

https://www.epa.gov/water-research/storm-water-management-model-swmm

Manuals and Guides

Date	Title
02/01/2022	SWMM 5.2 User's Manual (pdf)
09/01/2014	SWMM-CAT User's Guide (pdf)
09/07/2016	SWMM Applications Manual (zip)(7 MB)
03/19/2019	SWMM Reference Manuals Errata (Volume I and II) (pdf)
01/29/2016	SWMM Reference Manual Volume 1- Hydrology (pdf)
08/07/2017	SWMM Reference Manual Volume II- Hydraulics (pdf)
02/01/2022	SWMM Reference Manual Volume II – Addendum (pdf)
09/08/2016	SWMM Reference Manual Volume III—Water Quality (pdf) (Includes description of the LID Module)

United States Enviromental Protection Agency

EPA/600/R-15/162A | January 2016 | www2.epa.gov/water-research

Storm Water Management Model Reference Manual Volume I – Hydrology (Revised)

EPA/600/C-22/016 www.epa.gov/water-research

Storm Water Reference Ma Vo

Addendum to the Storm Water Management Model Reference Manual

Volume II –Hydraulics

United States Enviromental Protection Agency EPA/600/R-16/093 | July 2016 | www.epa.gov/water-research

37

Storm Water Management Model Reference Manual Volume III – Water Quality

New User's Manual

EPA/600/R-22/030 Revised February 2022 www.epa.gov/water-research

Storm Water Management Model User's Manual Version 5.2

SWMM Reference Manuals

Manuals and Guides

4.4 Green-Ampt Method

The Green-Ampt equation (Green and Ampt, 1911) has received considerable attention in recent years. The original equation was for infiltration with excess water at the surface at all times. Mein and Larson (1973) showed how it could be adapted to a steady rainfall input and proposed a way in which the capillary suction parameter could be determined. Chu (1978) has shown the applicability of the equation to the unsteady rainfall situation, using data for a field catchment. The Green-Ampt method was added into SWMM III in 1981 by R.G. Mein and W. Huber (Huber et al., 1981).

4.4.1 Governing Equations

The Green-Ampt conceptualization of the infiltration process is one in which infiltrated water moves vertically downward in a saturated layer, beginning at the surface (Figure 4-5). In the wetted zone the moisture content θ is at saturation θ_{I} while the moisture content in the un-wetted zone is at some known initial level θ_{I} .

Figure 4-5 Two-zone representation of the Green-Ampt infiltration model (after Nicklow et al., 2006).

The water velocity within the wetted zone is given by Darcy's Law as a function of the saturated hydraulic conductivity K_5 , the capillary suction head along the wetting front ψ_5 , the depth of ponded water at the surface d, and the depth of the saturated layer below the surface L_5 :

(4-26)

$$f_p = K_s \left[\frac{d + L_s + \psi_s}{L_s} \right]$$

The depth of the saturated layer L_z can be expressed in terms of the cumulative infiltration, F; and the initial moisture deficit to be filled below the wetting front, $\theta_d = \theta_z - \theta_i$ as $L_z = F / \theta_d$. Substituting this into Equation 4-26 and assuming that d is small compared to the other depths gives the Green-Ampt equation for saturated conditions:

$$f_p = K_s \left[1 + \frac{\psi_s \theta_d}{F} \right] \tag{4-27}$$

Equation 4-27 applies only after a saturated layer develops at the ground surface. Prior to this point in time the infiltration capacity will equal the rainfall intensity:

$$f_p = i$$
 (4-28)

As time increases, one can test whether saturation has been reached by solving 4-27 for F (which will be denoted as F_i) with f_i set equal to i and check if this value equals or exceeds the actual cumulative infiltration F:

$$F_s = \frac{K_s \psi_s \theta_d}{i - K_s} \tag{4-29}$$

Note that there is no calculation of F_s when $i \ll K_s$, although F still gets updated during such periods. Finally, in this scheme the actual infiltration F is the same as the potential value f_{F} :

$$f = f_p$$
 (4-30)

The two equations are illustrated in Figure 4-6 for the situation $K_2 = 0.25$ in/hr, $\psi_2 = 6.5$ in, and $\theta_d = 0.20$. The initial, flat portion of the curve corresponds to f = i, up to the point where $F = F_2$ (Equation 4-29). The remainder of the curve corresponds to the potential rate computed with Equation 4-27. Note that the infiltration rate approaches K_2 (0.25 in/hr) asymptotically.

<u>ime II- Hydraulics (pd</u> <u>olume II – Addendum</u> <u>me III—Water Quality</u>

Use the SWMM Tutorials

CHAPTER 2 - QUICK START TUTORIAL

This chapter provides a tutorial on how to use EPA SWMM. If you are not familiar with the elements that comprise a drainage system, and how these are represented in a SWMM model, you might want to review the material in Chapter 3 first.

2.1 Example Study Area

In this tutorial we will model the drainage system serving a 12-acre residential area. The system layout is shown in Figure 2-1 and consists of subcatchment areas³ S1 through S3, storm sewer conduits C1 through C4, and conduit junctions J1 through J4. The system discharges to a creek at the point labeled Out1. We will first go through the steps of creating the objects shown in this diagram on SWMM's study area map and setting the various properties of these objects. Then we will simulate the water quantity and quality response to a 3-inch, 6-hour rainfall event, as well as a continuous, multi-year rainfall record.

Figure 2-1 Example study area

2.2 Project Setup

Our first task is to create a new SWMM project and make sure that certain default options are selected. Using these defaults will simplify the data entry tasks later on.

- Launch EPA SWMM if it is not already running and select File >> New from the Main Menu bar to create a new project.
- 2. Select Project >> Defaults to open the Project Defaults dialog.

https://swmm5.org/2017/08/14/epa -swmm5-tutorial-with-images-forswmm-5-1-012/

³ A subcatchment is an area of land containing a mix of pervious and impervious surfaces whose runoff drains to a common outlet point, which could be either a node of the drainage network or another subcatchment.

Day 1

- 1. SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. New Features in SWMM
- 5. Building the Hydrologic Model
- 6. Day One wrap-up

Demonstration of SWMM Tutorial

Demonstration of SWMM

- Walk through
 - -Hydrology
 - -Hydraulics
 - —Water Quality
 - —Low Impact Development
- Calibration of SWMM

Day 1

- 1. SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. New Features in SWMM
- 5. Building the Hydrologic Model
- 6. Day One wrap-up

New Features Added to EPA SWMM

- HEC-22 Inlet Analysis
- Control Rule Extensions
- Variable Speed Pumps
- Functional Storage Shapes

HEC-22 Inlet Analysis

- Inlets convey runoff from street pavements into below ground storm sewers.
- Inlet type, sizing and spacing chosen to meet limits on spread & depth of water on pavement.
- FHWA "Urban Drainage Design Manual" (HEC-22) is the de facto standard for inlet analysis.

Factors Affecting Inlet Flow Capture

On-Grade Grates:

- Approach flow rate, velocity & spread
- Street cross slope & curb depression
- Grate width & length

On-Grade Curb Openings:

- Approach flow rate
- Street slope, cross slope, roughness & curb depression
- Opening length

On-Sag Inlets:

United States Environmental Protection

- Depth of water at curb
- Grate width, length & area of openings
- Curb opening length & height

Modeling a Dual Drainage System

Methods for Modeling Dual Drainage Systems

• Flow divider nodes

Inlet Analysis Using Lateral Flow Adjustment

At each flow routing time step:

- Compute each inlet's flow capture (Qc) using HEC-22 methods
- Add Qc to sewer node's lateral inflow
- Subtract Qc from lateral inflow to inlet's street node
- Add any sewer node overflow to street node's lateral inflow
- Apply usual flow routing procedure

Step 1 - Layout the street and sewer networks

Step 2 - Create a collection of Street crosssections

Step 3 - Assign Street cross-sections to street conduits

Step 4 - Create a collection of Inlet designs

Supported Inlet Types

Curb & Gutter Inlets

Drop Inlets

Step 5 - Assign Inlet designs to streets

Step 6 - Run an analysis and view the Street Flow Summary Report

SWM	/l 5.1 - Example7-Inlets.inp						- 0	×
File Edit View Project Report Tools Window Help								
Li 😅 🖥	. 😂 🖻 🐴 ?(] 🐨 🞸	Ε 🛯 🔛 Σ) थ् ् д 🏭 😭		7040T		
ringest Map 💦 Study Area Map								
III Summary Results								
Topic: Street Flow \sim Click a column header to sort the column.								
Street Conduit	Peak Flow CFS	Maximum Spread ft	Maximum Depth ft	Inlet Structure	Peak Flow Capture %	Average Capture %	Bypass Frequency %	Backflow Frequency %
Street1	37.33	19.99	0.65	Combolnlet	17.06	67.86	88.77	0.00
Street2	25.79	23.32	0.72					
Street3	59.91	28.22	0.83	Combolnlet	14.85	62.93	90.10	0.00
Street4	49.36	28.11	0.82	Combolnlet	4.94	64.30	86.82	0.00
Street5	45.02	30.73	0.93	Combolnlet	70.65	92.04	22.96	0.00
Auto-Leng	th: Off 👻 Offsets: Depth 👻	Flow Units: CFS 🔻 G	Zoom Level: 100%	X, Y: -312.109, 180.100 ft			6	

Reduced Capture Due to Full Manhole

SEPA United States Environmental Protection Agency

Control Rule Enhancements

Control rule premise clauses expanded to include:

- additional control parameters
 - —rain gage current rainfall & next rainfall
 - -node full depth, volume, head
 - -conduit length, slope, full depth, full flow, velocity
- named variables as aliases for Object ID Property
 Variable N23 = Node 23 Depth
- math expressions containing named variables
 Expression HGL = abs(H23.1-H23.2)/L23

Example of Enhanced Control Rules

Variable Speed Pumps

 Requires a Head (H) v. Flow (Q) performance curve that obeys the pump affinity laws:

 $Q_2/Q_1 = n_2/n_1$ H₂/H₁ = (n₂/n₁)²

- These determine how the curve shifts as impeller speed changes from a nominal value n1 to n2.
 - SWMM's Type 3 Pump uses a H-Q curve that only follows the flow affinity law as its speed setting is changed.
 - A new Type 5 pump has been introduced that obeys both affinity laws.

nited States

ironmental Protection

New Type 5 Pump Curve v. Existing Type 3 Curve

Storage Unit Curves

- SWMM represents storage unit shapes with a surface area v. depth curve.
- Either a tabular listing of area & depth points or a functional formula:

Area = A0 + A1 * Depth^A2 can be used.

 The functional option cannot represent common regular shapes where all sides are sloping (e.g. truncated pyramids).

New Functional Storage Curves Added

Truncated Rectangular Pyramid:

Area = L*W + 2*(L+W) * S*Depth + 4*(S*Depth)^2

Truncated Elliptical Cone:

Area = PI * (L*W + 2*W*S*Depth + (W/L)(S*Depth)^2)

Presentation Outline

- 1. SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. Building the Hydrologic Model
- 5. Discussion of Results
- 6. Day One Wrap-up

Demonstration

Presentation Outline

- 1. SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. Hydrologic Model
- 5. Discussion of Results
- 6. Day One Wrap-up

Demonstration

Presentation Outline

- 1. SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. Hydrologic Model
- 5. Discussion of Results
- 6. Day One Wrap-up

Presentation Outline

- 1. History of SWMM
- 2. Using SWMM for Low Impact Development
- 3. Building LID Model
- 4. Demonstration of EPA Stormwater Calculator
- 5. Ground-Truthing SWMM
- 6. Day Two Wrap-up

The people responsible

Bob Dickinson, Rob James, Mitch Heineman, Bill James, Lew Rossman, 2002

History of EPA and SWMM

SWMM Development Chronology

Version	Year	Contributors	Comments
SWMM I	1971	Metcalf & Eddy, Inc.	First version of SWMM; focus was CSO modeling; few of its
		Water Resources Engineers	methods are still used today.
		University of Florida	
SWMM II	1975	University of Florida	First widely distributed version of SWMM.
SWMM 3	1981	University of Florida	Full dynamic wave flow routing, Green-Ampt infiltration,
		Camp Dresser & McKee	snow melt, and continuous simulation added.
SWMM 3.3	1983	EPA	First PC version of SWMM.
SWMM 4	1988	Oregon State University	Groundwater, RDII, irregular channel cross-sections and other
		Camp Dresser & McKee	refinements added over a series of updates throughout the 1990's.
SWMM 5	2005	EPA	Complete re-write of the SWMM engine in C; graphical user
		CDM	interface added; improved algorithms and new features provided.
SWMM 5 - LID	2010	EPA	Explicit modeling of LID controls added.
SWMM 5	2018	EPA + Community	Community Development
			https://github.com/USEPA/Stormwater-Management-Model

UNIVERSITY OF

'**&**⊐

EPA

OSU

CDN

Agile Development and Open-Source Community Process

Agile Methodology In-Depth Review

Figure 1. Agile Methodology In-Depth Review

Powerpoint Slide: Agile Methodology In-depth Review, Government Edition

@cote

June 2016

Features Business E	xplore Marketplace Pricing	This repository Search		Sign in or Sign up
USEPA / SWMM-EPANET_U	Jser_Interface	♥ Wiki da Insights	tch 42 🕇 Star	44 ¥ Fork 28
	Join GitH GitHub is home to over 20 million and review code. manage rou	ub today evelopers working together to host ts. and build software together.		Dismiss
17	Sign			
a description, website, or topics	provided. 10 branches	© 7 releases	<u>\$\$</u> .7 c	contributors
() description, website, or topics () 1,513 commits	provided. 10 branches	© 7 releases	LE 7 c Find file	contributors
description, website, or topics 1.513 commits randi: master New pull request TongZhai Merge pull request #91	provided.	© 7 releases	赴 7 c Find file Latest corr	ontributors Clone or download ~ mit 140964F on Oct 30
o description, website, or topics (a) 1,513 commits randt: master • New pull request TongZhai Merge pull request #91 idea	provided.	© 7 releases	Latest corr	Clone or download * mit 140%64 on Oct 30 a year ago
o description, website, or topics (a) 1,513 commits irandi: master • New pull request TongZhai Merge pull request #91 idea idea	provided.	© 7 releases	Latest com	contributors Clone or download * mit 1409647 on Oct 30 a year ago 2 months ago
o description, website, or topics (a) 1,513 commits trandt: master • New pull request TongZhai Merge pull request #91 idea doc src	provided.	sbility A/dev-ui	Latest com	contributors Clone or download * mit 14056/f on Oct 30 a year ago 2 months ago 2 months ago 2 months ago
o description, website, or topics (a) 1,513 commits irandu master New pull request TongZhai Merge pull request #91 i.idea doc arc test	provided.	sbility A/dev-ui	Latest com	Clone or download * Clone or download * mit 1409647 on Oct 30 a year ago 2 months ago 2 months ago 8 months ago

https://github.com/USEPA/Stormwater-Management-Mode

Stakeholders - >30,000 2022 downloads

ESRI[®] GIS Partner Solutions and Services for Environmental and Natural Resources

Products Innovyze **TPSWNV Overvise XDSWILL** Bunchs Collors Boothure | Technical Clescolition | Considers in 2010 swmm DWITTER a fully dynamic hydrautic and hydrologic modeling software that containsy 10 calculatory to XPSWMM Module tas made it one of the most stable and well used simulation software programs in the works (SWITIF) allows integrated analysis of low pollularit introport and sestimable design measure Ploodolan Management and Pover Systems · 10/20 Elveri Iyaraula Performance Floorphin Mapping and Floor Harard Analysi · Examples Bours Planning Interior Parage (Leve Protected Areas) Analys Current and single «Natasics) Party coupled urban and lever dramage Systems Water and Combined Bewer Bysteris Consulty analysis and collection system SO and SSO millioning stateling REAL insight derived infiguration and info er quality analysi

Regulators Communities, Utilities, Private industry, Consultants, Academia

https://github.com/USEPA/Stormwater-Management-Model

Open SWMM https://www.openswmm.org/

United States Environmental Protection Agency

USEPA – Curator of SWMM Code

- Contribute to improve scientific aspects of SWMM
- Work with Stakeholder community
- Assist where possible with testing and ground-truthing of SWMM's numerical models and other software
- Publish an Official Version of SWMM
- Move SWMM into 21st Century

https://www.epa.gov/water-research/storm-water-management-model-swmm

Presentation Outline

- 1. History of SWMM
- 2. Using SWMM for Low Impact Development
- 3. Building LID Model
- 4. Demonstration of EPA Stormwater Calculator
- 5. Day Two Wrap-up

Urbanization Changes the Hydrologic Cycle

- Soils and vegetation are replaced with impervious surfaces
- Impervious surfaces are connected to dense drainage networks
- Runoff drains directly into streams, lakes, wetlands, and coastal waters
- Even small storms generate significant runoff

Approaches to Managing Stormwater

The Conveyance Approach –

Rapidly remove stormwater from impervious surfaces to receiving streams by way of engineered drainage systems (e.g. culverts, storm drains, and channelized streams).

"Water is a problem. Its the enemy. Get it away from here. NOW!"

The Infiltration Approach –

Retain stormwater as close as possible to its originating source(s), infiltrating as much as possible into the soil by using best management practices and strategies.

"Water is a precious resource, keep it here, clean it, save it for later -we need it, and our local our ecosystems need it too!"

LID Modeling in SWMM

End-of-Pipe Stormwater BMPs

Ponds

Sand Filters

Wetlands

High Rate Treatment

Types of LIDs Modeled

Disconnection

Infiltration Basin

Rain Garden

Cistern

Porous Pavement

Infiltration Trench

Vegetative Swale

Green Roof

Street Planter

Green Infrastructure Subcatchment

More Green Infrastructure Subcatchments

Green Roof

Permeable Pavement

Building LID Module in SWMM

Presentation Outline

- 1. History of SWMM
- 2. Using SWMM for Low Impact Development
- 3. Building LID Model
- 4. Demonstration of EPA Stormwater Calculator
- 5. Day Two Wrap-up

National Stormwater Calculator (SWC)

SEPANational Stormwater Calculator

NEW SAVE OPEN RESOURCES CONTACT

National Stormwater Calculator

SEPA United States Environmental Protection Agency

National Stormwater Calculator

The user specifies the site's land cover and selects a set of LID controls.

Climate Component Added to Calculator

- To assess how resilient source controls will be to future meteorological conditions Impacts on small-scale hydrology:
 - changes in seasonal precipitation patterns
 - more frequent occurrence of high intensity storm events
 - changes in evaporation rates

Projected Changes in Annual Runoff

Climate Change

National Stormwater Calculator

SWC runs SWMM to generate daily rainfall/runoff statistics.

United States Environmental Protection

LID Cost Estimation Module:

Day 3

- **1.** Interpreting More Complicated SWMM Results
- 2. Where to get Data
- 3. SWMM Climate Adjust Tool
- 4. Ground Truthing SWMM
- 5. Course Wrap Up

Detention Pond Design Example

CSO Example – Green + Gray Options

Microbial Fate & Transport Example

Hydraulic Animation (Courtesy of Robert Dickinson, Innovyze)

Day 3

- 1. Interpreting More Complicated SWMM Results
- 2. Where to get Data
- 3. SWMM Climate Adjust Tool
- 4. Ground Truthing SWMM
- 5. Course Wrap Up

Data that you need for SWMM

Either you measure it or

- Soil Infiltration from a Soil database (SSURGO or STATSGO)
- Land Use Land Cover
- (National Land Cover Dataset NLCD)
- Climatic Data find closest NOAA station
 - (use Stormwater Calculator)
- Site Configuration
 - -Subcatchment area
 - -Drainage flow
- **Hydraulic Configuration**
 - Conduit geometry, length

Network schematic nvironmental Protection

nited States

Where to get information

https://www.epa.gov/exposure-assessment-models https://www.nrcs.usda.gov https://www.usgs.gov/science/mission-areas/water-resources http://www.dynsystem.com/netstorm/cdmuswmm.htm

Gather Data DEM and NLCD <u>https://viewer.nationalmap.gov/basic/</u> Soils - <u>https://www.nrcs.usda.gov</u> SSURGO STATGO Climate - NOAA National Centers for Environmental Information (www.ncdc.noaa.gov)

Hydrologic Unit Maps (HUC)

NRCS http://www.usda.gov/wps/portal/nrcs/main/national/water/watersheds

https://datagateway.nrcs.usda.gov/

Service (NRCS), Farm Service Agency (FSA) and Rural Development (RD).

111

Key Websites discussed

Storm Water Management Model:

https://www.epa.gov/water-research/storm-water-management-model-swmm https://github.com/USEPA/Stormwater-Management-Model

National Stormwater Calculator Website:

https://www.epa.gov/water-research/national-stormwater-calculator

Water Research Program Webinar Series Website:

https://www.epa.gov/water-research/water-research-program-webinar-series

112

USGS's online Seamless Data Warehouse:

https://datagateway.nrcs.usda.gov

YouTube Tutorials: https://www.youtube.com

Openswmm: https://www.openswmm.org/

• 114

Day 3

- 1. Interpreting More Complicated SWMM Results
- 2. Where to get Data
- 3. SWMM Climate Adjust Tool
- 4. Ground Truthing SWMM
- 5. Course Wrap Up

Climate Variables Influencing SWMM

- Precipitation
 - —Directly impacts runoff amounts.
 - —Determines whether drainage components (curb inlets, pipes, pumps, weirs, etc.) & stormwater control measures (ponds, LID practices, treatment devices) will meet their design objectives.
- Temperature
 - -Affects evaporation rates.

-Affects snowfall and snow melt amounts.

Challenges of Climate Change for Hydrology Models

- Complex regional and seasonal patterns of average precipitation changes will occur.
- Storm events may be less frequent but more intense.
- Winter snowfall and snow melt will be affected by warmer temperatures.
- Warmer temperatures will also increase evaporation rates which might affect groundwater flow and stream base flows.

Approaches to Incorporating Climate Change into Localized Hydrology Models

- Use the output of dynamic regional climate models to drive a localized runoff model.
- Allow model users to form their own scenarios for manipulating local historical records (BASINS-CAT).
- Develop sets of localized seasonal adjustment factors from downscaled global climate models that can be applied to local historical records (EPA-CREAT).

SWMM-CAT

- Provides an add-in tool to SWMM to identify seasonal changes in precipitation and temperature, as well as changes in extreme design events, at a localized level.
- Uses downscaled GCM data to identify a range of precipitation and temperature adjustments at several thousand locations across the US for both near and far term future periods.
- Allows the user to apply their own climate adjustments if they so choose.

Source of Climate Change Data

IPCC/WCRP CMIP5

Daily climate projections for 2020-2074 from 9 GCM models at a coarse (2-5°) scale. BOR/LLNL Downscaled projections of monthly averages to ½ degree grid cells. EPA-CREAT 3.1 Select Warm/ Wet, Median, & Hot/Dry outcomes for each cell. **SWMM-CAT 1.1** Mapping of monthly CREAT scenarios (including PET and extreme events) to 7,000 NWS stations.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 ("C

IPCC – International Program for Climate Change; WCRP – World Climate Research Program; CMIP5 – 5th Coupled Model Intercomparison Project; BOR – Bureau of Reclamation; LLNL – Lawrence Livermore National Laboratory; ^{ited States} vironmental Protectio CREAT - Climate Resilience Evaluation and Analysis Tool

Far-Term (2045-2074) Climate Adjustments for Cincinnati, OH

Seattle

Phoenix

Miami

Boston

Directions Save Zoom S	end	
Add a puppin		
SWMM-Climate Adjustment Tool		
Enter your location's latitude, longit	djustments Saved to SWMM	Ily Rainfall 24-Hour Design Storm Help
40.581941, -105.078373	Name of SWMM file:	7 Warm/Wet
Select a future projection period:	C:\Users\Lewis\AppData\Local\Temp\swmC5D8.tmp	
Far Term (2045 - 2074)	Adjustments to be saved:	
Select a climate change outcome: Hot/Drv	 Monthly Temperature Monthly Evaporation 	
 Median change Warm/Wet 	 Monthly Rainfall 10-year 24-Hour Design Storm 	
Save Adjustments to SWMM and Ex	Save and Exit Cancel	50 100

SWMM-CAT Summary

- Provides seamless integration of downscaled climate change scenarios with SWMM.
- Accounts for variability in climate projections and future prediction periods.
- Includes seasonal adjustments of average temperature, evaporation and precipitation.
- Includes changes in extreme event rainfall.
- Does not address changes in individual storm event magnitudes, durations, and frequencies.

Day 3

- 1. Interpreting More Complicated SWMM Results
- 2. Where to get Data
- 3. SWMM Climate Adjust Tool
- 4. Ground Truthing SWMM
- 5. Course Wrap Up

Accuracy\Uncertainty

- Physical Reality
- Scientific Understanding
- Mathematical Abstraction
- Programming
- Parameter estimation
- Results, compared to observations
- Repeat

https://www.google.com/search?q=mathematical+abstraction+of+hydrology+images&tbm=isch&source=iu&ictx=1&fir=eDv9KY_zn XaWIM%253A%252CYzICHXicd0xv_M%252C_&usg=AI4_-kS544Xrnn5UpDuff0UJU6D1Tpt-VA&sa=X&ved=2ahUKEwjT0vG6jb7eAhXN0VMKHWipC30Q9QEwAHoECAQQBA#imgdii=j7R4otA9j2apTM:&imgrc=B3LrwJmLR8 4z9M:

What is a model?

A useful simplification of a complex reality

Abstraction

Fidelity Mechanism

What's the goal?

Types of LIDs Hydrology Tested

Platz, M.; M. Simon; and M. Tryby (2020). "Testing of the SWMM Model's LID Modules." Journal of Sustainable Water in the Built Environment

https://doi.org/10.1111/1752-1688.12832

Porous Pavement

Infiltration Trench

Rain Garden/Bioretention

Green Roof

Vegetative Swale

LID Studies used for testing

LID Type	Research Organization Location	Name of Project	Reference
Bio-retention	North Carolina State University, NC	Graham Bio-Retention	(Passeport et al. 2009)
Rain Garden	Villanova University, PA	Villanova BTI Rain Garden	(Lord 2013)
Infiltration Trench	Villanova University, PA	Villanova Infiltration Trench	(Emerson 2008)
Vegetated Swale	University of Maryland, Savage, MD	UMD BioSwale	(Davis et al. 2012)
Vegetated Swale	Washington State Department of Transportation, King County, WA	Washington DOT BioSwale	(Maurer 2009)
Green Roof	City of Portland, OR	Hamilton Ecoroof	(Hutchinson et al. 2003) (She and Pang 2010)
Green Roof	City of Seattle, WA	EOC Green Roof	(Cardno TEC. 2012)
Green Roof	City of Seattle, WA	FS10 Green Roof	(Cardno TEC. 2012)
Porous Pavement	North Carolina State University, Kingston, NC	Boone Porous Pavement	(Wardynski et al. 2013)

Seattle ECO Green Roof Hydrograph

Goodness of Fit

Coefficient of Determination

$$R^{2} = \left(\frac{\sum_{i=1}^{n} (O_{i} - O^{mean})(P_{i} - P^{mean})}{\sqrt{\sum_{i=1}^{n} (O_{i} - O^{mean})^{2}} \sqrt{\sum_{i=1}^{n} (P_{i} - P^{mean})^{2}}}\right)^{2}$$

Nash-Sutcliffe Efficiency Statistic

$$N - S = 1 - \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (O_i - O^{mean})^2}$$

Hydrograph from UMD Bioswale analysis depicting early outflow start-time

Boone Porous Pavement hydrograph depicting early outflow start-time

SEPA United States Environmental Protection Agency

Multi-event Calibration Method

	Storm 4	Storm 3	Storm 2	Storm 1
Storm 1 Calibration	NSE,	NSE,	NSE,	Calibration
AVG NSE, R ²	R ²	R ²	R ²	NSE, <i>R</i> ²
Storm 2 Calibration	NSE,	NSE,	Calibration NSE,	NSE,
AVG NSE, R ²	R ²	R ²	R^2	R ²
Storm 3 Calibration	NSE,	Calibration NSE,	NSE,	NSE,
AVG NSE, R ²	R ²	R^2	R ²	R ²
Storm 4 Calibration	Calibration	NSE,	NSE,	NSE,
AVG NSE, R ²	NSE, R ²	R ²	R ²	R ²

PEST

Calibration and Uncertainty Analysis

for

Complex Environmental Models

PEST: complete theory and what it means for modelling the real world

John Doherty

http://www.pesthomepage.org/

139

How PEST Works

PEST (Parameter <u>Est</u>imation Software)

PEST is a nonlinear parameter estimation package capable of estimating parameters for any computer model. It solves a nonlinear least squares problem and minimizes the differences between the model's outputs and field measurements such as the calculated and measured discharges.

PEST adapts to the model, the model does not need to adapt to PEST.

PEST program

https://www.google.com/search?q=parameter+estimation+images&tbm=isch&tbo=u&source=univ&sa=X&ved=2ahUKEwik0dbkzbHeAhVyTt8KHW6TDR0QsAR6BAgFEAE&biw=1680&bih=941#imgrc=F bdsdbiAFfzVvM: J. Doherty 2007

Parameter Estimation Algorithm

Levenberg-Marquardt algorithm (LMA or just LM), AKA damped least-squares (DLS)

$$\nabla^2 f(x) = J(x)^T J(x)$$

https://en.wikipedia.org/wiki/File:Lev-Mar-best-fit.png y = acos(bX) + bsin(aX)BY-SA 3.0, https://en.wikipedia.org/w/index.php?curid=7326407

Parameters for a SWMM LID Green Roof

Parameter

Maximum Freeboard, inches (D_1)

Surface Void Fraction (ϕ_1)

Soil Layer Thickness, inches (D₂)

Soil Parameters:

Porosity (ϕ_2)

Field Capacity (θ_{FC})

Wilting Point (θ_{WP})

Plant Available Water (θ_{FC} - θ_{WP})

Saturated Hydraulic Conductivity, in/hr (K2s)

Wetting Front Suction Head, inches (ψ_2)

Percolation Parameter (HCO)

Drainage Layer Thickness, inches (D_3)

Drainage Layer Void Fraction (ϕ_3)

Drainage Layer Roughness (*n*₃)

Capture Ratio (R_{LID})

Most Sensitive Parameters

1	=	most
7	=	least

Parameter		Rank
LID Usage	Width	7
	Initial Saturation	5
Soil	Porosity	4
	Field Capacity	2
	Wilting Point	1
Drainage Mat	Void Ratio	3
	Roughness	6

LID Module Performance Summary Table

LID Name	Average NSE Value	Average r ² Value
Graham Bio-retention	0.86	0.93
Villanova BTI Rain Garden	0.86	0.96
Villanova Infiltration Trench	0.65	0.67
UMD BioSwale	0.78	0.87
Washington DOT BioSwale	0.70	0.91
Hamilton Ecoroof	0.92	0.90
EOC Green Roof	0.94	0.97
FS10 Green Roof	0.93	0.84
Boone Porous Pavement	0.74	0.89

SWMM LID Modeling Weakness

LID Study Conclusions

- PEST is a useful tool for parameter estimation
- Multi-storm calibration quantified variance in calibration method
- SWMM LID can model hydrology with

-NSE ranging from 0.65- 0.94

 $-R^2$ ranging from 0.67 – 0.97

- SWMM LID Module does not account for lateral exfiltration which is important for deep, narrow, LIDs, such as Infiltration Trenches
- EWRI LID Group was formed to improve scientific underpinnings of SWMM
- Next step test water quality and LID aggregations

Summary of Presentation

- 1. SWMM Fundamentals
- 2. Getting Started with SWMM
- 3. Building the Hydraulic Model
- 4. New Hydraulic Features to SWMM
- 5. Building the Hydrologic Model
- 6. History of SWMM
- 7. Using SWMM for Low Impact Development
- 8. Building LID Model
- 9. Demonstration of EPA Stormwater Calculator
- **10.** Ground-truthing SWMM
- **11. Interpreting More Complicated SWMM Results**
- 12. Where to get Data
- 13. SWMM Climate Adjust Tool
- 14. Conclusions

SEPA United States Environmental Protection Agency

Thank You!

Michelle Simon

U.S. EPA Office of Research and Development (ORD) 513-569-7469 <u>Simon.michelle@epa.gov</u>

