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NOTICE 
The United States Environmental Protection Agency (U.S. EPA) through its Office of Research and 
Development (ORD) funded and managed the research described in ProUCL Technical Guide and methods 
incorporated in the ProUCL software. It has been peer reviewed by the U.S. EPA and approved for 
publication. Mention of trade names or commercial products does not constitute endorsement or 
recommendation by the U.S. EPA for use. 

• Versions of the ProUCL software up to version ProUCL 5.1 have been developed by Lockheed 
Martin, IS&GS - CIVIL under the Science, Engineering, Response and Analytical contract with 
the U.S. EPA. Improvements included in version 5.2 were made by Neptune and Company, 
Inc. under the ProUCL and Statistical Support for Site Characterization and Monitor Technical 
Support Center (SCMTSC) contract with the U.S. EPA and is made available through the U.S. 
EPA Technical Support Center (TSC) in Atlanta, Georgia (GA). 

• Use of any portion of ProUCL that does not comply with the ProUCL Technical Guide is not 
recommended. 

• ProUCL contains embedded licensed software. Any modification of the ProUCL source code 
may violate the embedded licensed software agreements and is expressly forbidden. 

With respect to ProUCL distributed software and documentation, neither the U.S. EPA nor any of their 
employees, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of 
any information, apparatus, product, or process disclosed. Furthermore, software and documentation are 
supplied “as-is” without guarantee or warranty, expressed or implied, including without limitation, any 
warranty of merchantability or fitness for a specific purpose. 

ProUCL software is a statistical software package providing statistical methods described in various U.S. 
EPA guidance documents. ProUCL does not describe U.S. EPA policies and should not be considered to 
represent U.S. EPA policies. 
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Software Requirements 
ProUCL 5.2 has been developed in the Microsoft .NET Framework 4.7.2 using the C# programming 
language and will run on Windows 10 that has this framework pre-installed. The downloadable .NET 
Framework 4.7.2 files can also be obtained from the following websites: 

https://dotnet.microsoft.com/download/dotnet-framework/net472 

Installation Instructions when Downloading ProUCL 5.2 from the 
EPA Web Site 

• Download the file SETUP.EXE from the EPA Web site and save to a temporary location. Note: 
You can delete this file when the installation is complete. 

• Right click on PROUCL5_2.zip and select "Extract All...". A dialog window will open that 
allows you to browse to the location you want ProUCL to be installed. Once you choose a 
location, click "Extract". This will create a directory named ProUCL 5.2 and add all the 
necessary files; create two subdirectories, adding sample data to one and documentation to the 
other. 

• To run the program, use Windows Explorer to locate the ProUCL application file, and Double 
click on it, or use the RUN command from the start menu to locate the ProUCL.exe file, and 
run ProUCL.exe. 

• To uninstall the program, use Windows Explorer to locate and delete the ProUCL folder. 

Caution: If you have previous versions of the ProUCL, which were installed on your computer, you should 
remove or rename the directory in which earlier ProUCL versions are currently located. 

iii 
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Creating a Shortcut for ProUCL 5.2 on Desktop or Pin to Taskbar 
• To create a shortcut of the ProUCL program on your desktop, go to your ProUCL directory 

and right click on the executable program and send it to desktop. A ProUCL icon will be 
displayed on your desktop. This shortcut will point to the ProUCL directory consisting of all 
files required to execute ProUCL 5.2. 

• To pin ProUCL to Taskbar, open ProUCL and then right click ProUCL icon displayed on 
Taskbar and click Pin to Taskbar option. 

Caution: Because all files in your ProUCL directory are needed to execute the ProUCL software, you need 
to generate a shortcut using the process described above. Simply dragging the ProUCL executable file from 
Window Explorer onto your desktop will not work successfully (an error message will appear) as all files 
needed to run the software are not available on your desktop. Your shortcut should point to the directory 
path with all required ProUCL files. 
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ProUCL 5.2 
Software ProUCL version 5.2.0 (ProUCL 5.2), its earlier versions: ProUCL version 3.00.01, 4.00.02, 
4.00.04, 4.00.05, 4.1.00, 4.1.01, and ProUCL 5.0.00, 5.1.002 and associated Facts Sheet, User Guides and 
Technical Guides (e.g., EPA 2010b, 2010c, 2013a, 2013b) can be downloaded from the following EPA 
website: 

https://www.epa.gov/land-research/proucl-software 

Recordings of ProUCL webinars offered in 2020 can be downloaded from: 

ProUCL Utilization 2020: Part 1: ProUCL A to Z 
https://clu-in.org/conf/tio/ProUCLAtoZ1/ 

ProUCL Utilization 2020: Part 2: Trend Analysis 
https://clu-in.org/conf/tio/ProUCLAtoZ2/ 

ProUCL Utilization 2020: Part 3: Background Level Calculations 
https://clu-in.org/conf/tio/ProUCLAtoZ3/ 

Relevant literature used in the development of various ProUCL versions can be downloaded from: 
https://www.epa.gov/land-research/proucl-software 

Contact Information for all Versions of ProUCL 
Since 1999, the ProUCL software has been developed under the direction of the Technical Support Center 
(TSC). As of November 2007, the direction of the TSC is transferred from Brian Schumacher to Felicia 
Barnett. Therefore, any comments or questions concerning all versions of ProUCL software should be 
addressed to: 

Felicia Barnett, Director 
ORD Site Characterization and Monitoring Technical Support Center (SCMTSC) 
Superfund and Technology Liaison, Region 4 
U.S. Environmental Protection Agency 
61 Forsyth Street SW, Atlanta, GA 30303-8960 

barnett.felicia@epa.gov 
(404)562-8659 
Fax: (404) 562-8439 
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EXECUTIVE SUMMARY 
ProUCL is software package for commonly used environmental statistics. It was initially developed as a 
research tool for U.S. EPA scientists and researchers of the Technical Support Center (TSC) and ORD-
National Exposure Research Laboratory (NERL), Las Vegas. The intent was to provide a tool for basic 
statistical calculations that are applicable to site characterization and remediation. As a response to user 
feedback some additional statistical needs of the environmental projects of the U.S. EPA were addressed. 
Over the years ProUCL software has been upgraded and enhanced to include more graphical tools and 
statistical methods described in many EPA guidance documents. 

Methods incorporated in ProUCL cover many common environmental situations and allow environmental 
practitioners with limited knowledge of statistics to perform calculations to estimate DQO based sample 
size, establish background levels, compare background and site sample data sets for site evaluation and risk 
assessment, and perform basic trend analysis. Some methods for analysis of data sets with nondetect values 
are built in this software. Statistical modules are organized as drop-down menus to allow users easy access 
to statistical methods and tests. 

However, as any software, ProUCL has limitations. Software does not include advanced statistical methods 
applicable to very skewed data sets or biased sampling designs and does not include geostatistical methods. 
ProUCL also lacks capabilities to perform simulations or automation of repeating tasks. Therefore, 
environmental practitioners are strongly encouraged to seek advice from environmental statisticians on 
planning of environmental studies and choosing applicable statistical methods for sampling design used in 
the project. 

Several improvements have been made to the decision logic for the recommendation of UCLs for version 
5.2. The reliance on goodness of fit tests to select appropriate UCLs is reduced. The Chebyshev UCL is no 
longer recommended, and the H UCL is only recommended in cases of very large sample sizes when there 
is high confidence that the assumption of lognormality is met to a good approximation. In some cases, data 
may be too skewed or not numerous enough to determine an appropriate UCL. Version 5.2 does not provide 
a recommendation in these cases but encourages the user to: verify that the data were collected randomly 
(rather than through biased sampling, such as hot spot delineation sampling or best professional judgment 
sampling); consider site knowledge that may explain why the data may be skewed (such as small areas of 
high concentrations), and to contact a statistician if ProUCL cannot provide a recommendation. 

Another improvement of ProUCL 5.2 is that libraries and developer tools (Microsoft .NET, Spread.NET 
(previously FarPoint), ChartFX, and Visual Studio) were updated to the latest available version. These tools 
have all had one or more version releases since 2016 when version ProUCL 5.1 was released. 

In parallel with ProUCL improvements released as version 5.2, the ProUCL User guide and Technical guide 
were updated as well. The User Guide was reorganized to be better aligned with the software layout. 
Sections are now organized in the same order as ProUCL software drop-down menus. The last chapter of 
User Guide provides some limited guidance on the use of statistical methods incorporated in ProUCL 
software. Technical guide was updated to include the description and justification for decision logic 
improvements incorporated in version 5.2. 

vi 
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ProUCL has been verified against, and is agreement with, the results obtained by using other software 
packages including Minitab, SAS®, and CRAN R packages. Statistical methods incorporated in ProUCL 
have also been tested and verified extensively by the developers, researchers, scientists, and users. Software 
is continuously improved to address findings and observations of hundreds of users with different levels of 
statistical background spanning from environmental practitioners to professional statisticians performing 
analysis on thousands of environmental data sets. 

ProUCL is available for free at the U.S. EPA Site Characterization and Monitoring Technical Support 
Center (SCMTSC) web site. SCMTSC also provides some user support. This may include answering 
questions related to the use of ProUCL software and technical support to EPA superfund project managers 
or technical staff. 
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ACRONYMS and ABBREVIATIONS 

ACL Alternative compliance or concentration limit 

A-D, AD Anderson-Darling test 

AL Action limit 

AOC Area(s) of concern 

ANOVA Analysis of variance 

A0 Not to exceed compliance limit or specified action level 

BC Box-Cox transformation 

BCA Bias-corrected accelerated bootstrap method 

BD Binomial distribution 

BISS Background Incremental Sample Simulator 

BTV Background threshold value 

CC, cc Confidence coefficient 

CERCLA Comprehensive Environmental Recovery, Compensation, and Liability Act 

Compliance limit 

CLT Central Limit Theorem 

COPC Contaminant/constituent of potential concern 

Cs Cleanup standards 

CSM Conceptual site model 

Df Degrees of freedom 

DL Detection limit 

DL/2 (t) UCL based upon DL/2 method using Student’s t-distribution cutoff value 
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DL/2 Estimates Estimates based upon data set with NDs replaced by 1/2 of the respective detection 
limits 

DOE Department of Energy 

DQOs Data quality objectives 

DU Decision unit 

EA Exposure area 

EDF Empirical distribution function 

EM Expectation maximization 

EPA United States Environmental Protection Agency 

EPC Exposure point concentration 

GA Georgia 

GB Gigabyte 

GHz Gigahertz 

GROS Gamma ROS 

GOF, G.O.F. Goodness-of-fit 

GUI Graphical user interface 

GW Groundwater 

HA Alternative hypothesis 

H0 Null hypothesis 

H-UCL UCL based upon Land’s H-statistic 

i.i.d. Independently and identically distributed 

ISM Incremental sampling methodology 

ITRC Interstate Technology & Regulatory Council 
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k, K Positive integer representing future or next k observations 

K Shape parameter of a gamma distribution 

K, k Number of nondetects in a data set 

k hat MLE of the shape parameter of a gamma distribution 

k star Biased corrected MLE of the shape parameter of a gamma distribution 

KM (%) UCL based upon Kaplan-Meier estimates using the percentile bootstrap method 

KM (Chebyshev) UCL based upon Kaplan-Meier estimates using the Chebyshev inequality 

KM (t) UCL based upon Kaplan-Meier estimates using the Student’s t-distribution critical 
value 

KM (z) UCL based upon Kaplan-Meier estimates using critical value of a standard normal 
distribution 

K-M, KM Kaplan-Meier 

K-S, KS Kolmogorov-Smirnov 

K-W Kruskal Wallis 

LCL Lower confidence limit 

LN, ln Lognormal distribution 

LCL Lower confidence limit of mean 

LPL Lower prediction limit 

LROS LogROS; robust ROS 

LTL Lower tolerance limit 

LSL Lower simultaneous limit 

M,m Applied to incremental sampling: number in increments in an ISM sample 

MARSSIM Multi-Agency Radiation Survey and Site Investigation Manual 

xi 



 

  

  

  

  

  

  

   

   

   

  

   

   

  

  

  

   

   

  

  

  

  

  

MCL Maximum concentration limit, maximum compliance limit 

MDD Minimum detectable difference 

MDL Method detection limit 

MK, M-K Mann-Kendall 

ML Maximum likelihood 

MLE Maximum likelihood estimate 

N Number of observations/measurements in a sample 

N Number of observations/measurements in a population 

MVUE Minimum variance unbiased estimate 

MW Monitoring well 

NARPM National Association of Remedial Project Managers 

ND, nd, Nd Nondetect 

NERL National Exposure Research Laboratory 

NRC Nuclear Regulatory Commission 

OKG Orthogonalized Kettenring Gnanadesikan 

OLS Ordinary least squares 

ORD Office of Research and Development 

OSRTI Office of Superfund Remediation and Technology Innovation 

OU Operating unit 

PCA Principal component analysis 

PDF, pdf Probability density function 

.pdf Files in Portable Document Format 
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PRG Preliminary remediation goals 

PROP Proposed influence function 

p-values Probability-values 

QA Quality assurance 

QC Quality 

Q-Q Quantile-quantile 

R,r Applied to incremental sampling: number of replicates of ISM samples 

RAGS Risk Assessment Guidance for Superfund 

RCRA Resource Conservation and Recovery Act 

RL Reporting limit 

RMLE Restricted maximum likelihood estimate 

ROS Regression on order statistics 

RPM Remedial Project Manager 

RSD Relative standard deviation 

RV Random variable 

S Substantial difference 

SCMTSC Site Characterization and Monitoring Technical Support Center 

SD, Sd, sd Standard deviation 

SND Standard Normal Distribution 

SNV Standard Normal Variate 

SE Standard error 

SSL Soil screening levels 
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SQL Sample quantitation limit 

SU Sampling unit 

S-W, SW Shapiro-Wilk 

T-S Theil-Sen 

TSC Technical Support Center 

TW, T-W Tarone-Ware 

UCL Upper confidence limit 

UCL95 95% upper confidence limit 

UPL Upper prediction limit 

UPL95 95% upper prediction limit 

U.S. EPA, EPA United States Environmental Protection Agency 

UTL Upper tolerance limit 

UTL95-95 95% upper tolerance limit with 95% coverage 

USGS U.S. Geological Survey 

USL Upper simultaneous limit 

vs. Versus 

WMW Wilcoxon-Mann-Whitney 

WRS Wilcoxon Rank Sum 

WSR Wilcoxon Signed Rank 

Xp pth percentile of a distribution 

< Less than 

> Greater than 
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≥ Greater than or equal to 

≤ Less than or equal to 

Δ Greek letter denoting the width of the gray region associated with hypothesis testing 

Σ Greek letter representing the summation of several mathematical quantities, 
numbers 

% Percent 

α Type I error rate 

β Type II error rate 

Ө Scale parameter of the gamma distribution 

Σ Standard deviation of the log-transformed data 

^ carat sign over a parameter, indicates that it represents a statistic/estimate computed 
using the sampled data 
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GLOSSARY 
Anderson-Darling (A-D) test: The Anderson-Darling test assesses whether known data come from a 
specified distribution. In ProUCL the A-D test is used to test the null hypothesis that a sample data set, x1, 
..., xn came from a gamma distributed population. 

Background Measurements: Measurements that are not site-related or impacted by site activities. 
Background sources can be naturally occurring or anthropogenic (man-made). 

Bias: The systematic or persistent distortion of a measured value from its true value (this can occur during 
sampling design, the sampling process, or laboratory analysis). 

Bootstrap Method: The bootstrap method is a computer-based method for assigning measures of accuracy 
to sample estimates. This technique allows estimation of the sample distribution of almost any statistic 
using only very simple methods. Bootstrap methods are generally superior to ANOVA for small data sets 
or where sample distributions are non-normal. 

Central Limit Theorem (CLT): The central limit theorem states that given a distribution with a mean, μ, 
and variance, σ2 , the sampling distribution of the mean approaches a normal distribution with a mean (μ) 
and a variance σ2/N as N, the sample size, increases. 

Censored Data Sets: Data sets that contain one or more observations which are nondetects. 

Coefficient of Variation (CV): A dimensionless quantity used to measure the spread of data relative to the 
size of the numbers. For a normal distribution, the coefficient of variation is given by s/xBar. It is also 
known as the relative standard deviation (RSD). 

Confidence Coefficient (CC): The confidence coefficient (a number in the closed interval [0, 1]) 
associated with a confidence interval for a population parameter is the probability that the random interval 
constructed from a random sample (data set) contains the true value of the parameter. The confidence 
coefficient is related to the significance level of an associated hypothesis test by the equality: level of 
significance = 1 – confidence coefficient. 

Confidence Interval: Based upon the sampled data set, a confidence interval for a parameter is a random 
interval within which the unknown population parameter, such as the mean, or a future observation, x0, 
falls. 

Confidence Limit: The lower or an upper boundary of a confidence interval. For example, the 95% upper 
confidence limit (UCL) is given by the upper bound of the associated confidence interval. 

Coverage, Coverage Probability: The coverage probability (e.g., = 0.95) of an upper confidence limit 
(UCL) of the population mean represents the confidence coefficient associated with the UCL. 

Critical Value: The critical value for a hypothesis test is a threshold to which the value of the test statistic 
is compared to determine whether or not the null hypothesis is rejected. The critical value for any hypothesis 
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test depends on the sample size, the significance level, α at which the test is carried out, and whether the 
test is one-sided or two-sided. 

Data Quality Objectives (DQOs): Qualitative and quantitative statements derived from the DQO process 
that clarify study technical and quality objectives, define the appropriate type of data, and specify tolerable 
levels of potential decision errors that will be used as the basis for establishing the quality and quantity of 
data needed to support decisions. 

Detection Limit: A measure of the capability of an analytical method to distinguish samples that do not 
contain a specific analyte from samples that contain low concentrations of the analyte. It is the lowest 
concentration or amount of the target analyte that can be determined to be different from zero by a single 
measurement at a stated level of probability. Detection limits are analyte and matrix-specific and may be 
laboratory-dependent. 

Empirical Distribution Function (EDF): In statistics, an empirical distribution function is a cumulative 
probability distribution function that concentrates probability 1/n at each of the n numbers in a sample. 

Estimate: A numerical value computed using a random data set (sample), and is used to guess (estimate) 
the population parameter of interest (e.g., mean). For example, a sample mean represents an estimate of the 
unknown population mean. 

Expectation Maximization (EM): The EM algorithm is used to approximate a probability density function 
(PDF). EM is typically used to compute maximum likelihood estimates given incomplete samples. 

Exposure Point Concentration (EPC): The constituent concentration within an exposure unit to which 
the receptors are exposed. Estimates of the EPC represent the concentration term used in exposure 
assessment. 

Extreme Values: Values that are well-separated from the majority of the data set coming from the 
far/extreme tails of the data distribution. 

Goodness-of-Fit (GOF): In general, the level of agreement between an observed set of values and a set 
wholly or partly derived from a model of the data. 

Gray Region: A range of values of the population parameter of interest (such as mean constituent 
concentration) within which the consequences of making a decision error are relatively minor. The gray 
region is bounded on one side by the action level. The width of the gray region is denoted by the Greek 
letter delta, Δ, in this guidance. 

H-Statistic: Land's statistic used to compute UCL of mean of a lognormal population 

H-UCL: UCL based on Land’s H-Statistic. 

Hypothesis: Hypothesis is a statement about the population parameter(s) that may be supported or rejected 
by examining the data set collected for this purpose. There are two hypotheses: a null hypothesis, (H0), 
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representing a testable presumption (often set up to be rejected based upon the sampled data), and an 
alternative hypothesis (HA), representing the logical opposite of the null hypothesis. 

Kolmogorov-Smirnov (KS) test: The Kolmogorov-Smirnov test is used to decide if a data set comes from 
a population with a specific distribution. The Kolmogorov-Smirnov test is based on the empirical 
distribution function (EDF). ProUCL uses the KS test to test the null hypothesis if a data set follows a 
gamma distribution. 

Left-censored Data Set: An observation is left-censored when it is below a certain value (detection limit) 
but it is unknown by how much; left-censored observations are also called nondetect (ND) observations. A 
data set consisting of left-censored observations is called a left-censored data set. In environmental 
applications trace concentrations of chemicals may indeed be present in an environmental sample (e.g., 
groundwater, soil, sediment) but cannot be detected and are reported as less than the detection limit of the 
analytical instrument or laboratory method used. 

Level of Significance (α): The error probability (also known as false positive error rate) tolerated of falsely 
rejecting the null hypothesis and accepting the alternative hypothesis. 

Lilliefors test: A goodness-of-fit test that tests for normality of large data sets when population mean and 
variance are unknown. 

Maximum Likelihood Estimates (MLE): MLE is a popular statistical method used to make inferences 
about parameters of the underlying probability distribution of a given data set. 

Mean: The sum of all the values of a set of measurements divided by the number of values in the set; a 
measure of central tendency. 

Median: The middle value for an ordered set of n values. It is represented by the central value when n is 
odd or by the average of the two most central values when n is even. The median is the 50th percentile. 

Minimum Detectable Difference (MDD): The MDD is the smallest difference in means that the statistical 
test can resolve. The MDD depends on sample-to-sample variability, the number of samples, and the power 
of the statistical test. 

Minimum Variance Unbiased Estimates (MVUE): A minimum variance unbiased estimator (MVUE or 
MVU estimator) is an unbiased estimator of parameters, whose variance is minimized for all values of the 
parameters. If an estimator is unbiased, then its mean squared error is equal to its variance. 

Nondetect (ND) values: Censored data values. Typically, in environmental applications, concentrations or 
measurements that are less than the analytical/instrument method detection limit or reporting limit. 

Nonparametric: A term describing statistical methods that do not assume a particular population 
probability distribution, and are therefore valid for data from any population with any probability 
distribution, which can remain unknown. 
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Optimum: An interval is optimum if it possesses optimal properties as defined in the statistical literature. 
This may mean that it is the shortest interval providing the specified coverage (e.g., 0.95) to the population 
mean. For example, for normally distributed data sets, the UCL of the population mean based upon 
Student’s t distribution is optimum. 

Outlier: Measurements (usually larger or smaller than the majority of the data values in a sample) that are 
not representative of the population from which they were drawn. The presence of outliers distorts most 
statistics if used in any calculations. 

Probability - Values (p-value): In statistical hypothesis testing, the p-value associated with an observed 
value, tobserved of some random variable T used as a test statistic is the probability that, given that the null 
hypothesis is true, T will assume a value as or more unfavorable to the null hypothesis as the observed value 
tobserved. The null hypothesis is rejected for all levels of significance, α greater than or equal to the p-value. 

Parameter: A parameter is an unknown or known constant associated with the distribution used to model 
the population. 

Parametric: A term describing statistical methods that assume a probability distribution such as a normal, 
lognormal, or a gamma distribution. 

Population: The total collection of N objects, media, or people to be studied and from which a sample is 
to be drawn. It is the totality of items or units under consideration. 

Prediction Interval: The interval (based upon historical data, background data) within which a newly and 
independently obtained (often labeled as a future observation) site observation (e.g., onsite, compliance 
well) of the predicted variable (e.g., lead) falls with a given probability (or confidence coefficient). 

Probability of Type II (2) Error (β): The probability, referred to as β (beta), that the null hypothesis will 
not be rejected when in fact it is false (false negative). 

Probability of Type I (1) Error = Level of Significance (α): The probability, referred to as α (alpha), that 
the null hypothesis will be rejected when in fact it is true (false positive). 

pth Percentile or pth Quantile: The specific value, Xp of a distribution that partitions a data set of 
measurements in such a way that the p percent (a number between 0 and 100) of the measurements fall at 
or below this value, and (100-p) percent of the measurements exceed this value, Xp. 

Quality Assurance (QA): An integrated system of management activities involving planning, 
implementation, assessment, reporting, and quality improvement to ensure that a process, item, or service 
is of the type and quality needed and expected by the client. 

Quality Assurance Project Plan: A formal document describing, in comprehensive detail, the necessary 
QA, quality control (QC), and other technical activities that must be implemented to ensure that the results 
of the work performed will satisfy the stated performance criteria. 
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Quantile Plot: A graph that displays the entire distribution of a data set, ranging from the lowest to the 
highest value. The vertical axis represents the measured concentrations, and the horizontal axis is used to 
plot the percentiles/quantiles of the distribution. 

Range: The numerical difference between the minimum and maximum of a set of values. 

Regression on Order Statistics (ROS): A regression line is fit to the normal scores of the order statistics 
for the uncensored observations and is used to fill in values imputed from the straight line for the 
observations below the detection limit. 

Resampling: The repeated process of obtaining representative samples and/or measurements of a 
population of interest. 

Reliable UCL: see Stable UCL. 

Robustness: Robustness is used to compare statistical tests. A robust test is the one with good performance 
(that is not unduly affected by outliers and underlying assumptions) for a wide variety of data distributions. 

Resistant Estimate: A test/estimate which is not affected by outliers is called a resistant test/estimate 

Sample: Represents a random sample (data set) obtained from the population of interest (e.g., a site area, 
a reference area, or a monitoring well). The sample is supposed to be a representative sample of the 
population under study. The sample is used to draw inferences about the population parameter(s). 

Shapiro-Wilk (SW) test: Shapiro-Wilk test is a goodness-of-fit test that tests the null hypothesis that a 
sample data set, x1, ..., xn came from a normally distributed population. 

Skewness: A measure of asymmetry of the distribution of the parameter under study (e.g., lead 
concentrations). It can also be measured in terms of the standard deviation of log-transformed data. The 
greater the standard deviation, the greater is the skewness. 

Stable UCL: The UCL of a population mean is a stable UCL if it represents a number of practical merit 
(e.g., a realistic value which can occur at a site), which also has some physical meaning. That is, a stable 
UCL represents a realistic number (e.g., constituent concentration) that can occur in practice. Also, a stable 
UCL provides the specified (at least approximately, as much as possible, as close as possible to the specified 
value) coverage (e.g., ~0.95) to the population mean. 

Standard Deviation (sd, sd, SD): A measure of variation (or spread) from an average value of the sample 
data values. 

Standard Error (SE): A measure of an estimate's variability (or precision). The greater the standard error 
in relation to the size of the estimate, the less reliable is the estimate. Standard errors are needed to construct 
confidence intervals for the parameters of interests such as the population mean and population percentiles. 

Substitution Method: The substitution method is a method for handling NDs in a data set, where the ND 
is replaced by a defined value such as 0, DL/2 or DL prior to statistical calculations or graphical analyses. 
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This method has been included starting with ProUCL 5.1 for historical comparative purposes but is not 
recommended for use. The bias introduced by applying the substitution method cannot be quantified 
with any certainty. ProUCL will provide a warning when this option is chosen. 

Uncensored Data Set: A data set without any censored (nondetects) observations. 

Unreliable UCL, Unstable UCL, Unrealistic UCL: The UCL of a population mean is unstable, 
unrealistic, or unreliable if it is orders of magnitude higher than the other UCLs of a population mean. It 
represents an impractically large value that cannot be achieved in practice. For example, the use of Land’s 
H-statistic often results in an impractically large inflated UCL value. Some other UCLs, such as the 
bootstrap-t UCL and Hall’s UCL, can be inflated by outliers resulting in an impractically large and unstable 
value. All such impractically large UCL values are called unstable, unrealistic, unreliable, or inflated UCLs. 

Upper Confidence Limit (UCL): The upper boundary (or limit) of a confidence interval of a parameter of 
interest such as the population mean. 

Upper Prediction Limit (UPL): The upper boundary of a prediction interval for an independently obtained 
observation (or an independent future observation). 

Upper Tolerance Limit (UTL): A confidence limit on a percentile of the population rather than a 
confidence limit on the mean. For example, a 95% one-sided UTL for 95% coverage represents the value 
below which 95% of the population values are expected to fall with 95 % confidence. In other words, a 
95% UTL with coverage coefficient 95% represents a 95% UCL for the 95th percentile. 

Upper Simultaneous Limit (USL): The upper boundary of the largest value. 

xBar: arithmetic average of computed using the sampled data values 
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ProUCL 5.2 Capabilities 
Assumptions: Like most statistical methods, statistical methods for computing upper limits (e.g., UCLs, 
UPLs, UTLs) are also based upon certain assumptions including the availability of a randomly collected 
data set consisting of independently and identically distributed (i.i.d) observations representing the 
population (e.g., site area, reference area) under investigation. A UCL of the mean (of a population) and 
BTV estimates (UPL, UTL) should be computed using a randomly collected (simple random or systematic 
random) data set representing a single statistical population (e.g., site population or background population). 
When multiple populations (e.g., background and site data mixed together) are present in a data set, the 
recommendation is to separate them first by using the population partitioning techniques (e.g., Singh, Singh, 
and Flatman 1994) prior to computing the appropriate decision statistics (e.g., 95% UCLs). Regardless of 
how the populations are separated, decision statistics should be computed separately for each identified 
population. The topic of population partitioning and the extraction of a valid site-specific background data 
set from a broader mixture data set potentially consisting of both onsite and offsite data are beyond the 
scope of ProUCL. Parametric estimation and hypotheses testing methods (e.g., t-test, UCLs, UTLs) are 
based upon distributional (e.g., normal distribution, gamma) assumptions. ProUCL includes GOF tests for 
determining if a data set follows a normal, a gamma, or a lognormal distribution. 

Multiple Constituents/Variables: Environmental scientists need to evaluate many constituents in their 
decision-making processes including exposure and risk assessment, background evaluations, and site versus 
background comparisons. ProUCL can process multiple constituents/variables simultaneously in a user-
friendly manner; an option not available in other freeware or commercial software packages such as NADA 
for R (Helsel 2013). This option is very useful when one has to process many variables/analytes and 
compute decision statistics (e.g., UCLs, UPLs, and UTLs) and/or test statistics (e.g., ANOVA test, trend 
test) for those variables/analytes. 

Analysis by a Group Variable: ProUCL also has the capability of processing data by groups. A valid group 
column should be included in the data file. The analyses of data categorized by a group ID variable such 
as: 1) Surface versus (vs.) Subsurface; 2) AOC1 vs. AOC2; 3) Site vs. Background; and 4) Upgradient vs. 
Downgradient MWs are common in many environmental applications. ProUCL offers this option for data 
sets with and without nondetects. The Group option provides a way to perform statistical tests and methods 
including graphical displays separately for each of the group (samples from different populations) that may 
be present in a data set. For example, the same data set may consist of analytical data from multiple groups 
or populations representing site, background, two or more AOCs, surface soil, subsurface soil, and GW. By 
using this option, the graphical displays (e.g., box plots, Q-Q plots, histograms) and statistics (including 
computation of background statistics, UCLs, ANOVA test, trend test and OLS regression statistics) can be 
easily computed separately for each group in the data set. 

Exploratory Graphical Displays for Uncensored and Left-Censored Data Sets: Graphical methods included 
in the Graphs module of ProUCL include: Q-Q plots (data in same column), multiple Q-Q plots (data in 
different columns), box plots, multiple box plots (data in different columns), histograms, and multiple 
histograms. These graphs can also be generated for data sets containing ND observations. Additionally, the 
OLS Regression and Trend Analysis module can be used to generate graphs displaying parametric OLS 
regression lines with confidence and prediction intervals around the regression and nonparametric Theil-
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Sen trend lines. The Trend Analysis module can generate trend graphs for data sets without a sampling 
event variable, and also generates time series graphs for data sets with a sampling event (time) variable. 
ProUCL accepts only numerical values for the event variable. Graphical displays of a data set are useful 
for gaining added insight regarding a data set that may not otherwise be clear by looking at test statistics 
such as T-S test or MK statistics. Unlike test statistics (e.g., t-test, MK test, AD test) and decision statistics 
(e.g., UCL, UTL), graphical displays do not get influenced by outliers and ND observations. It is suggested 
that the final decisions be made based upon statistical results as well as graphical displays. 

Side-by-side box plots or multiple Q-Q plots are useful to graphically compare concentrations of two or 
more groups (e.g., several monitoring wells). The GOF module of ProUCL generates Q-Q plots for normal, 
gamma, and lognormal distributions based upon uncensored as well as left-censored data sets with NDs. 
All relevant information such as the test statistics, critical values and probability-values (p-values), when 
available are also displayed on the GOF Q-Q plots. In addition to providing information about the data 
distribution, a normal Q-Q plot in the original raw scale also helps to identify multiple populations that may 
be present in a data set. On a Q-Q plot, observations well-separated from the majority of the data indicate 
presence of multiple populations. ProUCL can also be used to display box plots with horizontal lines 
displayed/superimposed at pre-specified compliance limits (CLs) or computed upper limits (e.g., UPL, 
UTL). This kind of graph provides a visual comparison of site data with compliance limits and/or BTV 
estimates. 

ProUCL also provides a couple of classical outlier test procedures (EPA 2006b, 2009), the Dixon test and 
the Rosner test. The details of these outlier tests are described in Chapter 7. It is suggested that the classical 
outlier procedures should always be accompanied by graphical displays such as box plots. 

Extreme values may represent observations coming from populations different from the dominant 
population represented by the majority of the data set. Outliers distort most statistics (e.g., mean, UCLs, 
UPLs, test statistics) of interest. Therefore, it is desirable to compute decisions statistics based upon data 
sets representing the main population. Moreover, it should be noted that even though outliers might have 
minimal influence on hypotheses testing statistics based upon ranks (e.g., WMW test), outliers do distort 
several nonparametric statistics including bootstrap methods such as bootstrap-t and Hall's bootstrap UCLs 
and other nonparametric UPLs and UTLs computed using higher order statistics. 

Goodness-of-Fit Tests: In addition to computing simple summary statistics for data sets with and without 
NDs, ProUCL includes GOF tests for normal, lognormal and gamma distributions. To test for normality 
(lognormality) of a data set, ProUCL includes the Lilliefors test and the extended S-W test for samples of 
sizes up to 2000 (Royston 1982a, 1982b). For the gamma distribution, two GOF tests: the A-D test 
(Anderson and Darling 1954) and K-S test (Schneider 1976, 1978) are available in ProUCL. For samples 
of larger sizes (e.g., with n > 100) and small values of the gamma shape parameter, k (e.g., k ≤ 0.1), 
significant discrepancies were found in the critical values of the two gamma GOF test statistics (A-D and 
K-S tests) obtained using the two gamma deviate generation algorithms: Whitaker (1974) and Marsaglia 
and Tsang (2000). In ProUCL, for values of k ≤ 0.2, the critical values of the two gamma GOF tests: A-D 
and K-S tests have been updated using the currently available more efficient gamma deviate generation 
algorithm due to Marsaglia and Tsang's (2000); more details about the implementation of their algorithm 
can be found in Kroese, Taimre, and Botev (2011). For these two GOF and values of the shape parameter, 
k=0.025, 0.05, 0.1, and 0.2, critical value tables have been updated by incorporating the newly generated 
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critical values for three levels of significance: 0.05, 0.1, and 0.01. The updated tables are provided in 
Appendix A of the ProUCL Technical Guide. It was noted that for k=0.2, the older (generated in 2002) and 
the newly generated critical values are in general agreement; therefore, critical values for k=0.2 were not 
replaced in tables summarized in Appendix A. 

ProUCL also generates GOF Q-Q plots for normal, lognormal, and gamma distributions displaying all 
relevant statistics including GOF test statistics. GOF tests for data sets with and without NDs are described 
in Chapters 2 and 3 of the ProUCL Technical Guide. For data sets containing NDs, it is not easy to verify 
the distributional assumptions correctly, especially when the data set consists of a large percentage of NDs 
with multiple DLs and NDs exceeding some detected values. Historically, decisions about distributions of 
data sets with NDs are based upon GOF test statistics computed using the data obtained: without NDs; 
replacing NDs by 0, DL, or DL/2; using imputed NDs based upon a ROS (e.g., lognormal ROS) method. 
For data sets with NDs, ProUCL can perform GOF tests using the methods listed above. ProUCL can also 
generate censored probability plots (Q-Q plots) which are very similar to Q-Q plots generated using 
detected data. Using the Imputed NDs using ROS Methods option of the Stats/Sample Sizes module of 
ProUCL, additional columns can be generated for storing imputed (estimated) values for NDs based upon 
normal ROS, gamma ROS, and lognormal ROS (also known as robust ROS) methods. 

Sample Size Determination and Power Evaluation: The Sample Sizes module in ProUCL can be used to 
develop DQO-based sampling designs needed to address statistical issues associated with environmental 
projects. ProUCL provides user-friendly options for entering the desired/pre-specified values for decision 
parameters (e.g., Type I and Type II error rates) and other DQOs used to determine minimum sample sizes 
for statistical applications including: estimation of the mean, single and two-sample hypothesis testing 
approaches, and acceptance sampling for discrete items (e.g., drums containing hazardous waste). Both 
parametric (e.g., t-test) and nonparametric (e.g., Sign test, WRS test) sample size determination methods as 
described in EPA (2000, 2002c, 2006a, 2006b) guidance documents are available in ProUCL. ProUCL also 
has the sample size determination option for acceptance sampling of lots of discrete objects such as a lot 
(batch, set) of drums containing hazardous waste (e.g., RCRA applications, EPA 2002c). When the sample 
size for an application (e.g., verification of cleanup level) is not computed using the DQOs-based sampling 
design process, the Sample Size module can be used to assess the power of the test statistic used in 
retrospect. The mathematical details of the Sample Sizes module are given in Chapter 8 of the ProUCL 
Technical Guide. 

Bootstrap Methods: Bootstrap methods are computer intensive nonparametric methods which can be used 
to compute decision statistics of interest when a data set does not follow a known distribution, or when it 
is difficult to analytically derive the distributions of statistics of interest. It is well-known that for 
moderately skewed to highly skewed data sets, UCLs based upon standard bootstrap and the percentile 
bootstrap methods do not perform well (e.g., Efron [1981, 1982]; Efron and Tibshirani 1993; Hall 
[1988,1992]; Singh, Singh, and Iaci 2002; Singh, Maichle and Lee 2006) as the interval estimates based 
upon these bootstrap methods fail to provide the specified coverage to the population mean (e.g., UCL95 
does not provide adequate 95% coverage of population mean). For skewed data sets, Efron and Tibshirani 
(1993) and Hall (1988, 1992) considered other bootstrap methods such as the BCA, bootstrap-t and Hall’s 
bootstrap methods. For skewed data sets, bootstrap-t and Hall’s bootstrap (meant to adjust for skewness) 
methods perform better (e.g., in terms of coverage for the population mean) than the other bootstrap 
methods. However, it has been noted (e.g., Efron and Tibshirani 1993, Singh, Singh, and Iaci 2002) that 
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these two bootstrap methods tend to yield erratic and inflated UCL values (orders of magnitude higher than 
other UCLs) in the presence of outliers. Similar behavior of the bootstrap-t UCL and Hall’s bootstrap UCL 
methods is observed for data sets consisting of NDs and outliers. Due to the reasons described above, 
whenever applicable, ProUCL provides cautionary notes and warning messages regarding the use of 
bootstrap-t and Halls bootstrap UCL methods. 

Hypotheses Testing Approaches: ProUCL software has both single-sample (e.g., Student’s t-test, sign test, 
proportion test, WSR test) and two-sample (Student’s t-test, WMW test, Gehan test, and T-W test) 
parametric and nonparametric hypotheses testing approaches. Hypotheses testing approaches in ProUCL 
can handle both full-uncensored data sets and left-censored data sets with NDs. Most of the hypotheses 
tests also report associated p-values. For some hypotheses tests (e.g., WMW test, WSR test, proportion 
test), large sample p-values based upon the normal approximation are computed using continuity correction 
factors. The mathematical details of the various single-sample and two-sample hypotheses testing 
approaches are described in Chapter 6 the ProUCL Technical Guide 

Single-Sample Tests: Parametric (Student’s t-test) and nonparametric (Sign test, WSR test, tests for 
proportions and percentiles) hypotheses testing approaches are available in ProUCL. Single-sample 
hypotheses tests are used when environmental parameters such as the cleanup standard, action level, or 
compliance limits are known, and the objective is to compare site concentrations with those known 
threshold values. A t-test (or a sign test) may be used to verify the attainment of cleanup levels in an AOC 
after a remediation activity has taken place or a test for proportion may be used to verify if the proportion 
of exceedances of an action level (A0 or a CL) by sample observations collected from an AOC (or a MW) 
exceeds a certain specified proportion (e.g., 1%, 5%, 10%). 

The differences between these tests should be noted and understood. A t-test or a Wilcoxon Signed Rank 
(WSR) test are used to compare the measures of location and central tendencies (e.g., mean, median) of a 
site area (e.g., AOC) to a cleanup standard, Cs, or action level also representing a measure of central 
tendency (e.g., mean, median); whereas, a proportion test determines if the proportion of site observations 
from an AOC exceeding a compliance limit (CL) exceeds a specified proportion, P0 (e.g., 5%, 10%). The 
percentile test compares a specified percentile (e.g., 95th) of the site data to a pre-specified upper threshold 
(e.g., action level). 

Two-Sample Tests: Hypotheses tests (Student’s t-test, WMW test, Gehan test, T-W test) are used to perform 
site versus background comparisons, compare concentrations of two or more AOCs, or to compare 
concentrations of GW collected from MWs. As cited in the literature, some of the hypotheses testing 
approaches (e.g., nonparametric two-sample WMW) deal with a single detection limit scenario. When using 
the WMW test on a data set with multiple detection limits, all observations (detects and NDs) below the 
largest detection limit need to be considered as NDs (Gilbert 1987). This in turn tends to reduce the power 
and increase uncertainty associated with test. As mentioned before, it is always desirable to supplement the 
test statistics and conclusions with graphical displays such as multiple Q-Q plots and side-by-side box plots. 
The Gehan test or T-W test should be used in cases where multiple detection limits are present. 

Note about Quantile Test: For smaller data sets, the Quantile test as described in U.S. EPA documents (U.S. 
EPA [1994, 2006b]; Hollander and Wolfe, 1999) is available in ProUCL 4.1(see ProUCL 4.1 Technical 
Guide). In the past, some users incorrectly used this test for larger data sets. Due to lack of resources, this 
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test has not been expanded for data sets of all sizes. Therefore, to avoid confusion and its misuse for larger 
data sets, the Quantile test was not included in ProUCL 5.0 and later versions. 

Computation of Upper Limits including UCLs, UPLs, UTLs, and USLs: ProUCL software has parametric 
and nonparametric methods including bootstrap and Chebyshev inequality based methods to compute 
decision making statistics such as UCLs of the mean (EPA 2002a), percentiles, UPLs for future k (≥1) 
observations, UTLs (U.S. EPA [1992b and 2009]) and upper simultaneous limits (USLs) (Singh and 
Nocerino [1995, 2002]) based upon uncensored full data sets and left-censored data sets containing NDs 
with multiple DLs. Methods incorporated in ProUCL cover a wide range of skewed data distributions with 
and without NDs. In addition to normal and lognormal distributions based upper limits, ProUCL can 
compute parametric UCLs, percentiles, UPLs for future k (≥1) observations, UTLs, and USLs based upon 
gamma distributed data sets. For data sets with NDs, ProUCL has several estimation methods including the 
Kaplan-Meier (KM) method (1958), ROS methods (Helsel 2005) and substitution methods such as 
replacing NDs with the DL or DL/2 (Gilbert 1987; U.S. EPA 2006b). Substitution method and other poor 
performing methods (e.g., H-UCL for lognormal distribution) have been retained, as requested by U.S. EPA 
scientists, in ProUCL 5.0/ 5.1 /5.2 for research and comparison purposes. One may not interpret the 
availability of these poor performing methods in ProUCL as recommended methods by ProUCL or by the 
U.S EPA for computing decision statistics. 

Computation of UCLs Based upon Uncensored Data Sets without NDs: Parametric UCL computation 
methods in ProUCL for uncensored data sets include: Student’s t-UCL, Approximate gamma UCL (using 
chi-square approximation), Adjusted gamma UCL (adjusted for level significance), Land’s H-UCL, and 
Chebyshev inequality-based UCL (using minimum variance unbiased estimates (MVUEs) of parameters of 
a lognormal distribution). Nonparametric UCL computation methods for data sets without NDs include: 
CLT-based UCL, Modified-t-statistic-based UCL (adjusted for skewness), Adjusted-CLT-based UCL 
(adjusted for skewness), Chebyshev inequality-based UCL (using sample mean and standard deviation), 
UCL based upon standard bootstrap, UCL based upon percentile bootstrap, UCL based upon BCA 
bootstrap, UCL based upon bootstrap-t, and UCL based upon Hall’s bootstrap method. The details of UCL 
computation methods for uncensored data sets are summarized in Chapter 2 of the ProUCL Technical 
Guide. 

Computations of UPLs, UTLs, and USLs Based upon Uncensored Data Sets without NDs: For uncensored 
data sets without NDs, ProUCL can compute parametric percentiles, UPLs for k (k≥1) future observations, 
UPLs for mean of k (≥1) future observations, UTLs, and USLs based upon the normal, gamma, and 
lognormal distributions. Nonparametric upper limits are typically based upon order statistics of a data set. 
Depending upon the size of the data set, the higher order statistics (maximum, second largest, third largest, 
and so on) are used to compute these upper limits (e.g., UTLs). Depending upon the sample size, specified 
CC and coverage probability, ProUCL outputs the actual CC achieved by a nonparametric UTL. The details 
of the parametric and nonparametric computation methods for UPLs, UTLs, and USLs are described in 
Chapter 3 of the ProUCL Technical Guide. 

Computation of UCLs, UPLs, UTLs, and USLs Based upon Left-Censored Data Sets with NDs: For data 
sets with NDs, ProUCL computes UCLs, UPLs, UTLs, and USLs based upon the mean and sd computed 
using lognormal ROS (LROS, robust ROS), Gamma ROS (GROS), KM, and DL/2 substitution methods. 
To adjust for skewness in non-normally distributed data sets, ProUCL uses bootstrap methods and 
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Chebyshev inequality when computing UCLs and other limits using estimates of the mean and sd obtained 
using the methods (details in Chapters 4 and 5) listed above. ProUCL uses parametric methods on KM (and 
ROS) estimates, provided detected observations in the left-censored data set follow a parametric 
distribution. For example, if the detected data follow a gamma distribution, ProUCL uses KM estimates in 
gamma distribution-based equations when computing UCLs, UTLs, and other upper limits. When detected 
data do not follow a discernible distribution, depending upon size and skewness of detected data, ProUCL 
recommends the use of Kaplan-Meier (1958) estimates in bootstrap methods for computing nonparametric 
decision statistics (e.g., UCL95, UPL, UTL) of interest. ProUCL computes KM estimates directly using 
left-censored data sets without flipping data and requiring re-flipping of decision statistics. The KM method 
incorporated in ProUCL computes both sd and standard error (SE) of the mean. As mentioned earlier, for 
historical reasons and for comparison and research purposes, the DL/2 substitution method and H-UCL 
based upon LROS method have been retained in ProUCL 5.0/ 5.1 /5.2. The inclusion of the substitution 
and LROS methods in ProUCL should not be inferred as an endorsement of those methods by ProUCL 
software and its developers. The details of the UCL computation methods for data sets with NDs are given 
in Chapter 4 and the detail description of the various other upper limits: UPLs, UTLs, and USLs for data 
sets with NDs are given in Chapter 5 of the ProUCL Technical Guide. 

Oneway ANOVA, OLS Regression and Trend Analysis: The Oneway ANOVA module has both classical 
and nonparametric K-W ANOVA tests as described in EPA guidance documents (e.g., EPA [2006b, 2009]). 
Oneway ANOVA is used to compare means (or medians) of multiple groups such as comparing mean 
concentrations of several areas of concern or performing inter-well comparisons of COPC concentrations 
at several MWs. The OLS Regression option computes the classical OLS regression line and generates 
graphs displaying the OLS line, confidence bands and prediction bands around the regression line. All 
statistics of interest including slope, intercept, and correlation coefficient are displayed on the OLS line 
graph. The Trend Analysis module has two nonparametric trend tests: the M-K trend test and T-S trend 
test. Using this option, one can generate trend graphs and time-series graphs displaying a T-S trend line and 
all other statistics of interest with associated p-values. In addition to slope and intercept, the T-S test in 
ProUCL 5.2 computes and outputs residuals based upon the computed nonparametric T-S line. 

In GW monitoring applications, OLS regression, trend tests, and time series plots are often used to identify 
trends (e.g., upwards, downwards) in constituent concentrations of GW monitoring wells over a certain 
period of time (U.S. EPA 2009e). The details of Oneway ANOVA are given in Chapter 9 and OLS 
regression line and Trend tests methods are described in Chapter 10 of the ProUCL Technical Guide. 

Note: It is pointed out that in this document, all statements made about the capabilities of ProUCL 5.0 also 
apply to ProUCL version 5.1 and 5.2; and to save time, many screen shots used in ProUCL 5.0 manuals 
have been used in ProUCL 5.2 manuals (User Guide and Technical Guide). 

Recommendations and Suggestions in ProUCL: Until 2006, not much guidance was available on how to 
compute a UCL95 of the mean and other upper limits (e.g., UPLs and UTLs) for skewed left-censored data 
sets containing NDs with multiple DLs, a common occurrence in environmental data sets. For uncensored 
positively skewed data sets, Singh, Singh, and Iaci (2002) summarize some simulation results comparing 
the performances (in terms of coverage probabilities) of several UCL computation methods described in 
the statistical and environmental literature. They noted that the optimal choice of a decision statistic (e.g., 
UCL95) depends upon the sample size, data distribution and data skewness. They incorporated the results 
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of their findings in ProUCL 3.1 and higher versions to select the most appropriate UCL to estimate the EPC 
term. 

For data sets with NDs, Singh, Maichle, and Lee (2006) conducted a similar simulation study to compare 
the performances of the various estimation methods (in terms of bias in the mean estimate); and some UCL 
computation methods (in terms of coverage provided by a UCL). They demonstrated that the KM estimation 
method performs well in terms of bias in estimates of the mean; and for skewed data sets, the t-statistic, 
CLT, and the percentile bootstrap method based UCLs computed using KM estimates (and ROS estimates) 
underestimate the population mean. From these findings summarized in Singh, Singh, and Iaci (2002) and 
Singh, Maichle, and Lee (2006), it is natural to state and assume the findings of the simulation studies 
performed on uncensored skewed data sets comparing performances of the various UCL computation 
methods can be extended to skewed left-censored data sets. 

Like uncensored data sets without NDs, for data sets with NDs, there is no one single best UCL (and other 
upper limits such as UTL, UPL) which can be used to estimate an EPC (and background threshold values) 
for all data sets of varying sizes, distribution, and skewness. The optimal choice of a decision statistic 
depends upon the size, distribution, and skewness of detected observations. 

For data sets with and without NDs, ProUCL computes decision statistics including UCLs, UPLs, and UTLs 
using several parametric and nonparametric methods covering a wide range of sample size, data variability 
and skewness. Using the results and findings summarized in the literature cited above, and based upon the 
sample size, data distribution, and data skewness, modules of ProUCL make suggestions about using the 
most appropriate decision statistic(s) to estimate population parameter(s) of interest (e.g., EPC). The 
suggestions made in ProUCL are based upon the extensive professional applied and theoretical experience 
of the developers in environmental statistical methods, published literature, results of simulation studies 
conducted by the developers of ProUCL and procedures described in many U.S. EPA guidance documents. 
These suggestions are made to help the users in selecting the most appropriate UCL to estimate an EPC 
which is routinely used in exposure assessment and risk management studies of the U.S. EPA. It should be 
pointed out that a typical simulation study cannot cover all data sets of various sizes and skewness from all 
types of distributions. For an analyte (data set) with skewness (sd of logged data) near the end points of the 
skewness intervals described in decision tables of Chapter 2 (e.g., Tables 2-9 through 2-11) of the ProUCL 
Technical Guide, the user/project team may select the most appropriate UCL based upon the site CSM, 
expert site knowledge, toxicity of the analyte, and exposure risks associated with that analyte. The project 
team should make the final decision regarding using or not using the suggestions/recommendations made 
by ProUCL. If deemed necessary, the project team may want to consult a statistician. 

Even though, ProUCL software has been developed using limited government funding, it provides many 
statistical and graphical methods described in U.S. EPA documents for data sets with and without NDs. 
However, one may not compare the availability of methods in ProUCL with methods available in the 
commercial software packages such as SAS® and Minitab 16 or open source statistical computing software 
R. For example, trend tests correcting for seasonal/spatial variations and geostatistical methods are not 
available in the ProUCL software. For those methods, the user is referred to commercial software packages 
such as SAS® or open source R. As mentioned earlier, the developers of ProUCL recommended 
supplementing test results (e.g., two-sample test) with graphical displays (e.g., Q-Q plots, side-by-side box 
plots) especially when data sets contain NDs and outliers. With the inclusion of the Oneway ANOVA, 
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OLS Regression Trend and the user-friendly DQOs based Sample Size modules, ProUCL represents a 
comprehensive software package equipped with statistical methods and graphical tools needed to address 
many environmental sampling and statistical needs as described in the various CERCLA (U.S. EPA 1989a, 
1992a, 2002a, 2002b, 2006a, 2006b), MARSSIM (U.S. EPA 2000), and RCRA (U.S. EPA 1989b, 1992b, 
2002c, 2009) guidance documents. 

Finally, the users of ProUCL are cautioned about the use of methods and suggestions described in some 
recent environmental literature. For example, many decision statistics (e.g., UCLs, UPLs, UTLs,) computed 
using the methods (e.g., percentile bootstrap, statistics using KM estimates and t-critical values) described 
in Helsel (2005, 2012) will fail to provide the desired coverage for environmental parameters of interest 
(mean, upper percentile) of moderately skewed to highly skewed populations and conclusions derived based 
upon those decisions statistics may lead to incorrect conclusions which may not be cost-effective or 
protective of human health and the environment. 

Note: The look and feel of ProUCL 5.2 is similar to that of ProUCL 5.1 and 5.0; and they share the same 
names for the various modules and drop-down menus. For modules where no changes have been made in 
ProUCL since 2010 (e.g., Sample Sizes), screen shots as used in ProUCL 5.0 and 5.1 documents have been 
used in ProUCL 5.2 documents. 

ProUCL 5.2 User Guide 

In addition to this Technical Guide, a User Guide also accompanies the ProUCL 5.2 software, providing 
details of using the statistical and graphical methods incorporated in ProUCL 5.2. The User Guide provides 
details about the input and output operations that can be performed using ProUCL 5.2. The User guide also 
provides details about saving edited input files, output Excel-type spreadsheets and graphical displays 
generated by ProUCL 5.2. 
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CHAPTER 1  
 

Guidance on the  Use of Statistical Methods in Pr oUCL Software  
Decisions based upon statistics computed using discrete data sets of small sizes (e.g., < 6) cannot be 
considered reliable enough to make decisions that affect human health and the environment. For example, 
a background data set of size < 6 is not large enough to characterize a background population, compute 
BTV estimates, or to perform background versus site comparisons. Several U.S. EPA guidance documents 
(e.g., EPA 2000, 2006a, 2006b) detail DQOs and minimum sample size requirements needed to address 
statistical issues associated with different environmental applications. In order to obtain reliable statistical 
results, an adequate amount of data should be collected using project-specified DQOs (i.e., CC, decision 
error rates). The Sample Sizes module of ProUCL computes minimum sample sizes based on DQOs 
specified by the user and described in many guidance documents. In some cases, it may not be possible 
(e.g., due to resource constraints) to collect the calculated number of samples needed to meet the project-
specific DQOs. Under these circumstances one can use the Sample Sizes module to assess the power of the 
test statistic resulting from the reduced number of samples which were collected. Based upon professional 
experience, the developers of ProUCL 4 software and its later versions have been making some rule-of-
thumb suggestions regarding minimum sample size requirements needed to perform statistical evaluations 
such as: estimation of environmental parameters of interest (i.e., EPCs and BTVs), comparing site data with 
background data or with some pre-established screening levels (e.g., action levels [ALs], compliance limits 
[CLs]). Those rule-of thumb suggestions are described later in Section 1.7 of this chapter. It is noted that 
those minimum sample requirements have been adopted by some other guidance documents including the 
RCRA Guidance Document (EPA 2009e). 

This chapter also describes the differences between the various statistical upper limits including upper 
confidence limits (UCLs) of the mean, upper prediction limits (UPLs) for future observations, and upper 
tolerance intervals (UTLs) often used to estimate the environmental parameters of interest including EPC 
terms and BTVs. The use of a statistical method depends upon the environmental parameter(s) being 
estimated or compared. The measures of central tendency (e.g., means, medians, or their UCLs) are used 
to compare site mean concentrations with a cleanup standard, Cs, also representing some central tendency 
measure of a reference area or some other known threshold representing a measure of central tendency. The 
upper threshold values, such as the CLs, alternative concentration limits (ACL), or not-to-exceed values, 
are used when individual point-by-point observations are compared with those threshold values. Depending 
upon whether the environmental parameters (e.g., BTVs, not-to-exceed value, or EPC term) are known or 
unknown, different statistical methods with different data requirements are needed to compare site 
concentrations with pre-established (known) or estimated (unknown) standards and BTVs. Several upper 
limits, and single and two sample hypotheses testing approaches, for both full-uncensored and left-censored 
data sets are available in the ProUCL software package for performing the comparisons described above. 

1.1 Background Data Sets 

Based upon the CSM and regional and expert knowledge about the site, the project team selects background 
or reference areas. Depending upon the site activities and the pollutants, the background area can be site-
specific or a general reference area with conditions comparable to the site before contamination due to site 
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related activities. An appropriate random sample of independent observations (i.i.d) should be collected 
from the background area. A defensible background data set represents a “single” environmental population 
possibly without any outliers. 

Background data set needs to be evaluated for the presence of data caused by reporting and/or laboratory 
errors, and extreme values that are suspects of misrepresenting the observed population. Statistical outlier 
tests give probabilistic evidence for the “misfit” of extreme values. However, their drawback is that they 
assume normal distribution of the data without outliers. This is often not the case with environmental data, 
which tend to be naturally right-skewed. Therefore, statistical outlier tests available in ProUCL should only 
be used to identify potential suspect data points that require further investigation to gain an understanding 
of extreme values in the context of site processes, geology, and historical use. For example, extreme values 
may represent contamination from the site (hot spots). However, it is not unusual for a background to consist 
of different subpopulations due to the presence of varying soil types, textures, vegetation, historical use of 
the site, etc. It may have, therefore, have higher variability than expected in the planning process. 

To obtain representative estimates for the decision-making statistics (e.g., UCLs, UPLs and UTLs), data 
need to be critically evaluated. Following five-step process as described in EPA QA/G-9S (2006) Data 
Quality Assessment: Statistical Methods for Practitioners is recommended: 

• Identify extreme values that may be potential outliers; 

• Apply statistical test; 

• Scientifically review statistical outliers and decide on their disposition; 

• Conduct data analyses with and without statistical outliers; and 

• Document the entire process. 

When calculating BTV, the objective is to compute background statistics based upon a data set which is 
representative of the background population. The occurrence of elevated outliers is not uncommon when 
background samples are collected from various onsite areas (e.g., large Federal Facilities). The proper 
disposition of outliers, to include or not include them in statistical computations, should be decided by the 
project team. The project team may want to compute decision statistics with and without the outliers to 
evaluate the influence of outliers on the decision making statistics. 

A couple of classical outlier tests (Dixon and Rosner tests) are available in ProUCL. These tests assume 
normal distribution of the data without outliers. Therefore, a distribution of the data needs to be verified 
before outlier tests are applied. If the data are not normally distributed, they should be normalized by using 
an appropriate transformation before outlier tests are applied. It is also recommended that these classical 
outlier tests be supplemented with graphical displays such as a box plot and Q-Q plot. The use of 
exploratory graphical displays helps in determining the number of outliers potentially present in a data set. 

An appropriate background data set of a reasonable size (preferably computed using the DQOs processes) 
is needed for the data set to be representative of background conditions and to compute upper limits (e.g., 
estimates of BTVs) and compare site and background data sets using hypotheses testing approaches. A 
background data set should have a minimum of 10 observations, however more observations is preferable. 
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1.2 Site Data Sets 

A data set collected from a site population (e.g., AOC, exposure area [EA], DU, group of MWs) should be 
representative of the population under investigation. Depending upon the areas under investigation, 
different soil depths and soil types may be considered as representing different statistical populations. In 
such cases, background versus site comparisons may have to be conducted separately for each of those sub-
populations (e.g., surface and sub-surface layers of an AOC, clay and sandy site areas). These issues, such 
as comparing depths and soil types, should also be considered in the planning stages when developing 
sampling designs. Specifically, the availability of an adequate amount of representative data is required 
from each of those site sub-populations/strata defined by sample depths, soil types, and other characteristics. 

Site data collection requirements depend upon the objective(s) of the study. Specifically, in background 
versus site comparisons, site data are needed to perform: 

• Point-by-point onsite comparisons with pre-established ALs or estimated BTVs. Typically, this 
approach is used when only a small number (e.g., < 6) of onsite observations are compared 
with a BTV or some other not-to-exceed value. If many onsite values need to be compared with 
a BTV, the recommended upper limit to use is the UTL or upper simultaneous limit (USL) to 
control the false positive error rate (Type I Error Rate). More details can be found in Chapter 
3 of this guidance document. Alternatively, one can use hypothesis testing approaches (Chapter 
6) provided enough observations (at least 10, more are preferred) are available. 

• Single-sample hypotheses tests to compare site data with a pre-established cleanup standards, 
Cs (e.g., representing a measure of central tendency); proportion test to compare site proportion 
of exceedances of an AL with a pre-specified allowable proportion, P0. These hypotheses 
testing approaches are used on site data when enough site observations are available. 
Specifically, when at least 10 (more are desirable) site observations are available; it is 
preferable to use hypotheses testing approaches to compare site observations with specified 
threshold values. The use of hypotheses testing approaches can control both types of error rates 
(Type 1 and Type 2) more efficiently than the point-by-point individual observation 
comparisons. This is especially true as the number of point-by-point comparisons increases. 
This issue is illustrated by the following table summarizing the probabilities of exceedances 
(false positive error rate) of a BTV (e.g., 95th percentile) by onsite observations, even when the 
site and background populations have comparable distributions. The probabilities of these 
chance exceedances increase as the site sample size increases. 

• Two-sample hypotheses tests to compare site data distribution with background data 
distribution to determine if the site concentrations are comparable to background 
concentrations. An adequate amount of data needs to be made available from the site as well 
as the background populations. It is preferable to collect at least 10 observations from each 
population under comparison. Note that if background data sets are re-used for multiple sites, 
the false positive rate may be higher than the user intends. 
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Table 1-1. Probability of at Least One Sample Exceeding a BTV for Various Sample Sizes 

Probability of 
Sample Size Exceedance 

1 0.05 

2 0.10 

5 0.23 

8 0.34 

10 0.40 

12 0.46 

64 0.96 

Notes: From a mathematical point of view, one can perform hypothesis tests on data sets consisting of only 
3-4 data values; however, the reliability of the test statistics (and the conclusions derived) obtained is 
questionable. In these situations, it is suggested to supplement the test statistics decisions with graphical 
displays. 

1.3 Discrete Samples or Composite Samples? 

ProUCL can be used for discrete sample data sets, as well as on composite sample data sets. However, in a 
data set (background or site), samples should be either all discrete or all composite. In general, both discrete 
and composite site samples may be used for individual point-by-point site comparisons with a threshold 
value, and for single and two-sample hypotheses testing applications. 

• When using a single-sample hypothesis testing approach, site data can be obtained by collecting 
all discrete or all composite samples. The hypothesis testing approach is used when many (≥ 
10) site observations are available. Details of the single-sample hypothesis approaches are 
widely available in EPA guidance documents (MARSSIM 2000, EPA 1989a, 2006b). Several 
single-sample hypotheses testing procedures available in ProUCL are described in Chapter 6 
of this document. 

• If a two-sample hypothesis testing approach is used to perform site versus background 
comparisons, then samples from both of the populations should be either all discrete samples, 
or all composite samples. The two-sample hypothesis testing approaches are used when many 
(e.g., at least 10) site, as well as background, observations are available. For better results with 
higher statistical power, the availability of more observations perhaps based upon an 
appropriate DQOs process (EPA 2006a) is desirable. Several two-sample hypotheses tests 
available in ProUCL are described in Chapter 6 of this document. 
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 Aluminum 

 6280 

 Arsenic 

 1.3 

Chromium  

 8.7 

 Iron 

 4600 

 Lead 

 16 

 Manganese 

 39 

 Thallium 

 0.0835 

 Vanadium 

 12 

 3830  1.2  8.1  4330  6.4  30  0.068  8.4 

 3900  2  11  13000  4.9  10  0.155  11 

 5130  1.2  5.1  4300  8.3  92  0.0665  9 

 9310  3.2  12  11300  18  530  0.071  22 

 15300  5.9  20  18700  14  140  0.427  32 

 9730  2.3  12  10000  12  440  0.352  19 

1.4 Upper Limits and Their Use 

The computation and use of statistical limits depend upon their applications and the parameters (e.g., EPC 
term, BTVs) they are supposed to be estimating. Depending upon the objective of the study, a pre-specified 
cleanup standard, Cs, can be viewed as representing: 1) an average (or median) constituent concentration, 
µ0; or 2) a not-to-exceed upper threshold concentration value, A0. These two threshold values, µ0, and A0, 
represent two significantly different parameters, and different statistical methods and limits are used to 
compare the site data with these two very different threshold values. Statistical limits, such as a UCL of the 
population mean, a UPL for an independently obtained “single” observation, or independently obtained “k” 
observations (also called future k observations, next k observations, or k different observations), upper 
percentiles, and UTLs are often used to estimate the environmental parameters: EPC (µ0) and a BTV (A0). 
A new upper limit, USL was included in ProUCL 5.0 which may be used to estimate a BTV based upon a 
well-established background data set representing a single statistical population without any outliers. 

It is important to understand and note the differences between the uses and numerical values of these 
statistical limits so that they can be properly used. The differences between UCLs and UPLs (or upper 
percentiles), and UCLs and UTLs should be clearly understood. A UCL with a 95% confidence limit 
(UCL95) of the mean represents an estimate of the population mean (measure of the central tendency), 
whereas a UPL95, a UTL95%-95% (UTL95-95), and an upper 95th percentile represent estimates of a 
threshold from the upper tail of the population distribution such as the 95th percentile. Here, UPL95 
represents a 95% upper prediction limit, and UTL95-95 represents a 95% confidence limit of the 95th 

percentile. For mildly skewed to moderately skewed data sets, the numerical values of these limits tend to 
follow the order given as follows. 

Sample Mean ≤ UCL95 of Mean ≤ Upper 95th Percentile ≤ UPL95 of a Single Observation ≤ UTL95-95  

Example 1-1. Consider a real data set collected from a Superfund site. The data set has several inorganic 
COPCs, including aluminum (Al), arsenic (As), chromium (Cr), iron (Fe), lead (Pb), manganese (Mn), 
thallium (Tl) and vanadium (V). Iron concentrations follow a normal distribution. This data set has been 
used in several examples throughout the two ProUCL guidance documents (Technical Guide and User 
Guide), therefore it is provided as follows. 

Table 1-2. Example Data Set from Superfund Site. 
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 Aluminum  Arsenic Chromium   Iron  Lead  Manganese  Thallium  Vanadium 

 7840  1.9  11  8900  8.7  130  0.228  17 

 10400  2.9  13  12400  11  120  0.068  21 

 16200  3.7  20  18200  12  70  0.456  32 

 6350  1.8  9.8  7340  14  60  0.067  15 

 10700 2.3 14  10900 14 110  0.0695 21 

 15400  2.4  17  14400  19  340  0.07  28 

 12500  2.2  15  11800  21  85  0.214  25 

 2850  1.1  8.4  4090  16  41  0.0665  8 

 9040  3.7  14  15300  25  66  0.4355  24 

 2700  1.1  4.5  6030  20  21  0.0675  11 

 1710  1  3  3060  11  8.6  0.066  7.2 

 3430  1.5  4  4470  6.3  19  0.067  8.1 

 6790  2.6  11  9230  13  140  0.068  16 

 11600  2.4  16.4  98.5  72.5  0.13 

 4110 1.1 7.6  53.3  27.2  0.068 

 7230  2.1  35.5  109  118  0.095 

 4610  0.66  6.1  8.3  22.5  0.07 

 

    
  

 

   

     
 

   
 
 

         

 

      
    

           
   

Several upper limits for iron are summarized as follows, and it be seen that they follow the order (in 
magnitude) as described above. 

Table 1-3. Computation of Upper Limits for Iron (Normally Distributed). 

Mean Median Min Max UCL95 

UPL95 for a 
Single 

Observation 
UPL95 for 4 

Observations UTL95-95 
95% Upper 
Percentile 

9618 9615 3060 18700 11478 18145 21618 21149 17534 

For highly skewed data sets, these limits may not follow the order described above. This is especially true 
when the upper limits are computed based upon a lognormal distribution (Singh, Singh, and Engelhardt 
1997). It is well known that a lognormal distribution based H-UCL95 (Land’s UCL95) often yields unstable 
and impractically large UCL values. An H-UCL95 often becomes larger than UPL95 and even larger than 
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a UTL 95%-95% and the largest sample value. This is especially true when dealing with skewed data sets 
of smaller sizes. Moreover, it should also be noted that in some cases, a H-UCL95 becomes smaller than 
the sample mean, especially when the data are mildly skewed and the sample size is large (e.g., > 50, 100). 

There is a great deal of confusion about the appropriate use of these upper limits. A brief discussion about 
the differences between the applications and uses of the statistical limits described above is provided as 
follows. 

• A UCL represents an average value that is compared with a threshold value also representing 
an average value (pre-established or estimated), such as a mean Cs. For example, a site 95% 
UCL exceeding a Cs, may lead to the conclusion that the cleanup standard, Cs has not been 
attained by the average site area concentration. It should also be noted that UCLs of means are 
typically computed from the site data set. 

• A UCL represents a “collective” measure of central tendency, and it is not appropriate to 
compare individual site observations with a UCL. Depending upon data availability, single or 
two-sample hypotheses testing approaches are used to compare a site average or a site median 
with a specified or pre-established cleanup standard (single-sample hypothesis), or with the 
background population average or median (two-sample hypothesis). 

• A UPL, an upper percentile, or a UTL represents an upper limit to be used for point-by-point 
individual site observation comparisons. UPLs and UTLs are computed based upon 
background data sets, and point-by-point onsite observations are compared with those limits. 
A site observation exceeding a background UTL may lead to the conclusion that the constituent 
is present at the site at levels greater than the background concentrations level. 

• When enough (e.g., at least 10) site observations are available, it is preferable to use hypotheses 
testing approaches. Specifically, single-sample hypotheses testing (comparing site to a 
specified threshold) approaches should be used to perform site versus a known threshold 
comparison; and two-sample hypotheses testing (provided enough background data are also 
available) approaches should be used to perform site versus background comparison. Several 
parametric and nonparametric single and two-sample hypotheses testing approaches are 
available in ProUCL. 

It is re-emphasized that only averages should be compared with averages or UCLs, and individual site 
observations should be compared with UPLs, upper percentiles, UTLs, or USLs. For example, the 
comparison of a 95% UCL of one population (e.g., site) with a 90% or 95% upper percentile of another 
population (e.g., background) cannot be considered fair and reasonable as these limits (e.g., UCL and UPL) 
estimate and represent different parameters. 

1.5 Point-by-Point Comparison of Site Observations with BTVs, Compliance 
Limits and Other Threshold Values 

The point-by-point observation comparison method is used when a small number (e.g., < 6) of site 
observations are compared with pre-established or estimated BTVs, screening levels, or preliminary 
remediation goals (PRGs). Typically, a single exceedance of the BTV by an onsite (or a monitoring well) 
observation may be considered an indication of the presence of contamination at the site area under 
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investigation. The conclusion of an exceedance by a site value is sometimes confirmed by re-sampling 
(taking a few more collocated samples) at the site location (or a monitoring well) exhibiting constituent 
concentrations in excess of the BTV. If all collocated sample observations (or all sample observations 
collected during the same time period) from the same site location (or well) exceed the BTV or PRG, then 
it may be concluded that the location (well) requires further investigation (e.g., continuing treatment and 
monitoring) and possibly cleanup. 

When BTV constituent concentrations are not known or pre-established, one has to collect a background 
data set of an appropriate size that can be considered representative of the site background. Statistical upper 
limits are computed using the background data set thus obtained, which are used as estimates of BTVs. To 
compute reasonably reliable estimates of BTVs, a minimum of 10 background observations should be 
collected, perhaps using an appropriate DQOs process as described in EPA (2000, 2006a). Several statistical 
limits listed above are used to estimate BTVs based upon a defensible (free of outliers, representing the 
background population) background data set of an adequate size. 

The point-by-point comparison method is also useful when quick turnaround comparisons are required in 
real time. Specifically, when decisions have to be made in real time by a sampling/screening crew, or when 
only a few site samples are available, then individual point-by-point site concentrations are compared either 
with pre-established cleanup goals or with estimated BTVs. The sampling crew can use these comparisons 
to: 1) screen and identify the COPCs, 2) identify the potentially polluted site AOCs, or 3) continue or stop 
remediation or excavation at an onsite area of concern. 

If a larger number of samples (e.g., >10) are available from the AOC, then the use of hypotheses testing 
approaches (both single-sample and a two-sample) is preferred. The use of hypothesis testing approaches 
tends to control the error rates more tightly and efficiently than the individual point-by-point site 
comparisons. 

1.6 Hypothesis Testing Approaches and Their Use 

Both single-sample and two-sample hypotheses testing approaches are used to make cleanup decisions at 
polluted sites, and also to compare constituent concentrations of two (e.g., site versus background) or more 
populations (e.g., MWs). 

1.6.1 Single Sample Hypotheses (Pre-established BTVs and Not-to-Exceed Values are 
Known) 

When pre-established BTVs are used such as the U.S. Geological Survey (USGS) background values 
(Shacklette and Boerngen 1984), or thresholds obtained from similar sites, there is no need to establish or 
collect a background data set. When the BTVs and cleanup standards are known, one-sample hypotheses 
are used to compare site data (provided enough site data are available) with known and pre-established 
threshold values. It is suggested that the project team determine (e.g., using DQOs) or decide (depending 
upon resources) the number of site observations that should be collected and compared with the “pre-
established” standards before coming to a conclusion about the status (clean or polluted) of the site AOCs. 
As mentioned earlier, when the number of available site samples is < 6, one might perform point-by-point 
site observation comparisons with a BTV; and when enough site observations (at least 10) are available, it 
is desirable to use single-sample hypothesis testing approaches. Depending upon the parameter (µ0, A0), 
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represented by the known threshold value, one can use single-sample hypotheses tests for population mean 
or median (t-test, sign test), or use single-sample tests for proportions and percentiles. The details of the 
single-sample hypotheses testing approaches can be found in EPA (2006b) guidance document and in 
Chapter 6 of this document. 

One-Sample t-Test: This test is used to compare the site mean, µ, with some specified cleanup standard, Cs, 

where the Cs represents an average threshold value, µ0. The Student’s t-test (or a UCL of the mean) is used 
(assuming normality of site data set or when sample size is large, such as larger than 30, 50) to verify the 
attainment of cleanup levels at a polluted site after some remediation activities. 

One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test: These tests are nonparametric tests and can 
also handle ND observations, provided the detection limits of all NDs fall below the specified threshold 
value, Cs. These tests are used to compare the site location (e.g., median, mean) with some specified Cs 

representing a similar location measure. 

One-Sample Proportion Test or Percentile Test: When a specified cleanup standard, A0, such as a PRG or 
a BTV represents an upper threshold value of a constituent concentration distribution rather than the mean 
threshold value, µ0, then a test for proportion or a test for percentile (equivalently UTL 95-95 UTL 95-90) 
may be used to compare site proportion (or site percentile) with the specified threshold or action level, A0. 

1.6.2 Two-Sample Hypotheses (BTVs and Not-to-Exceed Values are Unknown) 

When BTVs, not-to-exceed values, and other cleanup standards are not available, then site data are 
compared directly with the background data. In such cases, two-sample hypothesis testing approaches are 
used to perform site versus background comparisons. Note that this approach can be used to compare 
concentrations of any two populations including two different site areas or two different monitoring wells 
(MWs). In order to use and perform a two-sample hypothesis testing approach, enough data should be 
available from each of the two populations. Site and background data requirements (e.g., based upon DQOs) 
for performing two-sample hypothesis test approaches are described in EPA (2000, 2002b, 2006a, 2006b) 
and also in Chapter 6 of this Technical Guide. While collecting site and background data, for better 
representation of populations under investigation, one may also want to account for the size of the 
background area (and site area for site samples) in sample size determination. That is, a larger number (>15-
20) of representative background (and site) samples should be collected from larger background (and site) 
areas; every effort should be made to collect as many samples as determined by the DQOs-based sample 
sizes. 

The two-sample (or more) hypotheses approaches are used when the site parameters (e.g., mean, shape, 
distribution) are being compared with the background parameters (e.g., mean, shape, distribution). The two-
sample hypotheses testing approach is also used when the cleanup standards or screening levels are not 
known a priori. Specifically, in environmental applications, two-sample hypotheses testing approaches are 
used to compare average or median constituent concentrations of two or more populations. To derive 
reliable conclusions with higher statistical power based upon hypothesis testing approaches, an adequate 
amount of data (e.g., minimum of 10 samples) should be collected from all of the populations under 
investigation. 
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The two-sample hypotheses testing approaches incorporated in ProUCL are listed as follows: 

• Student t-test (with equal and unequal variances) – Parametric test assumes normality 

• Wilcoxon-Mann-Whitney (WMW) test – Nonparametric test handles data with NDs with one 
DL - assumes two populations have comparable shapes and variability 

• Gehan test – Nonparametric test handles data sets with NDs and multiple DLs - assumes 
comparable shapes and variability 

• Tarone-Ware (T-W) test – Nonparametric test handles data sets with NDs and multiple DLs -
assumes comparable shapes and variability 

The Gehan and T-W tests are meant to be used on left-censored data sets with multiple DLs. For best results, 
the samples collected from the two (or more) populations should all be of the same type obtained using 
similar analytical methods and apparatus; the collected site and background samples should all be discrete 
or all composite (obtained using the same design and pattern), and be collected from the same medium 
(soil) at similar depths (e.g., all surface samples or all subsurface samples) and time (e.g., during the same 
quarter in groundwater applications) using comparable (preferably same) analytical methods. Good sample 
collection methods and sampling strategies are given in EPA (1996, 2003) guidance documents. 

Note: ProUCL has been developed using limited government funding. ProUCL is equipped with statistical 
and graphical methods needed to address many environmental sampling and statistical issues as described 
in the various CERCLA, MARSSIM, and RCRA documents cited earlier. However, one may not compare 
the availability of methods in ProUCL with methods incorporated in commercial software packages such 
as SAS® and Minitab 16 or open source software for statistical computing R. Not all methods available in 
the statistical literature are available in ProUCL. 

1.7 Minimum Sample Size Requirements and Power Evaluations 

Due to resource limitations, it is not be possible (nor needed) to sample the entire population (e.g., 
background area, site area, AOCs, EAs) under study. Statistics is used to draw inference(s) about the 
populations (clean, dirty) and their known or unknown statistical parameters (e.g., mean, variance, upper 
threshold values) based upon much smaller data sets (samples) collected from those populations. To 
determine and establish BTVs and site specific screening levels, defensible data set(s) of appropriate size(s) 
representing the background population (e.g., site-specific, general reference area, or historical data) need 
to be collected. The project team and site experts should decide what represents a site population and what 
represents a background population. The project team should determine the population area and boundaries 
based upon all current and intended future uses, and the objectives of data collection. Using the collected 
site and background data sets, statistical methods supplemented with graphical displays are used to perform 
site versus background comparisons. The test results and statistics obtained by performing such site versus 
background comparisons are used to determine if the site and background level constituent concentrations 
are comparable; or if the site concentrations exceed the background threshold concentration level; or if an 
adequate amount of remediation approaching the BTV or some cleanup level has been performed at polluted 
site AOCs. 
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To perform statistical tests and compute upper limits, determine the number of samples that need to be 
collected from the populations (e.g., site and background) under investigation using appropriate DQOs 
processes (EPA 2000, 2006a, 2006b). ProUCL has the Sample Sizes module which can be used to develop 
DQOs based sampling designs needed to address statistical issues associated with polluted sites projects. 
ProUCL provides user-friendly options to enter the desired/pre-specified values of decision parameters 
(e.g., Type I and Type II error rates) to determine minimum sample sizes for the selected statistical 
applications including: estimation of mean, single and two-sample hypothesis testing approaches, and 
acceptance sampling. Sample size determination methods are available for the sampling of continuous 
characteristics (e.g., lead or Radium 226), as well as for attributes (e.g., proportion of occurrences exceeding 
a specified threshold). Both parametric (e.g., t-tests) and nonparametric (e.g., Sign test, test for proportions, 
WRS test) sample size determination methods are available in ProUCL 5.2 and in its earlier versions (e.g., 
ProUCL 4.1). ProUCL also has sample size determination methods for acceptance sampling of lots of 
discrete objects such as a batch of drums containing hazardous waste (e.g., RCRA applications, U.S. EPA 
2002c). 

However, due to budgetary or logistical constraints, it may not be possible to collect the same number of 
samples as determined by applying a DQO process. For example, the data might have already been collected 
(as often is the case) without using a DQO process, or due to resource constraints, it may not have been 
possible to collect as many samples as determined by using a DQO-based sample size formula. In practice, 
the project team and the decision makers tend not to collect enough background samples. It is suggested to 
collect at least 10 background observations before using statistical methods to perform background 
evaluations based upon data collected using discrete samples. The minimum sample size recommendations 
described here are useful when resources are limited, and it may not be possible to collect as many 
background and site samples as computed using DQOs based sample size determination formulae. In case 
data are collected without using a DQO process, the Sample Sizes module can be used to assess the power 
of the test statistic in retrospect. Specifically, one can use the standard deviation of the computed test 
statistic (EPA 2006b) and compute the sample size needed to meet the desired DQOs. If the computed 
sample size is greater than the size of the data set used, the project team may want to collect additional 
samples to meet the desired DQOs. 

Note: From a mathematical point of view, the statistical methods incorporated in ProUCL and described in 
this guidance document for estimating EPC terms and BTVs, and comparing site versus background 
concentrations can be performed on small site and background data sets (e.g., of sizes as small as 3). 
However, those statistics may not be considered representative and reliable enough to make important 
cleanup and remediation decisions which will potentially impact human health and the environment. 
ProUCL provides messages when the number of detects is <4-5, and suggests collecting at least 8-10 
observations. Based upon professional judgment, as a rule-of-thumb, ProUCL guidance documents 
recommend collecting a minimum of 10 observations when data sets of a size determined by a DQOs 
process (EPA 2006) cannot be collected. This however, should not be interpreted as the general 
recommendation and every effort should be made to collect DQOs based number of samples. Some recent 
guidance documents (e.g., EPA 2009e) have also adopted this rule-of-thumb and suggest collecting a 
minimum of about 8-10 samples in the circumstance that data cannot be collected using a DQO-based 
process. However, the project team needs to make these determinations based upon their comfort level and 
knowledge of site conditions. 
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r•taiJ probability p 

df .10 .05 .025 .02 .01 

I 3.078 6.314 12,71 15.S9 31.S2 
l 1.886 2.920 4.303 4.849 6.965 
3 1.638 2.353 3.182 3.482 4.541 
4 1.533 2.132 2.776 2.999 3.747 
5 1.476 2.015 2.571 2.757 3.365 
6 1.440 1.9H 2.447 2.612 3.143 
7 1.415 1.895 2.365 2.517 2.998 
8 1.397 I.UC> 2.306 2.449 2.896 
9 1.383 1.833 2.262 2.398 2.82 1 

10 1.372 1.812 2.228 2.359 2.764  

      
 

     
              

To allow users to compute decision statistics using data from ISM (ITRC 2012 and ITRC 2020) samples, 
ProUCL will compute decision statistics (e.g., UCLs, UPLs, UTLs) and conduct hypothesis tests based 
upon samples of sizes as small as 3. Note that if discrete samples are used, the sample size for any statistical 
computation should be at least 8. The user is referred to the ITRC ISM-2 Technical Regulatory Guide 
(2020) for additional information on ISM considerations; however, note that ITRC (2012, 2020) may 
recommend the Chebyshev UCL, which has been shown to grossly overestimate the mean. Refer to Section 
2.4.7 for discussion of the Chebyshev UCL. 

1.7.1 Why a Data Set of Minimum Size, n = 10? 

Typically, the computation of parametric upper limits (UPL, UTL, UCL) depends upon three values: the 
sample mean, sample variability (standard deviation) and a critical value. A critical value depends upon 
sample size, data distribution, and confidence level. For samples of small size (< 10), the critical values are 
large and unstable, and upper limits (e.g., UTLs, UCLs) based upon a data set with fewer than 10 
observations are mainly driven by those critical values. The differences in the corresponding critical values 
tend to stabilize when the sample size becomes larger than 10 (see tables below, where degrees of freedom 
[df] = sample size - 1). This is one of the reasons ProUCL guidance documents suggest a minimum data set 
size of 10 when the number of observations determined from sample-size calculations based upon EPA 
DQO process exceed the logistical/financial/temporal/constraints of a project. For samples of sizes 2-11, 
95% critical values used to compute upper limits (UCLs, UPLs, UTLs, and USLs) based upon a normal 
distribution are summarized in the subsequent tables. In general, a similar pattern is followed for critical 
values used in the computation of upper limits based upon other distributions. 

For the normal distribution, Student's t-critical values are used to compute UCLs and UPLs which are 
summarized as follows. 

Table 1-4. Crititical Values of t-Statistic 

df= sample size-1= (n-1) 

One can see that once the sample size starts exceeding 9-10 (df = 8, 9), the difference between the critical 
values starts stabilizing. For example, for upper tail probability (= level of significance) of 0.05, the 
difference between critical values for df = 9 and df =10 is only 0.021, where as the difference between 
critical values for df= 4 and 5 is 0.117; similar patterns are noted for other levels of significance. For the 
normal distribution, critical values used to compute UTL90-95, UTL95-95, USL90, and USL95 are 
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described as follows. One can see that once the sample size starts exceeding 9-10, the difference between 
the critical values starts decreasing significantly. 

Table 1-5. UTLs Computed Using the t-Statistic (for Normally Distributed Data). 

n UTL90-95 UTL95-95 USL90 USL95 

3 6.155 7.656 1.148 1.153 

4 4.162 5.144 1.425 1.462 

5 3.407 4.203 1.602 1.671 

6 3.006 3.708 1.729 1.822 

7 2.755 3.399 1.828 1.938 

8 2.582 3.187 1.909 2.032 

9 2.454 3.031 1.977 2.11 

10 2.355 2.911 2.036 2.176 

11 2.275 2.815 2.088 2.234 

Note: Nonparametric upper limits (UPLs, UTLs, and USLs) are computed using higher order statistics of a 
data set. To achieve the desired confidence coefficient, samples of sizes much greater than 10 are required. 
For details, refer to Chapter 3. It should be noted that critical values of USLs are significantly lower than 
critical values for UTLs. Critical values associated with UTLs decrease as the sample size increases. Since, 
as the sample size increases the maximum of the data set also increases, and critical values associated with 
USLs increase with the sample size. 

1.7.2 Sample Sizes for Bootstrap Methods 

Several nonparametric methods including bootstrap methods for computing UCL, UTL, and other limits 
for both full-uncensored data sets and left-censored data sets with NDs are available in ProUCL. Bootstrap 
resampling methods are useful when not too few (e.g., < 15-20) and not too many (e.g., > 500-1000) 
observations are available. For bootstrap methods (e.g., percentile method, BCA bootstrap method, 
bootstrap-t method), a large number (e.g., 1000, 2000) of bootstrap resamples are drawn with replacement 
from the same data set. Therefore, to obtain bootstrap resamples with at least some distinct values (so that 
statistics can be computed from each resample), it is suggested that a bootstrap method should not be used 
when dealing with small data sets of sizes less than 15-20. Also, it is not necessary to bootstrap a large data 
set of size greater than 500 or 1000; that is when a data set of a large size (e.g., > 500) is available, there is 
no need to obtain bootstrap resamples to compute statistics of interest (e.g., UCLs). One can simply use a 
statistical method on the original large data set. 

Note: Rules-of-thumb about minimum sample size requirements described in this section are based upon 
professional experience of the developers. ProUCL software is not a policy software. It is recommended 
that the users/project teams/agencies make determinations about the minimum number of observations and 
minimum number of detects that should be present in a data set before using a statistical method. 

21 



    

 
  

      
     

       
 

   
    

  

      
  

      
    

    
    

     

  

   
    

     
     

   
   

  

  
     

       
  

   

    
  

 
 

           
 

  

1.8 Statistical Analyses by a Group ID 

The analyses of data categorized by a group ID variable such as: 1) Surface vs. Subsurface; 2) AOC1 vs. 
AOC2; 3) Site vs. Background; and 4) Upgradient vs. Downgradient monitoring wells are common in 
environmental applications. ProUCL offers this option for data sets with and without NDs. The Group 
Option provides a tool for performing separate statistical tests and for generating separate graphical displays 
for each member/category of the group (samples from different populations) that may be present in a data 
set. The graphical displays (e.g., box plots, quantile-quantile plots) and statistics (e.g., background statistics, 
UCLs, hypotheses tests) of interest can be computed separately for each group by using this option. 
Moreover, using the Group Option, graphical methods can display multiple graphs (e.g., Q-Q plots) on the 
same graph providing graphical comparison of multiple groups. 

It should be pointed out that it is the user’s responsibility to provide an adequate amount of data to perform 
the group operations. For example, if the user desires to produce a graphical Q-Q plot (e.g., using only 
detected data) with regression lines displayed, then there should be at least two detected data values (to 
compute slope, intercept, sd) in the data set. Similarly if the graphs are desired for each group specified by 
the group ID variable, there should be at least two observations in each group specified by the group 
variable. When ProUCL data requirements are not met, ProUCL does not perform any computations, and 
generates a warning message (colored orange) in the lower Log Panel of the output screen of ProUCL. 

1.9 Statistical Analyses for Many Constituents/Variables 

ProUCL software can process multiple analytes/variables simultaneously in a user-friendly manner This 
option is useful when one has to process multiple variables and compute decision statistics (e.g., UCLs, 
UPLs, and UTLs) and test statistics (e.g., ANOVA test, trend test) for multiple variables. It is the user’s 
responsibility to make sure that each selected variable has an adequate amount of data so that ProUCL can 
perform the selected statistical method correctly. ProUCL displays warning messages when a selected 
variable does not have enough data needed to perform the selected statistical method. 

1.10 Use of Maximum Detected Value as Estimates of Upper Limits 

Some practitioners use the maximum detected value as an estimate of the EPC term. This is especially true 
when the sample size is small such as < 5, or when a UCL95 exceeds the maximum detected values (EPA 
1992a). Also, many times in practice, the BTVs and not-to-exceed values are estimated by the maximum 
detected value (e.g., nonparametric UTLs, USLs). 

1.10.1 Use of Maximum Detected Value to Estimate BTVs and Not-to-Exceed Values 

BTVs and not-to-exceed values represent upper threshold values from the upper tail of a data distribution; 
therefore, depending upon the data distribution and sample size, the BTVs and other not-to-exceed values 
may be estimated by the largest or the second largest detected value. A nonparametric UPL, UTL, and USL 
are often estimated by higher order statistics such as the maximum value or the second largest value (EPA 
1992b, 2009, Hahn and Meeker 1991). The use of higher order statistics to estimate the UTLs depends upon 
the sample size. For data sets of size: 1) 59 to 92 observations, a nonparametric UTL95-95 is given by the 
maximum detected value; 2) 93 to 123 observations, a nonparametric UTL95-95 is given by the second 
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largest maximum detected value; and 3) 124 to 152 observations, a UTL95-95 is given by the third largest 
detected value in the sample, and so on. 

1.10.2 Use of Maximum Detected Value to Estimate EPC Terms 

Some practitioners tend to use the maximum detected value as an estimate of the EPC term. This is 
especially true when the sample size is small such as < 5, or when a UCL95 exceeds the maximum detected 
value. Specifically, the EPA (1992a) document suggests the use of the maximum detected value as a default 
value to estimate the EPC term when a 95% UCL (e.g., the H-UCL) exceeds the maximum value in a data 
set. ProUCL computes 95% UCLs of the mean using several methods based upon normal, gamma, 
lognormal, and non-discernible distributions. In the past, a lognormal distribution was used as the default 
distribution to model positively skewed environmental data sets. Additionally, only two methods were used 
to estimate the EPC term based upon: 1) normal distribution and Student’s t-statistic, and 2) lognormal 
distribution and Land’s H-statistic (Land 1971, 1975). The use of the H-statistic often yields unstable and 
impractically large UCL95 of the mean (Singh, Singh, and Engelhardt 1997; Singh, Singh, and Iaci 2002). 
For highly skewed data sets of smaller sizes (< 30, < 50), H-UCL often exceeds the maximum detected 
value. Since the use of a lognormal distribution has been quite common (suggested as a default model in 
the risk assessment guidance for Superfund [RAGS] document [EPA 1992a]), the exceedance of the 
maximum value by an H-UCL95 is frequent for many skewed data sets of smaller sizes (e.g., < 30, < 50). 
These occurrences result in the possibility of using the maximum detected value as an estimate of the EPC 
term. 

It should be pointed out that in some cases, the maximum observed value actually might represent an 
impacted location. Obviously, it is not desirable to use an observation potentially representing an impacted 
location to estimate the EPC for an AOC. The EPC term represents the average exposure contracted by an 
individual over an EA during a long period of time; the EPC term should be estimated by using an average 
value (such as an appropriate 95% UCL of the mean) and not by the maximum observed concentration. 
One needs to compute an average exposure and not the maximum exposure. As can be seen in figures 
described in Appendix B, for data sets of small sizes (e.g., < 10-20), the Max Test (U.S. EPA 1996)does 
not provide the specified 95% coverage to the population mean, and for larger data sets it overestimates the 
EPC term, which may lead to unnecessary further remediation. 

Several methods, some of which are described in EPA (2002a) and other EPA documents, are available in 
versions of ProUCL (i.e., ProUCL 3.00.02 [EPA 2004], ProUCL 4.0 [U.S. EPA 2007], ProUCL 4.00.05 
[EPA 2009c, 2010], ProUCL 4.1 [EPA 2011]) for estimating the EPC terms. For data sets with NDs, 
ProUCL 5.0 and newer versions has some new UCL (and other limits) computation methods which were 
not available in earlier versions of ProUCL. It is unlikely that the UCLs based upon those methods will 
exceed the maximum detected value, unless some outliers are present in the data set. 

1.10.2.1 Alternative UCL95 Computations 

ProUCL 5.2 displays a warning message when the suggested 95% UCL (e.g., Hall’s or bootstrap-t UCL) 
of the mean exceeds the detected maximum concentration. When a 95% UCL does exceed the maximum 
observed value, an alternative UCL computation method may be used. The choice of alternative UCL will 
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depend on the particular data set and may require professional judgement. Practitioners are encouraged to 
contact a statistician for guidance. 

Notes: Using the maximum observed value to estimate the EPC term representing the average exposure 
contracted by an individual over an EA is not recommended. For the sake of interested users, ProUCL 
displays a warning message when the recommended 95% UCL (e.g., Hall’s bootstrap UCL) of the mean 
exceeds the observed maximum concentration. Note that ProUCL no longer recommends the Chebyshev 
UCL. 

1.11 Samples with Nondetect Observations 

ND observations are inevitable in most environmental data sets. Singh, Maichle, and Lee (2006) studied 
the performances (in terms of coverages) of the various UCL95 computation methods including the simple 
substitution methods (such as the DL/2 and DL methods) for data sets with ND observations. They 
concluded that the UCLs obtained using the substitution methods, including the replacement of NDs by 
DL/2; do not perform well even when the percentage of ND observations is low, such as less than 5% to 
10%. They recommended avoiding the use of substitution methods for computing UCL95 based upon data 
sets with ND observations. 

1.11.1 Avoid the Use of the DL/2 Substitution Method to Compute UCL95 

Based upon the results of the report by Singh, Maichle, and Lee (2006), it is recommended to avoid the use 
of the DL/2 substitution method when performing a GOF test, and when computing the summary statistics 
and various other limits (e.g., UCL, UPL, UTLs) often used to estimate the EPC terms and BTVs. Until 
recently, the substitution method has been the most commonly used method for computing various statistics 
of interest for data sets which include NDs. The main reason for this has been the lack of the availability of 
the other rigorous methods and associated software programs that can be used to estimate the various 
environmental parameters of interest. Today, several methods (e.g., using KM estimates) with better 
performance, including bootstrap methods, are available for computing the upper limits of interest. Several 
of those parametric and nonparametric methods are available in ProUCL 4.0 and higher versions. The DL/2 
method is included in ProUCL for historical reasons as it had been the most commonly used and 
recommended method until recently (EPA 2006b). EPA scientists and several reviewers of the ProUCL 
software had suggested and requested the inclusion of the DL/2 substitution method in ProUCL for 
comparison and research purposes. 

Notes: Even though the DL/2 substitution method has been incorporated in ProUCL, its use is not 
recommended due to its poor performance. The DL/2 substitution method has been retained in ProUCL 
5.2 for historical and comparison purposes. NERL-EPA, Las Vegas strongly recommends avoiding the use 
of this method even when the percentage of NDs is as low as 5% to 10%. 

1.11.2 ProUCL Does Not Distinguish between Detection Limits, Reporting limits, or Method 
Detection Limits 

ProUCL 5.2 (and all previous versions) does not make distinctions between method detection limits 
(MDLs), adjusted MDLs, sample quantitation limits (SQLs), reporting limits (RLs), or DLs. Multiple DLs 
(or RLs) in ProUCL mean different values of the detection limits. It is user’s responsibility to understand 
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the differences between these limits and use appropriate values (e.g., DLs) for nondetect values below 
which the laboratory cannot reliably detect/measure the presence of the analyte in collected samples (e.g., 
soil samples). A data set consisting of values less than the DLs (or MDLs, RLs) is considered a left-censored 
data set. ProUCL uses statistical methods available in the statistical literature for left-censored data sets for 
computing statistics of interest including mean, sd, UCL, and estimates of BTVs. 

The user determines which qualifiers (e.g., J, U, UJ) will be considered as nondetects. Typically, all values 
with U or UJ qualifiers are considered as nondetect values. It is the user's responsibility to enter a value 
which can be used to represent a ND value. For NDs, the user enters the associated DLs or RLs (and not 
zeros or half of the detection limits). An indicator column/variable, D_x taking a value, 0, for all nondetects 
and a value, 1, for all detects is assigned to each variable, x, with NDs. It is the user’s responsibility to 
supply the numerical values for NDs (should be entered as reported DLs) not qualifiers (e.g., J, U, B, UJ). 
For example, for thallium with nondetect values, the user creates an associated column labeled as 
D_thallium to tell the software that the data set will have nondetect values. This column, D_thallium 
consists of only zeros (0) and ones (1); zeros are used for all values reported as NDs and ones are used for 
all values reported as detects. 

1.12 Samples with Low Frequency of Detection 

When all of the sampled values are reported as NDs, the EPC term and other statistical limits should also 
be reported as a ND value, perhaps by the maximum RL or the maximum RL/2. The project team will need 
to make this determination. Statistics (e.g., UCL95) based upon only a few detected values (e.g., < 4) cannot 
be considered reliable enough to estimate EPCs which can have a potential impact on human health and the 
environment. When the number of detected values is small, it is preferable to use ad hoc methods rather 
than using statistical methods to compute EPCs and other upper limits. Specifically, for data sets consisting 
of < 4 detects and for small data sets (e.g., size < 10) with low detection frequency (e.g., < 10%), the project 
team and the decision makers should decide, on a site-specific basis, how to estimate the average exposure 
(EPC) for the constituent and area under consideration. For data sets with low detection frequencies, other 
measures such as the median or mode represent better estimates (with lesser uncertainty) of the population 
measure of central tendency. 

Additionally, when most (e.g., > 95%) of the observations for a constituent lie below the DLs, the sample 
median or the sample mode (rather than the sample average) may be used as an estimate of the EPC. Note 
that when the majority of the data are NDs, the median and the mode may also be represented by a ND 
value. The uncertainty associated with such estimates will be high. The statistical properties, such as the 
bias, accuracy, and precision of such estimates, would remain unknown. In order to be able to compute 
defensible estimates, it is always desirable to collect more samples. 

1.13 Some Other Applications of Methods in ProUCL 5.2 

In addition to performing background versus site comparisons for CERCLA and RCRA sites, performing 
trend evaluations based upon time-series data sets, and estimating EPCs in exposure and risk evaluation 
studies, the statistical methods in ProUCL can be used to address other issues dealing with environmental 
investigations that are conducted at Superfund or RCRA sites. 
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1.13.1 Identification of COPCs 

Risk assessors and remedial project managers (RPMs) often use screening levels or BTVs to identify 
COPCs during the screening phase of a cleanup project at a contaminated site. The screening for COPCs is 
performed prior to any characterization and remediation activities that are conducted at the site. This 
comparison is performed to screen out those constituents that may be present in the site medium of interest 
at low levels (e.g., at or below the background levels or some pre-established screening levels) and may not 
pose any threat and concern to human health and the environment. Those constituents may be eliminated 
from all future site investigations, and risk assessment and risk management studies. 

To identify the COPCs, point-by-point site observations are compared with some pre-established soil 
screening levels (SSL) or estimated BTVs. This is especially true when the comparisons of site 
concentrations with screening levels or BTVs are conducted in real time by the sampling or cleanup crew 
onsite. The project team should decide the type of site samples (discrete or composite) and the number of 
site observations that should be collected and compared with the screening levels or the BTVs. In case 
BTVs or screening levels are not known, the availability of a defensible site-specific background or 
reference data set of reasonable size (e.g., at least 10) is required for computing reliable and representative 
estimates of BTVs and screening levels. The constituents with concentrations exceeding the respective 
screening values or BTVs may be considered COPCs, whereas constituents with concentrations (e.g., in all 
collected samples) lower than the screening values or BTVs may be omitted from all future evaluations. 

1.13.2 Identification of Non-Compliance Monitoring Wells 

In MW compliance assessment applications, individual (often discrete) constituent concentrations from a 
MW are compared with some pre-established limits such as an ACL or a maximum concentration limit 
(MCL). An exceedance of the MCL or the BTV (e.g., estimated by a UTL95-95 or a UPL95) by a MW 
concentration may be considered an indication of contamination in that MW. For individual concentration 
comparisons, the presence of contamination (determined by an exceedance) may have to be confirmed by 
re-sampling from that MW. If concentrations of constituents in the original sample and re-sample(s) exceed 
the MCL or BTV, then that MW may require further scrutiny, perhaps triggering remediation activates. If 
the concentration data from a MW for 4 to 5 continuous quarters (or some other designated time period 
determined by the project team) are below the MCL or BTV level, then that MW may be considered as 
complying with (achieving) the pre-established or estimated standards. 

1.13.3 Verification of the Attainment of Cleanup Standards, Cs 

Hypothesis testing approaches are used to verify the attainment of the cleanup standard, Cs, at site AOCs 
after conducting remediation and cleanup at those site AOCs (EPA 1989a, 1994). In order to assess the 
attainment of cleanup levels, a representative data set of adequate size perhaps obtained using the DQO 
process (or a minimum of 10 observations should be collected) needs to be made available from the 
remediated/excavated areas of the site under investigation. The sample size should also account for the size 
of the remediated site areas: meaning that larger site areas should be sampled more (with more observations) 
to obtain a representative sample of the remediated areas under investigation. Typically, the null hypothesis 
of interest is H0: Site Mean, µs ≥ Cs versus the alternative hypothesis, H1: Site Mean, µs < Cs, where the 
cleanup standard, Cs, is known a priori. 
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1.13.4 Using BTVs (Upper Limits) to Identify Hot Spots 

The use of upper limits (e.g., UTLs) to identify hot spot(s) has also been mentioned in the Guidance for 
Comparing Background and Chemical Concentrations in Soil for CERCLA Sites (EPA 2002b). Point-by-
point site observations are compared with a pre-established or estimated BTV. Exceedances of the BTV by 
site observations may represent impacted locations with elevated concentrations (hot spots). 

1.14 Some General Issues, Suggestions and Recommendations made by ProUCL 

Some general issues regarding the handling of multiple DLs by ProUCL and recommendations made about 
various substitution and ROS methods for data sets with NDs are described in the following sections. 

1.14.1 Handling of Field Duplicates 

ProUCL does not pre-process field duplicates. The project team determines how field duplicates will be 
handled and pre-processes the data accordingly. For an example, if the project team decides to use average 
values for field duplicates, then averages need to be computed and field duplicates need to be replaced by 
their respective average values. It is the user's responsibility to feed in appropriate values (e.g., averages, 
maximum) for field duplicates. The user is advised to refer to the appropriate EPA guidance documents 
related to collection and use of field duplicates for more information. 

1.14.2 ProUCL Recommendation about ROS Method and Substitution (DL/2) Method 

For data sets with NDs, ProUCL can compute point estimates of population mean and standard deviation 
using the KM and ROS methods (and also using the DL/2 substitution method). The substitution method 
has been retained in ProUCL for historical and research purposes. ProUCL uses Chebyshev inequality, 
bootstrap methods, and normal, gamma, and lognormal distribution-based equations on KM (or ROS) 
estimates to compute upper limits (e.g., UCLs, UTLs). The simulation study conducted by Singh, Maichle 
and Lee (2006) demonstrated that the KM method yields accurate estimates of the population mean. They 
also demonstrated that for moderately skewed to highly skewed data sets, UCLs based upon KM estimates 
and BCA bootstrap (mild skewness), KM estimates and Chebyshev inequality (moderate to high skewness), 
and KM estimates and bootstrap-t method (moderate to high skewness) yield better (in terms of coverage 
probability) estimates of EPCs than other UCL methods based upon the Student's t-statistic on KM 
estimates, percentile bootstrap method on KM or ROS estimates. 

1.14.3 Unhandled Exceptions and Crashes in ProUCL 

A typical statistical software, especially developed under limited resources may not be able to accommodate 
data sets with all kinds of deficiencies such as all missing values for a variable, or all nondetect values for 
a variable. An inappropriate/insufficient data set can occur in various forms and not all of them can be 
addressed in a scientific program like ProUCL. Specifically, from a programming point of view, it can be 
quite burdensome on the programmer to address all potential deficiencies that can occur in a data set. 
ProUCL addresses many data deficiencies and produces warming messages. All data deficiencies causing 
unhandled exceptions which were identified by users have been addressed in ProUCL. However, when 
ProUCL yields an unhandled exception or crashes, it is highly likely that there is something wrong with the 
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data set; the user is advised to review the input data set to make sure that the data set follows ProUCL data 
and formatting requirements.  

1.14.4 95% UCL (UCL95) Computed by ProUCL and NADA Packages in R and for Minitab 

The fundamental assumption when computing a UCL95 (by any software) of mean is that the data set used 
represents a single statistical population. Simulation results used to make the suggestions regarding the 
selection of an appropriate UCL95 do not cover data sets representing multiple populations (with varying 
means and standard deviations). Typically, a mixture data set representing multiple populations cannot be 
modeled by a known probability distribution (e.g., normal, gamma, ...) Since the suggestions made by 
ProUCL are based upon simulation experiments, they may not cover all “Real-World” data sets, especially 
highly skewed nonparametric data sets. For such data sets, it is recommended that the project team seek 
advice from a qualified statistician. In some cases, the project team may want to make decisions on a case-
by-case basis using their expert knowledge about the Site. 

It is noted that NADA packages developed by Practical Stats in R and for Minitab (e.g., Helsel, 2012]) 
compute 95% UCLs using simple z-statistic, t-statistic, and some bootstrap methods (e.g., standard or 
percentile bootstrap). For moderately skewed to highly skewed data sets, these simple 95% UCLs fail to 
provide the desired 95% coverage (confidence) to the population mean. Commercial software packages 
(e.g., SAS and Minitab, NADA) compute 95% UCLs of mean without automatically performing goodness-
of-fit (GOF) tests and do not make any suggestions/recommendations about the use of a UCL. The users 
are expected to make their own selection of a UCL95 to estimate EPC terms. It is suggested that even for 
well-behaved (e.g., without outliers representing a single population) data sets, one should not use ProUCL 
(and other software packages) as a black box tool. One should use graphical displays (to identify potential 
patterns present in the data set), perform GOF tests and outlier tests before computing decision making 
statistics (e.g., UCL, UPL, and UTL). Once the project team has made a decision about the disposition 
(include or not include) of identified outliers, one computes decision statistics based upon GOF test results. 
For complex data sets (e.g., with outliers, multiple populations, negative values, and/or nondetects), it is 
advised to use expert advice of qualified statisticians. 

For skewed to highly skewed nonparametric data sets, ProUCL computes and displays 95% UCLs applying 
bootstrap-t and Hall’s bootstrap methods and using the Chebyshev inequality. UCLs based upon bootstrap-
t and Hall’s bootstrap methods tend to get distorted, resulting in elevated values, when outliers are present 
in the data set. Also, UCLs based upon all bootstrap methods become unreliable when negative values are 
present in a data set. When the data set is determined not to follow a normal, gamma, or lognormal 
distribution, the Student’s t-UCL is recommended. In the absence of reasonable assumptions about the 
underlying distribution of the data, it is reasonable to use the CLT for UCL computations. After all, the 
UCL is an estimate of the mean, and the mean tends toward a normal distribution (Section 2.5.1). 

1.15 The Unofficial User Guide to ProUCL4 (Helsel and Gilroy 2012) 

Several ProUCL 4.1 users sent inquiries about the validity of the comments made about the ProUCL 
software in the Unofficial User Guide to ProUCL4 (Helsel and Gilroy, 2012) and in the Practical Stats 
webinar, "ProUCL v4: The Unofficial User Guide," presented by Dr. Helsel on October 15, 2012 (Helsel 
2012a). Their inquiries led us to review comments made about the ProUCL4 software and its associated 
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guidance documents (EPA 2007, 2009a, 2009b, 2010c, 2010d, and 2011) in the “The Unofficial Users 
Guide to ProUCL4” and in the webinar, "ProUCL v4: The Unofficial User Guide". These two documents 
collectively are referred to as the Unofficial ProUCLv4 User Guide in this ProUCL document. The pdf 
document describing the material presented in the Practical Stats Webinar (Helsel 2012a) was downloaded 
from the http://www.practicalstats.com website. 

In the "ProUCL v4: The Unofficial User Guide", comments have been made about the software and its 
guidance documents, therefore, it is appropriate to address those comments in the present ProUCL guidance 
document. It is necessary to provide the detailed response to assure that: 1) rigorous statistical methods are 
used to compute decision making statistics; and 2) the methods incorporated in ProUCL software are not 
misrepresented and misinterpreted. Some general responses and comments about the material presented in 
the webinar and in the Unofficial User Guide to ProUCLv4 are described as follows. Specific comments 
and responses are also considered in the respective chapters of ProUCL guidance documents. 

Note: It is noted that the Kindle version of "ProUCL v4: Unofficial User Guide" is no longer available on 
Amazon. Several incorrect theoretical statements and statements misrepresenting ProUCL 4 were made in 
that Unofficial User Guide; therefore, a brief response to some of those statements has been retained in 
ProUCL guidance documents. 

ProUCL is a freeware software package which has been developed under limited government funding to 
address statistical issues associated with various environmental site projects. Not all statistical methods 
(e.g., Levene test) described in the statistical literature have been incorporated in ProUCL. One should not 
compare ProUCL with commercial software packages which are expensive and not as user-friendly as the 
ProUCL software when addressing environmental statistical issues. The existing and some new statistical 
methods based upon the research conducted by ORD-NERL, EPA Las Vegas during the last couple of 
decades have been incorporated in ProUCL to address the statistical needs of various environmental site 
projects and research studies. Some of those new methods may not be available in text books, in the library 
of programs written in R-script, and in commercial software packages. However, those methods are 
described in detail in the cited published literature and also in the ProUCL Technical Guides (e.g., EPA 
2007, 2009a, 2009b, 2010c, 2010d, and 2011). Even though for uncensored data sets, programs which 
compute gamma distribution based UCLs and UPLs are available in R Script, programs which compute a 
95% UCL of mean based upon a gamma distribution on KM estimates are not as easily available. 

In the Unofficial ProUCL v4 User Guide, several statements have been made about percentiles. There are 
several ways to compute percentiles. Percentiles computed by ProUCL may or may not be identical (don't 
have to be) to percentiles computed by NADA for R (Helsel 2013) or described in Helsel and Gilroy (2012). 
To address users' requests, ProUCL 4.1 (2011) and its higher versions compute percentiles that are 
comparable to the percentiles computed by Excel 2003 and higher versions. 

The literature search suggests that there are a total of nine (9) known types of percentiles, i.e., 9 different 
methods of calculating percentiles in statistics literature (Hyndman and Fan, 1996). The R programming 
language (R Core Team 2012) computes percentiles using those 9 methods using the following statement 
in R 

Quantile (x, p, type=k) where p = percentile, k = integer between 1 - 9 
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ProUCL computes percentiles using Type 7; Minitab 16 and SPSS compute percentiles using Type 6. It is 
simply a matter of choice, as there is no 'best' type to use. Many software packages use one type for 
calculating a percentile, and another for generating a box plot (Hyndman and Fan 1996). 

An incorrect statement "By definition, the sample mean has a 50% chance of being below the true 
population mean" has been made in Helsel and Gilroy (2012) and also in Helsel (2012a). The above 
statement is not correct for means of skewed distributions (e.g., lognormal or gamma) commonly occurring 
in environmental applications. Since Helsel (2012b) prefers to use a lognormal distribution, the 
incorrectness of the above statement has been illustrated using a lognormal distribution. The mean and 
median of a lognormal distribution (details in Section 2.3.2 of Chapter 2 of this Technical Guide) are given 
by: 

= 𝑒𝑒�µ+0.5∙𝜎𝜎2�mean = µ1 

median = M = 𝑒𝑒µ 

From the above equations, it is clear that the mean of a lognormal distribution is always greater than the 
median for all positive values of σ (sd of log-transformed variable). Actually the mean is greater than the 
pth percentile when σ >2zp. For example, when p = 0.80, zp = 0.845, and mean of a lognormal distribution, 
μ1 exceeds x0.80, the 80th percentile when σ > 1.69. In other words, when σ > 1.69 the lognormal mean will 
exceed the 80th percentile of a lognormal distribution. Here zp represents the pth percentile of the standard 
normal distribution (SND) with mean 0 and variance 1. 

To demonstrate the incorrectness of the above statement, a small simulation study was conducted. The 
distribution of sample means based upon samples of size 100 were generated from lognormal distributions 
with µ =4, and varying skewness. The experiment was performed 10,000 times to generate the distributions 
of sample means. The probabilities of sample means less than the population means were computed. The 
following results are noted. 

Table 1-6. Probabilities 𝑷𝑷(𝒙𝒙� < 𝝁𝝁) Computed for Lognormal Distributions with 𝝁𝝁 = 𝟒𝟒 and Varying 
Values of 𝝈𝝈 

Parameter 

µ=4, σ=0.5 

µ1=61.86 

σ1=32.97 

µ=4, σ=1 

µ1=90.017 
σ1=117.997 

µ=4,σ=1.5 

µ1=168.17 
σ1=489.95 

µ=4,σ=2 

µ1=403.43 
σ1=2953.53 

µ=4,σ=2.5 

µ1=1242.65, 
σ1=28255.23 

(p x < µ )1 0.519 0.537 0.571 0.651 0.729 

Mean 61.835 89.847 168.70 405.657 1193.67 

Median 61.723 89.003 160.81 344.44 832.189 

*Results are based upon 10000 Simulation Runs for Each Lognormal Distribution Considered

The probabilities summarized in the above table demonstrate that the statement about the mean made in 
Helsel and Gilroy (2012) is incorrect. 
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Graphical Methods: Graphical methods are available in ProUCL as exploratory tools which can be 
generated for both uncensored and left-censored data sets. Exploratory graphical methods are used to 
understand possible patterns present in data sets and not to compute statistics used in the decision making 
process. The Unofficial ProUCL Guide makes several comments about box plots and Q-Q plots 
incorporated in ProUCL. The Unofficial ProUCL Guide states that all graphs with NDs are incorrect. These 
statements are misleading and incorrect. The intent of the graphical methods in ProUCL is exploratory for 
the purpose of gaining information (e.g., outliers, multiple populations, data distribution, patterns, and 
skewness) about a data set. Based upon the data displayed (ProUCL displays a message [e.g., as a sub-title] 
in this regard) on those graphs, all statistics shown on those graphs generated by ProUCL are correct. 

Box Plots: In statistical literature, one can find several ways to generate box plots. The practitioners may 
have their own preferences to use one method over the other. All box plot methods including the one in 
ProUCL convey the same information about the data set (outliers, mean, median, symmetry, skewness). 
ProUCL uses a couple of development tools such as FarPoint spread (for Excel type input and output 
operations) and ChartFx (for graphical displays); and ProUCL generates box plots using the built-in box 
plot feature in ChartFx. For all practical and exploratory purposes, box plots in ProUCL are equally good 
(if not better) as those available in the various commercial software packages, for examining data 
distribution (skewed or symmetric), identifying outliers, and comparing multiple groups (main objectives 
of box plots in ProUCL). 

As mentioned earlier, it is a matter of choice of using percentiles/quartiles to construct a box plot. There is 
no 'best' method for constructing a box plot. Many software packages use one method (out of 9 as specified 
above) for calculating a percentile, and another for constructing a box plot (Hyndman and Fan 1996). 

Q-Q plots: All Q-Q plots incorporated in ProUCL are correct and of high quality. In addition to identifying 
outliers, Q-Q plots are also used to assess data distributions. Multiple Q-Q plots are useful for performing 
point-by-point comparisons of grouped data sets, unlike box plots based upon the five-point summary 
statistics. ProUCL has Q-Q plots for normal, lognormal, and gamma distributions - not all of these graphical 
capabilities are directly available in other software packages such as NADA for R (Helsel 2013). ProUCL 
offers several exploratory options for generating Q-Q plots for data sets with NDs. Only detected outlying 
observations may require additional investigation; therefore, from an exploratory point of view, ProUCL 
can generate Q-Q plots excluding all NDs (and other options). Under this scenario there is no need to retain 
place holders (computing plotting positions used to impute NDs) as the objective is not to impute NDs. To 
impute NDs, ProUCL uses ROS methods (Gamma ROS and log ROS) requiring place holders; and ProUCL 
computes plotting positions for all detects and NDs to generate a proper regression model which is used to 
impute NDs. Also for comparison purposes, ProUCL can be used to generate Q-Q plots on data sets 
obtained by replacing NDs by their respective DLs or DL/2s. In these cases, no NDs are imputed, and there 
is no need to retain placeholders for NDs. On these Q-Q plots, ProUCL displays some relevant statistics 
which are computed based upon the data displayed on those graphs. 

Helsel (2012a) states that the Summary Statistics module does not display KM estimates and that statistics 
based upon logged data are useless. Typically, estimates computed after processing the data do not represent 
summary statistics. Therefore, KM and ROS estimates are not displayed in the Summary Statistics 
module. These statistics are available in several other modules including the UCL and BTV modules. At 
the request of several users, summary statistics are computed based upon logged data. It is believed that the 
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mean, median, or standard deviation of logged data do provide useful information about data skewness and 
data variability. 

To test for the equality of variances, the F-test, as incorporated in ProUCL, performs fairly well and the 
inclusion of the Levene's (1960) test will not add any new capability to the ProUCL software. Therefore, 
taking budget constraints into consideration, Levene's test has not been incorporated in the ProUCL 
software. 

Although it makes sense to first determine if the two variances are equal or unequal, this is not a requirement 
to perform a t-test. The t-distribution based confidence interval or test for µ1 - µ2 based on the pooled sample 
variance does not perform better than the approximate confidence intervals based upon Satterthwaite's test. 
Hence testing for the equality of variances is not required to perform a two-sample t-test. The use of Welch-
Satterthwaite's or Cochran's method is recommended in all situations (see Hayes 2005). 

Helsel (2012a) suggests that imputed NDs should not be made available to the users. The developers of 
ProUCL and other researchers like to have access to imputed NDs. As a researcher, for exploratory purposes 
only, one may want to have access to imputed NDs to be used in exploratory advanced methods such as 
multivariate methods including data mining, cluster and principal component analyses. It is noted that one 
cannot easily perform exploratory methods on multivariate data sets with NDs. The availability of imputed 
NDs makes it possible for researchers and scientists to identify potential patterns present in complex 
multivariate data by using data mining exploratory methods on those multivariate data sets with NDs. 
Additional discussion on this topic is considered in Chapter 4 of this Technical Guide. 

The statements summarized above should not be misinterpreted. One may not use parametric hypothesis 
tests such as a t-test or a classical ANOVA on data sets consisting of imputed NDs. These methods require 
further investigation as the decision errors associated with such methods remain unquantified. There are 
other methods such as the Gehan and T-W tests in ProUCL which are better suited to perform two-sample 
hypothesis tests using data sets with multiple detection limits. 

Outliers: Helsel (2012a) and Helsel and Gilroy (2012) make several comments about outliers. The 
philosophy (with input from EPA scientists) of the developers of ProUCL about the outliers in 
environmental applications is that those outliers (unless they represent typographical errors) may potentially 
represent impacted (site related or otherwise) locations or monitoring wells or naturally-occuring 
background that differs naturally in non-impacted areas, and therefore may require further investigation. 

The presence of outliers in a data set tends to destroy the normality of the data set. In other words, a data 
set with outliers can seldom (may be when outliers are mild, lying around the border of the central and tail 
parts of a normal distribution) follow a normal distribution. There are modern robust and resistant outlier 
identification methods (e.g., Rousseeuw and Leroy 1987; Singh and Nocerino 1995) which are better suited 
to identify outliers present in a data set; several of those robust outlier identification methods are available 
in the Scout 2008 version 1.0 (EPA 2009d) software package. 

For both Rosner and Dixon tests, it is the data set (also called the main body of the data set) obtained after 
removing the outliers (and not the data set with outliers) that needs to follow a normal distribution (Barnett 
and Lewis 1994). Outliers are not known in advance. ProUCL has normal Q-Q plots which can be used to 
get an idea about potential outliers (or mixture populations) present in a data set. However, since a 
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lognormal model tends to accommodate outliers, a data set with outliers can follow a lognormal 
distribution; this does not imply that the outlier which may actually represent an impacted/unusual location 
does not exist! In environmental applications, outlier tests should be performed on raw data sets, as the 
cleanup decisions need to be made based upon values in the raw scale and not in log-scale or some other 
transformed space. More discussion about outliers can be found in Chapter 7 of this Technical Guide. 

In Helsel (2012a), it is stated, "Mathematically, the lognormal is simpler and easier to interpret than the 
gamma (opinion)." We do agree with the opinion that the lognormal is simpler and easier to use but the log-
transformation is often misunderstood and hence incorrectly used and interpreted. Numerous examples 
(e.g., Example 2-1 and 2-2, Chapter 2) are provided in the ProUCL guidance documents illustrating the 
advantages of the using a gamma distribution. 

It is further stated in Helsel (2012a) that ProUCL prefers the gamma distribution because it downplays 
outliers as compared to the lognormal. This argument can be turned around - in other words, one can say 
that the lognormal is preferred by practitioners who want to inflate the effect of the outlier. Setting this 
argument aside, we prefer the gamma distribution as it does not transform the variable so the results are in 
the same scale as the collected data set. As mentioned earlier, log-transformation does appear to be simpler 
but problems arise when practitioners are not aware of the pitfalls (e.g., Singh and Ananda 2002; Singh, 
Singh, and Iaci 2002) associated with the use of lognormal distribution. 

Helsel (2012a) and Helsel and Gilroy (2012) state that "lognormal and gamma are similar, so usually if one 
is considered possible, so is the other." This is another incorrect and misleading statement; there are 
significant differences in the two distributions and in their mathematical properties. Based upon the 
extensive experience in environmental statistics and published literature, for skewed data sets that follow 
both lognormal and gamma distributions, the developers favor the use of the gamma distribution over the 
lognormal distribution. The use of the gamma distribution based decision statistics is preferred to estimate 
the environmental parameters (mean, upper percentile). A lognormal model tends to hide contamination by 
accommodating outliers and multiple populations whereas a gamma distribution adjusts for skewness but 
tends not to accommodate contamination (elevated values) as can be seen in Examples 2-1 and 2-2 of 
Chapter 2 of this Technical Guide. The use of the lognormal distribution on a data set with outliers tends to 
yield inflated and distorted estimates which may not be protective of human health and the environment; 
this is especially true for skewed data sets of small of sizes <20-30; the sample size requirement increases 
with skewness. 

In the context of computing a UCL95 of mean, Helsel and Gilroy (2012) and Helsel (2012a) state that 
GROS and LROS methods are probably never better than the KM method. It should be noted that these 
three estimation methods compute estimates of mean and standard deviation and not the upper limits used 
to estimate EPCs and BTVs. The use of the KM method does yield good estimates of the mean and standard 
deviation as noted by Singh, Maichle, and Lee (2006). The problem of estimating mean and standard 
deviation for data sets with nondetects has been studied by many researchers as described in Chapter 4 of 
this document. Computing good estimates of mean and sd based upon left-censored data sets addresses only 
half of the problem. The main issue is to compute decision statistics (UCL, UPL, UTL) which account for 
uncertainty and data skewness inherently present in environmental data sets. 
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Realizing that for skewed data sets, Student's t-UCL, CLT-UCL, and standard and percentile bootstrap 
UCLs do not provide the specified coverage to the population mean for uncensored data sets, many 
researchers (e.g., Johnson 1978; Chen 1995; Efron and Tibshirani 1993; Hall [1988, 1992]; Grice and Bain 
1980; Singh, Singh, and Engelhardt 1997; Singh, Singh, and Iaci 2002) developed parametric (e.g., gamma) 
and nonparametric (e.g., bootstrap-t and Hall's bootstrap method, modified-t, and Chebyshev inequality) 
methods for computing confidence intervals and upper limits which adjust for data skewness. One cannot 
ignore the work and findings of the researchers cited above, and assume that Student's t-statistic based upper 
limits or percentile bootstrap method based upper limits can be used for all data sets with varying skewness 
and sample sizes. 

Analytically, it is not feasible to compare the various estimation and UCL computation methods for skewed 
data sets containing ND observations. Instead, researchers use simulation experiments to learn about the 
distributions and performances of the various statistics (e.g., KM-t-UCL, KM-percentile bootstrap UCL, 
KM-bootstrap-t UCL, KM-Gamma UCL). Based upon the suggestions made in published literature and 
findings summarized in Singh, Maichle, and Lee (2006), it is reasonable to state and assume that the 
findings of the simulation studies performed on uncensored skewed data sets comparing the performances 
of the various UCL computation methods can be extended to skewed left-censored data sets. 

Like uncensored skewed data sets, for left-censored data sets, ProUCL has several parametric and 
nonparametric methods to compute UCLs and other limits which adjust for data skewness. Specifically, 
ProUCL uses KM estimates in gamma equations; in the bootstrap-t method, and in the Chebyshev 
inequality to compute upper limits for left-censored skewed data sets. 

Helsel (2012a) states that ProUCL 4 is based upon presuppositions. It is emphasized that ProUCL does not 
make any suppositions in advance. Due to the poor performance of a lognormal model, as demonstrated in 
the literature and illustrated via examples throughout ProUCL guidance documents, the use of a gamma 
distribution is preferred when a data set can be modeled by a lognormal model and a gamma model. To 
provide the desired coverage (as close as possible) for the population mean, in earlier versions of ProUCL 
(version 3.0), in lieu of H-UCL, the use of Chebyshev UCL was suggested for moderately and highly 
skewed data sets. In later (3.00.02 and higher) versions of ProUCL, depending upon skewness and sample 
size, for gamma distributed data sets, the use of the gamma distribution was suggested for computing the 
UCL of the mean. 

Upper limits (e.g., UCLs, UPLs, UTLs) computed using the Student's t statistic and percentile bootstrap 
method (Helsel 2012b, NADA for R, 2013) often fail to provide the desired coverage (e.g., 95% confidence 
coefficient) to the parameters (mean, percentile) of most of the skewed environmental populations. It is 
suggested that the practitioners compute the decision making statistics (e.g., UCLs, UTLs) by taking: data 
distribution; data set size; and data skewness into consideration. For uncensored and left-censored data sets, 
several such upper limits computation methods are available in ProUCL 5.2 and its earlier versions. 

Contrary to the statements made in Helsel and Gilroy (2012), ProUCL software does not favor statistics 
which yield higher (e.g., nonparametric Chebyshev UCL) or lower (e.g., preferring the use of a gamma 
distribution to using a lognormal distribution) estimates of the environmental parameters (e.g., EPC and 
BTVs). The main objectives of the ProUCL software funded by the U.S. EPA is to compute rigorous 
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decision statistics to help the decision makers and project teams in making sound decisions which are cost-
effective and protective of human health and the environment. 

Cautionary Note: Practitioners and scientists are cautioned about: 1) the suggestions made about the 
computations of upper limits described in some recent environmental literature such as the NADA books 
(Helsel [2005, 2012]); and 2) the misleading comments made about the ProUCL software in the training 
courses offered by Practical Stats during 2012 and 2013. Unfortunately, comments about ProUCL made by 
Practical Stats during their training courses lack professionalism and theoretical accuracy. It is noted that 
NADA packages in R and Minitab (2013) developed by Practical Stats do not offer methods which can be 
used to compute reliable or accurate decision statistics for skewed data sets. Decision statistics (e.g., UCLs, 
UTLs, UPLs) computed using the methods (e.g., UCLs computed using percentile bootstrap, and KM and 
LROS estimates and t-critical values) described in the NADA books and incorporated in NADA packages 
do not take data distribution and data skewness into consideration. The use of statistics suggested in NADA 
books and in Practical Stats training sessions often fail to provide the desired specified coverage to 
environmental parameters of interest for moderately skewed to highly skewed populations. Conclusions 
derived based upon those statistics may lead to incorrect conclusions which may not be cost-effective or 
protective of human health and the environment. 

Page 75 (Helsel [2012]): One of the reviewers of the ProUCL 5.0 software drew our attention to the 
following incorrect statement made on page 75 of Helsel (2012b): 

"If there is only 1 reporting limit, the result is that the mean is identical to a substitution of the reporting 
limit for censored observations." 

An example of a left-censored data set containing ND observations with one reporting limit of 20 which 
illustrates this issue is described as follows. 

Table 1-1. Example of a Left-Censored Data Set with a Single Reporting Limit. 

Y D_y 
20 0 
20 0 
20 0 
7 1 
58 1 
92 1 
100 1 
72 1 
11 1 
27 1 
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The mean and standard deviation based upon the KM and two substitution methods: DL/2 and DL are 
summarized as follows: 

Kaplan-Meier (KM) Statistics 

Mean 39.4 

SD 35.56 

DL Substitution method (replacing censored values by the reporting limit) 

Mean 42.7 

SD 34.77 

DL/2 Substitution method (replacing NDs by the reporting limit) 

Mean 39.7 

SD 37.19 

The above example illustrates that the KM mean (when only 1 detection limit is present) is not actually 
identical to the mean estimate obtained using the substitution, DL (RL) method. The statement made in 
Helsel's text (and also incorrectly made in his presentations such as the one made at the U.S. EPA 2007 
National Association of Regional Project Managers (NARPM) Annual Conference: 

http://www.ttemidev.com/narpm2007Admin/conference/) 

holds only when all observations reported as detects are greater than the single reporting limit, which is not 
always true for environmental data sets consisting of analytical concentrations. 

1.16 Box and Whisker Plots 

At the request of ProUCL users, a brief description of box plots (also known as box and whisker plots) as 
developed by Tukey (Hoaglin, Mosteller and Tukey 1983) is provided in this section. A box and whiskers 
plot represents a useful and convenient exploratory tool and provides a quick five point summary of a data 
set. In statistical literature, one can find several ways to generate box plots. The practitioners may have their 
own preferences to use one method over the other. Box plots are well documented in the statistical literature 
and description of box plots can be easily obtained by surfing the net. Therefore, the detailed description 
about the generation of box plots is not provided in ProUCL guidance documents. ProUCL also generates 
box plots for data set with NDs. Since box plots are used for exploratory purposes to identify outliers and 
also to compare concentrations of two or more groups, it does not really matter how NDs are displayed on 
those box plots. ProUCL generates box plots using detection limits and draws a horizontal line at the highest 
detection limit. Users can draw up to four horizontal lines at other levels (e.g., a screening level, a BTV, or 
an average) of their choice. 

All box plot methods, including the one in ProUCL, represent five-point summary graphs including: the 
lowest and the highest data values, median (50th percentile=second quartile, Q2), 25th percentile (lower 
quartile, Q1), and 75th percentile (upper quartile, Q3). A box and whisker plot also provides information 
about the degree of dispersion (interquartile range (IQR) = Q3-Q1=length/height of the box in a box plot), 

36 

http://www.ttemidev.com/narpm2007Admin/conference/materials/


the degree of skewness (suggested by the length of the whiskers) and unusual data values known as outliers. 
Specifically, ProUCL (and other software packages) use the following to generate a box and whisker plot. 

• Q1= 25th percentile, Q2= 50th (median), and Q3 = 75th percentile 

• Interquartile range= IQR = Q3-Q1 (the length/height of the box in a box plot) 

• Lower whisker starts at Q1 and the upper whisker starts at Q3. 

• Lower whisker extends up to the lowest observation or (Q1 - 1.5 * IQR) whichever is higher 

• Upper whisker extends up to the highest observation or (Q3 + 1.5 * IQR) whichever is lower 

• Horizontal bars (also known as fences) are drawn at the end of whiskers 

• Guidance in statistical literature suggests that observations lying outside the fences (above the 
upper bar and below the lower bar) are considered potential outliers 

An example box plot generated by ProUCL is shown in the following graph. 

Figure 1-1. Box Plot with Fences and Outlier 

It should be pointed out that the use of box plots in different scales (e.g., raw-scale and log-scale) may lead 
to different conclusions about outliers. Below is an example illustrating this issue. 

Example 1-2. Consider an actual data set consisting of copper concentrations collected a Superfund Site. 
The data set is: 0.83, 0.87, 0.9, 1, 1, 2, 2, 2.18, 2.73, 5, 7, 15, 22, 46, 87.6, 92.2, 740, and 2960. Box plots 
using data in the raw-scale and log-scale are shown in Figures 1-2 and 1-3. 
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Box Plot for Copper 

Box Plot for ln(copper) 

Figure 1-2. Box Plot of Raw Data in Original Scale 

Based upon the last bullet point of the description of box plots described above, from Figure 1-1, it is 
concluded that two observations 740 and 2960 in the raw scale represent outliers. 

Figure 1-3. Box Plot of Data in Log-Scale 

However, based upon the last bullet point about box plots, from Figure 1-3, it is concluded that two 
observations 740 and 2960 in the log-scale do not represent outliers. The log-transformation has 
accommodated the two outliers. 
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This is a great example demonstrating the importance of examining data distribution. Since data set is 
skewed, extreme values showed up as outliers in raw scale, but not in log-scale. 

Note: ProUCL uses a couple of development tools such as SpreedNET and StudioFX for Excel type input 
and output operations and for graphical displays. ProUCL generates box plots using the built-in box plot 
feature in ChartFx. The programmer has no control over computing various statistics (e.g., Q1, Q2, Q3, 
IQR) using ChartFx. So box plots generated by ProUCL can differ slightly from box plots generated by 
other programs (e.g., Excel). However, for all practical and exploratory purposes, box plots in ProUCL are 
equally good (if not better) as available in the various commercial software packages for investigating data 
distribution (skewed or symmetric), identifying outliers, and comparing multiple groups (main objectives 
of box plots). 

Precision in Box Plots: Box plots generated using ChartFx round values to the nearest integer. For increased 
precision of graphical displays (all graphical displays generated by ProUCL), the user can use the process 
described as follows. 

Position your cursor on the graph and right-click, a popup menu will appear. Position the cursor on 
Properties and right-click; a windows form labeled Properties will appear. There are three choices at the 
top: General, Series and Y-Axis. Position the e cursor over the Y-Axis choice and left-click. You can 
change the number of decimals to increase the precision, change the step to increase or decrease the number 
Y-Axis values displayed and/or change the direction of the label. To show values on the plot itself, position 
your cursor on the graph and right-click; a pop-up menu will appear. Position the cursor on Point Labels 
and right-click. There are other options available in this pop-up menu including changing font sizes. 
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CHAPTER  2  
 

Goodness-of-Fit Tests  and  Methods  to  Compute  Upper  
Confidence Limit  of Mean for  Uncensored Data Sets without  

Nondetect Observations  
2.1 Introduction 

Many environmental decisions including exposure and risk assessment and management, and cleanup 
decisions are made based upon the mean concentrations of the contaminants/constituents of potential 
COPCs. To address the uncertainty associated with the sample mean, a UCL95 is used to estimate the 
unknown population mean, µ1. A UCL95 is routinely used to estimate the EPC) term (EPA 1992a; EPA 
2002a). A UCL95 of the mean represents that limit such that one can be 95% confident that the population 
mean, µ1, will be less than that limit. From a risk point of view, a UCL95 of the mean represents a number 
that is considered health protective when used to compute risk and health hazards. Since, many 
environmental decisions are made based upon a UCL95, it is important to compute a reliable, defensible 
(from human health point of view) and cost-effective estimate of the EPC. To compute reliable estimates 
of practical merit, ProUCL software provides several parametric and nonparametric UCL computation 
methods covering a wide-range of skewed distributions (e.g., symmetric, mildly skewed to highly skewed) 
for data sets of various sizes. Based upon simulation results summarized in the literature (Singh, Singh, and 
Engelhardt [1997], Singh, Singh and Iaci [2002]), data distribution, data set size, and skewness, ProUCL 
makes suggestions on how to select an appropriate UCL95 of the mean to estimate the EPC. It should be 
noted that a simulation study cannot cover all possible real world data sets of various sizes and skewness 
following different probability distributions. This ProUCL Technical Guide provides sufficient guidance to 
help a user select the most appropriate UCL as an estimate of the EPC. The ProUCL software makes 
suggestions to help a typical user select an appropriate UCL from all the UCLs incorporated in ProUCL 
and those available in the statistical literature. UCL values, other than those suggested by ProUCL, may be 
selected based upon project personnel’s experiences and project needs. The user may want to consult a 
statistician before selecting an appropriate UCL95. 

The ITRC (2012 and 2020) regulatory documents recommend the use of a Student’s t-UCL95 and 
Chebyshev inequality based UCL95 to estimate EPCs for ISM based soil samples collected from DUs. The 
Chebyshev UCL is the recommended nonparametric method for ISM data due to the fact that bootstrapping 
methods are typically unrealible for small sample sizes typical in ISM designs. It is also not possible to 
confirm samples follow a particular distribution; however, ISM samples are estimates of the average 
concentration and so can be assumed to follow a normal distribution in many cases. In order to facilitate 
the computation of ISM data-based estimates of the EPC, ProUCL5.2 /5.1/5.0 can compute a UCL95 of the 
mean based upon data sets of sizes as small as 3. Additionally, the UCL module of ProUCL can be used on 
ISM-based data sets with NDs. 

However, it is advised that the users do not compute decision making statistics (e.g., UCLs, upper prediction 
limits [UPLs], upper tolerance limits [UTLs]) from discrete data sets consisting of less than 8-10 
observations. 
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For uncensored data sets without ND observations, theoretical details of the Student's t- and percentile 
bootstrap UCL computation methods, as well as the more complicated bootstrap-t and gamma distribution 
methods, are described in this Chapter. One should not ignore the use of gamma distribution based UCLs 
(and other upper limits) just because it is easier to use a lognormal distribution. Typically, environmental 
data sets are positively skewed, and a default lognormal distribution (EPA 1992a) is used to model such 
data distributions. Additionally, an H-statistic based Land’s (Land, 1971, 1975) H-UCL is then typically 
used to estimate the EPC. Hardin and Gilbert (1993), Singh, Singh, and Engelhardt (1997, 1999), Schultz 
and Griffin (1999), and Singh, Singh, and Iaci (2002) pointed out several problems associated with the use 
of the lognormal distribution and the H-statistic to compute UCL of the mean. For lognormal data sets with 
high standard deviation (sd), σ, of the natural log-transformed data (e.g., σ exceeding 1.0 to 1.5), the H-
UCL becomes unacceptably large, exceeding the 95% and 99% data quantiles, and even the maximum 
observed concentration, by orders of magnitude (Singh, Singh, and Engelhardt 1997). The H-UCL is also 
very sensitive to a few low or a few high values. For example, the addition of a single low measurement 
can cause the H-UCL to increase by a large amount (Singh, Singh, and Iaci, 2002) by increasing variability. 
Realizing that the use of the H-statistic can result in an unreasonably large UCL, it has been recommended 
(EPA 1992a) that the maximum value be used as an estimate of the EPC in cases when the H-UCL exceeds 
the largest value in the data set. For uncensored data sets without any NDs, ProUCL makes 
suggestions/recommendations on how to compute an appropriate UCL95 based upon data set size, data 
skewness and distribution. 

In practice, many skewed data sets follow a lognormal as well as a gamma distribution. Singh, Singh, and 
Iaci (2002) observed that UCLs based upon a gamma distribution yield reliable and stable values of practical 
merit. It is, therefore, desirable to test whether an environmental data set follows a gamma distribution. A 
gamma distribution based UCL95 of the mean provides approximately 95% coverage to the population 
mean, μ1 = kθ of a gamma distribution, G (k, θ) with k and θ respectively representing the shape and scale 
parameters. For data sets following a gamma distribution with shape parameter, k > 1, the EPC should be 
estimated using an adjusted gamma (when n<50) or approximate gamma (when n≥50) UCL95 of the mean. 
For highly skewed gamma distributed data sets with values of the shape parameter, k ≤ 1.0, a 95% UCL 
may be computed using the bootstrap-t-method or Hall’s bootstrap method when the sample size, n, is 
smaller, such as <15 to 20. For larger sample sizes with n> 20, a UCL of the mean may be computed using 
the adjusted or approximate gamma UCL (Singh, Singh, and Iaci 2002) computation method. Based upon 
professional judgment and practical experience of the authors, some of these suggestions have been 
modified. Specifically, in earlier versions ProUCL, the cutoff value for the shape parameter, k was 0.1 
which has been changed to 1.0 in this version. 

Unlike the percentile bootstrap method, bootstrap-t and Hall’s bootstrap methods (Efron and Tibshirani, 
1993) account for data skewness and their use is recommended on skewed data sets when computing UCLs 
of the mean. However, the bootstrap-t and Hall’s bootstrap methods sometimes result in erratic, inflated, 
and unstable UCL values, especially in the presence of outliers (Efron and Tibshirani 1993). Therefore, 
these two methods should be used with caution. The user should examine the various UCL results and 
determine if the UCLs based upon the bootstrap-t and Hall’s bootstrap methods represent reasonable and 
reliable UCL values. If the results of these two methods are much higher than the rest of the UCL 
computation methods, it could be an indication of erratic behavior of these two bootstrap UCL computation 
methods. ProUCL prints out a warning message whenever the use of these two bootstrap methods is 
recommended. 
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ProUCL has graphical (e.g., quantile-quantile [Q-Q] plots) and formal goodness-of-fit (GOF) tests for 
normal, lognormal, and gamma distributions. These GOF tests are available for data sets with and without 
NDs. The critical values of the Anderson-Darling (A-D) test statistic and the Kolmogorov-Smirnov (K-S) 
test statistic to test for gamma distributions were generated using Monte Carlo simulation experiments 
(Singh, Singh, and Iaci 2002). Those critical values have been incorporated in ProUCL software and are 
tabulated in Appendix A for various levels of significance. 

ProUCL computes summary statistics for raw, as well as, log-transformed data sets with and without ND 
observations. In this Technical Guide and in ProUCL software, log-transformation (log) stands for the 
natural logarithm (ln, LN) or log to the base e. For uncensored data sets, mathematical algorithms and 
formulae used in ProUCL to compute the various UCLs are summarized in this chapter. ProUCL also 
computes the maximum likelihood estimates (MLEs) and the minimum variance unbiased estimates 
(MVUEs) of the population parameters of normal, lognormal, and gamma distributions. Nonparametric 
UCL computation methods in ProUCL include: central limit theorem (CLT), adjusted-CLT, modified 
Student's t (adjusts for skewness) Chebyshev inequality, and bootstrap methods. Moreover, it is noted that 
UCLs based upon the standard bootstrap and the percentile bootstrap methods do not perform well by not 
providing the specified coverage of the mean for skewed data sets. 

Note on Computing Lower Confidence Limits (LCLs) of Mean: For some environmental projects an LCL 
of the unknown population mean is needed to achieve the project DQOs. At present, ProUCL does not 
directly compute LCLs of mean. However, for data sets with and without nondetects, excluding the 
bootstrap methods, gamma distribution, and H-statistic based LCLs of mean, the same critical value (e.g., 
normal z value, Chebyshev critical value, or t-critical value) can be used to compute a LCL of mean as used 
in the computation of the UCL of the mean. Specifically, to compute a LCL, the '+' sign used in the 
computation of the corresponding UCL needs to be replaced by the '-' sign in the equation used to compute 
that UCL (excluding gamma, lognormal H-statistic, and bootstrap methods). For specific details, the user 
may want to consult a statistician. For data sets without nondetect observations, the user may want to use 
the Scout 2008 software package (EPA 2009d, 2010) to directly compute the various parametric and 
nonparametric LCLs of mean. 

2.2 Goodness-of-Fit (GOF) Tests 

Let x1, x2, ..., xn be a representative random sample (e.g., representing lead concentrations) from the 
underlying population (e.g., site areas under investigation) with unknown mean, μ1, and variance, σ1

2. Let 
µ and σ represent the population mean and the population standard deviation (sd) of the log-transformed 
(natural log to the base e) data. Let 𝑦𝑦� and sy (𝜎𝜎�) be the sample mean and sample sd, respectively, of the log-
transformed data, yi = log (xi); i = 1, 2, ... , n. Specifically, let 

𝑛𝑛 𝑦𝑦� = 1 ∑ (2-1) 𝑖𝑖=1 𝑛𝑛 
𝑦𝑦𝑖𝑖 

1�2 2 𝑛𝑛 �)2σ = 𝑠𝑠𝑦𝑦 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦 (2-2) 𝑖𝑖=1 𝑛𝑛−1 

Similarly, let �̅�𝑥 and sx be the sample mean and sd of the raw data, x1 , x2 , .. , xn, obtained by replacing y by 
x in equations (2-1) and (2-2), respectively. In this chapter, irrespective of the underlying distribution, µ1, 
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and σ1
2 represent the mean and variance of the random variable X (in original units), whereas µ and σ2 

represent the mean and variance of Y = loge(X). 

Three data distributions have been considered in ProUCL 5.2 (and in older versions). These include the 
normal, lognormal, and the gamma distributions. Shapiro-Wilk, for n ≤2000, and Lilliefors (1967) test 
statistics are used to test for normality or lognormality of a data set. Lilliefors test (along with graphical Q-
Q plot) seems to perform fairly well for samples of size 50 and higher. In ProUCL 5.2, updated critical 
values of Lilliefors test developed by Moling and Abdi (2007) and provided in the Encyclopedia of 
Measurement and Statistics have been used. The empirical distribution function (EDF) based methods, the 
K-S and A-D tests, are used to test for a gamma distribution. Extensive critical values for these two test 
statistics have been obtained via Monte Carlo simulation experiments (Singh, Singh, and Iaci 2002). For 
interested users, those critical values are given in Appendix A for various levels of significance. In addition 
to these formal tests, the informal histogram and Q-Q plots (also called probability plots) are also available 
for visual inspection of the data distributions (Looney and Gulledge 1985). Q-Q plots also provide useful 
information about the presence of potential outliers and multiple populations in a data set. A brief 
description of the GOF tests follows. 

No matter which normality test is used, it may fail to detect the actual non-normality of the population 
distribution if the sample size is small, n<20 and with large sample sizes, n>50 or so, a small deviation from 
normality will lead to rejection of the normality hypothesis. The modified K-S test known as Lilliefors test 
is suggested for checking the normality assumption when the mean and sd of population distribution is not 
known. 

2.2.1 Test Normality and Lognormality of a Data Set 

ProUCL tests for normality and lognormality of a data set using three different methods described below. 
The program tests normality or lognormality at three different levels of significance, 0.01, 0.05, and 0.1 (or 
confidence levels: 0.99, 0.95, and 0.90). For normal distributions, ProUCL outputs approximate probability 
values (p-values) for the S-W GOF test. The details of those methods can be found in the cited references. 

2.2.1.1 Normal Quantile-quantile (Q-Q) Plot 

A normal Q-Q represents a graphical method to test for approximate normality or lognormality of a data 
set (Hoaglin, Mosteller, and Tukey 1983; Singh 1993; Looney and Gulledge, 1985). A linear pattern 
displayed by the majority of the data suggests approximate normality or lognormality (when performed on 
log-transformed data) of the data set. For example, a high value, 0.95 or greater, of the correlation 
coefficient of the linear pattern may suggest approximate normality (or lognormality) of the data set under 
study. However, on this graphical display, observations well-separated from the linear pattern displayed by 
the majority of data may represent outlying observations not belonging to the dominant population, whose 
distribution one is assessing based upon a data set. Apparent jumps and breaks in the Q-Q plot may suggest 
the presence of multiple populations. The correlation of the Q-Q plot for such a data set may still be high 
but that does not signify that the data set follows a normal distribution. 

Notes: Graphical displays provide added insight into a data set which might not be apparent based upon 
statistics such as S-W statistic or a correlation coefficient. The correlation coefficient of a Q-Q plot with 
curves, jumps and breaks can be high, which does not necessarily imply that the data follow a normal or 
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lognormal distribution. AGOF test of a data set should always be judged based upon a formal (e.g., S-W 
statistic) as well as informal graphical displays. The normal Q-Q plot is used as an exploratory tool to 
evaluate data distribution and potentially identify multiple populations. On all Q-Q plots, ProUCL displays 
relevant statistics including: mean, sd, GOF test statistic, associated critical value, p-value (when available), 
and the correlation coefficient. 

There is no substitute for graphical displays of data sets. Graphical displays provide added insight about 
data sets and do not get distorted by outliers and/or mixture populations. The final conclusion regarding the 
data distribution should be based upon the formal GOF tests as wells as Q-Q plots. This statement is true 
for all GOF tests: normal, lognormal, and gamma distributions. 

2.2.1.2 Shapiro-Wilk (S-W) Test 

The S-W test is a powerful test used to test the normality or lognormality of a data set. ProUCL performs 
this test for samples of size up to 2000 (Royston 1982a, 1982b). For sample sizes ≤ 50, in addition to a test 
statistic and critical value, an approximate p-value associated with S-W test is also displayed. For samples 
of size >50, only the test statistics and approximate p-values are displayed (the critical value is not 
displayed). For the Shapiro-Wilk test, the test statistic must be below the critical value to be significant. 
Based upon the selected level of significance and the computed test statistic, ProUCL informs the user if 
the data set is normally (or lognormally) distributed. This information should be used to compute an 
appropriate UCL of the mean. 

2.2.1.3 Lilliefors Test 

This test is useful for data sets of larger size (Lilliefors 1967; Dudewicz and Misra 1988; Conover 1999). 
This test is a slight modification of the Kolmogorov-Smirnov (K-S) test and is more powerful than a one-
sample K-S (with the estimated population mean and sd). In version 5.2 of ProUCL, critical values of 
Lilliefors test developed by Moling and Abdi and provided in the Encyclopedia of Measurement and 
Statistics (Salkind, N. Editor 2007) have been used and incorporated in the program. The critical values as 
described in Salkind (2007) are used for n up to 50, and for values of n>50 approximate critical values are 
computed using the following formula: 

0.83+𝑛𝑛 Critical Values = Factor/f(n); where 𝑓𝑓(𝑛𝑛) = − 0.01. 
√𝑛𝑛 

The Factor used in the above equation depends upon the level of significance, α; Factor values are 0.741, 
0.819, 0.895, and 1.035 for α = 0.20, 0.1, 0.05, and 0.01 respectively. 

Based upon the selected level of significance and the computed test statistic, ProUCL informs the user if 
the data set is normally or lognormally distributed. For the Lilliefors test, the test statistic must be above 
the critical value to be significant This information should be used to compute an appropriate UCL of the 
mean. The program outputs the relevant statistics on the Q-Q plot of data. 

For convenience, normality, lognormality, or gamma distribution test results for a built-in level of 
significance of 0.05 are displayed on the UCL and background statistics output sheets. This helps the user 
in selecting the most appropriate UCL to estimate the EPC. It should be pointed out that sometimes, the 
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two GOF tests may lead to different conclusions. In such situations, ProUCL displays a message that data 
are approximately normally or lognormally distributed. It is suggested that the user makes a decision based 
upon the information provided by the associated Q-Q plot and the values of the GOF test statistics. 

In an effort to streamline the decision process for computing upper limits (e.g., UCL95), some changes 
were made in the decision logic applied in ProUCL for suggesting/recommending UCL values. Specifically, 
ProUCL makes decisions about the data distribution based upon both the Lilliefors and S-W GOF test 
statistics for normal and lognormal distributions and both the A-D and K-S GOF test statistics for the 
gamma distribution. When a data set passes one of the two GOF tests for a distribution, ProUCL outputs a 
statement that the data set follows that approximate distribution and suggests using appropriate decision 
statistic(s). Specifically, when only one of the two GOF statistic leads to the conclusion that data are normal, 
lognormal or gamma, ProUCL outputs the conclusion that the data set follows that approximate distribution 
and all suggestions provided by ProUCL regarding the use of parametric or nonparametric decision 
statistics are made based upon this conclusion. As a result, UCLs suggested by ProUCL 5.2 can differ from 
the UCLs suggested by earlier versions of ProUCL. ProUCL 5.2 also contains changes to the significance 
levels for Lillefors and Shapiro-Wilk tests (𝛼𝛼 = 0.01 for normality and 𝛼𝛼 = 0.10 for lognormality). Refer 
to Section 2.5.1 for a discussion of these changes. 

Note: When dealing with a small data set, n <50, and Lilliefors test suggests that data are normal and the 
S-W test suggests that data are not normal, ProUCL will suggest that the data set follows an approximate 
normal distribution. However, for smaller data sets, Lilliefors test results may not be reliable, therefore the 
user is advised to review GOF tests for other distributions and proceed accordingly. It is emphasized, when 
a data set follows a distribution (e.g., distribution A) using all GOF tests, and also follows an approximate 
distribution (e.g., distribution B) using one of the available GOF tests, it is preferable to use distribution A 
over distribution B. However, when distribution A is a highly skewed (e.g., sd of logged data >1.0) 
lognormal distribution, use the guidance provided on the ProUCL generated output.  

In practice, depending upon the power associated with statistical tests, two tests (e.g., two sample t-test vs. 
WMW test; S-W test vs. Lilliefors test) used to address the same statistical issue (comparing two groups, 
assessing data distribution) can lead to different conclusions (e.g., GOF tests for normality in Example 2-
4); this is especially true when dealing with data sets of smaller sizes. The power of a test can be increased 
by collecting more data. If this is not feasible due to resource constraints, the collective project team should 
determine which conclusion to use in the decision making process. It may, in these cases, be appropriate to 
consult a statistician. 

2.2.2 Gamma Distribution 

A continuous random variable, X (e.g., concentration of an analyte), is said to follow a gamma distribution, 
G(k, θ) with parameters k > 0 (shape parameter) and θ > 0 (scale parameter), if its probability density 
function is given by the following equation: 

−𝑥𝑥 1 ∙ 𝑥𝑥𝑘𝑘−1𝑒𝑒 𝜃𝜃 ,f(x;k,θ)= �θkΓ(k) 

0, 
x>0 

otherwise 
(2-3) 
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Many positively skewed data sets follow a lognormal as well as a gamma distribution. The use of a gamma 
distribution tends to yield reliable and stable 95% UCL values of practical merit. It is therefore desirable to 
test if an environmental data set follows a gamma distribution. If a skewed data set does follow a gamma 
model, then a 95% UCL of the population mean should be computed using a gamma distribution. For data 
sets which follow a gamma distribution, the adjusted 95% UCL of the mean based upon a gamma 
distribution is optimal (Bain and Engelhardt 1991) and approximately provides the specified 95% coverage 
of the population mean, μ1 = kθ (Singh, Singh, and Iaci 2002). 

The GOF test statistics for a gamma distribution are based upon the EDF. The two EDF tests incorporated 
in ProUCL are the K-S test and the A-D test, which are described in D’Agostino and Stephens (1986) and 
Stephens (1970). The graphical Q-Q plot for a gamma distribution has also been incorporated in ProUCL. 
The critical values for the two EDF tests are not available, especially when the shape parameter, k, is small 
(k < 1). Therefore, the associated critical values have been computed via extensive Monte Carlo simulation 
experiments (Singh, Singh, and Iaci 2002). The critical values for the two test statistics are given in 
Appendix A. The 1%, 5%, and 10% critical values of these two test statistics have been incorporated in 
ProUCL. The GOF tests for a gamma distribution depend upon the MLEs of the gamma parameters, k and 
θ, which should be computed before performing the GOF tests. Information about estimation of gamma 
parameters, gamma GOF tests, and construction of gamma Q-Q plots is not readily available in statistical 
textbooks. Therefore, a detailed description of the methods for a gamma distribution is provided as follows. 

2.2.2.1 Quantile-Quantile (Q-Q) Plot for a Gamma Distribution 

Let x1, x2, ... , xn be a random sample from the gamma distribution, G(k,θ); and let x(1) ≤ x(2) ≤ ... ≤ x(n) 

represent the ordered sample. Let 𝑘𝑘� and θ� represent the maximum likelihood estimates (MLEs) of k and θ, 
respectively; details of the computation of the MLEs of k and θ can be found in Singh, Singh, and Iaci 
(2002). The Q-Q plot for a gamma distribution is obtained by plotting the scatter plot of pairs, (𝑥𝑥0𝑖𝑖, 𝑥𝑥(𝑖𝑖)) 
𝑖𝑖 ≔ 1,2, … , 𝑛𝑛. The gamma quantiles, x0i, are given by the equation, 𝑥𝑥0𝑖𝑖 = 𝑧𝑧0𝑖𝑖𝜃𝜃�/2; 𝑖𝑖 ≔ 1,2, … , 𝑛𝑛, where 
the quantiles z0i (already ordered) are obtained by using the inverse chi-square distribution and are given as 
follows: 

𝑧𝑧0𝑖𝑖 2 2∫ 𝑓𝑓(𝜒𝜒2𝑘𝑘)𝑑𝑑𝜒𝜒2𝑘𝑘 = (𝑖𝑖 − 1/2)/𝑛𝑛; 𝑖𝑖: = (2-4) 0 
1,2, … , 𝑛𝑛 

2In (2-4), 𝜒𝜒2𝑘𝑘 represents a chi-square random variable with 2𝑘𝑘� degrees of freedom (df). The program, 
PPCHI2 (Algorithm AS91) described in Best and Roberts (1975) has been used to compute the inverse chi-
square percentage points given by equation (2-4). All relevant statistics including the MLE of k are also 
displayed on a gamma Q-Q plot. 

Like a normal Q-Q plot, a linear pattern displayed by the majority of the data on a gamma Q-Q plot suggests 
that the data set follows an approximate gamma distribution. For example, a high value (e.g., 0.95 or 
greater) of the correlation coefficient of the linear pattern may suggest an approximate gamma distribution 
of the data set under study. However, on this Q-Q plot, points well-separated from the bulk of data may 
represent outliers. Apparent breaks and jumps in the gamma Q-Q plot suggest the presence of multiple 
populations. The correlation coefficient of a Q-Q plot with outliers and jumps can still be high which does 
not signify that the data follow a gamma distribution. Therefore, a graphical Q-Q plot and other formal 
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GOF tests, the A-D test or K-S test, should be used on the same data set to determine the distribution of a 
data set. 

2.2.2.2 Empirical Distribution Function (EDF)-Based Goodness-of Fit Tests 

Let F(x) be the cumulative distribution function (CDF) of a gamma distributed random variable, X. Let Z 
= F(X), then Z represents a uniform U(0,1) random variable (Hogg and Craig 1995). For each xi, compute 
zi by using the incomplete gamma function given by the equation zi = F (xi); 𝑖𝑖 ≔ 1,2, … , 𝑛𝑛. The algorithm 
(Algorithm AS 239, Shea 1988) as given in the book Numerical Recipes in C, the Art of Scientific 
Computing (Press et al. 1990) has been used to compute the incomplete gamma function. Arrange the 
resulting zi in ascending order as 

z(1) ≤ z(2) ≤ ... ≤ z(n). Let 𝑧𝑧̅ = (∑𝑛𝑛 )/𝑛𝑛 be the mean of the n, zi; 𝑖𝑖 ≔ 1,2, … , 𝑛𝑛.𝑖𝑖=1 𝑧𝑧𝑖𝑖 

Compute the following two statistics: 

𝐷𝐷+ = 𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖{1/𝑛𝑛 − 𝑧𝑧(𝑖𝑖)}, and 𝐷𝐷− = 𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖{𝑧𝑧(𝑖𝑖) − (𝑖𝑖 − 1)/𝑛𝑛} (2-5) 

The K-S test statistic is given by 𝐷𝐷 = 𝑚𝑚𝑚𝑚𝑥𝑥(𝐷𝐷+ , 𝐷𝐷−); and the A-D test statistic is given as follows: 

𝑛𝑛 𝐴𝐴2 = −𝑛𝑛 − (1/𝑛𝑛) ∑ {(2𝑖𝑖 − 1)[𝑙𝑙𝑙𝑙𝑙𝑙𝑧𝑧(𝑖𝑖) + 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑧𝑧(𝑛𝑛+1−𝑖𝑖))]} (2-6) 𝑖𝑖=1 

As mentioned before, the critical values for these two statistics, D and A2, are not readily available. For the 
A-D test, only the asymptotic critical values are available in the statistical literature (D’Agostino and 
Stephens 1986). Some raw critical values for the K-S test are given in Schneider (1978), and Schneider and 
Clickner (1976). Critical values of these test statistics are computed via Monte Carlo experiments (Singh, 
Singh, and Iaci 2002). It is noted that the distributions of the K-S test statistic, D, and the A-D test statistic, 
A2, do not depend upon the scale parameter, θ; therefore, the scale parameter, θ, has been set equal to 1 in 
all simulation experiments. In order to generate critical values, random samples from gamma distributions 
were generated using the algorithm as given in Whittaker (1974). It is observed that the simulated critical 
values are in close agreement with all available published critical values. 

The critical values simulated by Singh, Singh, and Iaci (2002) for the two test statistics have been 
incorporated in the ProUCL software for three levels of significance, 0.1, 0.05, and 0.01. For each of the 
two tests, if the test statistic exceeds the corresponding critical value, then the hypothesis that the data set 
follows a gamma distribution is rejected. ProUCL computes the GOF test statistics and displays them on 
the gamma Q-Q plot and also on the UCL and background statistics output sheets generated by ProUCL. 
Like all other tests, in practice these two GOF test may lead to different conclusions. In such situations, 
ProUCL outputs a message that the data follow an approximate gamma distribution. The user should make 
a decision based upon the information provided by the associated gamma Q-Q plot and the values of the 
GOF test statistics. 

Computation of the Gamma Distribution Based Decision Statistics and Critical Values: When computing 
the various decision statistics (e.g., UCL and BTVs), ProUCL uses biased corrected estimates, kstar, 𝑘𝑘�∗ and 
theta star, 𝜃𝜃�∗ (described in Section 2.3.3) of the shape, k, and scale, 𝜃𝜃, parameters of the gamma distribution. 
It is noted that the critical values for the two gamma GOF tests reported in the literature (D’Agostino and 
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Stephens 1986; Schneider and Clickner 1976; and Schneider 1978) are computed using the MLE estimates, 
𝑘𝑘� and 𝜃𝜃� of the two gamma parameters, k and 𝜃𝜃. Therefore, the critical values of A-D and K-S tests 
incorporated in ProUCL have also been computed using the MLE estimates: khat, 𝑘𝑘� and theta hat, 𝜃𝜃� of the 
two gamma parameters, k and 𝜃𝜃. 

Updated Critical Values of Gamma GOF Test Statistics (New in ProUCL 5.0): For values of the gamma 
distribution shape parameter, k ≤ 0.1, critical values of the two gamma GOF tests, A-D and K-S tests, have 
been updated in ProUCL 5.0 and higher versions. Critical values incorporated in earlier versions were 
simulated using the gamma deviate generation algorithm (Whittaker 1974) available at the time and with 
the source code described in the book Numerical Recipes in C, the Art of Scientific Computing (Press et al. 
1990). Th gamma deviate generation algorithm available at the time was not very efficient especially for 
smaller values of the shape parameter, k ≤ 0.1. For values of the shape parameter, k≤ 0.1, significant 
discrepancies were found in the critical values of the two gamma GOF test statistics obtained using the two 
gamma deviate generation algorithms: Whitaker (1974) and Marsaglia and Tsang (2000). 

Therefore, for values of k ≤ 0.2, critical values for the two gamma GOF tests have been re-generated and 
tables of critical values of the two gamma GOF tests have been updated in Appendix A. Specifically, for 
values of the shape parameter, k ≤ 0.1, critical values of the two gamma GOF tests have been generated 
using the more efficient gamma deviate generation algorithm as described in Marsaglia and Tsang's (2000) 
and Best (1983). Detailed description about the implementation of Marsaglia and Tsang's algorithm to 
generate gamma deviates can be found in Kroese, Taimre, and Botev (2011). From a practical point of 
view, for values of k greater than 0.1, the simulated critical values obtained using Marsaglia and Tsang's 
algorithm (2000) are in general agreement with the critical values of the two GOF test statistics incorporated 
in ProUCL 4.1 for the various values of the sample size considered. Therefore, those critical values for 
values of k > 0.1 do not have to be updated. 

Note: In March 2015 minor discrepancies were identified in critical values of the gamma GOF A-D tests, 
as summarized in Tables A1-A6 of ProUCL 5.0 Technical Guide. For example, for a specified sample size 
and level of significance, α, the critical values for GOF tests are expected to decrease as k increases. Due 
to inherent random variability in the simulated gamma data sets, critical values do not follow (deviations 
are minor occurring in 2nd or 3rd decimal places) this trend in a few cases. However, from a practical and 
decision making point of view those differences are minor (see below). These discrepancies can be 
eliminated by performing simulation experiments using more iterations. In ProUCL 5.1, these discrepancies 
in the critical values of gamma GOF tests have been fixed via interpolation. 

For example, in Table A-3, for the A-D test, with significance level α= 0.05 and n=7, critical values for 
k=10, 20, and 50 are 0.708, 0.707, and 0.708. Also, in Table A-4 for n=200 and k=0.025, the critical value 
is 0.070489, and for n=200, k=0.05, the critical value is 0.07466. Due to a lack of resources and time, the 
critical values have not been re-simulated; however, this value has been replaced by an interpolated value 
using simulated values for k=0.025 and k=0.1. 

2.3 Estimation of Parameters of the Three Distributions Incorporated in ProUCL 

Let μ1 and σ1
2 represent the mean and variance of the random variable, X, and μ and σ2 represent the mean 

and variance of the random variable Y = log(X). Also, 𝜎𝜎� represents the standard deviation of the log-
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transformed data. For both lognormal and gamma distributions, the associated random variable can take 
only positive values. It is typical of environmental data sets to consist of only positive concentrations. 

2.3.1 Normal Distribution 

Let X be a continuous random variable (e.g., lead concentrations in surface soils of a site), which follows a 
normal distribution, N (μ1, σ1

2) with mean, μ1, and variance, σ1
2. The probability density function of a normal 

distribution is given by the following equation: 

𝑓𝑓(𝑥𝑥; 𝜇𝜇1, 𝜎𝜎1) = 𝑒𝑒𝑥𝑥𝑒𝑒[−(𝑥𝑥 − 𝜇𝜇1)2/2𝜎𝜎12]/(𝜎𝜎1√2𝜋𝜋); −∞ < 𝑥𝑥 < ∞ (2-7) 

For normally distributed data sets, it is well known (Hogg and Craig 1995) that the MVUEs of the mean, 
μ1, and the variance, σ1

2, are given by the sample mean, �̅�𝑥, and sample variance, sx 
2. It is also well known 

that for normally distributed data sets, a UCL of the unknown mean, μ1, based upon the Student’s t-
distribution is optimal. In practice, for normally distributed data sets, UCLs computed using Student's t-
distribution, the modified t-distribution, and bootstrap-t method are in close agreement. 

2.3.2 Lognormal Distribution 

If Y = log(X) is normally distributed with the mean, μ, and variance, σ2, then X is said to be lognormally 
distributed with parameters μ and σ2 and is denoted by LN(μ, σ2). It should be noted that μ and σ2 are not 
the mean and variance of the lognormal random variable, X, but they are the mean and variance of the log-
transformed random variable, Y, whereas μ1, and σ1

2 represent the mean and variance of X. Some parameters 
of interest of a two-parameter lognormal distribution, LN(µ, σ2), are given as follows: 

Mean =𝜇𝜇1 = 𝑒𝑒𝑥𝑥𝑒𝑒(𝜇𝜇 + 0.5𝜎𝜎2) (2-8) 

Median = 𝑀𝑀 = 𝑒𝑒𝑥𝑥𝑒𝑒(𝜇𝜇) (2-9) 

2Variance =𝜎𝜎1 = 𝑒𝑒𝑥𝑥𝑒𝑒(2𝜇𝜇 + 𝜎𝜎2)[𝑒𝑒𝑥𝑥𝑒𝑒(𝜎𝜎2) − 1] (2-10) 

Coefficient of Variation = 𝐶𝐶𝐶𝐶 = 𝜎𝜎1/𝜇𝜇1 = �𝑒𝑒𝑥𝑥𝑒𝑒(𝜎𝜎2) − 1 (2-11) 

Skewness = CV3+ 3CV (2-12) 

2.3.2.1 MLEs of the Parameters of a Lognormal Distribution 

For lognormally distributed data sets, note that 𝑦𝑦� and sy (=𝜎𝜎�) are the MLEs of μ and σ, respectively. The 
MLE of any function of the parameters μ and σ2 is obtained by substituting these MLEs in place of the 
parameters (Hogg and Craig 1995). Therefore, replacing μ and σ by their MLEs in equations (2-8) through 
(2-12) will result in the MLEs (but biased) of the respective parameters of the lognormal distribution. The 
program ProUCL computes all of these MLEs for lognormally distributed data sets. These MLEs are also 
printed on the Excel-type output spreadsheet generated by ProUCL. 
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2.3.2.2 Relationship between Skewness and Standard Deviation, σ 

For a lognormal distribution, the CV (given by equation (2-11) above) and the skewness (given by equation 
(2-12)) depend only on σ. Therefore, in this Technical Guide and also in ProUCL software, the standard 
deviation, σ (sd of log-transformed variable, Y), or its MLE, sy (=𝜎𝜎�), has been used as a measure of the 
skewness of lognormally distributed data sets and also of other data sets with positive values. The greater 
the sd, the greater are the CV and the skewness. For example, for a lognormal distribution with σ = 0.5, the 
skewness = 1.75; with σ =1.0, the skewness = 6.185; with σ =1.5, the skewness = 33.468; and with σ = 2.0, 
the skewness = 414.36. The skewness of a lognormal distribution becomes unreasonably large as σ starts 
approaching and exceeding 1.5. For a gamma distribution, the skewness is a function of the shape 
parameter, k. As k decreases, the skewness increases. It is observed (Singh, Singh, Engelhardt 1997; Singh, 
Singh, and Iaci 2002) that for smaller sample sizes (such as smaller than 50), and for values of σ or 𝜎𝜎� 
approaching and exceeding 1.5 to 1.75, the use of the H-statistic-based H-UCL results in impractical and 
unacceptably large values. 

For positively skewed data sets, the various levels of skewness can be defined in terms σ or its MLE 
estimate, sy. These levels are described as follows in Table 2-1. ProUCL software uses the sample sizes and 
skewness levels defined below to make suggestions/recommendations to select an appropriate UCL as an 
estimate of the EPC. 

Table 2-1. Skewness as a Function of σ (or its MLE, sy = σ̂ ), sd of log(X) 

Standard Deviation of 
Skewness 

Logged Data 

σ < 0.5 Symmetric to mild skewness 

0.5 ≤ σ < 1.0 Mild skewness to moderate skewness 

1.0 ≤ σ < 1.5 Moderate skewness to high skewness 

1.5 ≤ σ < 2.0 High skewness 

2.0 ≤ σ < 3.0 Very high skewness 

σ ≥ 3.0 Extremely high skewness 

Note: When data are mildly skewed with σ < 0.5, the three distributions considered in ProUCL tend to yield 
comparable upper limits irrespective of the data distribution. 

2.3.2.3 MLEs of the Quantiles of a Lognormal Distribution 

For highly skewed (σ > 1.5) lognormally distributed populations, the population mean, μ1, often exceeds 
the higher quantiles (80%, 90%, 95%) of the distribution. Therefore, the estimation of these quantiles is 
also of interest. This is especially true when one may want to use MLEs of the higher order quantiles such 
as 95%, 97.5%, etc. as estimates of the EPC. The formulae to compute these quantiles are described here. 
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The pth quantile (or 100 pth percentile), xp, of the distribution of a random variable, X, is defined by the 
probability statement, P(X ≤ xp ) = p. If zp is the pth quantile of the standard normal random variable, Z, with 
P(Z ≤ zp ) = p, then the pth quantile of a lognormal distribution is given by xp = exp(μ + zpσ). Thus the MLE 
of the pth quantile is given by: 

𝑥𝑥�𝑝𝑝 = 𝑒𝑒𝑥𝑥𝑒𝑒(�̂�𝜇 + 𝑧𝑧𝑝𝑝𝜎𝜎�) (2-13) 

It is expected that 95% of the observations coming from a lognormal LN(μ, σ2) distribution would lie at or 
below exp(μ + 1.65σ). The 0.5th quantile of the standard normal distribution is z0.5 = 0, and the 0.5th quantile 
(or median) of a lognormal distribution is M = exp(μ), which is obviously smaller than the mean, μ1, as 
given by equation (2-8). 

Notes: The mean, μ1, is greater than xp if and only if σ > 2zp. For example, when p = 0.80, zp = 0.845, μ1 

exceeds x0.80, the 80th percentile if and only if σ > 1.69, and, similarly, the mean, μ1, will exceed the 95th 

percentile if and only if σ > 3.29 (extremely highly skewed). ProUCL computes the MLEs of the 50% 
(median), 90%, 95%, and 99% percentiles of lognormally distributed data sets. 

2.3.2.4 MVUEs of Parameters of a Lognormal Distribution 

Even though the sample mean �̅�𝑥 is an unbiased estimator of the population mean, μ1, it does not possess the 
minimum variance (MV). The MVUEs of μ1 and σ1

2 of a lognormal distribution are given as follows: 

�̂�𝜇 = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑦𝑦�)𝑙𝑙𝑛𝑛 (𝑠𝑠𝑦𝑦2/2) (2-14) 1 

2𝜎𝜎�1 = 𝑒𝑒𝑥𝑥𝑒𝑒(2𝑦𝑦�) �𝑙𝑙𝑛𝑛�2𝑠𝑠𝑦𝑦2� − 𝑙𝑙𝑛𝑛 �(𝑛𝑛 − 2)𝑠𝑠𝑦𝑦2/(𝑛𝑛 − 1)�� (2-15) 

The series expansion of the function gn(x) is given in Bradu and Mundlak (1970), and Aitchison and Brown 
(1969). Tabulations of this function are also provided by Gilbert (1987). Bradu and Mundlak (1970) 
computed the MVUE of the variance of the estimate, �̂�𝜇1, 

2 
𝜎𝜎�2(�̂�𝜇1) = 𝑒𝑒𝑥𝑥𝑒𝑒(2𝑦𝑦�) ��𝑙𝑙𝑛𝑛�2𝑠𝑠𝑦𝑦2�� − 𝑙𝑙𝑛𝑛 �(𝑛𝑛 − 2)𝑠𝑠𝑦𝑦2/(𝑛𝑛 − 1)�� (2-16) 

The square root of the variance given by equation (2-16) is called the standard error (SE) of the estimate, 
�̂�𝜇1 , given by equation (2-14). The MVUE of the median of a lognormal distribution is given by 

𝑀𝑀� = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑦𝑦�)𝑙𝑙𝑛𝑛 [−𝑠𝑠𝑦𝑦2/(2(𝑛𝑛 − 1))] (2-17) 

For a lognormally distributed data set, ProUCL also computes these MVUEs given by equations (2-14) 
through (2-17). 

2.3.3 Estimation of the Parameters of a Gamma Distribution 

The population mean and variance of a two-parameter gamma distribution, G(k, θ), are functions of both 
parameters, k and θ. In order to estimate the mean, one has to obtain estimates of k and θ. The computation 
of the MLE of k is quite complex and requires the computation of Digamma and Trigamma functions. 
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Several researchers (Choi and Wette 1969; Bowman and Shenton 1988; Johnson, Kotz, and Balakrishnan 
1994) have studied the estimation of the shape and scale parameters of a gamma distribution. The MLE 
method to estimate the shape and scale parameters of a gamma distribution is described below. 

As before, let x1, x2, ..., xn be a random sample (e.g., representing constituent concentrations) of size n from 
a gamma distribution, G(k, θ), with unknown shape and scale parameters, k and θ, respectively. The log-
likelihood function (obtained using equation (2-3)) is given as follows: 

𝐿𝐿𝑙𝑙𝑙𝑙𝐿𝐿(𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑛𝑛 ; 𝑘𝑘, 𝜃𝜃) = −𝑛𝑛𝑘𝑘𝑙𝑙𝑙𝑙𝑙𝑙(𝜃𝜃) − 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙Γ(𝑘𝑘) + (𝑘𝑘 − 1) ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖) − ∑ 𝑥𝑥𝑖𝑖 /𝜃𝜃 (2-18) 

To find the MLEs of k and θ, one differentiates the log-likelihood function as given in (2-18) with respect 
to k and θ, and sets the derivatives to zero. This results in the following two equations: 

�) 1𝐿𝐿𝑙𝑙𝑙𝑙(𝜃𝜃�) + Γ′(k = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖), and 
Γ(k�) 𝑛𝑛 

(2-19) 

1𝑘𝑘�𝜃𝜃� = ∑ 𝑥𝑥𝑖𝑖 = �̅�𝑥
𝑛𝑛 

(2-20) 

Solving equation (2-20) for 𝜃𝜃�, and substituting the result in (2-19), we get following equation: 

Γ′(k�) 1− 𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘�) = ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖) − 𝑙𝑙𝑙𝑙𝑙𝑙 �1 ∑ 𝑥𝑥𝑖𝑖�Γ(k�) 𝑛𝑛 𝑛𝑛 
(2-21) 

There does not exist a closed form solution of equation (2-21). This equation needs to be solved numerically 
for 𝑘𝑘�, which requires the use of digamma and trigamma functions. An estimate of k can be computed 
iteratively by using the Newton-Raphson method (Press et al. 1990), leading to the following iterative 
equation: 

� �𝑙𝑙−1 − 
𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘� 𝑙𝑙−1)−Ψ(𝑘𝑘� 𝑙𝑙−1)−𝑀𝑀 𝑘𝑘𝑙𝑙 = 𝑘𝑘 (2-22) 

1/𝑘𝑘� 𝑙𝑙−1−Ψ′(𝑘𝑘� 𝑙𝑙−1) 

The iterative process stops when 𝑘𝑘� starts to converge. In practice, convergence is typically achieved in 
fewer than 10 iterations. In equation (2-22), 

𝑑𝑑 𝑑𝑑 𝑀𝑀 = 𝑙𝑙𝑙𝑙𝑙𝑙(�̅�𝑥) − ∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑖𝑖)/𝑛𝑛, Ψ(𝑘𝑘) = �𝑙𝑙𝑙𝑙𝑙𝑙Γ(𝑘𝑘)�, and Ψ′(𝑘𝑘) = �Ψ(𝑘𝑘)�
𝑑𝑑𝑘𝑘 𝑑𝑑𝑘𝑘 

Here Ψ(𝑘𝑘) is the digamma function and Ψ′(𝑘𝑘) is the trigamma function. Good approximate values for 
these two functions (Choi and Wette 1969) can be obtained using the following two approximations. For k 
≥ 8, these functions are approximated by: 

Ψ(𝑘𝑘) ≈ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘) − {1 + [1 − (1/10 − 1(21𝑘𝑘2))/𝑘𝑘2]/(6𝑘𝑘)}/(2𝑘𝑘), and (2-23) 

Ψ′(𝑘𝑘) ≈ {1 + {1 + [1 − (1/5 − 1/(7𝑘𝑘2))/𝑘𝑘2]/(3𝑘𝑘)}/(2𝑘𝑘)}/𝑘𝑘 (2-24) 

For k < 8, one can use the following recurrence relations to compute these functions: 
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Ψ(𝑘𝑘) = Ψ(𝑘𝑘 + 1) − 1/𝑘𝑘, and (2-25) 

Ψ′(𝑘𝑘) = Ψ′(𝑘𝑘 + 1) + 1/𝑘𝑘2 (2-26) 

In ProUCL, equations (2-23) through (2-26) have been used to estimate k. The iterative process requires an 
initial estimate of k. A good starting value for k in this iterative process is given by k0 = 1 / (2M). Thom 
(1968) suggested the following approximation as an initial estimate of k: 

1𝑘𝑘� ≈ �1 + �1 + 4 𝑀𝑀� (2-27) 
4𝑀𝑀 3 

Bowman and Shenton (1988) suggest using 𝑘𝑘�, given by (2-27) as a starting value of k for the iterative 
procedure, calculating 𝑘𝑘�𝑙𝑙 at the lth iteration using the following formula: 

� 𝑘𝑘� 𝑙𝑙−1{𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘� 𝑙𝑙−1)−Ψ(𝑘𝑘� 𝑙𝑙−1)𝑘𝑘𝑙𝑙 = 
𝑀𝑀 

(2-28) 

Both equations (2-22) and (2-28) have been used to compute the MLE of k. It is observed that the estimate, 
𝑘𝑘�, based upon the Newton-Raphson method, as given by equation (2-22), is in close agreement with the 
one obtained using equation (2-28) with Thom’s approximation as an initial estimate. Choi and Wette 
(1969) further concluded that the MLE of k, 𝑘𝑘�, is biased high. A bias-corrected (Johnson, Kotz, and 
Balakrishnan 1994) estimate of k is given by: 

𝑘𝑘�∗ = (𝑛𝑛 − 3)𝑘𝑘�/𝑛𝑛 + 2/(3𝑛𝑛) (2-29) 

In (2-29), 𝑘𝑘� is the MLE of k obtained using either (2-22) or (2-28). Substitution of equation (2-29) in 
equation (2-20) yields an estimate of the scale parameter, θ, given as follows: 

�∗ �∗𝜃𝜃 = �̅�𝑥/𝑘𝑘 (2-30) 

ProUCL computes simple MLEs of k and θ, and also bias-corrected estimates given by (2-29) and (2-30) 
of k and θ. The bias-corrected estimate (called k star and theta star in ProUCL graphs and output sheets) 
of k as given by (2-29) has been used in the computation of the UCLs (as given by equations (2-34) and (2-
35) below) of the mean of a gamma distribution. 

Note on Bias Corrected Estimates, 𝑘𝑘�∗ and 𝜃𝜃�∗: As mentioned above, Choi and Wette (1969) concluded that 
the MLE, 𝑘𝑘�, of k is biased high. They suggested the use of the bias-corrected (Johnson, Kotz, and 
Balakrishnan 1994) estimate of k given by (2-29) above. However, recently the developers performed a 
simulation study to evaluate the bias in the MLE of the mean of a gamma distribution for various values of 
the shape parameter, k and sample size, n. For smaller values of k (e.g., <0.2), the bias in the mean estimate 
(in absolute value) and mean square error (MSE) based upon the biased corrected MLE, 𝑘𝑘�∗ are higher than 
those computed using the MLE estimate,𝑘𝑘�; and for higher values of k (e.g., >0.2), the bias in the mean 
estimate and MSE computed using the biased corrected MLE, 𝑘𝑘�∗ are lower than those computed using the 
MLE, 𝑘𝑘�. For values of k around 0.2, the use of 𝑘𝑘�∗ and 𝑘𝑘� yields comparable results for all values of the 
sample size. The bias in the mean estimate obtained using the MLE, 𝑘𝑘�, increases as k increases, and as 
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expected, bias and MSE decrease as the sample size increases. The results of this study will be published 
elsewhere. 

At present for uncensored and left-censored data sets, ProUCL computes all gamma UCLs and other upper 
limits (Chapters 3, 4 and 5) using bias corrected estimates, 𝑘𝑘�∗ and 𝜃𝜃�∗ of k and θ. ProUCL generated output 
sheets display many intermediate results including 𝑘𝑘� and 𝑘𝑘�∗; 𝜃𝜃� and 𝜃𝜃�∗ . Interested users may want to 
compute UCLs and other upper limits using MLE estimates, 𝑘𝑘� and 𝜃𝜃� of k and θ for values of k described in 
the above paragraph. 

2.4 Methods for Computing a UCL of the Unknown Population Mean 

ProUCL computes a (1 – α) *100 UCL of the population mean, µ1, using several parametric and 
nonparametric methods. ProUCL can compute a (1 – α)*100 UCL (except for adjusted gamma UCL and 
Land’s H-UCL) of the mean for any user selected confidence coefficient, (1 – α), lying in the interval [0.5, 
1.0]. For the computation of the adjusted gamma UCL, three confidence levels, namely: 0.90, 0.95, and 
0.99 are supported by the ProUCL software. An approximate gamma UCL can be computed for any level 
of significance in the interval [0.5, 1.0]. 

Parametric UCL Computation Methods in ProUCL include: 

• Student’s t-statistic (assumes normality or approximate normality) based UCL, 

• Approximate gamma UCL (assumes approximate gamma distribution), 

• Adjusted gamma UCL (assumes approximate gamma distribution), 

• Land’s H-Statistic UCL (assumes lognormality), and 

• Chebyshev inequality based UCL: Chebyshev (MVUE) UCL obtained using MVUE of the 
parameters (assumes lognormality). 

Nonparametric UCL Computation Methods in ProUCL include: 

• Modified-t-statistic (modified for skewness) UCL, 

• Central Limit Theorem (CLT) UCL to be used for large samples, 

• Adjusted Central Limit Theorem UCL: adjusted-CLT UCL (adjusted for skewness), 

• Chebyshev UCL: Chebyshev (Mean, sd) obtained using classical sample mean and standard 
deviation, 

• Standard bootstrap UCL, 

• Percentile bootstrap UCL, 

• BCA bootstrap UCL, 

• Bootstrap-t UCL, and 

• Hall’s bootstrap UCL. 

54 



      
    

    
    

        
    

    
    

     
     

       
 

    
     

         
  

    
    

     

  

          

       
      

        

   

        

   
      

      
      

      
      

    
 

              
   

-

For skewed data sets, Modified-t and adjusted CLT methods adjust for skewness. However, this adjustment 
is not adequate (Singh, Singh, and Iaci, 2002) for moderately skewed to highly skewed data sets (levels of 
skewness described in Table 2-1). Even though some UCL methods (e.g., CLT, standard bootstrap, and 
percentile bootstrap methods) do not perform well enough to provide the specified coverage to the 
population mean of skewed distributions. These methods have been included in ProUCL for comparison, 
academic, and research purposes. These comparisons are also necessary to demonstrate why the use of a 
Student's t-based UCL and Kaplan-Meier (KM) method based UCLs using t-critical values as suggested in 
some environmental books should be avoided. Additionally, the inclusion of these methods also helps the 
user to make better decisions. Based upon the sample size, n, data skewness, 
𝜎𝜎�, and data distribution, ProUCL makes suggestions regarding the use of one or more 95% UCL methods 
to estimate the EPC. For additional gudidance, the users may want to consult a statistician to select the most 
appropriate UCL95 to estimate an EPC. 

It is noted that in the environmental literature, recommendations about the use of UCLs have been made 
without accounting for the skewness and sample size of the data set. Specifically, Helsel (2005, 2012) 
suggests the use t-statistic and percentile bootstrap method on robust regression on order statistics (ROS) 
and KM estimates to compute UCL95s without considering data skewness and sample size. For moderately 
skewed to highly skewed data sets, the use of such UCLs underestimates the population mean. These issues 
are illustrated by examples discussed in the following sections and also in Chapters 4 and 5. 

2.4.1 (1 – α)*100 UCL of the Mean Based upon Student’s t-Statistic 

The widely used Student’s t-statistic is given by: 

�̅�𝑥−𝜇𝜇1𝑡𝑡 = (2-31) 
𝑠𝑠𝑥𝑥/√𝑛𝑛 

Where �̅�𝑥 and sx are, respectively, the sample mean and sample standard deviation obtained using the raw 
data. For normally distributed data sets, the test statistic given by equation (2-31) follows the Student’s t-
distribution with (n -1) df. Let tα,n-1 be the upper αth quantile of the Student’s t-distribution with (n -1) df. 

A (1 – α)*100 UCL of the population mean, μ1, is given by: 

𝑈𝑈𝐶𝐶𝐿𝐿 = �̅�𝑥 + 𝑡𝑡𝑎𝑎,𝑛𝑛−1𝑠𝑠𝑥𝑥/√𝑛𝑛 (2-32) 

For a normally (when the skewness is approximately 0) distributed data sets, equation (2-32) provides the 
best (optimal) way of computing a UCL of the mean. Equation (2-32) may also be used to compute a UCL 
of the mean based upon symmetric or mildly skewed (|skewness|<0.5) data sets, where the skewness is 
defined in Table 2-1. For moderately skewed data sets (e.g., when 𝜎𝜎�, the sd of log-transformed data, starts 
approaching and exceeding 0.5), the UCL given by (2-32) fails to provide the desired coverage of the 
population mean. This is especially true when the sample size is smaller than 20-25 (graphs summarized in 
Appendix B). The situation gets worse (coverage much smaller) for higher values of the sd, 𝜎𝜎� , or its MLE, 
sy. 

Notes: ProUCL 5.0 and later versions make a decision about the data distribution based upon both of the 
GOF test statistics: Lilliefors and Shapiro-Wilk GOF statistics for normal and lognormal distributions; and 
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A-D and K-S GOF test statistics for gamma distribution. Specifically, when only one of the two GOF 
statistic lead to the conclusion that data are normal (lognormal or gamma), ProUCL outputs the conclusion 
that the data set follows an approximate normal (lognormal, gamma) distribution; all decision statistics 
(parametric or nonparametric) are computed based upon this conclusion. Due to these changes, UCL(s) 
suggested by ProUCL 5.2 can differ from the UCL(s) suggested by ProUCL 4.1. Some examples illustrating 
these differences have been considered later in this chapter and also in Chapter 4.0. 

2.4.2 Computation of the UCL of the Mean of a Gamma, G (k, θ), Distribution 

It is well-known that the use of a lognormal distribution often yields unstable and unrealistic values of the 
decision statistics including UCLs and UTLs for moderately skewed to highly skewed lognormally 
distributed data sets; especially when the data set is of a small size (e.g., <30, 50, ...). Even though methods 
exist to compute 95% UCLs of the mean, UPLs and UTLs based upon gamma distributed data sets (Grice 
and Bain 1980; Wong 1993; Krishnamoorthy et al. 2008), those methods have not become popular due to 
their computational complexity and/or the lack of their availability in commercial software packages (e.g., 
Minitab 16). Despite the better performance (in terms of coverage and stability) of the decision making 
statistics based upon a gamma distribution, some practitioners tend to dismiss the use of gamma distribution 
based decision statistics by not acknowledging them (EPA 2009e; Helsel 2012b) and/or stating that the use 
of a lognormal distribution is easier to compute the various upper limits. Throughout this document, several 
examples have been used to illustrate these issues. 

For gamma distributions, ProUCL software has both approximate (used for n>50) and adjusted (when n≤50) 
UCL computation methods. Critical values of the chi-square distribution and an estimate of the gamma 
shape parameter, k along with the sample mean are used to compute gamma UCLs. As seen above, 
computation of an MLE of k is quite involved, and this works as a deterrent to the use of a gamma 
distribution-based UCL of the mean. However, the computation of a gamma UCL currently should not be 
a problem due to the easy availability of statistical software to compute these estimates. It is noted that 
some of the gamma distribution based methods incorporated in ProUCL (e.g., prediction limits, tolerance 
limits) are also available in the R Script library. 

Update in ProUCL 5.0 and Higher Versions: For gamma distributed data sets, all versions of ProUCL 
compute both adjusted and approximate gamma UCLs. However, in earlier versions of ProUCL, an adjusted 
gamma UCL was recommended for data sets of sizes ≤40 (instead of 50 as in ProUCL 5.1 and later), and 
an approximate gamma UCL was recommended for data sets of sizes>40, whereas ProUCL 5.1 and later 
suggests using approximate gamma UCL for sample sizes >50. 

Given a random sample, x1, x2, ... , xn , of size n from a gamma, G(k, θ), distribution, it can be shown that 
22𝑛𝑛�̅�𝑥/𝜃𝜃 follows a chi-square distribution, 𝜒𝜒2𝑛𝑛𝑘𝑘 with ν = 2nk degrees of freedom (df). When the shape 

parameter, k, is known, a uniformly most powerful test of size of α of the null hypothesis, H0: μ1 ≥ Cs, 
2against the alternative hypothesis, HA: μ1 < Cs, is to reject H0 if �̅�𝑥/𝐶𝐶𝑥𝑥 < 𝜒𝜒2𝑛𝑛𝑘𝑘(𝛼𝛼)/2𝑛𝑛𝑘𝑘. The corresponding 

(1 – α) 100% uniformly most accurate UCL for the mean, μ1, is then given by the probability statement. 

2𝑃𝑃(2𝑛𝑛𝑘𝑘�̅�𝑥/𝜒𝜒2𝑛𝑛𝑘𝑘(𝛼𝛼) ≥ 𝜇𝜇1) = 1 − 𝛼𝛼 (2-33) 
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Where, 𝜒𝜒𝜈𝜈2(𝛼𝛼) denotes the cumulative percentage point of the chi-square distribution (e.g., α is the area in 

the left tail) with ν (=2nk) df. That is, if Y follows 𝜒𝜒𝜈𝜈2, then 𝑃𝑃(𝑌𝑌 ≤ 𝜒𝜒𝜈𝜈2(𝛼𝛼)) = 𝛼𝛼. In practice, k is not known 
�∗and needs to be estimated from data. A reasonable method is to replace k by its bias-corrected estimate, 𝑘𝑘 

, as given by equation (2-29). This yields the following approximate (1 – α)*100 UCL of the mean, μ1. 

2Approximate – UCL =2𝑛𝑛𝑘𝑘�∗�̅�𝑥/𝜒𝜒2𝑛𝑛𝑘𝑘� ∗ (𝛼𝛼) (2-34) 

It should be pointed out that the UCL given by equation (2-34) is an approximate UCL without guarantee 
that the confidence level of (1 – α) will be achieved by this UCL. Simulation results summarized in Singh, 
Singh, and Iaci (2002) suggest that an approximate gamma UCL given by (2-34) does provide the specified 
coverage (95%) for values of k > 0.5. Therefore, for values of k> 0.5, one should use the approximate 
gamma UCL given by equation (2-34) to estimate the EPC. 

For smaller sample sizes, Grice and Bain (1980) computed an adjusted probability level, β (adjusted level 
of significance), which can be used in (2-34) to achieve the specified confidence level of (1 – α). For α = 
0.05 (confidence coefficient of 0.95), α = 0.1, and α = 0.01, these probability levels are given below in 
Table 2-2 for some values of the sample size n. One can use interpolation to obtain an adjusted β for values 
of n not covered in Table 2-2. The adjusted (1 – α) *100 UCL of the gamma mean, μ1 = kθ, is given by the 
following equation: 

2Adjusted – UCL =2𝑛𝑛𝑘𝑘�∗�̅�𝑥/𝜒𝜒2𝑛𝑛𝑘𝑘� ∗ (𝛽𝛽) (2-35) 

Where β is given in Table 2-2 for α = 0.05, 0.1, and 0.01. Note that as the sample size, n, becomes large, 
the adjusted probability level, β, approaches the specified level of significance, α. Except for the 
computation of the MLE of k, equations (2-34) and (2-35) provide simple chi-square-distribution-based 
UCLs of the mean of a gamma distribution. It should also be noted that the UCLs given by (2-34) and (2-
35) only depend upon the estimate of the shape parameter, k, and are independent of the scale parameter, 
θ, and its ML estimate. Consequently, coverage probabilities for the mean associated with these UCLs do 
not depend upon the values of the scale parameter, θ. 
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Table 2-2. Adjusted Level of Significance, β 

α = 0.05 α = 0.1 α = 0.01 

N probability level, β probability level, β probability level, β 

5 0.0086 0.0432 0.0000* 

10 0.0267 0.0724 0.0015 

20 0.0380 0.0866 0.0046 

40 0.0440 0.0934 0.0070 

-- 0.0500 0.1000 0.0100 

*Note that for sample of size 5 (or less), when β becomes ‘0’ for small α value of 0.01, it will not be possible to 
compute adjusted UCL as the denominator in equation (2-35) will become zero. 

For gamma distributed data sets, Singh, Singh, and Iaci (2002) noted that the coverage probabilities 
provided by the 95% UCLs based upon bootstrap-t and Hall’s bootstrap methods (discussed below) are in 
close agreement. For larger samples, these two bootstrap methods approximately provide the specified 95% 
coverage and for smaller data sets (from a gamma distribution), the coverage provided by these two methods 
is slightly lower than the specified level of 0.95. 

Note 1: Gamma UCLs do not depend upon the standard deviation of the data set which gets distorted by 
the presence of outliers. Thus, unlike the lognormal distribution, outliers have reduced influence on the 
computation of the gamma distribution based upon decision statistics including the UCL of the mean—a 
fact generally not known to a typical user. 

Note 2: For all gamma distributed data sets for all values of k and n, all modules and all versions of ProUCL 
compute the various upper limits based upon the mean and standard deviation obtained using the bias-
corrected estimate, 𝑘𝑘�∗ . As noted earlier, the estimate 𝑘𝑘�∗ does yield better estimates (reduced bias) for all 
values of k >0.2. For values of k <0.2, the differences between the various limits obtained using 𝑘𝑘� and 𝑘𝑘�∗ 

are not that significant. However from a theoretical point of view, when k <0.2, it is desirable to compute 
the mean, standard deviation, and the various upper limits using the MLE estimate, 𝑘𝑘�. ProUCL generated 
output sheets display many intermediate results including 𝑘𝑘� and 𝑘𝑘�∗; 𝜃𝜃� and 𝜃𝜃�∗. Interested users may want to 
compute UCLs and other upper limits using MLE estimates, 𝑘𝑘� and 𝜃𝜃�, of k and θ for values of k described 
in the above paragraph. 

2.4.3 (1 – α)*100 UCL of the Mean Based Upon H-Statistic (H-UCL) 

The one-sided (1 – α)*100 UCL for the mean, μ1, of a lognormal distribution as derived by Land (1971, 
1975) is given as follows: 
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UCL = 𝑈𝑈𝐶𝐶𝐿𝐿 = 𝑒𝑒𝑥𝑥𝑒𝑒�𝑦𝑦� + .05𝑠𝑠𝑦𝑦2 + 𝑠𝑠𝑦𝑦𝐻𝐻1−𝛼𝛼/√𝑛𝑛 − 1� (2-36) 

Tables of H-statistic critical values can be found in Land (1975). When the population is lognormal, Land 
(1971) showed that theoretically the UCL given by equation (2-36) possesses optimal properties and is the 
uniformly most accurate unbiased confidence limit. However, in practice, the H-statistic based UCL can be 
quite disappointing and misleading, especially when the data set is not lognormal but skewed and/or 
consists of outliers, or represents a mixture data set coming from two or more populations (Singh, Singh, 
and Engelhardt 1997, 1999; Singh, Singh, and Iaci 2002). Even a minor increase in the sd, sy, drastically 
inflates the MVUE of μ1 and the associated H-UCL. The presence of low as well as high data values 
increases sy, which in turn inflates the H-UCL. Furthermore, it has been observed (Singh, Singh, Engelhardt 
1997, 1999) that for samples of sizes smaller than 20-30 (sample size requirement also depends upon 
skewness), and for values of σ approaching and exceeding 1.0 (moderately skewed to highly skewed data), 
the use of the H-statistic results in impractical and unacceptably large UCL values. 

Notes: In practice, many skewed data sets can be modeled by both gamma and lognormal distributions; 
however, there are differences in the properties and behavior of these two distributions. Decision statistics 
computed using the two distributions can differ significantly (see Example 2-2 below). It is noted that some 
recent documents (Helsel and Gilroy, 2012) incorrectly state that the two distributions are similar. Helsel 
(2012a, 2012b) suggests the use a lognormal distribution due its computational ease. However, one should 
not compromise the accuracy and defensibility of estimates and decision statistics by using easier methods 
which may underestimate (e.g., using a percentile bootstrap UCL based upon a skewed data set) or 
overestimate (e.g., H-UCL) the population mean. Computation of defensible estimates and decision 
statistics taking the sample size and data skewness into consideration is always recommended. For 
complicated and skewed data sets, several UCL computation methods (e.g., bootstrap-t, Chebyshev 
inequality, and Gamma UCL) are available in ProUCL to compute appropriate decision statistics (UCLs, 
UTLs) covering a wide-range of data skewness and sample sizes. 

For lognormally distributed data sets, the coverage provided by the bootstrap-t 95% UCL is a little lower 
than the coverage provided by the 95% UCL based upon Hall’s bootstrap method (Appendix B). However, 
it is noted that for lognormally distributed data sets, the coverage provided by these two bootstrap methods 
is significantly lower than the specified 0.95 coverage for samples of all sizes. This is especially true for 
moderately skewed to highly skewed (σ >1.0) lognormally distributed data sets. The H-statistic often results 
in unstable values of the UCL95, especially when the sample size is small, n<20, as shown in Examples 2-
1 through 2-3. 

Example 2-1. Consider the silver data set with n=56 (from NADA for R package [Helsel, 2013]). The 
normal GOF test graph is shown in Figure 2-1. It can be seen that the data set has an extreme outlier (an 
observation significantly different from the main body of the data set). The data set contains NDs, and 
therefore is considered in Chapter 4 and 5 again. Here this data set is considered assuming that all 
observations represent detected values. The data set does not follow a gamma distribution (Figure 2-3) but 
can be modeled by a lognormal distribution as shown in Figure 2-2, accommodating the outlier 560. The 
histogram shown in Figure 2-4 suggests that data are highly skewed. The sd of the logged data = 1.74. The 
various UCLs computed using ProUCL 5.0 are displayed in Table 2-3 (with outlier) and Table 2-4 (without 
outlier) following the Q-Q plots. 

59 



 

       

 

    

 

480 

'20 

360 

i JOO 

in 

. 
> 
in 

240 

60 

-2.4 

-2 .4 

-1.B 

-1.8 

-1.2 

-1.2 

Normal Q-Q Plot for Silver 

a ~ M 
Theoretical Quantiles (Standard Normal) 

Lo gnormal Q-Q Plot for Silver 

.. 

-0.6 0.0 0.6 
Theoretical Quant iles (Standard Normal) 

1.2 1.8 2., 

1.2 1.8 2., 

S ilve-

Mean • 15 .45 

Sd- 75.19 
Slope• 31.09 

lnte ,cept - 15.45 

Conelation. R • 0.406 
Sha pifo-Wik Test 

Aw•o•. Test V<llue • 0.2Qi 

p-Value • O_ID) 

■Best Fit Line 

n • 56 

Me an • 0 .6 
Sd • l.7.t6 

Slope • l.H.l. 

lntc ,cq,t - 0.6 

Cone l.,tion, R • 0.975 

Test Statisti:: •0.117 

CriticalValue(0.051• 0.118 

OotaAppeorlogno,n,il 

■ Betl fil line 

Figure 2-1. Normal Q-Q Plot of Raw Data in Original Scale 

Figure 2-2. Lognormal Q-Q plot with GOF Test Statistics 
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Figure 2-3. Gamma Q-Q plot with GOF Test Statistics 

Figure 2-4. Histogram of Silver Data Set including Outlier 560. 

In this case, the use of a lognormal UCL may underestimate the EPC. The BCA bootstrap UCL95 is 52.45 
and other nonparametric UCLs (excluding the Bootstrap-t, Hall’s Bootstrap, and Chebyshev UCLs) range 
from 31.98 to 35.5. If one insists that the outlier 560 represents a valid observation and comes from the 
same population, one may want to use a nonparametric BCA UCL95 or other non-parametric UCL to 
estimate the EPC. The recommendations from ProUCL version 5.1 are shown in Table 2-3. Note that 
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Silver 

General Stalislics 

Total Number of Observations 56 Number of Distinct Observations 22 

Number of Missing Observations 0 

Minimum 0.1 Mean 15.45 

Maximum 560 Median 1.3 

SD 75.1 9 Std. Error of Mean 10.05 

Coefficient of Variation 4.868 Skewness 7.1 74 

lDgnonnal GOF Test 

Shapiro Wilk Test Statistic 0.951 ~ro Wilk lDgnonnal GOF Test 

5% Shapiro Wilk P Value 0.0464 Data Not lognonnal at So/. Significance Level 

Lilliefors Test Statistic 0.117 Lilliefor., lDgnonnal GOF Test 

5% Lilliefors Critical Value 0.11 8 Data appear lognonnal at So/. Significance Level 

Data appear Approximate lDgnonnal al 5% Significance Level 

lDgnonnal Stalislics 

Minimum of logged Data -2.303 Mean of logged Data 0.6 

Maximum of Logged Data 6.328 SD of logged Data 1.746 

Assuring lDgnonnal Oistribuion 

95% H-UCL 18.54 90% Chebyshev (MVUE) UCL 15.61 

95%Chebyshev (MVUE) UCL 19.1 2 97.5% Chebyshev (MVUE) UCL 24 

99% Chebyshev (MVUE) UCL 33.59  

Nonparametric Oistribuion Free UC:L.s 
95%CLT UCL 31.98 95% Jackkn~e UCL 32.26 

95% Standard Bootstrap UCL 32.23 95% Bootstrap{ UCL 180.4 

95% Hall's Bootstrap UCL 94.1 95% Percentile Bootstrap UCL 35.5 

95% BCA Bootstrap UCL 52.45 

90% Chebyshev(Mean. Sd) UCL 45.59 95% Chebyshev(Mean. Sd) UCL 59.25 

97.5% Chebyshev(Mean. Sd) UCL 78.2 99%Chebyshev(Mean. Sd) UCL 115.4 

Suggested UCL to Use 

95% H-UCL 18.54 

 

       
  

   

ProUCL version 5.2 no longer recommends the use of the H-UCL in such cases of small sample size (n < 
75) where the appropriate distribution cannot be reliably determined. In such cases of small sample size 
and high skew, ProUCL version 5.2 does not provide a recommendation and instead encourages the user to 
contact a trained statistician for an appropriate UCL (Section 2.5.1). 

Table 2-3. Lognormal and Nonparametric  UCLs  for Silver Data  including  the outlier 560  

The histogram without the outlier is shown in Figure 2-5. The data is positively skewed with skewness = 
5.45. UCLs based upon the data set without the outlier are summarized in Table 2-4 as follows. A quick 
comparison of the results presented in Tables 2-3 and 2-4 reveals how the presence of an outlier affects the 
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various decision-making statistics. Refer to Sections 3.2, 7.1 and 7.2 for a discussion of how to 
appropriately handle outliers. 

Figure 2-5. Histogram of Silver Data Set Excluding Outlier 560 for Example 2-1. 
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Silver 

General Stalislics 

Total Number of Obseivations 55 Number of Distinct Obseivations 21 

Number of Missing Obseivations 0 

Minimum 0.1 Mean 5.547 

Maximum 90 Median 1.2 

SD 12.95 Std. Error of Mean 1.746 

Coefficient of Variation 2.334 Skewness 5.45 

lognonnal GOF Test 

Shapiro Wilk Test Statistic 0.959 si-;ro Wilk lognonnal GOF Test 

5% Shapiro Wilk P Value 0.11 4 Data appear lognonnal at So/ .. Significance Level 

Ulliefors Test Statistic 0.1 22 Lillie/or., lognonnal GOF Test 

5% Ulliefors Critical Value 0.11 9 Data Not Lognonnal at 5% Signlicance Level 

Data appear Approximate lognonnal al 5% Significance level 

lognonnal Stalislics 

Minimum of Logged Data -2.303 Mean of logged Data 0.496 

Maximum of Logged Data 4.5 SD of logged Data 1.577 

Assuning lognonnal Oislribuion 

95o/. H-UCL 11.11 90-,,. Chebyshev (MVUE) UCL 10.1 3 

95o/. Chebyshev (MVUE) UCL 12.26 97.5o/. Chebyshev (MVUE) UCL 15.22 

!l!lo/. r.hehyshev (MVI IF) I Ir.I 71 04 

Nonpa,amelric OislribtAion Free UCL.s 

95o/. CLT UCL 8.419 95o/. Jackknle UCL 8.469 

95o/. Standard Bootstrap UCL 8.371 95o/. Bootstrap{ UCL 12.1 2 

95o/. Hall's Bootstrap UCL 19.2 95o/. Percentile Bootstrap UCL 8.642 

95o/. BCA Bootstrap UCL 10.47 

90o/. Chebyshev(Mean. Sd) UCL 10. 78 95o/. Chebyshev(Mean. Sd) UCL 13.1 6 

97.5o/. Chebyshev(Mean. Sd) UCL 16.45 99o/. Chebyshev(Mean. Sd) UCL 22.92 

Suggested UCL to Use 

95o/. H-UCL 11.11 

    
      

 
 

      
      

   
  

  

   
    

   

Table 2-4. Lognormal and Nonparametric UCLs Not Including the Outlier Observation 560 

Example 2-2: The positively skewed data set consisting of 25 observations, with values ranging from 0.35 
to 170, follows a lognormal or a gamma distribution. The data set is: 0.3489, 0.8526, 2.5445, 2.5602, 
3.3706, 4.8911, 5.0930, 5.6408, 7.0407, 14.1715, 15.2608, 17.6214, 18.7690, 23.6804, 25.0461, 31.7720, 
60.7066, 67.0926, 72.6243, 78.8357, 80.0867, 113.0230, 117.0360, 164.3302, and 169.8303. 

The mean of the data set is 44.09. The data set is positively skewed with sd of log-transformed data = 1.68. 
The normal GOF results are shown in the Q-Q plot of Figure 2-6, it is noted that the data do not follow a 
normal distribution. The data set follows a lognormal or a gamma distribution as shown in Figures 2-7 and 
2-8 and also in Tables 2-5 and 2-6. The various lognormal and nonparametric UCL95s (Table 2-5) and 
Gamma UCL95s (Table 2-6) are summarized. 

The lognormal distribution based H UCL95 is 229.2 which is unacceptably higher than all other UCLs and 
an order of magnitude higher than the sample mean of 44.09. A more reasonable Gamma distribution based 
UCL95 of the mean is 74.27 (recommended by ProUCL). 
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The data set is highly skewed (Figure 2-6) with sd of the log-transformed data = 1.68; a Student's t-UCL of 
61.66 and a nonparametric percentile bootstrap UCL95 of 60.32 may represent underestimates of the 
population mean. 

The intent of the ProUCL software is to provide users with methods which can be used to compute reliable 
decision statistics required to make decisions which are cost-effective and protective of human health and 
the environment. 

Figure 2-6. Normal Q-Q Plot of X 

Figure 2-7. Gamma Q-Q Plot of X 

65 



 

 

  

Q-Q Plot for X 

X 2 

-1.8 ·1.2 -0.6 0.0 0.6 

Theoretical Quantiles (Standard Normal) 
1.2 1.8 

Mean • 2.835 

Sd ■ l .68 

Slope ■ l.696 

lnteicept ■ 2.835 

Correlalion,R ■ 0.978 

Shapifo-Wil<. Test 

Ewact TestSt~istic ■ 0.948 

CrlicalV~0.05) ■ 0.918 

D~aAppe-s l°'7101mal 

Appfo,c_ Test VMAe • 0 949 

p-VM.le ■ 0.247 

■ Best Fit line 

Figure 2-8. Lognormal Q-Q Plot of X 
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General Statistics 

Total Number of Observations 25 Number of Distinct Observations 25 

Number of Missing Observations 0 

Minimum 0.349 Mean 44.09 

Maximum 169.8 Median 18.77 

SD 5U4 Std. Error of Mean 10.27 

Coefficierit of Variation 1.164 Skewness 1.294 

l..ogxxmal GOF Test 

Shapiro Wilk Test Statistic 0.948 Shapiro Wilk l..ogxxmal GOF Test 

5% Shapiro Wilk Ctitical Value 0.918 Data appear Lognormal at 5% Significance Level 

Lilliefors Test Statistic 0. H5 Lilliefors l..ogxxmal GOF Test 

5% Lilliefors Ctitical Value 0.177 Data appear Lognormal at 5% Significance Level 

Data appear l..ogxxmal al 5% Sigwicance Levef 

l..ogxxmal Statistics 

Minimum of Logged Data -1.053 Mean of logged Data 2.835 

Maximum of logged Data 5.135 SD of logged Data 1.68 

Asstmng l..ogxxmal Oistrilx.tion 

95% H-UCL 229.2 90°1. Chebyshev (MVUE) UCL 140.6 

95% Chebyshev (MVUE) UCL 176.3 97.5% Chebyshev (MVUE) UCL 225.8 

99% Chebyshev (MVUE) UCL 323 

~ric Oistrilx.tion Free OCL.s 

95% CL T UCL 60.98 95% Jackknife UCL 61.66 

95% Standard Bootstrap UCL 60.57 95% Bootstrap-l UCL 65.58 

95% Hall's Bootstrap UCL 62.55 95% Perceritile Bootstrap UCL 60.32 

95% BCA Bootstrap UCL 64.8 

90% Chebyshev(Mean, Sd) UCL 74.89 95% Chebyshev(Mean, Sd) UCL 88.85 

97.5% Chebyshev(Mean, Sd) UCL 108.2 99% Chebyshev(Mean, Sd) UCL 146.3  

 

  
   

     
    

      

Table 2-5. Nonparametric and Lognormal UCL95 

Notes: The use of H-UCL is not recommended for moderately skewed to highly skewed data sets of smaller 
sizes (e.g., 30, 50, 70). ProUCL computes and outputs H-statistic based UCLs for historical and academic 
reasons. This example further illustrates that there are significant differences between a lognormal and a 
gamma model; for positively skewed data sets, it is recommended to test for a gamma model first. If data 
follow a gamma distribution, then the UCL of the mean should be computed using a gamma distribution. 
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General Slalislics 

Total Number of Obseivations 25 Number of Distinct Obseivations 25 

Number of Missing Obseivations 0 

Minimum 0.349 Mean 44 03 

Maximum 169.8 Median 18.77 

SD 51.34 SD of logged Data 1.68 

Coefficient of Variation 1.164 Skewness 1.294 

Gamma GOF Test 

A-D Test Statistic 0.374 Ander.!oo-Oa,ling Gamma GOF Test 

5% A-D Critical Value 0. 794 Data appear Gamma Distributed at 5% Sign~icance Level 

K-S Test Statistic 0.11 3 KDlmogn,v-Smimoff Gamma GOF Test 

5% K-S Critical Value 0.1 83 Data appear Gamma Distributed at 5% Sign~icance Level 

Data appear Garrma Oislribt.ted al 5% Significance level 

Gamma Slalislics 

k hat (MLE) 0.643 k star (bias corrected MLE) 0.592 

Theta hat (MLE) 68.58 Theta star (bias corrected MLE) 74.42 

nu hat (MLE) 32.1 5 nu star (bias corrected) 29.62 

MLE Mean (bias corrected) 44.09 MLE Sd (bias corrected) 57.28 

Approximate Chi Square Value (0.05) 18.2 

Adjusted Level of Significance 0.0395 Adjusted Chi Square Value 17.59 

Assuning Gamma Oislribt.Cion 

95%Approximate Gamma UCL 71.77 95% Adjusted Gamma UCL 74.27 

Suggested UCL t o Use 

95% Adjusted Gamma UCL 74.27  

 

     
 

      
    

 
  

      
      

        
 

   
                

 

Table 2-6. Gamma UCL95 

2.4.4 (1 – α)*100 UCL of the Mean Based upon Modified-t-Statistic for Asymmetrical 
Populations 

It is well known that percentile bootstrap, standard bootstrap, and Student’s t-statistic based UCL of the 
mean do not provide the desired coverage of a population mean (Johnson 1978, Sutton 1993, Chen 1995, 
Efron and Tibshirani 1993) of skewed data distributions. Several researchers including: Chen (1995), 
Johnson (1978), Kleijnen, Kloppenburg, and Meeuwsen (1986), and Sutton (1993) suggested the use of the 
modified-t-statistic and skewness adjusted CLT for testing the mean of a positively skewed distribution. 
The UCLs based upon the modified t-statistic and adjusted CLT methods were included in earlier versions 
of ProUCL (e.g., versions 1.0 and 2.0) for research and comparison purposes prior to the availability of 
Gamma distribution based UCLs in ProUCL 3.0 (2004). Singh, Singh, and Iaci (2002) noted that these two 
skewness adjusted UCL computation methods work only for mildly skewed distributions. These methods 
have been retained in later versions of ProUCL for academic reasons. The (1 – α)*100 UCL of the mean 
based upon a modified t-statistic is given by: 
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UCL = 𝑈𝑈𝐶𝐶𝐿𝐿 = �̅�𝑥 + �̂�𝜇3/(6𝑠𝑠𝑥𝑥2𝑛𝑛) + 𝑡𝑡𝛼𝛼,𝑛𝑛−1𝑠𝑠𝑥𝑥/√𝑛𝑛 (2-37) 

Where �̂�𝜇3, an unbiased moment estimate (Kleijnen, Kloppenburg, and Meeuwsen 1986) of the third central 
moment is given as follows: 

𝑛𝑛 �̂�𝜇 = 𝑛𝑛 ∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)3 /(𝑛𝑛 − 1)(𝑛𝑛 − 2) (2-38) 3 𝑖𝑖=1 

This modification for a skewed distribution does not perform well even for mildly to moderately skewed 
data sets. Specifically, the UCL given by equation (2-37) may not provide the desired coverage of the 
population mean, μ1, when σ starts approaching and exceeding 0.75 (Singh, Singh, and Iaci 2002). This is 
especially true when the sample size is smaller than 20-25. This small sample size requirement increases as 
σ increases. For example, when σ starts approaching and exceeding 1 to 1.5, the UCL given by equation (2-
37) does not provide the specified coverage (e.g., 95%), even for samples as large as 100. 

2.4.5 (1 – α)*100 UCL of the Mean Based upon the Central Limit Theorem 

The CLT states that the asymptotic distribution, as n approaches infinity, of the sample mean, 𝑥𝑥�𝑛𝑛 , is 
normally distributed with mean, μ1, and variance, σ1

2/n irrespective of the distribution of the population. 
More precisely, the sequence of random variables given by: 

�̅�𝑥𝑛𝑛−𝜇𝜇1𝑧𝑧𝑛𝑛 = (2-39) 
𝜎𝜎/√𝑛𝑛 

has a standard normal limiting distribution. For large sample sizes, n, the sample mean, �̅�𝑥, has an 
approximate normal distribution irrespective of the underlying distribution function (Hogg and Craig 1995). 
The large sample requirement depends upon the skewness of the underlying distribution function of 
individual observations. The large sample requirement for the sample mean to follow a normal distribution 
increases with skewness. Specifically, for highly skewed data sets, even samples of size 100 may not be 
large enough for the sample mean to follow a normal distribution. This issue is illustrated in Appendix B. 
Since the CLT method requires no distributional assumptions, this is a nonparametric method. As noted by 
Hogg and Craig (1995), if σ1 is replaced by the sample standard deviation, sx, the normal approximation for 
large n is still valid. This leads to the following approximate large sample (1 – α)*100 UCL of the mean: 

𝑈𝑈𝐶𝐶𝐿𝐿 = �̅�𝑥 + 𝑧𝑧𝑎𝑎𝑠𝑠𝑥𝑥/√𝑛𝑛 (2-40) 

An often cited and used rule of thumb for a sample size associated with a CLT based method is n ≥ 30. 
However, this may not be adequate if the population is skewed, specifically when σ (sd of log-transformed 
variable) starts exceeding 0.5 to 0.75 (Singh, Singh, Iaci 2002). In practice, for skewed data sets, even a 
sample as large as 100 is not large enough to provide adequate coverage to the mean of skewed populations. 
Noting these observations, Chen (1995) proposed a refinement of the CLT approach, which makes a slight 
adjustment for skewness. 

2.4.6 (1 – α)*100 UCL of the Mean Based upon the Adjusted Central Limit Theorem (Adjusted-
CLT) 

The “adjusted-CLT” UCL is obtained if the standard normal quantile, zα, in the upper limit of equation (2-
40) is replaced by the following adjusted critical value (Chen 1995): 
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𝑘𝑘� 3𝑧𝑧𝛼𝛼,𝑎𝑎𝑑𝑑𝑎𝑎 = 𝑧𝑧𝛼𝛼 + (1 + 2𝑧𝑧𝛼𝛼2) (2-41) 
6√𝑛𝑛 

Thus, the adjusted- CLT (1 – α)*100 UCL for the mean, μ1, is given by 

𝑈𝑈𝐶𝐶𝐿𝐿 = �̅�𝑥 + �𝑧𝑧𝛼𝛼 + 𝑘𝑘�3(1 + 2𝑧𝑧𝛼𝛼2)/(6√𝑛𝑛)�𝑠𝑠𝑥𝑥/√𝑛𝑛 (2-42) 

Here 𝑘𝑘�3, the coefficient of skewness (raw data), is given by 

� 3Skewness (raw data) 𝑘𝑘3 = �̂�𝜇3/𝑠𝑠𝑥𝑥 (2-43) 

where, �̂�𝜇3, an unbiased estimate of the third moment, is given by equation (2-38). This is another large 
sample approximation for the UCL of the mean of skewed distributions. This is a nonparametric method, 
as it does not depend upon any of the distributional assumptions. 

Just like the modified-t-UCL, it is observed that the adjusted-CLT UCL also does not provide the specified 
coverage to the population mean when the population is moderately skewed, specifically when σ becomes 
larger than 0.75. This is especially true when the sample size is smaller than 20 to25. This large sample size 
requirement increases as the skewness (or σ) increases. For example, when σ starts approaching and 
exceeding 1.5, the UCL given by equation (2-42) does not provide the specified coverage (e.g., 95%), even 
for samples as large as 100. It is noted that UCL given by (2-42) does not provide adequate coverage to the 
mean of a gamma distribution, especially when the shape parameter (or its estimate) k ≤ 1.0 and the sample 
size is small. 

Notes: UCLs based upon these skewness adjusted methods, such as the Johnson’s modified-t and Chen’s 
adjusted-CLT, do not provide the specified coverage to the population mean even for mildly to moderately 
skewed (e.g., σ in [0.5, 1.0]) data sets. The coverage of the population mean provided by these UCLs 
becomes worse (much smaller than the specified coverage) for highly skewed data sets. These methods 
have been retained in ProUCL 5.1 and 5.2 for academic and research purposes. 

2.4.7 Chebyshev (1 – α)*100 UCL of the Mean Using Sample Mean and Sample sd 

Several commonly used UCL95 computation methods (e.g., Student’s t-UCL, percentile and BCA 
bootstrap UCLs) fail to provide the specified coverage (e.g., 95%) to the population mean of skewed data 
sets. The use of a lognormal distribution based H-UCL (EPA 2006a, EPA 2009e) is still commonly used to 
estimate EPCs based upon lognormally distributed skewed data sets. However, the use of Land’s H-statistic 
yields unrealistically large UCL95 values for moderately skewed to highly skewed data sets. On the other 
hand, when the mean of a logged data set is negative, the H-statistic tends to yield an impractically low 
value of H-UCL (See Example 2-1 above) especially when the sample size is large (e.g., > 30-50). To 
address some of these issues associated with lognormal H-UCLs, Singh, Singh, and Engelhardt (1997) 
proposed the use of the Chebyshev inequality to compute a UCL of the mean of skewed distributions. They 
noted that a Chebyshev UCL tends to yield stable, realistic, and conservative estimates of the EPCs. The 
use of the Chebyshev UCL has been adopted by the ITRC (2012 and 2020) to compute UCLs of the mean 
based upon data sets obtained using the incremental sampling methodology (ISM) approach. However, the 
use of the Chebyshev UCL has been found to yield unrealistically high estimates of the mean and fails to 
balance objectives of both coverage and accuracy in an appropriate way (Section 2.5.1.3). There are also 
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issues with the statistical theory behind this method (Section 2.5.1.3). ProUCL version 5.2 no longer 
recommends the Chebyshev UCL. 

For moderately skewed data sets, the Chebyshev inequality yields conservative UCL95. But for highly 
skewed data sets, even a Chebyshev inequality fails to yield a UCL95 providing 95% coverage for the 
population mean (Singh, Singh, and Iaci 2002; Appendix B). To address these issues, ProUCL version 5.1 
recommended a 97.5% or 99% Chebyshev UCL, which are typically even more egregious overestimates 
(Section 2.5.1.3). Since the use of the Chebyshev inequality tends to yield conservative UCL95s, especially 
for moderately skewed data sets of large sizes (e.g., >50), ProUCL 5.2 also outputs a UCL90 based upon 
the Chebyshev inequality. ProUCL version 5.2 displays but never recommends Chebyshev UCLs of any 
confidence level. 

The two-sided Chebyshev theorem (Hogg and Craig 1995) states that given a random variable, X, with 
finite mean and standard deviation, μ1 and σ1, we have 

𝑃𝑃(−𝑘𝑘𝜎𝜎1 ≤ 𝑥𝑥 − 𝜇𝜇1 ≤ 𝑘𝑘𝜎𝜎1) ≥ 1 − 1/𝑘𝑘2 (2-44) 

This result can be applied to the sample mean, �̅�𝑥 (with mean, μ1 and variance, 𝜎𝜎12/𝑛𝑛), to compute a 
conservative UCL for the population mean, μ1. For example, if the right side of equation (2-44) is equated 
to 0.95, then k = 4.47, and UCL = �̅�𝑥 + 4.47𝜎𝜎1/√𝑛𝑛 represents a conservative 95% upper confidence limit 
for the population mean, μ1. Of course, this would require the user to know the value of σ1. The obvious 
modification would be to replace σ1 with the sample standard deviation, sx, but since this is estimated from 
data, the result is not guaranteed to be conservative. However, in practice, the use of the sample sd does 
yield conservative values of the UCL95 unless the data set is highly skewed with sd of the log-transformed 
data exceeding 2 to 2.5, and so forth. In general, the following equation can be used to obtain a (1 – α)*100 
UCL of the population mean, μ1: 

𝑈𝑈𝐶𝐶𝐿𝐿 = �̅�𝑥 + �(1/𝛼𝛼)𝑠𝑠𝑥𝑥/√𝑛𝑛 (2-45) 

A slight refinement of equation (2-45) is given as follows: 

𝑈𝑈𝐶𝐶𝐿𝐿 = �̅�𝑥 + �((1/𝛼𝛼) − 1)𝑠𝑠𝑥𝑥/√𝑛𝑛 (2-46) 

All versions of ProUCL compute the Chebyshev (1 – α)*100 UCL of the population mean using equation 
(2-46). This UCL is labeled as Chebyshev (Mean, Sd) on the output sheets generated by ProUCL. Since this 
Chebyshev method requires no distributional assumptions, it is a nonparametric method. This UCL may be 
used to estimate the population mean, μ1, when the data are not normal, lognormal, or gamma distributed, 
especially when sd, σ (or its estimate, sy) becomes large such as > 1.5. 

From simulation results summarized in Singh, Singh, and Iaci (2002) and graphical results presented in 
Appendix B, it is observed that for highly skewed gamma distributed data sets (with shape parameter k < 
0.5), the coverage provided by the Chebyshev 95% UCL (given by equation (2-46)) is smaller than the 
specified coverage of 0.95. This is especially true when the sample size is smaller than 10-20. As expected, 
for larger samples sizes, the coverage provided by the 95% Chebyshev UCL is at least 95%. For larger 
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samples, the Chebyshev 95% UCL tends to result in a higher (but stable) UCL of the mean of positively 
skewed gamma distributions. 

Note about Chebyshev Inequality based UCLs: The developers of ProUCL have made significant efforts to 
make suggestions that allows the user to choose the most appropriate UCL95 to estimate the EPC. However, 
suggestions made in ProUCL may not cover all real world data sets, especially smaller data sets with higher 
variability. Based upon the results of the simulation studies and graphical displays presented in Appendix 
B, the developers noted that for smaller data sets with high variability (e.g., sd of logged data >1, 1.5, etc.) 
even a conservative Chebyshev UCL95 tends not to provide the desired 95% coverage to the population 
mean. 

2.4.8 Chebyshev (1 – α)*100 UCL of the Mean of a Lognormal Population Using the MVUE of 
the Mean and its Standard Error 

Earlier versions of ProUCL (when gamma UCLs were not available in ProUCL) used equation (2-44) on 
the MVUEs of the lognormal mean and sd to compute a UCL (denoted by (1 – α)*100 Chebyshev (MVUE)) 
of the population mean of a lognormal population. In general, if μ1 is an unknown mean, �̂�𝜇1 is an estimate, 
and 𝜎𝜎�1(�̂�𝜇1) is an estimate of the standard error of �̂�𝜇1, then the following equation: 

𝑈𝑈𝐶𝐶𝐿𝐿 = �̂�𝜇1 + �((1/𝛼𝛼) − 1)𝜎𝜎�1(�̂�𝜇1) (2-47) 

yields a (1 – α)*100 UCL for μ1, which tends to be conservative; where �̂�𝜇1 and 𝜎𝜎�1(�̂�𝜇1) are given by 
equations (2-14) and (2-16), respectively. This UCL is retained in ProUCL 5.1/5.2 for historical reasons 
and research purposes. ProUCL 5.2 does not make any recommendations based upon this version of 
Chebyshev UCL. 

Notes: Many skewed data sets can be modeled both by a lognormal distribution as well as a gamma 
distribution. Since, the use of a lognormal distribution tends to yield inflated and unstable upper limits 
including UCLs (Singh, Singh, and Engelhardt 1997) and UPLs (Gibbons 1994), it is suggested that if a 
data set follows a gamma distribution (even when data may also be lognormally distributed), then the UCL 
of the mean, μ1, and other upper limits such as UPLs and UTLs should be computed using a gamma 
distribution. 

For a confidence coefficient of 0.95, ProUCL UCLs/EPCs module makes suggestions which are based 
upon the extensive experience of the developers of ProUCL with environmental statistical methods, 
published literature (Singh, Singh, and Engelhardt 1997, Singh and Nocerino 2002, Singh, Singh, and Iaci 
2002, and Singh, Maichle, and Lee 2006) and procedures described in the various guidance documents. 
However, the project team is responsible for determining whether to use the suggestions made by ProUCL. 
This determination should be based upon the conceptual site model (CSM), expert site and regional 
knowledge. The project team may want to consult a statistician. 

2.4.9 (1 – α)*100 UCL of the Mean Using Bootstrap Methods 

Bootstrap methods (Efron 1981, 1982; Efron and Tibshirani 1993) are nonparametric statistical resampling 
techniques which can be used to reduce the bias in point estimates and construct approximate confidence 
intervals for parameters, such as the population mean, population percentiles. These methods do not require 

72 



  
     

    
  

       
           

            
      

  

     

     
        

        
      

 

   
     

  
         

          
  

        

     
     
        

      

        
   

        

    

         

       
         

any distributional assumptions and can be applied to a variety of situations. The bootstrap methods 
incorporated in ProUCL for computing upper limits include: the standard bootstrap method, percentile 
bootstrap method, BCA percentile bootstrap method, bootstrap-t method (Efron,1981, 1982; Hall 1988), 
and Hall’s bootstrap method (Hall 1992; Manly 1997). 

As before, let x1, x2, … , xn represent a random sample of size n from a population with an unknown 
parameter, θ, and let 𝜃𝜃� be an estimate of θ, which is a function of all n observations. Here, the parameter,θ, 
could be the population mean and a reasonable choice for the estimate, 𝜃𝜃�, might be the sample mean, x . 
Another choice for 𝜃𝜃� is the MVUE of the mean of a lognormal population, especially when dealing with 
lognormally distributed data sets. 

2.4.9.2 (1 – α)*100 UCL of the Mean Based upon the Standard Bootstrap Method 

In bootstrap resampling methods, repeated samples of size n each are drawn with replacement from a given 
data set of size n. The process is repeated a large number of times (e.g., 2000 times), and each time an 
estimate, 𝜃𝜃�𝑖𝑖 , of θ is computed. The estimates are used to compute an estimate of the SE of 𝜃𝜃�. A description 
of the bootstrap methods, illustrated by application to the population mean, μ1, and the sample mean, �̅�𝑥, is 
given as follows. 

Step 1. Let (xi1, xi2, ... , xin) represent the ith bootstrap sample of size n with replacement from the original 
data set, (x1, x2, ..., xn); denote the sample mean using this bootstrap sample by �̅�𝑥𝑖𝑖. 

Step 2. Repeat Step 1 independently N times (e.g., 1000-2000), each time calculating a new estimate. 
Denote these estimates (KM means, ROS means) by 𝑥𝑥1̅ , �̅�𝑥2, . . . , �̅�𝑥𝑁𝑁 . The bootstrap estimate of the population 
mean is the arithmetic mean, �̅�𝑥𝐵𝐵, of the N estimates �̅�𝑥𝑖𝑖: i := 1, 2, …, N. The bootstrap estimate of the SE of 
the estimate, �̅�𝑥 , is given by: 

1 𝑁𝑁 𝜎𝜎�𝐵𝐵 = � ∑𝑖𝑖=1(�̅�𝑥𝑖𝑖 − �̅�𝑥𝐵𝐵)2 (2-54) 
𝑁𝑁−1 

If some parameter, θ (e.g., the population median), other than the mean is of concern with an associated 
estimate (e.g., the sample median), then same steps described above are applied with the parameter and its 
estimates used in place of μ1 and �̅�𝑥. Specifically, the estimate, 𝜃𝜃�𝑖𝑖, would be computed, instead of �̅�𝑥𝑖𝑖, for 
each of the N bootstrap samples. The general bootstrap estimate, denoted by �̅�𝜃𝐵𝐵, is the arithmetic mean of 

those N estimates. The difference, 𝜃𝜃�̅�𝐵 − 𝜃𝜃� , provides an estimate of the bias in the estimate, 𝜃𝜃�, and an 
estimate of the SE of 𝜃𝜃� is given by: 

1 𝑁𝑁 ̅𝜎𝜎 = � ∑ (𝜃𝜃�𝑖𝑖 − 𝜃𝜃�𝐵𝐵 𝑖𝑖=1 𝐵𝐵)2 
𝑁𝑁−1 

(2-55) 

A (1–α)*100 standard bootstrap UCL for θ is given by 

𝑈𝑈𝐶𝐶𝐿𝐿 = 𝜃𝜃� + 𝑧𝑧𝛼𝛼𝜎𝜎�𝐵𝐵 (2-56) 

ProUCL computes the standard bootstrap UCL by using the population mean and sample mean, given by 
μ1 and �̅�𝑥. The UCL obtained using the standard bootstrap method is quite similar to the UCL obtained using 
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the Student’s t-statistic given by equation (2-32), and, as such, does not adequately adjust for skewness. For 
skewed data sets, the coverage provided by the standard bootstrap UCL is much lower than the specified 
coverage (e.g., 0.95). 

Notes: Typically, bootstrap methods are not recommended for small data sets consisting of less than 10-15 
distinct values. Also, it is not desirable to use bootstrap methods on larger (n > 500) data sets. For small 
data sets, several bootstrap re-samples could be identical and/or all values in a bootstrap re-sample could 
be identical; no statistical computations can be performed on data sets with all identical observations. For 
larger data sets, there is no need to perform and use bootstrap methods as a large data set is already 
representative of the population itself. Methods based upon normal approximations, applied to data sets of 
larger sizes (n > 500), yield good estimates and results. Also, for larger data, bootstrap methods can take a 
long time to compute statistics of interest. 

2.4.9.3 (1 – α)*100 UCL of the Mean Based upon the Simple Percentile Bootstrap Method 

Bootstrap resampling of the original data set of size n is used to generate the bootstrap distribution of the 
unknown population mean. In this method, the N bootstrapped means, �̅�𝑥𝑖𝑖, i:=1,2,...,N, are arranged in 
ascending order as�̅�𝑥(1) ≤ �̅�𝑥(2) ≤. . . ≤ �̅�𝑥(𝑁𝑁). The (1 – α)*100 UCL of the population mean, µ1, is given by 
the value that exceeds the (1 – α)*100 of the generated mean values. The 95% UCL of the mean is the 95th 

percentile of the generated means and is given by: 

95% Percentile UCL = 95th % �̅�𝑥𝑖𝑖; i: = 1, 2, ..., N (2-57) 

For example 𝑥𝑥(950), when N = 1000, the bootstrap 95% percentile UCL is given by the 950th ordered mean 
value given by . It is well-known that for skewed data sets, the UCL95 of the mean based upon the percentile 

bootstrap method does not provide the desired coverage (95%) for the population mean. The users of 
ProUCL and other software packages are cautioned about the suggested use of the percentile bootstrap 
method for computing UCL95s of the mean based upon skewed data sets. Noting the deficiencies associated 
with the upper limits (UCLs) computed using the percentile bootstrap method, researchers (Efron 1981; 
Hall 1988, 1992; Efron and Tibshirani 1993) have developed and proposed the use of skewness adjusted 
bootstrap methods. Simulations results and graphs presented in Appendix B verify that for skewed data 
sets, the coverage provided by the percentile bootstrap UCL95 and standard bootstrap UCL is much lower 
than the coverages provided by the UCL95s based upon the bootstrap-t and the Hall’s bootstrap methods. 
It is observed that for skewed (lognormal and gamma) data sets, the BCA bootstrap method performs 
slightly better (in terms of coverage probability) than the percentile method. 

2.4.9.4 (1 – α)*100 UCL of the Mean Based upon the Bias-Corrected Accelerated (BCA) Percentile 
Bootstrap Method 

The BCA bootstrap method adjusts for bias in the estimate (Efron and Tibshirani 1993; and Manly 1997). 
Results and graphs summarized in Appendix B suggest that the BCA method does provide a slight 
improvement over the simple percentile and standard bootstrap methods. However, for skewed data sets 
(parametric or nonparametric), the improvement is not adequate enough and yields UCLs with a coverage 
probability much lower than the coverage provided by bootstrap-t and Hall’s bootstrap methods. This is 
especially true when the sample size is small. For skewed data sets, the BCA method also performs better 
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than the modified-t-UCL. Based upon gamma distributed data sets, the coverage provided by the BCA 
95%UCL approaches 0.95 as the sample size increases. For lognormally distributed data sets, the coverage 
provided by the BCA 95%UCL is much lower than the specified coverage of 0.95. 

The BCA upper confidence limit of intended (1 – α)*100 coverage is given by the following equation: 

(𝛼𝛼2)𝐵𝐵𝐶𝐶𝐴𝐴 − 𝑈𝑈𝐶𝐶𝐿𝐿 = �̅�𝑥 (2-58) 

Here �̅�𝑥(𝛼𝛼2) is the α2*100th percentile computed using N bootstrap means �̅�𝑥𝑖𝑖; i: = 1, 2, …, N. For example, 

when N = 2000, �̅�𝑥(𝛼𝛼2)= (α2N)th ordered statistic of the N bootstrapped means, �̅�𝑥𝑖𝑖; i: = 1, 2, …, N denoted 

by �̅�𝑥(𝛼𝛼2𝑁𝑁) represents a BCA-UCL; α2 is given by the following probability statement: 

0+𝑧𝑧(1−𝛼𝛼)�̂�𝑧𝛼𝛼2 = Φ ��̂�𝑧 � (2-59) 0 + 
1−𝛼𝛼�(�̂�𝑧0+𝑧𝑧(1−𝛼𝛼)) 

Φ(z) is the standard normal cumulative distribution function and z(1 – α) is the 100(1–α)th percentile of a 
(0.95) standard normal distribution. For example, z = 1.645, and Φ(1.645) = 0.95. Also for equation (2-59), 

the �̂�𝑧0 (bias correction factor) and 𝛼𝛼� (acceleration factor) are given as follows: 

= Φ−1 �#(�̅�𝑥𝑖𝑖<�̅�𝑥)�̂�𝑧0 𝑁𝑁 
� (2-60) 

Here Φ-1 (x) is the inverse standard normal cumulative distribution function, e.g., Φ-1 (0.95) = 1.645; and # 
represents the number of bootstrap means, �̅�𝑥𝑖𝑖 (out of N means) less than the overall sample mean, �̅�𝑥. 

∑(�̅�𝑥−�̅�𝑥−𝑖𝑖)3 

𝛼𝛼� = (2-61) 
6[∑(�̅�𝑥−�̅�𝑥−𝑖𝑖)2]1.5 

In (2-61), summation is being carried from i = 1 to i = n; �̅�𝑥 is the sample mean based upon all original n 

observation and �̅�𝑥−𝑖𝑖 is the mean of (n-1) observations without the ith observation, i: = 1, 2, …, n. 

2.4.9.5 (1 – α)*100 UCL of the Mean Based upon the Bootstrap-t Method 

The nonparametric bootstrap-t (Efron 1982) method uses the bootstrap approach to estimate quantiles of 
the pivotal t-statistic given by equation (2-31). Rather than using the quantiles/percentiles/critical values of 
the familiar Student’s t-statistic, Hall (1988) proposed computing estimates of the quantiles of the statistic 
given by equation (2-31) directly from the data. Specifically, as in Steps 1 and 2 of Section 2.4.9.2 above, 
let �̅�𝑥 be the sample mean computed from the original data, and �̅�𝑥𝑖𝑖 and sx,i be the sample mean and sample 
standard deviation computed from the ith bootstrap sample. For N bootstrap sample, the N quantities 
𝑡𝑡𝑖𝑖 = √𝑛𝑛[(�̅�𝑥𝑖𝑖 − �̅�𝑥)/𝑠𝑠𝑥𝑥,𝑖𝑖 are computed and sorted, yielding ordered quantities, t(1) ≤ t(2) ≤ … ≤ t(N). The 
estimate of the lower αth quantile of the pivotal quantity in equation (2-31) is t(αN). For example, if N = 1000 
bootstrap samples are generated, then the 50th ordered value, t(50) , would be the bootstrap estimate of the 
lower 0.05th quantile of the pivotal quantity given in equation (2-31). Then a (1–α)*100 UCL of the mean 
based upon the bootstrap-t-method is given as follows: 

𝑠𝑠𝑥𝑥 UCL = �̅�𝑥 − 𝑡𝑡(𝛼𝛼𝑁𝑁) √𝑛𝑛 
(2-62) 
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Note the “ – ” sign in equation (2-62) is CORRECT. 

From the simulation results summarized in Singh, Singh, and Iaci (2002) and in Appendix B, it is observed 
that for skewed data sets, the bootstrap-t method tends to yield more conservative (higher) UCL values than 
the other UCLs obtained using the Student’s t, modified-t, adjusted-CLT, and other bootstrap methods 
described above. It is noted that for highly skewed (k < 0.1 or σ > 2) data sets of small sizes (n < 10 to 15), 
the bootstrap-t method performs better (in terms of coverage) than other (adjusted gamma UCL, or 
Chebyshev inequality UCL) UCL computation methods.  

2.4.9.6 (1 – α)*100 UCL of the Mean Based upon Hall’s Bootstrap Method 

Hall (1992) proposed a bootstrap method that adjusts for bias as well as skewness. This method has been 
included in UCL guidance document for CERCLA sites (EPA 2002a). In this method, �̅�𝑥𝑖𝑖, sx,i , and 𝑘𝑘�3𝑖𝑖, the 
sample mean, the sample standard deviation, and the sample skewness, respectively, are computed from 
the ith bootstrap re-sample (i = 1, 2,..., N) of the original data. Let �̅�𝑥 be the sample mean, sx be the sample 
standard deviation, and 𝑘𝑘�3 be the sample skewness (as given by equation (2-43)) computed using the 
original data set of size n. The quantities, Wi and Qi, given below are computed for the N bootstrap samples: 

𝑊𝑊𝑖𝑖 = (�̅�𝑥𝑖𝑖 − �̅�𝑥)/𝑠𝑠𝑥𝑥,𝑖𝑖, 𝑚𝑚𝑛𝑛𝑑𝑑 𝑄𝑄𝑖𝑖(𝑊𝑊𝑖𝑖) = 𝑊𝑊𝑖𝑖 + 𝑘𝑘�3𝑖𝑖𝑊𝑊𝑖𝑖
2/3 + 𝑘𝑘�3𝑖𝑖 2 𝑊𝑊𝑖𝑖

3/27 + 𝑘𝑘�3𝑖𝑖/(6𝑛𝑛) 

The quantities, 𝑄𝑄𝑖𝑖(𝑊𝑊𝑖𝑖) are arranged in ascending order. For a specified (1 – α) confidence coefficient, 
compute the (αN)th ordered value, 𝑞𝑞𝑎𝑎, of the quantities, 𝑄𝑄𝑖𝑖(𝑊𝑊𝑖𝑖). Next, compute 𝑊𝑊(𝑞𝑞𝑎𝑎 ) using the inverse 
function, which is given as follows: 

𝑊𝑊(𝑞𝑞𝑎𝑎) = 3 ��1 + 𝑘𝑘�3(𝑞𝑞𝑎𝑎 − 𝑘𝑘�3/(6𝑛𝑛))�
1/3 − 1� /𝑘𝑘� (2-63) 3 

In equation (2-63), 𝑘𝑘�3 is computed using equation (2-43). Finally, the (1 – α)*100 UCL of the population 

mean based upon Hall’s bootstrap method is given as follows: 

UCL = �̅�𝑥 − 𝑊𝑊(𝑞𝑞𝑎𝑎 )𝑠𝑠𝑥𝑥 (2-64) 

For both lognormal and gamma distributions, bootstrap-t and Hall’s bootstrap methods perform better than 
the other bootstrap methods, namely, the standard bootstrap method, simple percentile, and bootstrap BCA 
percentile methods. For highly skewed lognormal data sets, the coverages based upon Hall’s method and 
bootstrap-t method are significantly lower than the specified coverage, 0.95. This is true even for samples 
of larger sizes (n ≥ 100). For lognormal data sets, the coverages provided by Hall’s bootstrap and bootstrap-
t methods do not increase much with the sample size, n. For highly skewed (sd > 1.5, 2.0) data sets of small 
sizes (n < 15), Hall’s bootstrap method and the bootstrap-t method perform better than the Chebyshev UCL, 
and for larger samples, the Chebyshev UCL performs better than Hall’s and bootstrap-t methods. 

Notes: The bootstrap-t and Hall’s bootstrap methods sometimes yield inflated and erratic values, especially 
in the presence of outliers (Efron and Tibshirani 1993). Therefore, these two methods should be used with 
caution. If outliers are present in a data set and the project team decides to use them in UCL computations, 
the use of alternative UCL computation methods (e.g., based upon the Chebyshev inequality) is suggested. 
These issues are examined in Example 2-3. 
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Also, when a data set follows a normal distribution without outliers, these nonparametric bootstrap methods, 
percentile bootstrap method, BCA bootstrap method and bootstrap-t method, will yield comparable results 
to the Student's t-UCL and modified-t UCL. 

Moreover, when a data set is mildly skewed sd of logged data <0.5), parametric methods and bootstrap 
methods discussed in this chapter tend to yield comparable UCL values. 

Example 2-3: Consider the pyrene data set with n = 56 selected from the literature (She 1997; Helsel 2005). 
The pyrene data set has been used in several chapters of this technical guide to illustrate the various 
statistical methods incorporated in ProUCL. The pyrene data set contains several NDs and will be 
considered again in Chapter 4. However, here, the data set is considered as an uncensored data set to discuss 
the issues associated with skewed data sets containing outliers; and how outliers can distort UCLs based 
upon bootstrap-t and Hall's bootstrap UCL computation methods. The Rosner outlier test (see Chapter 7) 
and normal Q-Q plot displayed in Figure 2-9 below confirm that the observation, 2982.45, is an extreme 
outlier. However, the lognormal distribution accommodated this outlier and the data set with this outlier 
follows a lognormal distribution (Figure 2-10). Note that the data set including the outlier does not follow 
a gamma distribution. 

Figure 2-9. Normal Q-Q Plot of She's Pyrene Data Set 
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Figure 2-10. Lognormal Q-Q Plot of She's Pyrene Data Set 

Several lognormal and nonparametric UCLs (with outlier) are summarized in Table 2-7 below. 
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General Slalislics 

Total Number of Obseivations 56 Number of Distinct Obseivations 44 

Number of Missing Obseivations 0 

Minimum 28 Mean 173.2 

Maximum 2982 Median 104 

SD 391.4 Std. Error of Mean 52.3 

Coefficient of Variation 2.26 Skewness 6.967 

lognonnal GOF Test 

Shapiro Wilk Test Statistic 0.924 Shapiro Wilk lognonnal GOF Test 

So/. Shapiro Wilk P Value 0.00174 Data Not lognonnal at So/. Sign~icance Level 

Lilliefors Test Statistic 0.0992 Lilliefor.s lognonnal GOF Test 

So/. Lilliefors Critical Value 0.11 8 Data appear Lognonnal at So/. Sign~icance Level 

Data appear Approximate lognonnal al 5% Significance Level 

lognonnal Stalislics 

Minimum of Logged Data 3.332 Mean of logged Data 4.66 

Maximum of Logged Data 8 SD of logged Data 0.787 

Assuning lognonnal Oistnbuion 

95o/. H-UCL 180.2 90o/. Chebyshev (MVUE) UCL 193.5 

95o/. Chebyshev (MVUE) UCL 216.3 97.So/. Chebyshev (MVUE) UCL 248.1 

99o/. Chebyshev (MVUE) UCL 310.4 

Nonparametric Oislribuion Free UC:L.s 
95o/. CL T UCL 259.2 95o/. Jackkn~e UCL 260.7 

95o/. Standard Bootstrap UCL 254.5 95o/. Bootstrap{ UCL 525.2 

95o/. Hall's Bootstrap UCL 588.5 95o/. Percentile Bootstrap UCL 276.5 

95o/. BCA Bootstrap UCL 336.7 

90o/. Chebyshev(Mean. Sd) UCL 330.1 95o/. Chebyshev(Mean. Sd) UCL 401.1 

97.So/. Chebyshev(Mean. Sd) UCL 499.8 99o/. Chebyshev(Mean. Sd) UCL 693.6  

      
   

    
     

   

    
  

       
    

  
        

    

Table 2-7. Nonparametric and Lognormal UCLs on Pyrene Data Set with Outlier 2982 

Looking at the mean (173.2), standard deviation (391.4), and SE (52.3) in the original scale, the H-UCL 
(180.2) may represent an underestimate of the population mean; a nonparametric UCL such as a BCA 
Bootstrap UCL Since there is an outlier present in the data set, both bootstrap-t (UCL=525.2) and Hall's 
bootstrap (UCL=588.5) methods yield elevated values for the UCL95. A similar pattern was noted in 
Example 2-1 where the data set included an extreme outlier. 

Computations of UCLs without the Outlier 2982 

The data set without the outlier follows both a gamma and lognormal distribution with sd of the log-
transformed data = 0.649 suggesting that the data are moderately skewed. The gamma GOF test results are 
shown in Figure 2-11. The UCL output results for the pyrene data set without the outlier are summarized 
in Table 2-8. Since the data set is moderately skewed and the sample size of 55 is fairly large, all UCL 
methods (including bootstrap-t and Hall's bootstrap methods) yield comparable results. ProUCL suggested 
the use of a gamma UCL95. This example illustrates how the inclusion of even a single outlier affects all 
statistics of interest. For a discussion of how to properly handle outliers, refer to Sections 3.2, 7.1 and 7.2. 
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A-D Test Statistic 

5% A-D Critical Value 

K-S Test Statistic 

5% K-S Critical Value 

0.76 

0.0916 

0121 

Detected data appear Gamma llistributed at 5% Signlicance level 

Kolmogov-Smimoff Ganma GOF Test 

Detected data appear Gamma Distributed at 54 Significance Level 

Detected dala appear Ganma Oistriboied al 5% Sigvficance level 

Gamma Slalistics 

k hat (MLE) 2.5&3 k star ~ias corrected MLE) 2.454 

Theta hat (MLE) 47.27 Theta star ~ias corrected MLE) 49.75 

nu hat (MLE) 2842 nu star ~ ias corrected) 270 

MLE Mean ~ as corrected) 122.1 M LE Sd ~ias corrected) 77.94 

.Approximate Oi Square Value (0.05) 232.9 

Adjusted level of Signlicance 0.0456 Adjusted O,i Square Value 232 

Assuming Ganma Oistriboiion 

95% .Approximate Gamma UCL (use when n>a50) 141.5 95% Adjusted Gamma UCL (use ""'en n<50) 142.1 

Shapiro Wilk Test Statistic 

5% Shapiro Wilk P Value 

LiUiefors Test Statistic 

~ GOF Test 

0.976 

0.552 

0.0553 

Shapiro Wilk ~ GOF Test 

Data appear Lognonnal at 5% Significance Level 

LillielOB ~ GOF Test 

5% Lilliefors Critical Value 0.119 Data appear lognonnal at 5% Significance level 

Data appear ~ al 5% Sigvficance level 

~ Slalistics 

Minimum of Logged Data 3.332 

Maximum of Logged Data 6.129 

Assuming ~ Oistriboiion 

Mean of logged Data 

SD of logged Data 

4.599 

0.649 

95% H-UCL 1462 90%0,ebyshev (MVUE) UCL 156.8 

95% O,ebyshev (MVUE) UCL 1 n.6 97.5%0,ebyshev (MVUE) UCL 194.4 

99% Oiebyshev (MVUE) UCL 237.3 

Figure 2-11. Gamma GOF Test on Pyrene Data Set without the Outlier 

Table 2-8. Gamma, Nonparametric and Lognormal UCLs on Pyrene Data Set without 
Outlier=2982 
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Oislribuion Free UCL Slalislics 

Data appear to follow a Discernible Distribution at 5% Significance Level 

Nonparametric Oislribuion Free UCL..s 

95%CLT UCL 141 95%Jackknle UCL 141.3 

95% Standard Bootstrap UCL 141 95% Bootstrap{ UCL 146.2 

95% Hall's Bootstrap UCL 145 95% Percentile Bootstrap UCL 141.5 

95% BCA Bootstrap UCL 145.1 

90o/.Chebyshev(Mean. Sd) UCL 156.6 95%Chebyshev(Mean. Sd) UCL 172.2 

97.5%Chebyshev(Mean. Sd) UCL 193.8 99% Chebyshev(Mean. Sd) UCL 236.4 

Suggested UCL to Use 

95%Approximate Gamma UCL 141.5  

         
   

  

  

Aluminum    Arsenic  Chromium             Iron        Lead               Mn Thallium   Vanadium    
 6280  1.3  8.7  4600  16  39  0.0835  12 
 3830  1.2  8.1  4330  6.4  30  0.068  8.4 
 3900 2   11  13000  4.9  10  0.155  11 
 5130  1.2  5.1  4300  8.3  92  0.0665 9  
 9310  3.2  12  11300  18  530  0.071  22 
 15300  5.9  20  18700  14  140  0.427  32 
 9730  2.3  12  10000  12  440  0.352  19 
 7840  1.9  11  8900  8.7  130  0.228  17 
 10400  2.9  13  12400  11  120  0.068  21 
 16200  3.7  20  18200  12  70  0.456  32 
 6350  1.8  9.8  7340  14  60  0.067  15 
 10700  2.3  14  10900  14  110  0.0695  21 
 15400  2.4  17  14400  19  340  0.07  28 
 12500  2.2  15  11800  21  85  0.214  25 
 2850  1.1  8.4  4090  16  41  0.0665 8  
 9040  3.7  14  15300  25  66  0.4355  24 
 2700  1.1  4.5  6030  20  21  0.0675  11 
 1710 1  3   3060  11  8.6  0.066  7.2 
 3430  1.5 4   4470  6.3  19  0.067  8.1 
 6790 
 11600 
 4110 
 7230 
 4610 

 2.6 
 2.4 
 1.1 
 2.1 
 0.66 

 11 
 16.4 
 7.6 
 35.5 
 6.1 

 9230 
 
 
 
 

 13 
 98.5 
 53.3 
 109 
 8.3 

 140 
 72.5 
 27.2 
 118 
 22.5 

 0.068 
 0.13 
 0.068 
 0.095 
 0.07 

 16 
 
 
 
 

Table 2-8 (continued). Gamma, Nonparametric and Lognormal UCLs on Pyrene Data Set without 
Outlier=2982 

Example 2-4: Consider the chromium concentration data set of size 24 from a real polluted site to illustrate 
the differences in UCL95 suggested by ProUCL 4.1 and ProUCL 5.0/ProUCL 5.1. The data set is provided 
here in full as it has been also used in several examples in Chapter 3. 

Table 2-9. Example Data Set for Chromium. 
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Table 2-10. UCLs Suggested  by  ProUCL  5.0 and later  
General Statistics 

Total Number of Observations 24 Number of Distinct Observations 19 
Number of Missing Observations 0 

Minimum 3 Mean 11.97 
Maximum 35.5 Med ian 11 

SD 6.892 Std. Error of Mean 1.407 

Coefficient of Variation 0.576 Skewness 1.728 

Normal GOF Test 
Shapiro Wilk Test Statistic 0.87 Shapiro Wilk GOF Test 

1% Shapiro Wilk Critical Value 0.884 Data Not Normal at 1% Significance Level 

Lilliefors Test Statistic 0.134 lilliefors GOF Test 
1% Lilliefors Critical Value 0.205 Data appear Normal at 1% Significance Level 

Data appear Approximate Normal at 1% Significance Level 

Assuming Normal Distribution 
95% Normal UCL 95% UCLs (Adjusted for Skewness) 

95% Student's-I UCL 14.38 95% Adjusted-CLT UCL (Chen-1995) 14.81 

95% Modified-I UCL (Johnson-1978) 14. 46 
 

Suggested UCL to Use [ 95% Student's~ UCL 14.38  

The chromium concentrations follow an approximate normal distribution (determined using the two 
normality tests) and also a gamma distribution. ProUCL 5.1 uses the conclusion based upon both (Shapiro-
Wilk and Lilliefors) normality tests and ProUCL 4.1 uses the conclusion based only upon the Shapiro-Wilk 
test leading to the conclusion that the data set does not follow a normal distribution and suggested the use 
of gamma UCLs. UCL results computed and suggested by ProUCL 5.1 and ProUCL 4.1 are summarized 
as follows. Data are mildly skewed (with sd of logged data = 0.57), therefore, UCL95s obtained using 
normal and gamma distributions are comparable. 
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Distribution Test Data D istribution 

k star (bias corrected) 3.128 Data appear Gamma D istri buled at 5% Sigmficance Level 

TltetaStar 3.825 

MLE of Mean 11 .97 

M LE of Standard Deviation 6. 766 

nu star 150.2 

Approximate Clti Square Value (.05) 122.8 Nonpa.ra metric Slalistics 

AdjLISted Level of Significance 0.0392 95% CLT UCL 14.28 

AdjLISted Clti Square Val ue 121.1 95% Jaoldmife UCL 14.38 

95"/4 Standard Bootstrap UCL 14.28 

And.erson- Darli rig Test Statistic 0.208 95 % Bootstra p-t UCL 15.19 

Anderson- Da rli r.g5% Critica l Value 0.75 95% Hall 's Bootstrap UCL 16.77 

Kol rnogorov-Smi mov Test Statistic 0. 0925 95% Percentile Bootstrap UCL 14.37 

Kolrnog.orov-Smirnov 5% Critica l Val ue 0.179 95% BCA Bootstrap UCL 14.95 

Data appear Gamma Distributed at 5% Significance Level 95% Cltebys hev(Mean. Sci) UCL 18. 1 

97.5% Cltebys nev(Mean, Sci) UCL 20.75 

Assuming Gamma Distribution 99% Cltebys hev(Mean. Sci) UCL 25.96 

95% Approx:imate Gamma UCL [Use wnen n >= 40) 14.63 

95% Adjusted Gamma UCL (Use wnen n < 40) 14.84 

Potential UCLloUse Use 95% Adjusted Gamma UCL 14.84  

    
        

     
    

       
       

      
      

       
  

      
    

  
     

      

      
     

     
         

     
 

UCLs Suggested by ProUCL 4.1 

Example 2-5: Consider another mildly skewed real-world data set consisting of lead (Pb) concentrations 
from a polluted site Questions were raised regarding ProUCL suggesting that the data are approximate 
normal and suggesting the use of the Student's t-UCL This example is included to illustrate that when data 
are mildly skewed (sd of logged data <0.5), the differences between UCLs computed using different 
distributions are not substantial from a practical point of view. The mildly skewed (with sd of logged data 
=0.47), zinc (Zn) data set of size 11 is given by: 38.9, 45.4, 40.1, 101.4, 166.7, 53.9, 57. 35.7, 43.2, 72.9, 
and 72.1. The Zn data set follows an approximate normal (using the Lilliefors test). As we know, the 
Lilliefors test works well for data sets of size >50; so it is valid to question why ProUCL suggests the use 
of a normal Student's t-UCL. This data set also follows a gamma (using both tests) and lognormal 
distribution (using both tests). Student's t-UCL95 suggested by ProUCL (using approximate normality) = 
87.26, Gamma UCL95 (adjusted) = 93.23, Gamma UCL95 (approximate) = 88.75, and a lognormal UCL95 
= 90.51. So all UCLs are comparable for this mildly skewed data set. 

Note: When a data set follows all three distributions (when this happens, it is highly likely that data set is 
mildly skewed), one may want to use a UCL for the distribution with the highest p-value. Also when 
skewness in terms of sd of logged data is <0.5, all three distributions yield comparable UCLs. 

Suggestions made by ProUCL are based upon simulations performed by the developers. A typical 
simulation study does not (cannot) cover all data sets of various sizes and skewness from the various 
distributions. The ProUCL Technical Guide provides sufficient guidance which can help a user select the 
most appropriate UCL as an estimate of the EPC. ProUCL makes these UCL suggestions to help a typical 
user select the appropriate UCL from the various available UCLs. Non-statisticians may want to seek help 
from a qualified statistician. 
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2.5 Suggestions and Summary 

The suggestions provided by ProUCL for selecting an appropriate UCL of the mean are summarized in this 
section. These suggestions are made to help the users in selecting the most appropriate UCL to estimate the 
EPC which is routinely used in exposure assessment and risk management studies of the USEPA. A typical 
simulation study does not (cannot) cover all data sets of all sizes and skewness from all distributions. For 
an analyte (data set) with skewness (sd of logged data) near the end points of the skewness intervals 
described in decision tables, Table 2-12 and Table 2-13, the user may select the most appropriate UCL 
based upon expert site knowledge, toxicity of the analyte, and exposure risk associated with that analyte. 
ProUCL makes these UCL suggestions to help a typical user in selecting the appropriate UCL from the 
many available UCLs. Non-statisticians may want to seek help from a qualified statistician. 

2.5.1 New in ProUCL 5.2 

When calculating and determining appropriate UCLs, it is important to remember that the UCL is still an 
estimate of central tendency (specifically, of the mean). It is a common misconception that the UCL should 
be close to the upper extreme of the data set. All UCL calculations that can be computed from closed 
analytical formulas (i.e., not bootstrap-based methods) are based on some underlying distributional 
assumptions. For example, gamma UCLs work well if the underlying data follow a gamma distribution, 
and the H-UCL works well if the underlying data truly follow a lognormal distribution. However, if 
assumptions of a particular distributional form are violated, such formulas do not perform as intended. The 
exception is the t-UCL, which is very robust to deviations from assumptions of normality. For any realistic 
distribution of data under unbiased (representative) sampling, the distribution of the sample mean tends 
toward a normal distribution due the operation of the Central Limit Theorem (CLT). See Frost (2018) for 
discussion and examples. In cases of large skewness, the convergence to the normal distribution may be 
slow. However, for many non-normal distributions, a sample size of 30 gives quite a good normal 
approximation to the mean. Because the UCL is an estimated upper bound for the mean, the Central Limit 
Theorem (CLT) applies and the t-UCL can be applied to most data sets in cases where assumptions about 
normality of the underlying distributional form may be violated. 

A number of improvements have been made to the decision logic for the recommendation of UCLs in 
ProUCL 5.2. The way in which goodness of fit (GOF) tests are used to select appropriate UCLs is modified. 
The Chebyshev UCL is no longer recommended, and the H UCL recommendation has changed. It is now 
recommended only when there is high confidence that the assumption of lognormality is met to a good 
approximation and for certain conditions of sample size and range of sample log scale standard deviations. 
This section provides information on why these updates were necessary. Note that in some cases, data may 
be too skewed or not numerous enough to determine an appropriate UCL. ProUCL 5.2 does not provide a 
recommendation in these cases, but encourages the user to: 1) Verify that the data were collected randomly 
(rather than through biased sampling, such as hot spot delineation sampling or best professional judgment 
sampling); 2) consider site knowledge that may explain why the data may be skewed (such as small areas 
of high concentrations); and 3) to contact a statistician if ProUCL cannot provide a recommendation. 
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2.5.1.1 Goodness of Fit Tests 

ProUCL uses GOF tests to choose the most appropriate UCL. GOF tests place the burden of proof on 
rejecting a particular distribution, not confirming it. For example, if data “pass” a Shapiro-Wilk test for 
normality, this simply means there is not enough evidence to conclude the data are not normal, but that 
does not prove that the data are truly normal. Therefore, such tests should be used with caution, especially 
for data sets with small sample sizes. With small sample sizes, there is very little power in GOF tests to 
reject the null hypothesis of a particular distribution. Therefore, the smaller the sample size, the more likely 
the data will “pass” a distribution test for the incorrect distribution. On the other hand, very large sample 
sizes make it likely that the data will be rejected as coming from a specified distribution, even if that is truly 
the distribution from which the data were generated and no matter the false positive rate (Type 1 error) 
specified for the GOF test. 

Initial simulations were conducted to explore the accuracy of goodness of fit tests. In this limited simulation 
study, data were simulated from a range of distributional forms and sample sizes. The following 
distributional forms were simulated (number of distinct distributions): normal (2), truncated normal (1), 
gamma (2), lognormal (5), Weibull (6), and non-parametric (mixture, 16). Most distributions were tested 
with sample sizes 30-100 in increments of 5, with a single iteration for each. A select few distributions were 
tested with sample sizes of 10, 50, 100, and 500, also with a single iteration for each. 

As sample sizes increase, the rate of correct assignment of distribution is expected to increase up to a certain 
very large sample size, after which it is expected to increasingly reject the null hypothesis of a particular 
distribution even if the data are truly generated by that distribution. However, this sample size is not known 
as it depends on the particular test. Different data sets will give varying results; however, ProUCL was run 
on the initial limited set of simulations to explore the behavior of the goodness of fit tests. For sample sizes 
of less than 50, about 40% of data sets resulted in the correct conclusion of which distribution they follow 
across all distributional forms. For sample sizes of 50-70 and 71-100, ProUCL was able to assign the correct 
distribution in about 50% and 60% of cases, respectively, across all distributional forms. 

ProUCL uses goodness of fit tests in sequential order: normal, gamma, and lognormal. The first test that 
the data pass identifies the distribution for ProUCL’s decision logic. Table 2-11 shows the rates of correct 
conclusions by the true distributional form and the rates of correct and incorrect decision by identification 
of distributional class across all sample sizes tested. These simulations were run through ProUCL 5.1. The 
GOF tests were run with a Type 1 error rate of 5%. 
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 True Distribution Class 

(number of simulations  
 tested) 

Identified 
 as Normal 

Identified 
 as 

 Gamma 

Identified 
 as 

 Lognormal 

Identified 
as Other 
(Non-

 parametric) 

 Percent of 
True 
Distribution 
Class 

 Correctly 
Identified  

 Normal (34)  34  0  0  0  100% 

 Gamma (34)  4  28  0  2  82% 

 Lognormal (95)  5  21  68  1  72% 

  Other (301) identified as 
 Other (Non-parametric) 

 94  45  97  65  22% 

 Total (464)  137  94  165  68  42% 

  Percent Correct 
 Identification of Class 

of Distribution at Each 
 Step 

 25%  30%  41%  96%  

 Percent Incorrect 
 Identification of Class 

of Distribution at Each 
 Step 

 75%  70%  59%  4%  

 

    
   
      

          
             

    

    
       

  

 
  

  

Table  2-11. Ability of ProUCL  5.1 t o choose  the correct  distributional form.  

For data that were truly normal, the normality test was very effective for the data sets and sample sizes 
tested (n ≤ 500). Thirty-four (34) out of 34 were classified as normal. However, 103 non-normal data sets 
were also classified as normal—four were gamma, five were lognormal, and 94 were other. So, only 25% 
of the distributions identified as normal were correctly classified. However, the data sets misclassified as 
normal had lower skewness and less severe departure from normality. In these cases, use of the t-UCL is 
appropriate based on the robustness of the 1-sample t-test. 

Note however that for much larger sample sizes, goodness of fit tests may reject the null hypothesis of 
normality (or other distribution) even if the data fit the distribution well. Also note that true 100% accuracy 
is impossible, and that these results are merely an approximation. 

For data that follow gamma or lognormal distributions, the accuracy in assigning the correct distribution 
declines due to the sequential order of tests. For example, for data sets simulated from a gamma distribution, 
82% of data sets were correctly classified as gamma, while 12% of data sets were classified as normal and 

86 



 

   
         

 
  

   
   

    
        

 
     

   
    

   

            
 

  
    

     
   

   
            
    

  
     

   

  
  

   
   

 
 

  
  

    
   

    
   

  
    

   
    

the remainder were classified as non-parametric (that is, non-identified or other). On the other hand, of the 
94 distributions identified as gamma, 28 were gamma, 21 were lognormal, and 45 were from other 
distributions. So, only 30% of the distributions identified as gamma were correctly classified. Since data 
sets with empirical distributions not too far from the normal distribution had already been identified as 
normal, those identified as gamma had moderate skewness and a shape and tail weight intermediate between 
the normal and lognormal. 

The gamma distribution parameter estimation methods used by ProUCL to estimate Gamma distribution 
UCLs are functions of the arithmetic and geometric means of the data. The geometric mean is the arithmetic 
mean of the data in log-scale exponentiated to transform it back to the original scale. The H-UCL used for 
the lognormal distribution is a function of the mean and variance in log scale. While the mean is impacted 
by extreme observations, the variance is much more so. For moderately skewed data, the Gamma UCL 
procedures perform reasonably well. Very skewed data sets, with extreme values in the log scale, will very 
likely be rejected as Gamma and subsequently be tested for lognormality. 

For data sets simulated from a lognormal distribution, 72% of data sets were correctly classified as 
lognormal, while 5% of data sets were classified as normal and 22% of data sets were classified as gamma. 
On the other hand, of distributions identified as lognormal, none were normal or gamma, and 97 were from 
other distributions. So, only 41% of the distributions identified as lognormal were correctly classified. Due 
to the limited power of goodness of fit tests to reject the null hypothesis of a particular distribution, 
especially with small sample sizes, the strategy used is most problematic for data identified as lognormal. 
For data sets that are smaller, highly skewed and not actually from a lognormal distribution, the performance 
of the H-UCL can be poor. It tends to produce unrealistically high UCL estimates, sometimes several orders 
of magnitude higher than the true population mean. Since this behavior by the H-UCL is driven by the 
sample having a large log scale variance, the problem can be caused either by the high end or the low end 
of the sample. In particular, the inappropriate handling of nondetects can cause the H-UCL procedure to 
give inappropriately large estimates. 

For data sets following a distribution other than normal, gamma, or lognormal, only 22% of data sets were 
correctly identified as other or non-parametric. 

Due to the inherent problems with goodness of fit tests, for version 5.2 of ProUCL the significance levels 
for each GOF test were modified in order to improve the recommendation of UCLs. Because the primary 
purpose of the GOF test is to inform this recommendation, significance levels are modified according to 
the performance of various UCL methods under deviations from the distributional forms they are based on. 
For example, the H-UCL performs poorly when the data are not truly lognormal. This results in data that 
are truly do not conform to a particular distributional form having unreasonable values for the H-UCL. In 
cases with relatively small sample sizes, it is likely the goodness of fit test will not show strong evidence 
against the null hypothesis of lognormality even for data whose distribution is far from lognormal. For 
example, in the initial simulations tested, of the data sets with sample sizes less than 75 that were simulated 
from mixture (non-parametric) distributions and did not pass the normal or gamma goodness of fit tests 
(n=88), only about 30% were correctly identified as not following to a particular distributional form, 
whereas about 70% were incorrectly identified as lognormal. To prevent this, lognormality is rejected with 
less evidence against the null hypothesis (𝛼𝛼 = 10%). By contrast, methods that assume normality (e.g., the 
t-UCL) are robust to deviations from this assumption, particularly since the mean of a data set is expected 
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to follow a normal distribution for a very wide range of the underlying distributions of the data. Therefore, 
ProUCL version 5.2 requires stronger evidence against normality to reject the null hypothesis in the 
Shapiro-Wilk and Lilliefors tests for normality (𝛼𝛼 = 1%). Because the gamma UCL methods perform 
reasonably well, the significance level for the gamma goodness of fit tests remains the same (𝛼𝛼 = 5%). With 
real data, the true distribution is never known. As such, any UCL that relies on a specific distributional form 
(e.g., the approximate gamma UCL, the adjusted gamma UCL, and the H-UCL) should be used with 
caution. 

2.5.1.2 Modifications to Decision Logic 

Historically, ProUCL has placed emphasis on achieving adequate coverage, but not on achieving an 
accurate estimate of the mean, in the sense of an upper bound for the mean that is as close as possible to 
the true mean while maintaining the desired coverage. Depending on the data, there are some UCLs in 
ProUCL (particularly Chebyshev and H) that can generate gross overestimates of the mean so that adequate 
coverage will almost certainly be achieved in these cases, but accuracy suffers. Although this philosophy 
ensures that the likelihood of one decision error will be small (i.e., Type I error, concluding a site is not 
contaminated when it is), such an overestimate is can result in a large opposite decision error (i.e., Type II 
error, concluding a site is contaminated when it is not). The objective should be to not only control for Type 
I error, but also to protect against large Type II errors. This requires balancing both objectives (coverage 
and accuracy) to select the most appropriate UCL method. See the flowcharts which summarize the decision 
logic, given in Appendix C. 

2.5.1.3 Chebyshev UCL 

The Chebyshev UCL can be highly conservative, resulting in gross overestimates of the mean. The 
Chebyshev UCL is based on the Chebyshev inequality, and became a popular choice of UCL because such 
an overestimate of the mean results in greater coverage than can be obtained from other UCL methods. In 
fact, simulated data from a variety of distributions and sample sizes have shown that the Chebyshev UCL 
can be many times the value of the true mean, especially for distributions that are highly skewed. 

Initial simulations were conducted to investigate the accuracy of Chebyshev and H UCLs compared with 
other methods. The advantage of simulated data is that the true mean is known, so it is possible to determine 
coverage and accuracy of various UCLs. In this limited simulation study, data were simulated from a range 
of distributional forms and sample sizes, with an emphasis on distributions that might cause high UCL 
estimates using the Chebyshev and H UCL methods. The following distributional forms (number of distinct 
distributions): normal (2), truncated normal (1), gamma (2), lognormal (11), Weibull (6), and non-
parametric (mixture, 13). Most distributions were tested with sample sizes 30-100 in increments of 5, with 
a single iteration for each. A select few distributions were tested with sample sizes of 10, 50, 100, and 500, 
also with a single iteration for each. 

In one example of a simulated mixture of lognormal distributions with extreme skewness (50% 𝜇𝜇 = 3, 𝜎𝜎 = 
2, and 50% 𝜇𝜇 = 1, 𝜎𝜎 = 3; n=35), ProUCL correctly determined the data were non-parametric, and 
recommended the 97.5% Chebyshev UCL, which was over 179 times the true mean. In some cases it may 
be even more of an overestimate, especially if the skewness is extreme or if the 99% Chebyshev UCL is 
recommended. In another example, 35 samples were taken from a lognormal distribution (𝜇𝜇 = 1.5, 𝜎𝜎 = 3), 
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and the recommended 99% Chebyshev UCL was over 395 times the true mean. In cases where ProUCL 
recommended the 95% Chebyshev UCL, the most extreme example is simulated from lognormal data with 
extreme skewness (𝜇𝜇 = 3, 𝜎𝜎 = 3, n=100), where the 95% Chebyshev UCL was over 33 times the value of 
the true mean. To prevent the recommendation of UCLs that are gross overestimates of the mean, ProUCL 
version 5.2 no longer recommends the Chebyshev UCL. A second simulation study was conducted to 
identify the optimal choice of UCL in cases of extremely skewed distributions, considering both accuracy 
and coverage (Section 2.5.1.5). 

In probability theory, Chebyshev’s inequality guarantees that in any data sample or probability distribution 
most values are close to the mean — the precise statement being that no more than 1/k2 of the distribution’s 
values can be more than k standard deviations away from the mean, where the mean and standard deviation 
are the population values rather than the sample values. If a confidence level (𝛼𝛼) is substituted for 1/k2, then 
the implied inequality can be made to look like a confidence interval statement, and this is the basis of the 
Chebyshev approach to UCL calculation. 

While the Chebyshev inequality is based on the population values, the true values, of the mean and standard 
deviation, the Chebyshev UCL is necessarily based on sample estimates of the mean and standard deviation. 
For small sample sizes, the standard deviation may be substantially underestimated a significant fraction of 
the time, because the sampling distribution of the standard deviation is right-skewed even for the normal 
case and much more so as sample size decreases and as the parent distribution is also right-skewed. This 
causes the median of estimates of the standard deviation to be smaller than the true value. So, the sample 
standard deviation is too low most of the time resulting in UCLs which may not cover the true mean. This 
is balanced by a smaller proportion of relatively large standard deviation estimates which lead to quite large 
overestimates of the true mean. The result is that the guaranteed coverage of the Chebyshev inequality is 
not really guaranteed at all. Furthermore, on average it has poor accuracy because of the large overestimates. 

The Chebyshev construction of a UCL is not based on a theoretically correct assumption, only a notion. 
There are many examples in the field of statistics for which methods are theoretically wrong but produce 
reasonable results. However, the Chebyshev UCL is an attempt at conservatism which, in most cases, is far 
too conservative, but simultaneously does not even guarantee the conservatism that is implied (i.e., in the 
most extreme cases, the Chebyshev falls short of the desired coverage). 

Chebyshev’s rule provides the most reasonable results, in the sense of getting nearly accurate coverage 
probability, for distributions that have highest probability in a very narrow band around the mean (i.e., in 
cases with a point mass at the mean), a small probability in a narrow band near the minimum value, and a 
similarly small probability in a narrow band near the maximum value. Such a distribution is rarely seen in 
environmental data (or with just about any non-artificial data). As probability is spread out across a wider 
range of possible values, Chebyshev’s inequality becomes ever more conservative. This spread-out 
distribution is much more likely to be the case for environmental data, though the case that may come 
closest is in measuring a site that has moderate skew, with mostly low values (e.g., background) and a small 
subset of high values (e.g., contamination). Still, when applying Chebyshev’s inequality to a sample 
average, the distribution of sample averages tends to be approximately normal (that is, a more spread-out 
distribution), and thus Chebyshev’s inequality would lead to coverage probabilities much higher than 
intended, compared to applying the true standard deviation. 
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In practice, when utilizing an estimate of the standard deviation, it is impossible to know what the true 
coverage probability might be for an arbitrary data distribution. It is possible to concoct distributions for 
which a 95% Chebyshev UCL has actual confidence anywhere from 100% down to 0% for a fixed sample 
size. That is, the goal of coverage probability that is often associated with Chebyshev’s UCL rule is not 
achieved – coverage probability for this rule can be made to be vanishingly small. With such a weak 
theoretical underpinning, the Chebyshev UCL is simply an arbitrary procedure that introduces some 
conservatism over the t-UCL (when sample size is larger than 2), and as noted above, conservatism may 
lead to better coverage probability, but trades off with poorer accuracy. 

2.5.1.4 H UCL 

The H-UCL, based on Land’s H-statistic, also tends to grossly overestimate the mean in certain cases, 
depending on the distribution of the data. Typically, if the data are truly lognormal, the H-UCL provides a 
conservative but relatively accurate estimate of the mean. However, the H-UCL has been shown to result 
in unreasonable estimates of the UCL of the mean, especially in cases where the data are not truly 
lognormal, or in some cases when the skewness of the data is extreme. A previous simulation study (Singh, 
Singh, and Engelhardt, 1997) found that for lognormal data sets with high standard deviation (sd), σ, of the 
natural log-transformed data (e.g., σ exceeding 1.0 to 1.5), the H-UCL becomes unacceptably large, 
exceeding the 95% and 99% data quantiles, and even the maximum observed concentration, by orders of 
magnitude. The H-UCL was also very sensitive to a few low or a few high values. Although the specifics 
of this simulation study could not be verified, additional simulations were conducted on lognormal data 
sets with standard deviations of log-transformed data ranging from 0.5 to 8 and sample sizes ranging from 
10 to 500. As an example, in one case of extreme skewness the H-UCL was over 17 orders of magnitude 
greater than the true mean (n=45, sdlog = 7). This initial set of simulations was used to inform a more in-
depth simulation study. 

2.5.1.5 Simulation Studies 

Three simulation studies are used to inform the UCL recommendation for version 5.2 in cases where the 
data are classified as lognormal or non-parametric. The first study was conducted by Neptune in 2017 
(Flagg et al 2017) and uses data simulated from lognormal distributions with standard deviations of log-
transformed data between 0.5 and 1.7, along with gamma, truncated normal, and several mixture 
distributions. Sample sizes ranged from 5 to 30. Several different types of loss functions were tested in 
order to penalize UCLs for their distance from the true mean (accuracy), as well as their tendency to 
underestimate the true mean (coverage), with the choice of the best UCL being fairly consistent across 
various loss functions. Loss functions are used to balance the two objectives in order to minimize both Type 
I and Type II error. The optimal UCL in each case is the one that achieves the minimum value of the loss 
function. The results of the study showed that the t-UCL or the maximum of the t-UCL and the BCA UCL 
was the optimal choice in nearly all cases tested, with mild skewness and sample sizes less than 30. The t-
UCL and BCA UCL were recommended in cases with small sample sizes (less than 75) classified as 
lognormal and mild skewness (sd log < 1.5) 

A second smaller-scale simulation study was done recently in direct support of this update to focus on 
lognormal distributions with extreme skew, with standard deviations of log-transformed data ranging from 
2.8 to 3.5 and sample sizes between 25 and 250. This study used the weighted sum of the mean squared 
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relative error in the difference between the true mean and UCL (as a penalty for accuracy) and the squared 
difference in logits between the true coverage and desired coverage (as a penalty for under- or over-
coverage) for the loss function. Different penalty factors for coverage and accuracy were tested, with the 
results being fairly consistent across reasonable choices of penalty factors. In cases where the data were 
classified as non-parametric, the t-UCL was consistently shown to be the best choice across all sample sizes 
and skewness. Therefore, ProUCL recommends the t-UCL if the data are classified as non-parametric, 
particularly since the t-UCL is robust to deviations from normality. 

The third simulation study was a large study that focused on generated lognormal data sets, which were 
filtered using the updated ProUCL 5.2 GoF test decision logic and were also classified as lognormal. The 
simulation used in this study generated 10,000 replicate data sets for each lognormal distribution used. 
These distributions have a common mean of 100 and a wide range of coefficients of variation (CVs) (25 
values from 0.1 to 20) covering behavior from very slightly skewed to highly skewed. Since these are all 
lognormal distributions, the CV determines the standard deviation of logs of the values and vice versa. The 
CV is used as an index parameter for the populations simulated in order to easily fit simulations for other 
distributions (and mixtures) into the same framework. 

The sample sizes of the simulated data sets range from 5 to 1,000 with 47 different values. The UCLs 
simulated include the Chebyshev 95% UCL, the Chebyshev 90% UCL, the H-UCL, the t-UCL, the skewed 
t-UCL, the adjusted Gamma UCL, the BCa bootstrap UCL, the bootstrap-t UCL, and Hall’s bootstrap UCL. 
The UCLs had a target coverage level of 95%, except for the Chebyshev 90% UCL. The results, which took 
several days to compute using parallel computing with up to 50 CPU cores, give an accurate 
characterization of the behavior of the UCLs calculated. As a result of the modified GoF data filtering rules, 
the data sets were relatively close to the lognormal distribution. As a result, the H UCL performed very 
well in this study. The recommendation from this study was that, for data classified by ProUCL 5.2 as 
lognormal, use the H UCL when the sample size is greater than or equal to 28 or when the log-scale standard 
deviation is less than or equal to 1.5, and use the t-UCL otherwise. The technical report for this study is 
included as Appendix D to this report. 

Additional studies are needed to determine how change in the GoF test decision logic would affect the 
choice of the most optimal UCL for a wider range of distributions, including mixture distributions. Such 
studies may be performed in the future to further improve ProUCL recommendations. 

2.5.2 Recommendations by Distributional Form 

UCL suggestions have been summarized for: 1) normally distributed data sets, 2) gamma distributed data 
sets, 3) lognormally distributed data sets, and 4) nonparametric data sets (data sets not following any of the 
three distributions available in ProUCL). For a given data set, an appropriate UCL can be computed by 
using more than one method. Therefore, depending upon the data size, distribution, and skewness, 
sometimes ProUCL may suggest more than one UCL. In such situations, the user may choose any of the 
suggested UCLs. If needed, the user may consult a statistician for additional insight. For an overview, see 
the flowcharts which summarize the decision logic, given in Appendix C. 
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2.5.2.1 Normally or Approximately Normally Distributed Data Sets 

For normally distributed data sets, several methods such as: the Student’s t-statistic, modified-t-statistic, 
and bootstrap-t computation methods yield comparable UCL95s providing coverage probabilities close to 
the nominal level, 0.95. For normally distributed data sets, a UCL based upon the Student’s t-statistic, as 
given by equation (2-32), provides the optimal UCL of the population mean. Therefore, for normally 
distributed data sets, one should always use a 95% UCL based upon the Student’s t-statistic. 

2.5.2.2 Gamma or Approximately Gamma Distributed Data Sets 

One should always first check if a given skewed data set follows a gamma distribution. If a data set does 
follow a gamma distribution or an approximate gamma distribution (suggested by gamma Q-Q plots and 
gamma GOF tests), it is generally acceptable to use a 95% UCL based upon a gamma distribution to 
estimate the EPC. 

• For gamma distributed data sets of sizes ≥ 50 with shape parameter, k>1, the use of the 
approximate gamma UCL95 is recommended to estimate the EPC. 

• For gamma distributed data sets of sizes <50, with shape parameter, k >1, the use of the adjusted 
gamma UCL95 is recommended. 

• For highly skewed gamma distributed data sets of small sizes (e.g., <15 or <20) and small 
values of the shape parameter, k (e.g., k < =1.0), a gamma UCL95 may fail to provide the 
specified 0.95 coverage for the population mean (Singh, Singh, and Iaci 2002); the use of a 
bootstrap-t UCL95 or Hall’s bootstrap UCL95 is suggested for small highly skewed gamma 
distributed data sets to estimate the EPC. The small sample size requirement increases as 
skewness increases. That is as k decreases, the required sample size, n, increases. In the case 
Hall’s bootstrap and bootstrap-t methods yield inflated and erratic UCL results (e.g., when 
outliers are present), the 95% UCL of the mean may be computed based upon the adjusted 
gamma 95% UCL. 

• For highly skewed gamma distributed data sets of sizes ≥ 15 and small values of the shape 
parameter, k (k < 1.0), the adjusted gamma UCL95 (when available) may be used to estimate 
the EPC, otherwise one may want to use the approximate gamma UCL. 

• For highly skewed gamma distributed data sets of sizes ≥ 50 and small values of the shape 
parameter, k (k < 1.0), the approximate gamma UCL95 may be used to estimate the EPC.  

Notes: Bootstrap-t and Hall’s bootstrap methods should be used with caution as sometimes these methods 
yield erratic, unreasonably inflated, and unstable UCL values, especially in the presence of outliers (Efron 
and Tibshirani 1993). In the case Hall’s bootstrap and bootstrap-t methods yield inflated and erratic UCL 
results, the 95% UCL of the mean may be computed based upon the adjusted gamma 95% UCL. ProUCL 
prints out a warning message associated with the recommended use of the UCLs based upon the bootstrap-
t method or Hall’s bootstrap method. 
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Table 2-12. Summary Table for the Computation of a 95% UCL of the Unknown Mean, μ1, of a 
Gamma Distribution; Suggestions are made Based upon Biased Adjusted Estimates 

𝒌𝒌�∗ (Skewness Sample Size, n Suggestion 
Bias Adjusted) 

𝑘𝑘�∗ > 1.0 n>=50 Approximate gamma 95% UCL (Gamma KM or GROS) 

n<50 Adjusted gamma 95% UCL (Gamma KM or GROS) 
𝑘𝑘�∗> 1.0 

95% UCL based upon bootstrap-t, Hall’s bootstrap, or Adjusted 
n < 15 

𝑘𝑘�∗≤ 1.0 gamma 95% UCL (Gamma KM)* 

Adjusted gamma 95% UCL (Gamma KM) if available, otherwise use 
n ≥ 15, n<50 

𝑘𝑘�∗ ≤1.0 approximate gamma 95% UCL (Gamma KM) 

n ≥ 50 Approximate gamma 95% UCL (Gamma KM) 
𝑘𝑘�∗ ≤1.0 

*In case the bootstrap-t method or Hall’s bootstrap method yields an erratic, inflated, and unstable UCL value, 
the UCL of the mean should be computed using the adjusted gamma UCL method. 

Note: Suggestions made in Table 2-12 are used for uncensored as well as left-censored data sets. This table 
is not repeated in Chapter 4. All suggestions have been made based upon bias adjusted estimates, 𝑘𝑘�∗ of k. 
When the data set is uncensored, use upper limits based upon the sample size and bias adjusted MLE 
estimates; and when the data set is left-censored, use upper limits based upon the sample size and biased 
adjusted estimates obtained using the KM method or GROS method provided 𝑘𝑘�∗>1. When 𝑘𝑘�∗>1, UCLs 
based upon the GROS method and gamma UCLs computed using KM estimates tend to yield comparable 
UCLs from a practical point of view. For an overview, see the flowcharts which summarize the decision 
logic, given in Appendix C. 

2.5.2.3 Lognormally or Approximately Lognormally Distributed Skewed Data Sets 

For lognormally, LN (μ, σ2), distributed data sets, the H-statistic-based UCL provides the specified 0.95 
coverage for the population mean for all values of σ. The recommendation is that, for data classified by 
ProUCL 5.2 as lognormal, use the H UCL when the sample size is greater than or equal to 28 or when the 
log-scale standard deviation is less than or equal to 1.5, and use the t-UCL otherwise. The technical report 
containing this recommendation is included as Appendix D to this report. 

The Chebyshev (MVUE) UCL has been retained in ProUCL software for historical and information 
purposes. ProUCL 5.0 and higher versions do not suggest its use. 
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Table  2-13. Summary Table for the Computation  of a UCL  of the  Unknown Mean,  µ1, of a 
Lognormal Population  to Estimate  the  EPC  

* Note that the H-UCL recommendation is based on simulations of lognormal distributions with up 
to 3.5. For extremely skewed distributions, it should be used with caution. 

In the third simulation study, the Chebyshev 95% UCL performed poorly relative most other UCL 
estimators under all risk functions examined. The same was true for the Chebyshev 95% UCL except for 
the following case: sample size less than 28 and log-scale standard deviation less than 0.64. In this limited 
case, assuming that ProUCL had identified the data as lognormal, the Chebyshev 90% UCL minimized the 
average risk over a variety of loss functions. However, because of the many problems with the Chebyshev 
UCLs, ProUCL 5.2 does not recommend it. But ProUCL provides the Chebyshev UCLs, and while the use 
of the Chebyshev 90% UCL in this limited case is up to the user’s discretion. There is a similar finding for 
Hall’s bootstrap UCL, which can be used for sample size less than 28 and log-scale standard deviation 
greater than 2.0. See the flowcharts which summarize the recommendation decision logic and the 
discretionary choices in Appendix C. 

For data sets with extreme skew, users are encouraged to examine the data and determine whether it may 
result from biased sampling or otherwise include small areas of high concentrations that may not be 
appropriate to include in a single EPC calculation. In these cases, users are encouraged to consult a 
statistician for proper comparisons. 

2.5.2.4 Nonparametric Skewed Data Sets without a Discernible Distribution 

For moderately and highly skewed data sets which are neither gamma nor lognormal, one can use a 
Student’s t-UCL of the mean to estimate the EPC. 

2.5.3 Summary of the Procedure to Compute a 95% UCL of the Unknown Population Mean, 
µ1, Based upon Full Uncensored Data Sets without Nondetect Observations 

A summary of the process used to compute an appropriate UCL95 of the mean is summarized as follows. 
See also the flowcharts which summarize the decision logic, given in Appendix C. 

Formal GOF tests are performed first so that based on the determined data distribution, an appropriate 
parametric or nonparametric UCL of the mean can be computed to estimate the EPC. ProUCL generates 
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formal GOF Q-Q plots to graphically evaluate the distribution (normal, lognormal, or gamma) of the data 
set. 

For mildly skewed data sets with (sd of logged data) less than 0.5, all distributions available in ProUCL 
tend to yield comparable UCLs. Also, when a data set follows all three distributions in ProUCL, compute 
the upper limits based upon the distribution with highest p-value. 

For a normally or approximately normally distributed data set, the user is advised to use a Student’s t-
distribution-based UCL of the mean. 

For gamma or approximately gamma distributed data sets, the user is advised to: 1) use the approximate 
�∗ gamma UCL when biased adjusted MLE, 𝑘𝑘 of k >1 and n ≥ 50; 2) use the adjusted gamma UCL when 

biased MLE, 𝑘𝑘�∗ of k > 1 and n < 50; 3) use the bootstrap-t method or Hall’s bootstrap method when 𝑘𝑘�∗≤ 1 
and the sample size, n < 15 (or <20, sample size requirement depends upon k); 4) use the adjusted gamma 

�∗UCL (if available) for 𝑘𝑘 ≤ 1 and sample size, 15 ≤ n < 50; and 5) use approximate gamma UCL when 
𝑘𝑘�∗≤1 but n ≥50. If the adjusted gamma UCL is not available, then use the approximate gamma UCL as an 
estimate of the EPC. When the bootstrap-t method or Hall’s bootstrap method yields an erratic inflated 
UCL (when outliers are present) result, the UCL may be computed using the adjusted gamma UCL (if 
available) or the approximate gamma UCL. 

For lognormally or approximately lognormally distributed data sets, ProUCL recommends a UCL 
computation method based upon the sample size, n, and standard deviation of the log-transformed data, 𝜎𝜎�. 
These suggestions are summarized in Table 2-13. 

For nonparametric data sets, which are not normally, lognormally, or gamma distributed, the Student’s t-
UCL is used to estimate the EPC.  

Notes: It should be pointed out that when dealing with a small data set (e.g., <50), and the Lilliefors test 
suggests that data are normal and S-W test suggests that data are not normal, ProUCL will suggest that the 
data set follows an approximate normal distribution. However, for smaller data sets, Lilliefors test results 
may not be reliable, therefore the user is advised to review GOF tests for other distributions and proceed 
accordingly. It is emphasized, when a data set follows a distribution (distribution A) using all GOF tests, 
and also follows an approximate distribution (distribution B) using one of the available GOF tests, it is 
preferable to use distribution A over distribution B. However, when distribution A is a highly skewed (sd 
of logged data >1.0) lognormal distribution, use the guidance provided on the ProUCL generated output. 

Finally, ProUCL makes suggestions about the use of one or more UCLs based upon the data distribution, 
sample size, and data skewness. Most of the suggestions made in ProUCL are based upon the simulation 
studies performed by the developers and their professional experience. However, simulations performed do 
not cover all real world scenarios and data sets. The users may use UCLs values other than those suggested 
by ProUCL based upon their own experiences and project needs. 
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CHAPTER 3 

Computing Upper Limits to Estimate Background Threshold 
Values Based Upon Uncensored Data Sets without Nondetect 

Observations 
3.1 Introduction 

In background evaluation studies, site-specific (e.g., soils, groundwater) background level constituent 
concentrations are needed to compare site concentrations with background level concentrations also known 
as background threshold values (BTVs). The BTVs are estimated, based upon sampled data collected from 
reference areas and/or unimpacted site-specific background areas (e.g., upgradient wells) as determined by 
the project team. The first step in establishing site-specific background level constituent concentrations is 
to collect an appropriate number of samples from the designated background or reference areas. The 
Stats/Sample Sizes module of ProUCL software can be used to compute DQOs-based sample sizes. Once 
an adequate amount of data has been collected, the next step is to determine the data distribution. This is 
typically done using exploratory graphical tools (e.g., Q-Q plots) and formal GOF tests. Depending upon 
the data distribution, one will use a parametric or nonparametric methods to estimate BTVs. 

In this chapter and also in Chapter 5 of this document, a BTV is a parameter of the background population 
representing an upper threshold (e.g., 95th upper percentile) of the background population. When one is 
interested in comparing averages, a BTV may represent an average value of a background population which 
can be estimated by a UCL95 (e.g., Chapter 21 of EPA 2009 RCRA Guidance). However, in ProUCL 
guidance and in ProUCL software, a BTV represents an upper threshold of the background population. The 
Upper Limits/BTVs module of ProUCL software computes upper limits which are often used to estimate 
a BTV representing an upper threshold of the background population. With this definition of a BTV, an 
onsite observation in exceedance of a BTV estimate may be considered as not coming from the background 
population; such a site observation may be considered as exhibiting some evidence of contamination due 
to site-related activities. Sometimes, locations exhibiting concentrations higher than a BTV estimate are re-
sampled to verify the possibility of contamination. Onsite values less than BTVs represent unimpacted 
locations and can be considered part of the background (or comparable to the background) population. This 
approach, comparing individual site or groundwater (GW) monitoring well (MW) observations with BTVs, 
is particularly helpful to: 1) identify and screen constituents/contaminants of concern (COCs); and 2) use 
after some remediation activities (e.g., installation of a GW treatment plant) have already taken place and 
the objective is to determine if the remediated areas have been remediated close enough to the background 
level constituent concentrations. 

Background versus site comparisons can also be performed using two-sample hypothesis tests (see Chapter 
6). However, BTV estimation methods described in this chapter are useful when not enough site data are 
available to perform hypotheses tests such as the two-sample t-test or the nonparametric Wilcoxon Rank 
Sum (WRS) test. When enough (more than 8 to10 observations) site data are available, hypotheses testing 
approaches can be used to compare onsite and background data or onsite data with some pre-established 
threshold or screening values. The single-sample hypothesis tests (e.g., t-test, WRS test, proportion test) 
are used when screening levels or BTVs are known or pre-established. The two-sample hypotheses tests 
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are used when enough data (at least 8-10 observations from each population) are available from background 
(e.g., upgradient wells) as well as site (e.g., monitoring wells) areas. This chapter describes statistical limits 
that may be used to estimate the BTVs for full uncensored data sets without any ND observations. Statistical 
limits for data sets consisting of NDs are discussed in Chapter 5. 

Background data set needs to be evaluated for the presence of data caused by reporting and/or laboratory 
errors, and extreme values that are suspects of misrepresenting the observed population. Statistical outlier 
tests give probabilistic evidence for the “misfit” of extreme values. However, their drawback is that they 
assume normal distribution of the data without outliers. This is often not the case with environmental data, 
which tend to be naturally right-skewed. Therefore, statistical outlier tests available in ProUCL should only 
be used to identify potential suspect data points that require further investigation to gain an understanding 
of extreme values in the context of site processes, geology, and historical use. For example, extreme values 
may represent contamination from the site (hot spots). However, it is not unusual for a background to consist 
of different subpopulations due to the presence of varying soil types, textures, vegetation, historical use of 
the site, etc. It may have, therefore, have higher variability than expected in the planning process. 

It is implicitly assumed that the background data set used to estimate BTVs represents a single statistical 
population. However, since outliers (well-separated from the dominant data) are inevitable in most 
environmental applications, some outliers such as the observations coming from populations other than the 
background population may also be present in a background data set. Outliers, when present, distort 
decision statistics of interest (e.g., upper prediction limits [UPLs], upper tolerance limits [UTLs]), which 
in turn may lead to incorrect remediation decisions that may not be cost-effective or protective of human 
health and the environment. 

It is suggested that all relevant statistics be computed using the data sets with and without identified outliers. 
This extra step often helps the project team to see the potential influence of outlier(s) on the decision making 
statistics (UCLs, UPLs, UTLs) and to make informative decisions about the disposition of outliers. That is, 
the project team and experts familiar with the site should decide which of the computed statistics (with 
outliers or without outliers) represent more accurate estimate(s) of the population parameters (e.g., mean, 
EPC, BTV) under consideration. In any case, suspect all observtions, including those identified as potential 
outliers, should be investigated from a scientific and quatily perspective. Since the treatment and handling 
of outliers in environmental applications is a subjective and controversial topic, the project team (including 
decision makers, site experts) may decide to treat outliers on a site-specific basis using all existing 
knowledge about the site and reference areas under investigation. A couple of classical outlier tests, 
incorporated in ProUCL, are discussed in Chapter 7. 

A review of the environmental literature reveals that one or more of the following statistical upper limits 
are used to estimate BTVs: 

• Upper percentiles 

• Upper prediction limits (UPLs) 

• Upper tolerance limits (UTLs) 

• Upper Simultaneous Limits (USLs) 
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Note: The upper limits which are selected to estimate the BTV are dependent on the project objective (e.g., 
comparing a single future observation, or comparing an unknown number of observations with a BTV 
estimate). . ProUCL does not provide suggestions as to which estimate of a BTV is appropriate for a project; 
the appropriate upper limit is determined by the project team. Once the project team has decided on an 
upper limit (e.g., UTL95-95), a similar process used to select a UCL95 can be used for selecting a UTL95-
95 from among the UTLs computed by ProUCL. The differences between the various limits used to estimate 
BTVs are not clear to many practitioners. Therefore, a detailed discussion about the use of the different 
limits with their interpretation is provided in the following sections. Since 0.95 is the most commonly used 
confidence coefficient (CC), these limits are described for a CC of 0.95 and coverage probability of 0.95 
associated with a UTL. ProUCL can compute these limits for any valid combination of CC and coverage 
probabilities including some commonly used values of CC levels (0.80, 0.90, 0.95, 0.99) and coverage 
probabilities (0.80, 0.90, 0.95, 0.975). 

Caution: To provide a proper balance between false positives and false negatives, the upper limits described 
above, especially a 95% USL (USL95), should be used only when the background data set represents a 
single environmental population without outliers (observations not belonging to background). Inclusion of 
multiple populations and/or outliers tends to yield elevated values of USLs (and also of UPLs and UTLs) 
which can result in a high number (and not necessarily high percentage) of undesirable false negatives, 
especially for data sets of larger sizes (n > 30). 

Note on Computing Lower Limits: In many environmental applications (e.g., in GW monitoring), one needs 
to compute lower limits including: lower confidence limits (LCL) of the mean, lower prediction limits 
(LPLs), lower tolerance limits (LTLs), or lower simultaneous limit (LSLs). At present, ProUCL does not 
directly compute a LCL, LPL, LTL, or a LSL. For data sets with and without NDs, ProUCL outputs several 
intermediate results and critical values (e.g., khat, nuhat, tolerance factor K for UTLs, d2max for USLs) 
needed to compute the interval estimates and lower limits. For data sets with and without NDs, except for 
the bootstrap methods, the same critical value (e.g., normal z value, Chebyshev critical value, or t-critical 
value) can be used to compute a parametric LPL, LSL, or a LTL (for samples of size >30 to be able to use 
Natrella's approximation in LTL) as used in the computation of a UPL, USL, or a UTL (for samples of size 
>30). Specifically, to compute a LPL, LSL, and LTL (n>30) the '+' sign used in the computation of the 
corresponding UPL, USL, and UTL (n>30) needs to be replaced by the '-' sign in the equations used to 
compute UPL, USL, and UTL (n>30). For specific details, the user may want to consult a statistician. For 
data sets without ND observations, the Scout 2008 software package (EPA 2009d) can compute the various 
parametric and nonparametric LPLs, LTLs (all sample sizes), and LSLs. 

3.1.1 Description and Interpretation of Upper Limits used to Estimate BTVs 

Based upon a background data set, upper limits such as a 95% upper confidence limit of the 95th percentile 
(UTL95-95) are used to estimate upper threshold value(s) of the background population. It is expected that 
observations coming from the background population will lie below that BTV estimate with a specified 
CC. BTVs should be estimated based upon an “established” data set representing the background population 
under consideration. 

Established Background Data Set: This data set represents background conditions free of outliers which 
potentially represent locations impacted by the site and/or other activities. An established background data 

98 



       
    

      
          

      
   

     

     
     

     
  

  
   

     
      

 

     
     

    
  

       
 

    
       

        
 

   
    

   
               

   

   
     

       
  

  
    

   
 

set should be representative of the environmental background population. This can be determined by using 
a normal Q-Q plot on a background data set. If there are no jumps and breaks in the normal Q-Q plot, the 
data set may be considered representative of a single environmental population. A single environmental 
background population here means that the background (and also the site) can be represented by a single 
geological formation, or by single soil type, or by a single GW aquifer etc. Outliers, when present in a data 
set, result in inflated values of many decision statistics including UPLs, UTLs, and USLs. The use of 
inflated statistics as BTV estimates tends to result in a higher number of false negatives. 

However, when a site consists of various formations or soil types, separate background data sets may need 
to be established for each formation or soil type, therefore the project team may want to establish separate 
BTVs for different formations. When it is not feasible (e.g., due to implementation complexities) or 
desirable to establish separate background data sets for different geological formations present at a site 
(e.g., large mining sites), the project team may decide to use the same BTV for all formations.. In this case, 
a Q-Q plot of background data set collected from unimpacted areas may display discontinuities as 
concentrations in different formations may vary naturally. In these scenarios, use a Q-Q plot and outlier test 
only to identify outliers (well separated from the rest of the data) which may be excluded from the 
computation of BTV estimates. 

Notes: The user specifies the allowable false positive error rate, α (=1-CC). The false negative error rate 
(declaring a location clean when in fact it is contaminated) is controlled by making sure that one is dealing 
with a defensible/established background data set representing a background population and the data set is 
free of outliers. 

Let x1, x2,…, xn represent sampled concentrations of an established background data set collected from some 
site-specific or general background reference area. 

Upper Percentile, x0.95: Based upon an established background data set, a 95th percentile represents that 
statistic such that 95% of the sampled data will be less than or equal to (≤) x0.95 . It is expected that an 
observation coming from the background population (or comparable to the background population) will be 
≤ x0.95 with probability 0.95. A parametric percentile takes data variability into account. 

Upper Prediction Limit (UPL): Based upon an established background data set, a 95% UPL (UPL95) 
represents that statistic such that an independently collected observation (e.g., new/future) from the target 
population (e.g., background, comparable to background) will be less than or equal to the UPL95 with CC 
of 0.95. We are 95% sure that a single future value from the background population will be less than the 
UPL95 with CC= 0.95. A parametric UPL takes data variability into account. 

In practice, many onsite observations are compared with a BTV estimate. The use of a UPL95 to compare 
many observations may result in a higher number of false positives; that is the use of a UPL95 to compare 
many observations just by chance tends to incorrectly classify observations coming from the background 
or comparable to background population as coming from the impacted site locations. For example, if many 
(e.g., 30) independent onsite comparisons (e.g., Ra-226 activity from 30 onsite locations) are made with 
the same UPL95, each onsite value may exceed that UPL95 with a probability of 0.05 just by chance. The 
overall probability, αactual of at least one of those 30 comparisons being significant (exceeding BTV) just by 
chance is given by: 
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αactual = 1-(1-α)k =1 – 0.9530 ~1-0.21 = 0.79 (false positive rate). 

This means that the probability (overall false positive rate) is 0.79 (and is not equal to 0.05) that at least one 
of the 30 onsite locations will be considered contaminated even when they are comparable to background. 
The use of a UPL95 is not recommended when multiple comparisons are to be made. 

Upper Tolerance Limit (UTL): Based upon an established background data set, a UTL95-95 represents that 
statistic such that 95% of observations (current and future) from the target population (background, 
comparable to background) will be less than or equal to the UTL95-95 with CC of 0.95. A UTL95-95 
represents a 95% UCL of the 95th percentile of the data distribution (population). A UTL95-95 is designed 
to simultaneously provide coverage for 95% of all potential observations (current and future) from the 
background population (or comparable to background) with a CC of 0.95. A UTL95-95 can be used when 
many (unknown) current or future onsite observations need to be compared with a BTV. A parametric 
UTL95-95 takes the data variability into account. 

By definition a UTL95-95 computed based upon a background data set just by chance can classify 5% of 
background observations as not coming from the background population with CC 0.95. This percentage 
(false positive error rate) stays the same irrespective of the number of comparisons that will be made with 
a UTL95-95. However, when a large number of observations coming from the target population 
(background, comparable to background) are compared with a UTL95-95, the number of exceedances (not 
the percentage of exceedances) of UTL95-95 by background observations can be quite large. This implies 
that a larger number (but not greater than 5%) of onsite locations comparable to background may be falsely 
declared as requiring additional investigation which may not be cost-effective. 

To avoid this situation, ProUCL provides a limit called USL which can be used to estimate the BTV 
provided the background data set represents a single population free of outliers. The use of a USL is not 
advised when the background data set may represent several geological formations/soil types. 

Upper Simultaneous Limit (USL): Based upon an established background data set free of outiers and 
representing a single statistical population (representing a single formation, representing the same soil type, 
same aquifer), a USL95 represents that statistic such that all observations from the “established” background 
data set are less than or equal to the USL95 with a CC of 0.95. Outliers should be removed before computing 
a USL as outliers in a background data set tend to represent observations coming from a population other than 
the background population represented by the majority of observations in the data set. Since USL represents 
an upper limit on the largest value in the sample, that largest value should come from the same background 
population. A parametric USL takes the data variability into account. It is expected that all current or future 
observations coming from the background population (comparable to background population, unimpacted site 
locations) will be less than or equal to the USL95 with CC, 0.95 (Singh and Nocerino 2002). The use of a USL 
as a BTV estimate is suggested when a large number of onsite observations (current or future) need to be 
compared with a BTV. 

The false positive error rate does not change with the number of comparisons, as the USL95 is designed to 
perform many comparisons simultaneously. Furthermore, the USL95 also has a built-in outlier test (Wilks 
1963), and if an observation (current or future) exceeds the USL95, then that value definitely represents an 
outlier and does not come from the background population. The false negative error rate is controlled by 
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making sure that the background data set represents a single background population free of outliers. 
Typically, the use of a USL95 tends to result in a smaller number of false positives than a UTL95-95, 
especially when the size of the background data set is greater than 15. 

3.1.2 Confidence Coefficient (CC) and Sample Size 

This section briefly discusses sample sizes and the selection of CCs associated with the various upper limits 
used to estimate BTVs. 

• Higher statistical limits are associated with higher levels of CCs. For example, a 95% UPL is 
higher than a 90% UPL. 

• Higher values of a CC (e.g., 99%) tend to decrease the power of a test, resulting in a higher 
number of false negatives - dismissing contamination when present. 

Therefore, the CC should not be set higher than necessary. 

• Smaller values of the CC (e.g., 0.80) tend to result in a higher number of false positives (e.g., 
declaring contamination when it is not present). 

• In most practical applications, choice of a 95% CC provides a good compromise between 
confidence and power. 

• Higher level of uncertainty in a background data set (e.g., due to a smaller background data 
set) and higher values of critical values associated with smaller (n <15-20) samples tend to 
dismiss contamination as representing background conditions (results in higher number of false 
negatives; identifying a location that may be dirty as background). This is especially true when 
one uses UTLs and UPLs to estimate BTVs. 

• Nonparametric upper limits based upon order statistics (e.g., the largest, the second largest, 
etc.) may not provide the desired coverage as they do not take data variability into account. 
Nonparametric methods are less powerful than the parametric methods; and they require larger 
data sets to achieve power comparable to parametric methods. 

3.2 Treatment of Outliers 

The inclusion of outliers in a background data set tends to yield distorted and inflated estimates of BTVs. 
A couple of classical outlier tests cited in environmental literature (Gilbert 1987; EPA 2006b, 2009; Navy 
2002a, 2002b) are available in the ProUCL software. The drawback of these tests is that they assume the 
normal distribution for data set without outliers. This is mostly not the case for environmental data. 
Therefore, examination of data distribution needs to be performed before applying outlier test in ProUCL. 
If the data are not normally distributed, appropriate transformation needs to be applied to approximately 
normalize or symmetrize the data. An outlier test can then be applied to normalized data to identify potential 
outliers that need to be scientifically investigated. It is also recommended to supplement outlier tests with 
graphical displays such as box plots and/or Q-Q plots. Data should never be rejected based on outlier tests 
only, but when problems with the data are confirmed through scientific and quality investigation. 
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It is noted that nonparametric upper percentiles, UPLs and UTLs, are often represented by higher order 
statistics such as the largest value or the second largest value. When high outlying observations are present 
in a background data set, the higher order statistics may represent observations coming from the 
contaminated onsite/offsite areas. Decisions made based upon outlying observations or distorted parametric 
upper limits can be incorrect and misleading. Therefore, special attention should be given to outlying 
observations. The project team and the decision makers involved should decide about the proper disposition 
of outliers based on scientifical investigation, to include or not include them, in the computation of the 
decision making statistics such as the UCL95 and the UTL95-95. Sometimes, performing statistical 
analyses twice on the same data set, once using the data set with outliers and once using the data set without 
outliers, can help the project team in determining the proper disposition of high outliers. Examples 
elaborating on these issues are discussed in several chapters (Chapters 2, 4, 7) this document. 

Notes: It should be pointed out that methods incorporated in ProUCL can be used on any data set with or 
without NDs and with or without outliers. Do not misinterpret that ProUCL is restricted and can only be 
used on data sets without outliers. It is not a requirement to exclude outliers before using any of the 
statistical methods incorporated in ProUCL. Statistics computed based upon a data set with outliers tend to 
be impacted by those outliers and may be less reflective of the population represented by the majority of 
the data set. The inflated decision statistics tend to represent the locations with those elevated observations 
rather than representing the dominant population. The outlying observations may be separately investigated 
to determine the reasons for their occurrences (e.g., errors or contaminated locations). It is suggested to 
compute the statistics with and without the outliers, and compare the potential impact of outliers on the 
decision making processes. 

Let x1, x2, ..., xn represent concentrations of a contaminant/constituent of concern (COC) collected from 
some site-specific or general background reference area. The data are arranged in ascending order and the 
ordered sample (called order statistics) is denoted by x(1) ≤ x(2) ≤ ... ≤ x(n). The order statistics are used to 
define nonparametric estimates of upper percentiles, UPLs, UTLs and USLs. Also, let yi = ln (xi); 
i = 1, 2, ..., n, and 𝑦𝑦� and sy represent the mean and standard deviation (sd) of the log-transformed data. 
Statistical details of some parametric and nonparametric upper limits used to estimate BTVs are described 
in the following sections. 

3.3 Upper p*100% Percentiles as Estimates of BTVs 

In most statistical textbooks (e.g., Hogg and Craig 1995), the pth (e.g., p = 0.95) sample percentile of the 
measured sample values is defined as that value, 𝑥𝑥�𝑝𝑝 , such that p*100% of the sampled data set lies at or 
below it. The carat sign over xp, indicates that it represents a statistic/estimate computed using the sampled 
data. The same use of the carat sign is found throughout this guidance document. The statistic 𝑥𝑥�𝑝𝑝 represents 
an estimate of the pth population percentile. It is expected that about p*100% of the population values will 
lie below the pth percentile. Specifically, x0.95 represents an estimate of the 95th percentile of the background 
population. 

3.3.1 Nonparametric p*100% Percentile 

Nonparametric 95% percentiles are used when the background data (raw or transformed) do not follow a 
discernible distribution at some specified (e.g., α = 0.05, 0.1) level of significance. Different software 
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packages (e.g., SAS, Minitab, and Microsoft Excel) use different formulae to compute nonparametric 
percentiles, and therefore yield slightly different estimates of population percentiles, especially when the 
sample size is small, such as less than 20-30. Specifically, some software packages estimate the pth 
percentile by using the p*nth order statistic, which may be a whole number between 1 and n or a fraction 
lying between 1 and n, while other software packages compute the pth percentile by the p*(n+1)th order 
statistic (e.g., used in ProUCL versions 4.00.02 and 4.00.04) or by the (pn+0.5) th order statistic. For 
example, if n = 20, and p = 0.95, then 20*0.95 = 19, thus the 19th ordered statistic represents the 95th 
percentile. If n = 17, and p = 0.95, then 17*0.95= 16.15, thus the 16.15th ordered value represents the 95th 
percentile. The 16.15th ordered value lies between the 16th and the 17th order statistics and can be 
computed by using a simple linear interpolation given by: 

x(16.15) = x(16) + 0.15 (x(17) - x(16) ). (3-1) 

Earlier versions of ProUCL (e.g., ProUCL 4.00.02, 4.00.04) used the p*(n+1)th order statistic to estimate 
the nonparametric pth percentile. However, since most users are familiar with Excel and some consultants 
have developed statistical software packages using Excel, and at the request of some users, it was decided 
to use the same algorithm as incorporated in Excel to compute nonparametric percentiles. ProUCL 4.1 and 
higher versions compute nonparametric percentiles using the same algorithm as used in Excel 2007. This 
algorithm is used on data sets with and without ND observations. 

Notes: From a practical point of view, nonparametric percentiles computed using the various percentile 
computation methods described in the literature are comparable unless the data set is small (e.g., n <20-30) 
and/or comes from a mixed population consisting of some extreme high values. No single percentile 
computation method should be considered superior to other percentile computation methods available in 
the statistical literature. In addition to nonparametric percentiles, ProUCL also computes several parametric 
percentiles described as follows. 

3.3.2 Normal p*100% Percentile 

The sample mean, �̅�𝑥. and sd, s, are computed first. For normally distributed data sets, the p*100th sample 
percentile is given by the following statement: 

𝑥𝑥�𝑝𝑝 = �̅�𝑥 + 𝑠𝑠𝑧𝑧𝑝𝑝 (3-2) 

Here zp is the p*100th percentile of a standard normal, N(0, 1), distribution, which means that the area (under 
the standard normal curve) to the left of zp is p. If the distributions of the site and background data are 
comparable, then it is expected that an observation coming from a population (e.g., site) comparable to the 
background population would lie at or below the p*100% upper percentile, 𝑥𝑥�𝑝𝑝, with probability p. 

3.3.3 Lognormal p*100% Percentile 

To compute the pth percentile, 𝑥𝑥�𝑝𝑝, of a lognormally distributed data set, the sample mean, 𝑦𝑦�, and sd, sy, of 
log-transformed data, y are computed first. For lognormally distributed data sets, the p*100th percentile is 
given by the following statement: 

𝑥𝑥�𝑝𝑝 = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑦𝑦� + 𝑠𝑠𝑦𝑦𝑧𝑧𝑝𝑝), (3-3) 
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zp is the p*100th percentile of a standard normal, N(0,1), distribution. 

3.3.4 Gamma p*100% Percentile 

Since the introduction of a gamma distribution, G (k, θ), is relatively new in environmental applications, a 
brief description of the gamma distribution is given first; more details can be found in Section 2.3.3. The 
maximum likelihood estimator (MLE) equations to estimate gamma parameters, k (shape parameter) and θ 
(scale parameter), can be found in Singh, Singh, and Iaci (2002). A random variable (RV), X (arsenic 
concentrations), follows a gamma distribution, G(k,θ), with parameters k > 0 and θ > 0, if its probability 
density function is given by the following equation: 

−𝑥𝑥 1 ∙ 𝑥𝑥𝑘𝑘−1𝑒𝑒 𝜃𝜃 ,f(x;k,θ)= �θkΓ(k) 
0, 

x>0 
otherwise 

(3-4) 

The mean, variance, and skewness of a gamma distribution are: µ = kθ, variance = σ2 = kθ2, and skewness 
=2/√𝑘𝑘. Note that as k increases, the skewness decreases, and, consequently, a gamma distribution starts 
approaching a normal distribution for larger values of k (e.g., k ≥ 10). In practice, k is not known and a 
normal approximation may be used even when the MLE estimate of k is as small as 6. 

Let 𝑘𝑘� and 𝜃𝜃� represent the MLEs of k and θ respectively. The relationship between a gamma RV, X = G (k, 
θ), and a chi-square RV, Y, is given by X = Y * θ /2, where Y follows a chi-square distribution with 2k 
degrees of freedom (df). Thus, the percentiles of a chi-square distribution (as programmed in ProUCL) can 
be used to determine the percentiles of a gamma distribution. In practice, k is replaced by its MLE. Once 
an α*100% percentile, y(α) 2k, of a chi-square distribution with 2k df is obtained, the α*100% percentile for 
a gamma distribution is computed using the following equation: 

xα = yα *θ /2 (3-5) 

3.4 Upper Tolerance Limits 

A UTL (1-α)-p (e.g., UTL95-95) based upon an established background data set represents that limit such 
that p*100% of the observations (current and future) from the target population (background, comparable 
to background) will be less than or equal to UTL with a CC, (1-α). It is expected that p*100% of the 
observations belonging to the background population will be less than or equal to a UTL with a CC, (1-α). 
A UTL (1-α)-p represents a (1–α) 100% UCL for the unknown pth percentile of the underlying background 
population. 

A UTL95-95 is designed to provide coverage for 95% of all observations potentially coming from the 
background or comparable to background population(s) with a CC of 0.95. A UTL95-95 will be exceeded 
by all (current and future) values coming from the background population less than 5% of the time with a 
CC of 0.95, that is 5 exceedances per 100 comparisons (of background values) can result just by chance for 
an overall CC of 0.95. Unlike a UPL95, a UTL95-95 can be used when many, or an unknown number of 
current or future onsite observations need to be compared with a BTV. A parametric UTL95-95 takes the 
data variability into account. 
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When a large number of comparisons are made with a UTL95-95, the number of exceedances (not the 
percentage of exceedances) of the UTL95-95 by those observations can also be large just by chance. This 
implies that just by chance, a larger number (but not larger than 5%) of onsite locations comparable to 
background can be greater than a UTL95-95 potentially requiring unnecessary investigation which may not 
be cost-effective. In order to avoid this situation, it is suggested to use a USL95 to estimate a BTV, provided 
the background data set represents a single statistical population, free of outliers. 

3.4.1 Normal Upper Tolerance Limits 

First, compute the sample mean, �̅�𝑥, and sd, s, using a defensible data set representing a single background 
population. For normally distributed data sets, an upper (1 – α)*100% UTL with coverage coefficient, p, is 
given by the following statement. 

UTL =�̅�𝑥 − 𝐾𝐾 ∗ 𝑠𝑠 (3-6) 

Here, K = K (n, α, p) is the tolerance factor and depends upon the sample size, n, CC = (1 – α), and the 
coverage proportion = p. For selected values of n, p, and (1-α), values of the tolerance factor, K, have been 
tabulated extensively in the various statistical books (e.g., Hahn and Meeker 1991). Those K values are 
based upon the non-central t-distribution. Also, some large sample approximations (Natrella 1963) are 
available to compute the K values for one-sided tolerance intervals (same for both UTLs and lower tolerance 
limits). The approximate value of K is also a function of the sample size, n, coverage coefficient, p, and the 
CC, (1 – α). For samples of small sizes, n≤ 30, ProUCL uses the tabulated (Hahn and Meeker 1991) K 
values. Tabulated K values are available only for some selected combinations of p (0.90, 0.95, 0.975) and 
(1-α) values (0.90, 0.95, 0.99). For sample sizes larger than 30, ProUCL computes the K values using the 
large sample approximations, as given in Natrella (1963). The Natrella’s approximation seems to work well 
for samples of sizes larger than 30. ProUCL computes these K values for all valid values of p and (1-α) and 
samples of sizes as large as 5000. 

3.4.2 Lognormal Upper Tolerance Limits 

The procedure to compute UTLs for lognormally distributed data sets is similar to that for normally 
distributed data sets. First, the sample mean, 𝑦𝑦� , and sd, sy, of the log-transformed data are computed. An 
upper (1 – α)*100% tolerance limit with tolerance or coverage coefficient, p is given by the following 
statement: 

UTL = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑦𝑦� + 𝐾𝐾 ∗ 𝑠𝑠𝑦𝑦 ) (3-7) 

The K factor in (3-7) is the same as the one used to compute the normal UTL. 

Notes: Even though there in no back-transformation bias present in the computation of a lognormal UTL, 
a lognormal distribution based UTL is typically higher (sometimes unrealistically higher as shown in the 
following example) than other parametric and nonparametric UTLs; especially when the sample size is less 
than 20. Therefore, the use of lognormal UTLs to estimate BTVs should be avoided when skewness is high 
(sd of logged data > 1 or 1.5) and sample size is small (e.g., n < 20-30). 
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3.4.3 Gamma Distribution Upper Tolerance Limits 

Positively skewed environmental data can often be modeled by a gamma distribution. ProUCL software 
has two goodness-of-fit tests: the Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-S) tests for a 
gamma distribution. These GOF tests are described in Chapter 2. UTLs based upon normal approximation 
to the gamma distribution (Krishnamoorthy et al. 2008) have been incorporated in ProUCL 4.00.05 (EPA 
2010d) and higher versions. Those approximations are based upon Wilson-Hilferty (WH)(Wilson and 
Hilferty 1931) and Hawkins-Wixley (HW) (Hawkins and Wixley 1986) approximations. 

Note: It should be pointed out that the performance of gamma UTLs and gamma UPLs based upon these 
HW and WH approximations is not well-studied and documented. Interested researchers may want to 
evaluate the performance of these gamma upper limits based upon HW and WH approximations. 

A description of method to compute gamma UTLs is given as follows. 

Let x1, x2, …, xn represent a data set of size n from a gamma distribution, G(k, θ) with shape parameter, k 
and scale parameter θ. 

According to the WH approximation, the transformation, Y = X1/3 follows an approximate normal 
distribution. The mean, µ and variance, σ2 of the transformed normally distributed variable, Y are given as 
follows: 

𝜇𝜇 = �𝜃𝜃1/3Γ(𝑘𝑘 + 1/3)�/Γ(𝑘𝑘); 𝑚𝑚𝑛𝑛𝑑𝑑 𝜎𝜎2 = �𝜃𝜃2/3Γ(𝑘𝑘 + 2/3)�/Γ(𝑘𝑘) − 𝜇𝜇2 

According to the HW approximation, the transformation, Y = X1/4 follows an approximate normal 
distribution. 

Let 𝑦𝑦� and sy represent the mean and sd of the observations in the transformed scale (Y). 

Using the WH approximation, the gamma UTL (in original scale, X), is given by: 

UTL = 𝑚𝑚𝑚𝑚𝑥𝑥�0, (𝑦𝑦� + 𝐾𝐾 ∗ 𝑠𝑠𝑦𝑦 )3� (3-8) 

Similarly, using the HW approximation, the gamma UTL in original scale is given by: 

UTL =(𝑦𝑦� + 𝐾𝐾 ∗ 𝑠𝑠𝑦𝑦 )4 (3-9) 

The tolerance factor, K is defined earlier in (3-6) while computing a UTL based upon normal distribution. 

Note: For mildly skewed to moderately skewed gamma distributed data sets, HW and WH approximations 
yield fairly comparable UTLs. However, for highly skewed data sets (k <0.5-1.0) with higher variability, 
the HW method tends to yield higher limits than the WH method. A couple of examples are discussed later 
in this chapter. 
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3.4.4 Nonparametric Upper Tolerance Limits 

The computation of nonparametric UTLs and associated achieved confidence levels are described as 
follows. A nonparametric UTLp,(1-α) =UTL p-(1 - α) providing coverage to p*100% observations with CC, 
(1 – α) represents an (1 – α)*100% UCL for the pth percentile of the target population under study. It is 
expected that about p*100% of the observations (current and future) coming from the target population 
(e.g., background, comparable to background) will be ≤ UTLp,(1-α) with CC, (1 – α)*100. 

Let 𝑥𝑥(1) ≤ 𝑥𝑥(2) ≤. . . 𝑥𝑥(𝑟𝑟) ≤. . . ≤ 𝑥𝑥(𝑛𝑛) represent n ordered statistics (arranged in ascending order) of a given 
data set, 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 . A nonparametric UTL is computed by higher order statistics such as the largest, the 
second largest, the third largest, and so on. The order, r of the statistic, x(r) used to compute a nonparametric 
UTL depends upon the sample size, n, coverage probability, p, and the desired CC, (1 - α). It is noted that 
in comparison with parametric UTLs, nonparametric UTLs require larger data sets to achieve the desired 
CC; a nonparametric UTL p-(1 - α) computed by order statistics often fails to achieve the specified CC, (1 
– α). 

Note: Higher order statistics are used to compute nonparametric upper limits which do not account for data 
variability. Depending upon the data set size, those limits may not provide the specified coverage (e.g., 
95% CC) to the parameter (BTV) of interest (e.g., 95% upper percentile of the population). Therefore, 
before using a nonparametric estimate of the BTV, one should make sure that the data set does not follow 
a known distribution. Specifically, when dealing with a data set with NDs, account for the NDs and 
determine the distribution of detected values instead of using a nonparametric UTL. If the detected data 
follow a parametric distribution, one may want to compute a UTL (and other upper limits) using that 
distribution and KM estimates. These issues are discussed in Chapter 5. 

The formula to compute the order statistic, sample size, and CC achieved by nonparametric UTLs are 
described below. More details can be found in David and Nagaraja (2003), Conover (1999), Hahn and 
Meeker (1991), Wald (1963), Scheffe and Tukey (1944) and Wilks (1941). 

Note: Just like UCLs, for mildly skewed nonparametric data sets with standard deviation of log-transformed 
data less than 0.5, one may use a normal distribution based UTLs and UPLs. 

3.4.4.1 Determining the Order, r, of the Statistic, x(r), to Compute UTLp,(1-α) 

Using the cumulative binomial probabilities, a number, r: 1 ≤ r ≤ n, is chosen such that the cumulative 
𝑖𝑖=𝑟𝑟 binomial probability: ∑ �𝑛𝑛 𝑒𝑒𝑖𝑖(1 − 𝑒𝑒)(𝑛𝑛−𝑖𝑖)becomes as close as possible to (1 – α). The binomial 𝑖𝑖=0 𝑖𝑖 � 

distribution (BD) based algorithm has been incorporated in ProUCL for data sets of sizes up to 2000. For 
data sets of size, n >2000, ProUCL computes the rth (r: 1 ≤ r ≤ n) order statistic by using the normal 
approximation (Conover, 1999) given by the equation (3-10). 

𝑟𝑟 = 𝑛𝑛𝑒𝑒 + 𝑧𝑧(1−𝛼𝛼)�𝑛𝑛𝑒𝑒(1 − 𝑒𝑒) + 0.5 (3-10) 

Depending upon the sample size, p, and (1 - α) the largest, the second largest, the third largest, and so forth 
order statistic is used to estimate the UTL. As mentioned earlier for a given data set of size n, the rth order 
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statistic, x(r) may or may not achieve the specified CC, (1 - α). ProUCL uses the F-distribution based 
probability statement to compute the CC achieved by the UTL determined by the rth order statistic. 

3.4.4.2 Determining the Achieved Confidence Coefficient, CCachieve, Associated with x(r) 

For a given data set of size, n, once the rth order statistic, x(r), has been determined, ProUCL can be used to 
determine if a UTL computed using x(r) achieves the specified CC, (1 - α). ProUCL computes the achieved 
CC by using the following approximate probability statement based upon the F-distribution with ν1 and ν2 

degrees of freedom. 

𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (1 − 𝛼𝛼∗) = 𝑃𝑃𝑟𝑟𝑙𝑙𝑃𝑃𝑚𝑚𝑃𝑃𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑦𝑦(𝐹𝐹(𝑖𝑖1,𝑖𝑖2) ≤ 𝑓𝑓); 𝑣𝑣1 = 2(𝑛𝑛 − 𝑟𝑟 + 1), 𝑚𝑚𝑛𝑛𝑑𝑑 𝑣𝑣2 = 2𝑟𝑟 

𝑟𝑟(1−𝑝𝑝)𝑓𝑓 = (3-11) 
(𝑛𝑛−𝑟𝑟+1)𝑝𝑝 

For a given data set of size n, ProUCL first computes the order statistic that is used to compute a 
nonparametric UTLp,(1-α). Once the order statistic has been determined, ProUCL computes the CC 
actually achieved by that UTL. 

3.4.4.3 Determining the Sample Size 

For specified values of p and (1 - α), the minimum sample size can be computed using Scheffe and Tukey 
(1944) approximate sample size formula given by equation (3-12). The minimum sample size formula 
should be used before collecting any data/samples. Once the data set of size n has been collected, using the 
binomial distribution or approximate normal distribution, one can compute the order, r, of the statistic to 
compute a UTL. As mentioned earlier, the UTLs based upon order statistics often do not achieve the desired 
confidence level. One can use equation (3-11) to compute the CC achieved by a UTL.  

2𝑛𝑛𝑛𝑛𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑑𝑑 = 0.25 ∗ 𝜒𝜒2𝑚𝑚,(1−𝑎𝑎) ∗ (1 + 𝑒𝑒)/(1 − 𝑒𝑒) + (𝑚𝑚 − 1)/2 (3-12) 

In equation (3-12), χ2
2m,(1-α) represents the (1 - α) quantile of a chi-square distribution with 2m df. It should 

be noted that in addition to p and (1 - α), the Scheffe and Tukey (1944) approximate minimum sample size 
formula (3-12) also depends upon the order, r, of the statistic, x(r), used to compute the UTLp, (1 - α). Here 
m: 1≤ m≤n; and m=1 when the largest value, x(n), is used to compute the UTL; and m=2, when the second 
largest value, x(n-1) is used to compute a UTL, and m=n-r+1 when the rth order statistic, x(r), is used to 
compute a UTL. For example, if the largest sample value, x(n), is used to compute a UTL95-95, then a 
minimum sample size of 59 (see equation (3-12)) will be needed to achieve a confidence level of 0.95 
providing coverage to 95% of the observations coming from the target population. A UTL95-95 estimated 
by the largest value and computed based upon a data set of size less than 59 may not achieve the desired 
confidence of 0.95 for the 95th percentile of the target population. 

Note: The minimum sample size requirement of 59 cited in the literature is valid when the largest value, 
x(n) (with m=1) in the data set is used to compute a compute a UTL95-95. For example, when the largest 
order statistic, x(n) (with m=1) is used to compute a nonparametric UTL95-95, the approximate minimum 
sample size needed 0.25*5.99*1.95/0.05 ≈ 58.4 (using equation (3-12)) which is rounded upward to 59; 
and when the second largest value, x(n-1) (with m=2) is used to compute a UTL95-95, the approximate 
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minimum sample size needed = [(0.25*9.488*1.95)/0.05] + 0.5 ≈ 93. Similarly, to compute a UTL90-95 
by the largest sample value, about 29 observations will be needed to provide coverage for 90% of the 
observations from the target population with CC = 0.95. Other sample sizes for various values of p and (1-
α) can be computed using equation, (3-12). In environmental applications, the number of available 
observations from the target population is much smaller than 29, 59 or 93 and a UTL computed based upon 
those data sets may not provide specified coverage with the desired CC. For specified values of CC, (1-α) 
and coverage, p, ProUCL outputs the achieved CC by a computed UTL and the minimum sample size 
needed to achieve the pre-specified CC. 

3.4.4.4 Nonparametric UTL Based upon the Percentile Bootstrap Method 

A couple of bootstrap methods to compute nonparametric UTLs are also available in ProUCL. Like the 
percentile bootstrap UCL computation method, for data sets without a discernible distribution, one can use 
percentile bootstrap resampling method to compute UTLp,(1-α) =UTL p,(1 - α). The N bootstrapped 
nonparametric pth percentiles, p,( i:=1,2,...,N), are arranged in ascending order: 𝑒𝑒1 ≤ 𝑒𝑒2 ≤. . . ≤ 𝑒𝑒𝑁𝑁 . The 
UTLp,(1-α) for the target population is given by the value that exceeds the (1 – α)*100 of the N bootstrap 
percentile values. The UTL95-95 is the 95th percentile and is given by: 

95% Percentile UTL = 95th percentile of pi values; i: = 1, 2, ..., N 

For example, when N = 1000, the ULT95-95 is given by the 950th order percentile value of the 1000 
bootstrapped 95th percentiles. Typically, this method yields the largest value in the data set to compute a 
UTL which may not provide the desired coverage (e.g., 0.95) to the 95th population percentile. 

3.4.4.5 Nonparametric UTL Based upon the Bias-Corrected Accelerated (BCA) Percentile Bootstrap 
Method 

Like the percentile bootstrap method, one can use the BCA bootstrap method (Efron and Tibshirani 1993) 
to compute nonparametric UTLs. However, this method needs further investigation. This method is 
incorporated in ProUCL 4.00.04 and higher versions for interested users. In this method one replaces the 
sample mean, bootstrap means by the corresponding bootstrap percentiles. The details of the BCA bootstrap 
method are given in Section 2.4.9.4. 

3.5 Upper Prediction Limits 

Based upon a background data set, UPLs are computed for a single (UPL1) and k (UPLk) future 
observations. Additionally, in groundwater monitoring applications, an upper prediction limit of the mean 
of the k future observations, UPLk (mean) is also used. A brief description of parametric and nonparametric 
upper prediction limits is provided in this section. 

UPL1 for a Single Future Observation: A UPL1 computed based upon an established background data set 
represents that statistic such that a single future observation from the target population (e.g., background, 
comparable to background) will be less than or equal to the UPL195 with a CC of 0.95. A parametric UPL 
takes the data variability into account. A UPL1 is designed for a single future observation comparison; 
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however in practice users tend to use UPL195 to perform many future comparisons which results in a high 
number of false postives (observations declared contaminated when in fact they are clean). 

When k>1 future comparisons are made with a UPL1, some of those future observations will exceed the 
UPL1 just by chance, each with probability 0.05. For proper comparison, a UPL needs to be computed 
accounting for the number of comaprisons that will be performed. For example, if 30 independent onsite 
comparisons (e.g., Pu-238 activity from 30 onsite locations) are made with the same background UPL195, 
each onsite value comparable to background may exceed that UPL195 with probability 0.05. The overall 
probability of at least one of those 30 comparisons being significant (exceeding the BTV) just by chance is 
given by: 

αactual = 1-(1-α)k =1 – 0.9530 ~1-0.21 = 0.79 (false positive rate). 

This means that the probability (overall false positive rate) is 0.79 (and not 0.05) that at least one of the 30 
onsite observations will be considered contaminated even when they are comparable to background. Similar 
arguments hold when multiple (=j, a positive integer) constituents are analyzed, and status (clean or 
impacted) of an onsite location is determined based upon j comparisons (one for each analyte). The use of 
a UPL1 is not recommended when multiple comparisons are to be made. 

3.5.1 Normal Upper Prediction Limit 

The sample mean, �̅�𝑥 , and the sd, s, are computed first based upon a defensible background data set. For 
normally distributed data sets, an upper (1 – α)*100% prediction limit is given by the following well known 
equation: 

UPL =�̅�𝑥 + 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1)) ∗ 𝑠𝑠 ∗ �(1 + 1/𝑛𝑛) (3-13) 

Here 𝑡𝑡�(1−𝛼𝛼),(𝑛𝑛−1)� is a critical value from the Student’s t-distribution with (n–1) df. 

3.5.2 Lognormal Upper Prediction Limit 

An upper (1 – α)*100% lognormal UPL is similarly given by the following equation: 

UPL =𝑒𝑒𝑥𝑥𝑒𝑒(𝑦𝑦� + 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1)) ∗ 𝑠𝑠𝑦𝑦 ∗ �(1 + 1/𝑛𝑛)) (3-14) 

Here 𝑡𝑡�(1−𝛼𝛼),(𝑛𝑛−1)� is a critical value from the Student’s t-distribution with (n–1) df. 

3.5.3 Gamma Upper Prediction Limit 

Given a sample, x1, x2, …, xn of size n from a gamma distribution G(k,𝜃𝜃), approximate (based upon WH and 
HW approximations described earlier in Section 3.4.3, Gamma Distribution Upper Tolerance Limits), (1 – 
α)*100% upper prediction limits for a future observation from the same gamma distributed population are 
given by: 

3 
Wilson-Hilferty (WH) UPL = 𝑚𝑚𝑚𝑚𝑥𝑥 �0, �𝑦𝑦� + 𝑡𝑡�(1−𝛼𝛼),(𝑛𝑛−1)� ∗ 𝑠𝑠𝑦𝑦 ∗ �1 + 1/𝑛𝑛� � (3-15) 
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4 
Hawkins-Wixley (HW) UPL =�𝑦𝑦� + 𝑡𝑡�(1−𝛼𝛼),(𝑛𝑛−1)� ∗ 𝑠𝑠𝑦𝑦 ∗ �1 + 1/𝑛𝑛� (3-16) 

Here 𝑡𝑡�(1−𝛼𝛼),(𝑛𝑛−1)� is a critical value from the Student’s t-distribution with (n–1)df. 

Note: As noted earlier, the performance of gamma UTLs and gamma UPLs based upon these WH and HW 
approximations is not well-studied. Interested researchers may want to evaluate their performances via 
simulation experiments. These approximations are also available in R script. 

3.5.4 Nonparametric Upper Prediction Limit 

A one-sided nonparametric UPL is simple to compute and is given by the following mth order statistic. One 
can use linear interpolation if the resulting number, m, given below does not represent a whole number (a 
positive integer). 

UPL = X(m), where m = (n + 1) * (1 – α) . (3-17) 

For example, for a nonparametric data set of size n=25, a 90% UPL is desired. Then m = (26*0.90) = 23.4. 
Thus, a 90% nonparametric UPL can be obtained by using the 23rd and the 24th ordered statistics and is 
given by the following equation: 

UPL = X(23) + 0.4 * (X(24) - X(23) ) 

Similarly, if a nonparametric 95% UPL is desired, then m = 0.95 * (25 + 1) = 24.7, and a 95% UPL can be 
similarly obtained by using linear interpolation between the 24th and 25th order statistics. However, if a 99% 
UPL needs to be computed, then m = 0.99 * 26 = 25.74, which exceeds 25, the sample size; for such cases, 
the highest order statistic is used to compute the 99% UPL of the background data set. The largest value(s) 
should be used with caution to estimate the BTVs. 

Since nonparametric upper limits (e.g., UTLs, UPLs) are based upon higher order statistics, often the CC 
achieved by these nonparametric upper limits is much lower than the specified CC of 0.95, especially when 
the sample size is small. 

3.5.4.1 Upper Prediction Limit Based upon the Chebyshev Inequality 

Like a UCL of the mean, the Chebyshev inequality can be used to compute a conservative UPL and is given 
by the following equation: 

UPL = �̅�𝑥 + ��((1/𝛼𝛼) − 1) ∗ (1 + 1/𝑛𝑛)�𝑠𝑠𝑥𝑥 

This is a nonparametric method since the Chebyshev inequality does not require any distributional 
assumptions. It should be noted that just like the Chebyshev UCL, a UPL based upon the Chebyshev 
inequality tends to yield higher estimates of BTVs than the various other methods. This is especially true 
when skewness is mild (sd of log-transformed data is low < 0.75), and the sample size is large (n > 30). 
The user is advised to apply professional judgment before using this method to compute a UPL. 
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3.5.5 Normal, Lognormal, and Gamma Distribution based Upper Prediction Limits for k-Future 
Comparisons 

A UPLk95 computed based upon an established background data set represents that statistic such that k 
future (next, independent and not belonging to the current data set) observations from the target population 
(e.g., background, comparable to background) will be less than or equal to the UPLk95 with a CC of 0.95. 
A UPLk95 for k (≥1) future observations is designed to compare k future observations; we are 95% sure 
that “k” future values from the background population will be less than or equal to UPLk95 with CC of 
0.95. In addition to UPLk, ProUCL also computes an upper prediction limit of the mean of k future 
observations, UPLk (mean). A UPLk (mean) is commonly used in groundwater monitoring applications. A 
UPLk controls the false positive error rate by using the Bonferroni inequality based critical values to perform 
k future comparisons. These UPLs statisfy the relationship: UPL1 ≤UPL2 ≤UPL3 ≤….≤ UPLk. ProUCL can 
compute an upper prediction limit for any number of , k, future observations. 

A normal distribution based UPLk(1 - α) for k future observations, 𝑥𝑥𝑛𝑛+1, 𝑥𝑥𝑛𝑛+2, . . . , 𝑥𝑥𝑛𝑛+𝑘𝑘 is given by the 
probability statement: 

𝑃𝑃 �𝑥𝑥𝑛𝑛+1, 𝑥𝑥𝑛𝑛+2, . . . , 𝑥𝑥𝑛𝑛+𝑘𝑘 ≤ �̅�𝑥 + 𝑡𝑡�(1−𝛼𝛼),(𝑛𝑛−1)�𝑠𝑠�1 + 1� = 1 − 𝛼𝛼 (3-18) 
𝑛𝑛 

𝑈𝑈𝑃𝑃𝐿𝐿𝑘𝑘 = �̅�𝑥 + 𝑠𝑠 ∗ 𝑡𝑡�(1−𝛼𝛼/𝑘𝑘),(𝑛𝑛−1)��1 + 1 

𝑛𝑛 

𝑈𝑈𝑃𝑃𝐿𝐿𝑘𝑘95 = ��̅�𝑥 + 𝑡𝑡�(1−0.05/𝑘𝑘),(𝑛𝑛−1)�𝑠𝑠�1 + 1�
𝑛𝑛 

For an example, a UPL3 95 for 3 future observations: 𝑥𝑥01, 𝑥𝑥02, 𝑥𝑥03is given by: 

𝑈𝑈𝑃𝑃𝐿𝐿395 = ��̅�𝑥 + 𝑡𝑡�(1−0.05/3),(𝑛𝑛−1)�𝑠𝑠�1 + 1�
𝑛𝑛 

A lognormal distribution based UPLk (1 - α) for k future observations, 𝑥𝑥𝑛𝑛+1, 𝑥𝑥𝑛𝑛+2, … , 𝑥𝑥𝑛𝑛+𝑘𝑘 is given by the 
following equation: 

𝑈𝑈𝑃𝑃𝐿𝐿𝑘𝑘 = 𝑒𝑒𝑥𝑥𝑒𝑒 �𝑦𝑦� + 𝑠𝑠𝑦𝑦 ∗ 𝑡𝑡�(1−𝛼𝛼/𝑘𝑘),(𝑛𝑛−1)��1 + 1�
𝑛𝑛 

A gamma distribution based UPLk for the next k > 1 (k future observations) are computed similarly using 
the WH and HW approximations described in Section 3.4.3. 

3.5.6 Proper Use of Upper Prediction Limits 

It is noted that some users tend to use UPLs without taking their definition and intended use into 
consideration; this is an incorrect application of a UPL. Some important points to note about the proper use 
of UPL1 and UPLk for k>1 are described as follows. 
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• When a UPLk is computed to compare k future observations collected from a site area or a 
group of MW within an operating unit (OU), it is assumed that the project team will make a 
decision about the status (clean or not clean) of the site (MWs in an OU) based upon those k 
future observations. 

• The use of an UPLk implies that a decision about the site-wide status will be made only after k 
comparisons have been made with the UPLk. It does not matter if those k observations are 
collected (and compared) simultaneously or successively. The k observations are compared 
with the UPLk as they become available and a decision (about site status) is made based upon 
those k observations. 

• An incorrect use of a UPL1 95 is to compare many (e.g., 5, 10, 20, etc.) future observations. 
This results in a higher than 0.05 false positive rate. Similarly, an inappropriate use of a UPL100 

would be to compare less than 100 (i.e., 10, 20, or 50 observations) future observations. Using 
a UPL100 to compare 10 or 20 observations can potentially result in a high number of false 
negatives (a test with reduced power), declaring contaminated areas comparable to background. 

• The use of other statistical limits such as 95%-95% UTLs (UTL95-95) is preferred to estimate 
BTVs and not-to-exceed values. The computation of a UTL does not depend upon the number 
of future comparisons which will be made with the UTL. 

3.6 Upper Simultaneous Limits 

An (1 – α) * 100% upper simultaneous limit (USL) based upon an established background data set is meant 
to provide coverage for all observations, xi, i = 1, 2, …, n simultaneously in the background data set. It is 
implicitly assumed that the data set comes from a single background population and is free of outliers 
(established background data set). A USL95 represents that statistic such that all observations from the 
“established” background data set will be less than or equal to the USL95 with a CC of 0.95. A USL95 can 
be used to perform any number (unknown) of comparisons of future observations. The false positive error 
rate does not change with the number of comparisons as the purpose of the USL95 is to perform any number 
of comparisons simultaneously. 

Notes: If a background population is established based upon a small data set; as one collects more 
observations from the background populations, some of the new background observations will exceed the 
largest value in the existing data set. In order to address these uncertainties, the use of a USL is suggested, 
provided the data set represents a single population without outliers. 

3.6.1 Upper Simultaneous Limits for Normal, Lognormal and Gamma Distributions 

The normal distribution based two-sided (1 – α) 100% simultaneous interval obtained using the first order 
Bonferroni inequality (Singh and Nocerino 1995, 1997) is given as follows: 

𝑃𝑃��̅�𝑥 − 𝑠𝑠𝑑𝑑𝛼𝛼𝑏𝑏 ≤ 𝑥𝑥𝑖𝑖 ≤ �̅�𝑥 + 𝑠𝑠𝑑𝑑𝛼𝛼𝑏𝑏 ; 𝑖𝑖: = 1,2, . . . , 𝑛𝑛� = 1 − 𝛼𝛼 (3-19) 

𝑏𝑏�2Here, �𝑑𝑑𝛼𝛼 represents the critical value (obtained using the Bonferroni inequality) of the maximum 
Mahalanobis distance (Max (MDs)) for α level of significance (Singh 1993). The details about the 
Mahalanobis distances and computation of the critical values,�𝑑𝑑𝛼𝛼𝑏𝑏�

2 , can be found in Singh (1993) and 
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Singh and Nocerino (1997). These values have been programmed in ProUCL version 4.1 and higher 

𝑏𝑏 Here �𝑑𝑑2𝛼𝛼� is the critical value of Max (MDs) for a 2*α level of significance. 

versions to compute USLs for any combination of the sample size, n, and CC, (1 - α). 

The normal distribution based, one-sided (1 – α) 100% USL providing coverage for all 
observations is given as follows: 

n sample 

𝑏𝑏 𝑃𝑃�𝑥𝑥𝑖𝑖 ≤ �̅�𝑥 + 𝑠𝑠𝑑𝑑2𝛼𝛼; 𝑖𝑖: = 1,2, . . . , 𝑛𝑛� = 1 − 𝛼𝛼; 

𝑏𝑏 𝑈𝑈𝑈𝑈𝐿𝐿 = �̅�𝑥 + 𝑠𝑠 ∗ 𝑑𝑑2𝛼𝛼; (3-20) 

2 

The lognormal distribution based one-sided (1 – α) 100% USL providing coverage for all n sample 
observations is given by the following equation: 

𝑏𝑏 𝑈𝑈𝑈𝑈𝐿𝐿 = 𝑒𝑒𝑥𝑥𝑒𝑒��̅�𝑥 + 𝑠𝑠 ∗ 𝑑𝑑2𝛼𝛼� (3-21) 

A gamma distribution based (using WH approximation), one-sided (1 – α) 100% USL providing coverage 
to all sample observations is given by: 

𝑏𝑏 𝑈𝑈𝑈𝑈𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑥𝑥 �0, �𝑦𝑦� + 𝑑𝑑2𝛼𝛼 ∗ 𝑠𝑠𝑦𝑦�
3� 

A gamma distribution based (using the HW approximation), one-sided (1 – α) 100% USL providing 
coverage to all sample observations is given as follows: 

𝑈𝑈𝑈𝑈𝐿𝐿 = �𝑦𝑦 𝑏𝑏 ∗ 𝑠𝑠𝑦𝑦�� + 𝑑𝑑2𝛼𝛼 
4 

Nonparametric USL: For nonparametric data sets, the largest value, x(n) is used to compute a nonparametric 
USL. Just like a nonparametric UTL, a nonparametric USL may fail to provide the specified coverage, 
especially when the sample size is small (e.g., <60). The confidence coefficient actually achieved by a USL 
can be computed using the same process as used for a nonparametric UTL described in Sections 3.4.4.2 
and 3.4.4.3. Specifically, by substituting r = n in equation (3-11), the confidence coefficient achieved by a 
USL can be computed, and by substituting m=1 in equation (3-12), one can compute the sample size needed 
to achieve the desired confidence. 

Note: Nonparametric USLs, UTLs or UPLs should be used with caution; nonparametric upper limits are 
based upon order statistics and therefore do not take the variability of the data set into account. Often 
nonparametric BTVs estimated by order statistics do not achieve the specified CC unless the sample size is 
fairly large. 

Dependence of UTLs and USLs on the Sample Size: For smaller samples (n <10), a UTL tends to yield 
impractically large values, especially when the data set is moderately skewed to highly skewed. For data 
sets of larger sizes, the critical values associated with UTLs tend to stabilize whereas critical values 
associated with a USL increase as the sample size increases. Specifically, a USL95 is less than a UTL95-
95 for samples of sizes, n ≤16, they are equal/comparable for samples of size 17, and a USL95 becomes 
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greater than a UTL95-95 as the sample size becomes greater than 17. Some examples illustrating the 
computations of the various upper limits described in this chapter are discussed as follows. 

Example 3-1. Consider the real data set used in Example 2-4 of Chapter 2 consisting of concentrations for 
several constituents of potential concern, including aluminum, arsenic, chromium (Cr), and lead. The 
computation of background statistics obtained using ProUCL for some of the metals are summarized as 
follows. 

Upper Limits Based upon a Normally Distributed Data Set: The aluminum data set follows a normal 
distribution as shown in the following GOF Q-Q plot of Figure 3-1. 

Figure 3-1. Normal Q-Q plot of Aluminum with GOF Statistics 

From the normal Q-Q plot shown in Figure 3-1, it is noted that the 3 largest values are higher (but not 
extremely high) than the rest of the 21 observations. These observations may or may not come from the 
same population as the rest of the 21 observations. 
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General Slalislics 

Total Number of Observations 24 Number of Distinct Observations 24 

Minimum 1710 Rrst Quartile 4058 

Second Largest 15400 Median 7010 

Maximum 16200 Third Quartile 10475 

Mean 7789 SD 4264 

Coefficient of Vanation 0.547 Skewness 0.542 

Mean of logged Data 8.798 SD of logged Data 0.61 

Critical Values for Backgrot.nd Tt-reshold Values (BTVs) 

Tolerance Factor K (For UTL) 2.309 d2max ~or USL) 2.644 

Normal GOF Test 

Shapiro Wilk Test Statistic 0.933 Shapiro Wilk GOF Test 

5% Shapiro Wilk Critical Value 0.916 Data appear Nonnal at 5% Significance Level 

Ulliefors Test Statistic 0.1 09 Lilliefors GOF Test 

5% Ulliefors Critical Value 0.1 81 Data appear Nonna! at 5% Signlicance Level 

Data appear Normal al 5% Significance Level 

Backgrot.nd Slalislics Assuning Normal Oislnbuion 

95o/. UTL wih 95o/. Coverage 17635 90o/. Percentile (z) 13254 

95o/. UPL ~) 15248 95o/. Percentile (z) 14803 

95o/. USL 19063 99o/. Percentile (z) 17708 
 

    
  

   
    

Table 3-1. BTV Estimated Based upon All 24 Observations 

The classical outlier tests (Dixon and Rosner tests) did not identify these 3 data points as outliers. The 
various upper limits have been computed with and without the 3 high observations and are summarized 
respectively, in Tables 3-1 and 3-2 as follows. The project team should make a determination based on 
scientific incvestigation of three extreme values of which statistics should be used to estimate BTVs. 
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General Statistics 

Total Number of Observations 21 Number of IAsti1ct Obseivations 21 

Number of Mssing Obseivations 3 

lofrmJm 1710 FirstQuartie 3900 

Second largest 11600 Medan 6350 

Maicirum 12500 Third Quartie 9310 

Mean 6669 SD 3215 

Coefficient of Variation 0.482 Skewness 0.25 

Mean of logged Data 8.676 SD of logged Data 0.549 

Critical Values for Backi,,x.n:1 Tlreshold Values (BTVs) 

Tolerance Factor K (for UTL) 2.371 d2max for USIJ 2.58 

Normal GOF Test 

Shapiro Wilk Test Statistic 0.955 Shapiro Wilk GOF Test 

5% Shapiro Wilk Oiical Value 0.908 Data appear Nonnal at 5% Significance Level 

Lilliefors Test Statistic 0.1 2 Lllliefors GOF Test 

5% Lilliefors Oiical Value 0.1 93 Data appear Nonnal at 5% Significance Level 

Data appear Normal at 5'1. Significance Level 

Backi,,x.n:I Statistics Asst.ming Normal llistrilx.tion 

95% UTL with 9S-4Coverage 14291 90% Percentae (z) 10789 

95% UPL ~) 12344 95% Percentae (z) 11957 

95% USL 14964 99% Percentae (z) 14147 
 

Table  3-2. BTV Estimated Based upon 21 Observations without 3 Higher Values  
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Example 3-2. As noted in Example 2-4, chromium concentrations follow a lognormal distribution. The 
lognormal GOF test is shown in Figure 3-2, and computation of background statistics using a lognormal 
model are shown in Table 3-3.  

Figure 3-2. Lognormal Q-Q Plot of Chromium with GOF Statistics 
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General Slalislics 

Total Number of Observations 24 Number of Distinct Observations 19 

Minimum 3 First Quartile 7.975 

Second Largest 20 Median 11 

Maximum 35.5 Third Quartile 14.25 

Mean 11.97 SD 6.892 

Coefficient of Variation 0.576 Skewness 1. 728 

Mean of logged Data 2.334 SD of logged Data 0.568 

Oitical Values for Backgnxm Ttreshold Values (BTVs) 

Tolerance Factor K (For UTL) 2.309 d2max ~or USL) 2.644 

Lognonnal GOF Test 

Shapiro Wilk Test Statistic 0.978 Shapiro Wilk Lognonnal GOF Test 

5% Shapiro Wilk Critical Value 0.916 Data appear lognonnal at So/. Significance Level 

Ulliefors Test Statistic 0.1 28 Lilliefors Lognonnal GOF Test 

5% Ulliefors Critical Value 0.1 81 Data appear lognonnal at So/. Significance Level 

Data appear Lognonnal at 5% Significance Level 

Backgnxm Slalislics assuring Lognonnal Oislribuion 

95% UTL with 95% Coverage 38.3 90% Percentile (z) 21.37 

95% UPL ~) 27.87 95% Percentile (z) 26.27 

95% UPL for Next 5 Obseivations 43.96 99% Percentile (z) 38.68 

95% UPL for Mean of 5Obseivations 16.66 95%USL 46.33  

        
       

  

Table 3-3. Lognormal Distribution Based UPLs, UTLs, and USLs 

Example 3-3. Arsenic concentrations of the data set used in Example 2-4 follow a gamma distribution. The 
background statistics, obtained using a gamma model, are shown in Table 3-4. Figure 3-3 is the gamma Q-
Q plot with GOF statistics. 
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Figure 3-3. Gamma Q-Q plot of Arsenic with GOF Statistics 
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General Slalislics 

Total Number of Observations 24 Number of Distinct Observations 18 

Minimum 0.66 Rrst Quartile 1.2 

Second Largest 3.7 Median 2.05 

Maximum 5.9 Third Quartile 2.45 

Mean 2.1 4S SD 1.159 

Coeficient of Variation 0.54 Skewness 1.554 

Mean of logged Data 0.639 SD of logged Data 0.51 

Oitical Values for Backgrot.nd Ttreshold Values (BTVs) 

Tolerance Factor K (For UTL) 2.309 d2max ~or USL) 2.644 

Gamma GOF Test 

A-D Test Statistic 0.341 Ander.!oo-Oading Gamma GOF Test 

5%A-D Critical Value 0. 74S Detected data appear Gamma Distributed at 5% Signlicance Level 

K-S Test Statistic 0.11 4 KDlmogn,v-Smimoff Gamma GOF Test 

5% K-S Critical Value 0.1 79 Detected data appear Gamma Distributed at 5% Signlicance Level 

Detected dala appear Gamma Dislribt.ted al 5% Significance Level 

Gamma Slalislics 

k hat (MLE) 4.1 53 k star (bias corrected MLE) 3.662 

Theta hat (MLE) 0.517 Theta star (bias corrected MLE) 0.587 

nu hat (MLE) 199.3 nu star (bias corrected) 175.8 

MLE Mean (bias corrected) 2.1 4S MLE Sd (bias corrected) 1.123 

Backgrot.nd Slalislics Assuning Gamma Distribt.tion 

95% Wilson Hi~erty (WH) Approx. Gamma UPL 4.345 90% Percentile 3.654 

95% Hawkins Wixley (HW) Approx. Gamma UPL 4.397 95% Percentile 4.264 

95% WH Approx. Gamma UTL wlto 95% Coverage 5.382 99% Percentile 5.574 

95% HW Approx. Gamma UTL wlto 95% Coverage 5.524 

95% WH USL 6.074 95% HW USL 6.294  

             
    

Table 3-4. Gamma Distribution Based UPLs, UTLs, and USLs 

Example 3-4. Lead concentrations of the data set used in Example 2-4 do not follow a discernible 
distribution. The various nonparametric background statistics for lead are shown in Table 3-5.  
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General Stalistics 

Total Number of Observations 24 Number of Distinct Observations 1& 

Minimum 4.9 First Quartile 10.43 

Second Largest 98.5 Median 14 

Maximum 109 Third Quart ile 19.25 

Mean 22.49 SD 26.&3 

Coefficient of Variation 1.193 Skewness 2.665 

Mean of logged Data 2.743 SD of logged Data 0.771 

Critical Values fo.- BackgJOlrld] Threshold Values (BTVs) 

Tolerance Factor K (For UTL) 2.309 d2max for USL) 2.644 

~ ric Distribt.tion Free Back~ Stalistics 

Data, do not follow a Discernible Distribution (0.05} 

Nonparametric ~ Limits to.- Backgrntm Tlveshold Values 

Order of Statistic. r 24 95% UTL with 95% Coverage 109 

Approximate f 1.263 Confidence Coefficient (CC) achieved by UTL 0.708 

95% Percentile Bootstrap UTL with 95% Coverage 109 95% BCA Bootstrap UTL with 95% Coverage 109 

95% UPL 106.4 90% Percentile 44.81 

90"4 Chebyshev UP L 104.6 95% Percentile 91.72 

95%Chebyshev UPL 141.8 99'4 Percentile 106.6 

95% USL 109  

      
   

   
   

    
              

      
    

  

      
    

    
      

     
    

    

Table 3-5. Nonparametric UPLs, UTLs, and USLs for Lead in Soils 

Note: As mentioned before, nonparametric upper limits are computed by higher order statistics, or by some 
value in between (based upon linear interpolation) the higher order statistics. In practice, nonparametric 
upper limits do not provide the desired coverage to the population parameter (upper threshold) unless the 
sample size is large. From Table 3-5, it is noted that a UTL95-95 is estimated by the maximum value in the 
data set of size 24. However, the CC actually achieved by UTL95-95 (and also by USL95) is only 0.708. 
Therefore, one may want to use other upper limits such as 95% Chebyshev UPL = 141.8 to estimate a BTV. 

Note: As mentioned earlier, for symmetric and mildly skewed nonparametric data sets (when sd of logged 
data is <=0.5), one can use the normal distribution to compute percentiles, UPLs, UTLs and USLs. 

Example 3-5: Why Use a Gamma Distribution to Model Positively Skewed Data Sets? 

The data set considered in Example 2-2 of Chapter 2 is used to illustrate the deficiencies and problems 
associated with the use of a lognormal distribution to compute upper limits. The data set follows a lognormal 
as well as a gamma model; the various upper limits, based upon a lognormal and a gamma model, are 
summarized as follows. The data set is highly skewed with sd of logged data = 1.68. The largest value in 
the data set is 169.8, the UTL95-95 and UPL95 based upon a lognormal model are 799.7 and 319 both of 
which are significantly higher than the maximum value of 169.8. UTL95-95s based upon WH and HW 
approximations to gamma distributions are 245.3 and 285.6; UPLs based upon WH and HW 
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X 

General Slalistics 

Total Number of Obseivations 25 Number of Distinct Obseivations 

Minimum 0.349 Rrst Quartile 

Second Largest 164.3 Median 

Maximum 169.8 Third Quartile 

Mean 44.09 SD 

Coefficient of Variation 1.164 Skewness 

Mean of logged Data 2.835 SD of logged Data 

Critical Values for Backgrot.Sld Ttreshold Values (BliVs) 

Tolerance Factor K (For UTL) 2.292 

Shapiro Wilk Test Statistic 

5% Shapiro Wilk Critical Value 

Lilliefors Test Statistic 

5% Lilliefors Critical Value 

Lognonnal GOF Test 

0.948 

0.918 

0.1 35 

0.1 77 

d2max for USL) 

si-;ro Wilk Lognonnal GOF Test 

Data appear lognonnal at 5% Significance Level 

Lilliefors Lognonnal GOF Test 

Data appear lognonnal at 5% Significance Level 

Data appear Lognonnal al 5% Significance Level 

Backgrot.Sld Stalistics assuning Lognonnal Oistnbt.tion 

95% UTL with 95% Coverage 799. 7 

95% UPL ~) 319 

90% Percentile (z) 

95% Percentile (z) 

25 

5.093 

18.77 

72.62 

51.34 

1.294 

1.68 

2.663 

146.5 

269.7 

approximations are 163.5 and 178.2 which appear to represent more reasonable estimates of the BTV. These 
statistics are summarized in Table 3-6 (lognormal) and Table 3-7 (gamma) below. 

Table 3-6. Background Statistics Based upon a Lognormal Model 
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95% HW Approx. Gamma UTL with 95% Coverage 285.6 

X 

General Stalislics 

Total Number of Observations 25 Number of Distinct Observations 25 

Minimum 0.349 Rrst Quartile 5.093

Second Largest 164.3 Median 18.77 

Maximum 169.8 Third Quartile 72.62 

Mean 44.09 SD 51.34 

Coefficient of Variation 1.164 Skewness 1.294

Mean of logged Data 2.835 SD of logged Data 1.68 

Critical Values for Backgrot.nd Ttreshold Values (BTVs) 

Tolerance Factor K (For UTL) 2.292 d2max for USL) 2.663

Gamma GOF Test 
A-D Test Statistic 0.374 Ander.!oo-Oa,ling Gamma GOF Test 

5% A-D Critical Value 0. 794 Detected data appear Gamma Distributed at 5% Signlicance Level 

K-S Test Statistic 0.11 3 KDlmogrov-Smimoff Gamma GOF Test 

5% K-S Critical Value 0.1 83 Detected data appear Gamma Distributed at 5% Signlicance Level 

Detected dala appear Gamma Dislribt.ted al 5% Significance Level 

Gamma Stalislics 

k hat (MLE) 0.643 k star (bias corrected MLE) 0.592

Theta hat (MLE) 68.58 Theta star (bias corrected MLE) 74.42 

nu hat (MLE) 32.1 5 nu star (bias corrected) 29.62 

MLE Mean (bias corrected) 44.09 MLE Sd (bias corrected) 57.28 

Backgrot.nd Stalislics Assuring Gamma Distribt.tion 

95% Wilson Hi~erty (WH) Approx. Gamma UPL 163.5 90% Percentile 115 

95% Hawkins Wixley (HW) Approx. Gamma UPL 178.2 95% Percentile 159.4 

95% WH Approx. Gamma UTL with 95% Coverage 245.3 99% Percentile 266.8 

 

Table 3-7. Background Statistics Based upon a Gamma Model 

123 



  

          
   

     
  

           
     

       
         

   
       

     

       
        

   
   

    
  

       
       

     
   

      
    

 
         

  

    
           

       
    

     
          
     

 

CHAPTER 4  
 

Computing  Upper Confidence Limit of  the Population Mean 
Based  upon Left-Censored Data Sets  Containing Nondetect 

Observations  
4.1 Introduction 

Nondetect (ND) observations are inevitable in most environmental data sets. It should be noted that the 
estimation of the mean and sd, and the computation of the upper limits (e.g., upper confidence limits 
[UCLs], upper tolerance intervals [UTLs]) are two different tasks. For left-censored data sets with NDs, in 
addition to the availability of good estimation methods, the availability of rigorous statistical methods which 
account for data skewness is needed to compute the decision making statistics such as UCLs, UTLs, and 
UPLs. For left-censored data sets consisting of multiple detection limits (DLs) or reporting limits (RLs), 
ProUCL 4.0 (2007) and its higher versions offer methods to: 1) impute NDs using regression on order 
statistics (ROS) methods; 2) perform GOF tests; 3) estimate the mean, standard deviation (sd), and standard 
error of the mean; and 4) compute skewness adjusted upper limits (e.g., UCLs, UTLs, UPLs). Based upon 
KM (Kaplan and Meier1958) estimates, and the distribution and skewness of detected observations, several 
upper limit computation methods which adjust for data skewness have also been incorporated in ProUCL.  

For left-censored data sets with NDs, Singh and Nocerino (2002) compared the performances of the various 
estimation methods (in terms of bias and MSE) to estimate the population mean, 𝜇𝜇1, and sd, 𝜎𝜎1 including 
the MLE method (Cohen 1950, 1959), restricted MLE (RMLE) method (Perrson and Rootzen 1977); 
Expectation Maximization (EM) method (Gleit 1985), EPA Delta lognormal method (EPA 1991; Hinton 
1993), Winsorization method (Gilbert 1987), and regression on order statistics (ROS) method (Helsel 
1990). Singh, Maichle, and Lee (EPA 2006) performed additional simulation experiments to study and 
evaluate the performances (in terms of bias and MSE) of KM and ROS methods for estimating the 
population mean. They concluded that the KM method yields better estimates, in terms of bias, of 
population mean in comparison with other estimation methods including the LROS (ROS on logged data) 
method. Singh, Maichle, and Lee (EPA 2006) also studied the performances, in terms of coverage 
probabilities, of some parametric and nonparametric UCL computation methods based upon ROS, KM, and 
other estimation methods. They concluded that for skewed data sets, KM estimates based UCLs computed 
using bootstrap methods (e.g., BCA bootstrap, bootstrap-t) and Chebyshev inequality perform better than 
the Student's t statistic UCL and percentile bootstrap UCL computed using ROS and KM estimates as 
described in Helsel (2005, 2012) and incorporated in NADA packages (2013). 

As mentioned above, computing good estimates of the mean and sd based upon left-censored data sets 
addresses only half of the problem. The main issue is computing decision statistics (UCL, UPL, UTL) 
which account for NDs as well as uncertainty and data skewness inherently present in environmental data 
sets. Until recently (ProUCL 4.0, 4.00.05, 4.1; Singh, Maichle, and Lee 2006), not much guidance was 
available on how to compute the various upper limits (UCLs, UPLs, UTLs) based upon skewed left-
censored data sets with multiple DLs. For left-censored data sets, the existing literature (Helsel 2005, 2012) 
suggests computing upper limits using a Student's t-type statistic and percentile bootstrap methods on KM 
and LROS estimates without adjusting for data skewness. Environmental data sets tend to follow skewed 
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distributions, and UCL95s and other upper limits computed using methods described in Helsel (2005, 2012) 
will under estimate the population parameters of interest including EPCs and background threshold values. 

In earlier versions of ProUCL (ProUCL versions 4 [2007, 2009, 2010]), all evaluated estimation methods 
including the poor performing methods (MLE and RMLE, and Winsorization methods) and better 
performing, in terms of bias in the mean estimate, estimation (KM method) and UCL computation methods 
(BCA bootstrap, bootstrap-t) were incorporated in ProUCL version 4 (2007, 2009, 2010). Currently, the 
KM estimation method is widely used in environmental applications to compute parametric (when detected 
data follow a known distribution) and nonparametric upper limits needed to estimate environmental 
parameters of interest such as the population mean and upper thresholds of a background population. Note 
that the KM method is now included in a recent EPA RCRA groundwater monitoring guidance document 
(2009). 

Due to the poor performances and/or failure to correctly verify probability distributions for data sets with 
multiple DLs, the parametric MLE and RMLE methods, the normal ROS and the Winsorization estimation 
methods for computing upper limits are no longer available in ProUCL version 5.0/5.1/5.2. The normal 
ROS method is available only under the Stats/Sample Sizes module of ProUCL 5.0/5.1/5.2 to impute NDs 
based upon the normal distribution assumption for advanced users who may want to use the imputed data 
in other graphical and exploratory methods such as scatter plots, box plots, cluster analysis and principal 
component analysis (PCA). The estimation methods for computing upper limits retained in ProUCL 
5.0/5.1/5.2 include the two ROS (lognormal, and gamma) methods and the KM method. The KM estimation 
method can be used on a wide-range of skewed data sets with multiple DLs and NDs exceeding detected 
observations. Also, the substitution methods such as replacing NDs by half of their respective DLs and the 
H-UCL method (EPA [2009e] recommends its use in Chapter 15) have been retained in ProUCL 5.0/5.1/5.2 
for historical reasons, and academic and research purposes. Inclusion of the DL/2 method (substitution of 
½ the DL for NDs) in ProUCL should not be inferred as a recommended method. The developers of ProUCL 
are not endorsing the use of the DL/2 estimation method or H-UCL computation method. 

Note on the use of letter k (k): Not to get confused with the use of letter "k (k)" in this Chapter and in 
Chapters 2, 3, 4, and 5. Following the standard statistical terminology, "k" is used to denote the shape 
parameter of a gamma distribution, G(k,θ) as described in Chapter 2; "k" is used to represent future (next) 
observations (Chapter 3 and 5), and "k" is used to represent the number of ND observations present in a 
data set (Chapters 4 and 5). 

Notes on Skewness of Left-Censored Data Sets: Skewness of a data set is measured as a function of sd, σ 
(or its estimate, 𝜎𝜎�) of log-transformed data. Like uncensored full data sets, σ, or its estimate, 𝜎𝜎�, of the log-
transformed detected data is used to get an idea about the skewness of a data set consisting of ND 
observations. This information along with the distribution of detected observations is used to decide which 
UCL should be used to estimate the EPC and other upper limits for data sets consisting of both detects and 
NDs. For data sets with NDs, output sheets generated by ProUCL display the sd, 𝜎𝜎�, of log-transformed 
data based upon detected observations. For a gamma distribution, skewness is a function of the shape 
parameter, k. Therefore, in order to assess the skewness of gamma distributed data sets, the associated 
output screens exhibit the MLE, k hat (and also the bias corrected MLE, k star) of the shape parameter, k, 
based upon detected observations. 
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4.2 Pre-processing a Data Set and Handling of Outliers 

Throughout this chapter (and in other chapters such as Chapters 2, 3, and 5), it has been implicitly assumed 
that the data set under consideration represents a “single” statistical population as a UCL is computed for 
the mean of a "single" statistical population. In addition to representing "wrong" values (e.g., typos, lab 
errors), outliers may also represent observations coming from population(s) significantly different from the 
dominant population whose parameters (mean, upper percentiles) we are trying to estimate based upon the 
available data set. 

4.2.1 Assessing the Influence of Outliers and Disposition of Outliers 

One can argue against “not using the outliers” while estimating the various environmental parameters such 
as the EPCs and BTVs. An argument can be made that outlying observations are inevitable and can be 
naturally-occurring (not impacted by site activities) in some environmental media (and therefore in data 
sets). For example, in groundwater applications, a few elevated values may be considered to be naturally 
occurring and as such may not represent the impacted MW data values. 

To assess the influence of outliers on the various statistics (upper limits) of interest, it is suggested to 
compute all relevant statistics using data sets with outliers and without outliers, and then compare the 
results. This extra step often helps the project team/users to see the direct potential influence of outlier(s) 
on the various statistics of interest (mean, UPLs, UTLs). This in turn will help the project team to make 
informative decisions about the disposition of outliers. That is, the project team and experts familiar with 
the site should decide which of the computed statistics (with outliers or without outliers) represent better 
and more accurate estimate(s) of the population parameters (mean, EPC, BTV) under consideration. 

4.2.2 Avoid Data Transformation 

Data transformations are performed to achieve symmetry of the data set and be able to use parametric 
(normal distribution based) methods on transformed data. In most environmental applications, the cleanup 
decisions are made based on statistics and results computed in the original scale as the cleanup goals need 
to be attained in the original scale. Therefore, statistics and results need to be back-transformed in the 
original scale before making any cleanup decisions. Often, the back-transformed statistics (UCL of the 
mean) in the original scale suffer from an unknown amount of transformation bias; many times the 
transformation bias can be unacceptably large (for highly skewed data sets) leading to incorrect decisions. 

The use of a gamma model does not require any data transformation therefore whenever applicable the use 
of a gamma distribution is suggested to model skewed data sets. In cases when a data set in the original 
scale cannot be modeled by a normal or a gamma distribution, it is better to use nonparametric methods 
rather than testing or estimating parameters in the transformed space. For data sets which do not follow a 
discernible parametric distribution, nonparametric and computer intensive bootstrap methods can be used 
to compute the upper limits needed to estimate environmental parameters. Several of those methods are 
available in ProUCL for data sets consisting of NDs with multiple DLs. 
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4.2.3 Do Not Use DL/2(t) UCL Method 

In addition to environmental scientists, ProUCL is also used by students and researchers. Therefore, for 
historical and comparison purposes, the substitution method of replacing NDs by half of the associated DLs 
(DL/2) is retained in ProUCL; that is the DL/2 GOF tests, UCL, UPL, and UTL computation methods have 
been retained in ProUCL 5.0 and newer for historical reasons, and comparison and academic purposes. For 
data sets with NDs, output sheets generated by ProUCL display a message suggesting that DL/2 is not a 
recommended method. It is suggested that the use of the DL/2 (t) UCL method (UCL computed using 
Student’s t-statistic) be avoided when estimating a EPC or BTVs, unless the data set consists of only a small 
fraction of NDs (<5%) and the data are mildly skewed. The DL/2 UCL computation method does not 
provide adequate coverage (Singh, Maichle, and Lee 2006) for the population mean, even for censoring 
levels as low as 10% or 15%. This is contrary to statements (EPA 2006b) made that the DL/2 UCL method 
can be used for lower (≤ 20%) censoring levels. The coverage provided by the DL/2 (t) UCL method 
deteriorates fast as the censoring intensity, percentage of NDs, increases and/or data skewness increases. 

4.2.4 Minimum Data Requirement 

Whenever possible, it is suggested that a sufficient number of samples be collected to satisfy the 
requirements for the data quality objectives (DQOs) for the site. Often, in practice, it is not feasible to 
collect the number of samples as determined by DQOs-based sample size formulae. Therefore, some rule-
of-thumb minimum sample size requirements are described in this section. At the minimum, collect a data 
set consisting of about 10 observations to compute reasonably reliable and accurate estimates of EPCs 
(UCLs) and BTVs (UPLs, UTLs). The availability of at least 15 to 20 observations is desirable to compute 
UCLs and other upper limits based upon re-sampling bootstrap methods. Some of these issues have also 
been discussed in Chapter 1 of this Technical Guide. However, from a theoretical point of view, ProUCL 
can compute various statistics (KM UCLs) based upon data sets consisting of at least 3 detected 
observations. The accuracy of the decisions based upon statistics computed using such small data sets 
remains questionable. 

4.3 Goodness-of-Fit (GOF) Tests and Skewness for Left-Censored Data Sets 

It is not easy to assess and verify the distribution of data sets with NDs, especially when multiple DLs are 
present and those DLs exceed the detected values. One can perform GOF tests on detected data and 
consider/expect that NDs (not the DLs) also follow the same distribution of detected data. For data sets 
with NDs, ProUCL has GOF tests for normal, lognormal, and gamma distributions which are also 
supplemented with graphical Q-Q plots. GOF tests in ProUCL include: 1) exclude all NDs; 2) replace NDs 
by their DL/2s; and 3) ROS methods. In the environmental literature (Helsel 2005, 2012), some other graphs 
such as censored probability plots have also been described. However, the usefulness of those graphs in the 
computation of decision making statistics is not clear. Some practitioners have criticized that ProUCL does 
not offer censored probability plots, therefore, even though those graphs do not provide additional useful 
information, ProUCL offers those graphs as well. 

Formally, let x1, x2, ..., xn (including k NDs and (n-k) detected measurements) represent a random sample 
of n observations obtained from a population under investigation (e.g., background area, or an area of 
concern [AOC]). Out of the n observations, k: 1≤k≤n, values are reported as NDs lying below one or more 
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DLs, and the remaining (n-k) observations represent the detected values. Such data sets consisting of ND 
observations are called left-censored data sets. The (n-k) detected values are ordered and are denoted by 
x(i); i: =k+1, k+2, ..., n. The k ND observations are denoted by x(ndi) ; i:=1,2,...k. The detected observations 
might come from a well-known parametric distribution such as a normal, a lognormal, or a gamma 
distribution, or from a population with a nondiscernible distribution. Using the Statistical Tests module of 
ProUCL, one can use GOF tests (described in Chapter 2) to assess the distribution of detected observations. 

Like uncensored full data sets, for data sets with NDs, the skewness and data distribution of detected values 
plays an important role in selecting appropriate estimates of EPCs and BTVs. If the data set obtained by 
excluding the NDs is skewed, the data set consisting of all detects and NDs most likely will also be skewed. 
Therefore, for data sets with NDs, it is important to determine the distribution and skewness of the data set 
obtained by excluding the NDs. This information helps in selecting appropriate parametric or nonparametric 
methods to compute the various upper limits which account for NDs and adjust for data variability and 
skewness. For skewed data sets, a UCL (and other limits) of the mean computed using KM estimates in the 
t-statistic UCL equation or obtained using the percentile bootstrap method tend to fail to achieve the 
specified coverage for the population mean. One may also want to know the distribution of detects to 
determine which statistical methods should be used on the ROS or KM estimates when computing the 
various upper limits. There is no need to determine the plotting positions/percentiles when assessing the 
distribution of detected observations. Also, the use of the substitution DL/2 method yields a data set of size 
n, and GOF methods described in Chapter 2 can be used to determine the distribution of the data set thus 
obtained. Similarly, any of the GOF methods described in Chapter 2 can be used on the data set of size n 
obtained using a ROS method (normal, lognormal, and gamma). The ROS method is described in Section 
4.5. 

4.4 Nonparametric Kaplan-Meier (KM) Estimation Method 

The KM estimation method (Kaplan and Meier 1958), also known as the product limit estimation (PLE) 
method, is a substitution method based upon a distribution function estimate, like the sample distribution 
function, except that the KM method adjusts for censoring. The KM method is commonly used in survival 
analysis (e.g., dealing with right-censored data associated with terminally ill patients) and various other 
biomedical applications. A brief description of the KM method to estimate the population mean and sd, and 
standard error (SE) of the mean for left-censored data sets is described in this section. For details, refer to 
Kaplan and Meier (1958) and the report prepared by Bechtel Jacobs Company for the DOE (2000). The 
properties of the KM method are well researched (Gillespie, Chen et al. 2010). Specifically, the KM 
estimator represents a consistent estimator and for large data sets the KM estimator is asymptotically 
efficient and normally distributed (Gu, Zhang 1993). 

2Formally, let x1, x2, ..., xn represent n data values of a left-censored data set. Let �̂�𝜇𝐾𝐾𝑀𝑀 and 𝜎𝜎�𝐾𝐾𝑀𝑀 represent KM 
′ ′ ′estimates of the mean and variance based upon such a data set with NDs. Let 𝑥𝑥1 < 𝑥𝑥2 <. . . < 𝑥𝑥𝑛𝑛 denote the 

n΄ distinct values at which detects are observed. That is, n΄ (≤ n) represents distinct detected values in the 
′ collected data set of size n. For j = 1, …, n΄ , let mj denote the number of detects at 𝑥𝑥𝑎𝑎 and let nj denote the 

′ number of xi ≤ 𝑥𝑥𝑎𝑎 . Also, let x(1) denote the smallest xi. Then  

′𝐹𝐹�(𝑥𝑥) = 1, x ≤ 𝑥𝑥𝑛𝑛′ 
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𝑛𝑛𝑗𝑗−𝑚𝑚𝑗𝑗 ′ ′𝐹𝐹�(𝑥𝑥) = ∏𝑎𝑎 𝑠𝑠𝑠𝑠𝐴𝐴ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝑥𝑥𝑗𝑗
′>𝑥𝑥 , 𝑥𝑥1 ≤ x ≤ 𝑥𝑥𝑛𝑛′ 𝑛𝑛𝑗𝑗 

′𝐹𝐹�(𝑥𝑥) = 𝐹𝐹�(𝑥𝑥′1), x(1) ≤ x ≤ 𝑥𝑥1 

𝐹𝐹�(𝑥𝑥) = 0 or undefined,  0 ≤ x ≤ x(1) 

Note that in the last equality statement of 𝐹𝐹�(𝑥𝑥) above, 𝐹𝐹�(𝑥𝑥) = 0 when x(1) is a detect, and is undefined 
when x(1) is a ND. An estimate of the population mean based upon the KM method is given as follows. 

𝑛𝑛′ �̂�𝜇𝐾𝐾𝑀𝑀 = ∑𝑖𝑖=1 𝑥𝑥′𝑖𝑖[𝐹𝐹�(𝑥𝑥′𝑖𝑖) − 𝐹𝐹�(𝑥𝑥′𝑖𝑖−1)], with x0= 0 (4-1) 

Using the PLE (or KM) method, an estimate of the SE of the mean is given by the following equation. 

𝑛𝑛−𝑘𝑘 𝑚𝑚𝑖𝑖+1 2 𝑛𝑛′−1 2𝜎𝜎�𝑆𝑆𝑆𝑆 = ∑𝑖𝑖=1 𝛼𝛼𝑖𝑖 , (4-2) 
𝑛𝑛−𝑘𝑘−1 𝑛𝑛𝑖𝑖+1(𝑛𝑛𝑖𝑖+1−𝑚𝑚𝑖𝑖+1) 

Where k = number of ND observations, and 

𝑖𝑖 𝛼𝛼𝑖𝑖 = ∑ (𝑥𝑥′𝑎𝑎+1 − 𝑥𝑥′𝑎𝑎 )𝐹𝐹�(𝑥𝑥′𝑎𝑎 ), i: =1, 2, …, n΄-1. 𝑎𝑎=1 

The KM variance is computed as follows: 

𝜎𝜎2 = �̂�𝜇 ̂ (4-3) �𝐾𝐾𝑀𝑀 (𝑥𝑥2)−𝐾𝐾𝑀𝑀 − (𝜇𝜇(𝑥𝑥)−𝐾𝐾𝑀𝑀 )2 

�̂�𝜇(𝑥𝑥)−𝐾𝐾𝑀𝑀 = 𝐾𝐾𝑀𝑀 𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚, 𝑥𝑥 

�̂�𝜇(𝑥𝑥2)−𝐾𝐾𝑀𝑀 = 𝐾𝐾𝑚𝑚 𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑞𝑞𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚, 𝑥𝑥 (𝑠𝑠𝑒𝑒𝑠𝑠𝑙𝑙𝑛𝑛𝑑𝑑 𝑟𝑟𝑚𝑚𝑟𝑟 𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡) 

In addition to the KM mean, ProUCL computes both the SE of the mean given by (4-2) and the variance 
given by (4-3). The SE is used to estimate EPCs (e.g., UCLs) whereas the variance is used to compute BTV 
estimates (e.g., UTLs, USLs). The KM method in ProUCL can be used directly on left-censored 
environmental data sets without requiring any flipping of data and back flipping of the KM estimates and 
other statistics (e.g., flipping LCL to compute a UCL) which may be burdensome for most users and 
practitioners. 

Note: Decision making statistics (e.g., UPLs and UTLs) used in background evaluations projects require 
good estimates of the population standard deviation, sd. The decision statistics (e.g., UTLs) obtained using 
the direct estimate of sd (Equation 4-3) and an indirect "back door" estimate of sd (Helsel 2012b) can differ 
significantly, especially for skewed data sets. An example illustrating this issue is described as follows. 

Example 4-1 (Oahu Data Set): Consider the moderately skewed well-cited Oahu data set (Helsel 2012b). 
A direct KM estimate of the sd obtained using equation (4-3) is σ= 0.713; and an indirect KM estimate of 
sd = sqrt (24)*SE = 4.899 * 0.165 = 0.807 (Helsel 2012b, p 87). A UTL95-95 (direct) = 2.595 and a UTL95-
95 (based upon indirect estimate of sd) = 2.812. The discrepancy between the two estimates of sd and upper 
limits (e.g., UTL95-95) computed using the two estimates increases with skewness. 
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Cautionary notes for NADA (2013) in R Users: It is well known that the KM method yields a good (in 
terms of bias) estimate of the population mean (Singh, Maichle, and Lee 2006). However, the use of KM 
estimates in the Student's t-statistic based UCL equation or percentile bootstrap method as included in 
NADA packages do not guarantee that those UCLs will provide the desired (e.g., 0.95) coverage for the 
population mean in all situations. Specifically, it is highly likely that for moderately skewed to highly 
skewed data sets (determined using detected values) the Student's t-statistic or percentile bootstrap method 
based UCLs computed using KM estimates will fail to provide the desired coverage to the population mean, 
as these methods do not account for skewness. Several UCL (and other limits) computation methods based 
upon KM estimates which adjust for data skewness are available in ProUCL 5.0 and newer; those methods 
were not available in ProUCL 4.1. 

4.5 Regression on Order Statistics (ROS) Methods 

In this guidance document and in ProUCL software, LROS represents the ROS (also known as robust ROS) 
method for a lognormal distribution and GROS represents the ROS method for a gamma distribution. The 
ROS methods impute NDs based upon a hypothesized distribution such as a gamma or a lognormal 
distribution. The “Stats/Sample Sizes” menu option of ProUCL can be used to impute and store imputed 
NDs along with the original detected values in additional columns generated by ProUCL. ProUCL assigns 
self-explanatory titles for those generated columns. It is a good idea to store the imputed values to determine 
the validity of the imputed NDs and assess the distribution of the complete data set consisting of detects 
and imputed NDs. As a researcher, one may want to have access to imputed NDs to be used by other 
methods such as regression analysis and PCA. Moreover, one cannot easily perform multivariate methods 
on data sets with NDs; and the availability of imputed NDs makes it possible for researchers to use 
multivariate methods on data sets with NDs. The developers believe that statistical methods to evaluate data 
sets with NDs require further investigation and research. Providing the imputed values along with the 
detected values may be helpful to practitioners conducting research in this area. For data sets with NDs, 
ProUCL also performs GOF tests on data sets obtained using the LROS and GROS methods. The ROS 
methods yield a data set of size n with (n-k) original detected observations and k imputed NDs. The full 
data set of size n thus obtained can be used to compute the various summary statistics, and to estimate the 
EPCs and BTVs using methods described in Chapters 2 and 3 of this technical guidance document. 

In a ROS method, the distribution (e.g., gamma, lognormal) of the (n-k) detected observations is assessed 
first; and assuming that the k ND observations, x1, x2, ..., xk follow the same distribution (e.g., gamma or a 
lognormal distribution when used on logged data) of the (n-k) detected observations, the NDs are imputed 
using an OLS regression line obtained using the (n-k) pairs: (ordered detects, hypothesized quantiles). 
Earlier versions of ProUCL software also included the normal ROS (NROS) method for computing the 
various upper limits. The use of NROS on environmental data sets (with positive values) tends to yield 
unfeasible and negative imputed ND values; and the use of negative imputed NDs yields biased and 
incorrect results (e.g., UCL, UTLs). Therefore, the NROS method is no longer available in the UCLs/EPCs 
and Upper Limits/BTVs modules of ProUCL. Instead, when detected data follow a normal distribution, 
the use of KM estimates in normal equations is suggested for computing the upper limits as described in 
Chapters 2 and 3. 
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4.5.1 Computation of the Plotting Positions (Percentiles) and Quantiles 

Before computing the n hypothesized (lognormal, gamma) quantiles, q(i); i:=k+1, k+2,...,n, and q(ndi); i:= 
1, 2, …, k, the plotting positions (also known as percentiles) need to be computed for the n observations 
with k NDs and (n-k) detected values. There are several methods available in the literature (Blom 1958; 
Barnett, 1976; Singh and Nocerino, 1995, Johnson and Wichern, 2002) to compute the plotting positions 
(percentiles). Note that plotting positions for the three ROS methods: LROS, GROS, and NROS are the 
same. For a full data set of size n, the most commonly used plotting position for the ith observation (ordered) 
is given by (i – ⅜) / (n + ¼) or (i – ½)/n; i:=1,2,…,n. These plotting positions are routinely used to generate 
Q-Q plots based upon full uncensored data sets (Singh 1993; Singh and Nocerino 1995; ProUCL 3.0 and 
higher versions). For the single DL case (with all observations below the DL reported as NDs), ProUCL 
uses Blom’s percentiles, (i – ⅜) / (n + ¼) for normal and lognormal distributions, and uses empirical 
percentiles given by (i – ½)/n for a gamma distribution. Specifically, for normal and lognormal 
distributions, once the plotting positions have been obtained, the n normal quantiles, q(i) are computed using 
the probability statement: P(Z ≤ q(i)) = (i – ⅜) / (n + ¼), i : = 1, 2, …, n , where Z represents a standard 
normal variate (SNV). The gamma quantiles are computed using the probability statement: P(X ≤ q(i)) = (i 
– ½) /n, i : = 1, 2, …, n , where X represents a gamma (~constant *chi-square) random variable. 

In case multiple DLs are present with NDs potentially exceeding the detected observations, the plotting 
positions (percentiles) are computed using methods that adjust for multiple DLs. The details of the 
computation of such plotting positions (percentiles), pi; i: =1, 2, ..., n, for data sets with multiple DLs or 
with ND observations exceeding the DLs are given in Helsel (2005) and also in Singh, Maichle, and Lee 
(2006), a document that can be downloaded freely from the ProUCL website. The associated hypothesized 
quantiles, q(i) are obtained by using the following probability statements: 

P (Z ≤ q(i)) = pi; i : = 1, 2, …, n (Normal or Lognormal Distribution) 

P (X ≤ q(i)) = pi; i : = 1, 2, …, n (Gamma Distribution) 

Once the n plotting positions have been computed, the n quantiles, q(ndi); i:= 1, 2, …, k, and q(i); i:=k+1, 
k+2,...,n are computed using the specified distribution (e.g., normal, gamma) corresponding to those n 
plotting positions. 

Example 4-2 (Pyrene Data Set): Using the well-cited She's (1997) pyrene data set (Helsel 2012b) of size 
n=56, the plotting positions (same for NROS, LROS, and GROS) and LROS and GROS quantiles (denoted 
by Q) generated by ProUCL are summarized in Table 4-1. The gamma quantiles are computed using the 
MLE estimates of shape and scale parameters. 

4.5.2 Computing OLS Regression Line to Impute NDs 

An ordinary least squares (OLS) regression model is obtained by fitting a linear straight line to the (n-k) 
ordered (in ascending order) detected values, x(i) (perhaps after a suitable transformation), and the (n-k) 
hypothesized (e.g., normal, gamma) quantiles, q(i); i:=k+1, k+2,...,n, associated with those (n-k) detected 
ordered observations. The hypothesized quantiles are obtained for all of the n data values by using the 
hypothesized distribution for the (n-k) detected observations. The quantiles associated with (n-k) detected 
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Pyrene D _pyrene Percentiles Gamma-Q {Hat) Normal-Q,  
105 0.588738178 

28 0 0.01818162 4.339031664 -2.0928422 
171.4798683 0.2243003 

31 0.063635671 14.41837445 -1.5249509 
107 0.60778559 180.2780505 0.2735521 

32 0.090908101 20.46764S35 -1.3351838
110 0.62G833001 189.501663 0.323477 

34 1 0.118180531 26.60142257 -1.1841314
111 1 0.645880413 199.1956546 0.374222 

35 0 0.048484321 11.075711 44 -1.6597307 
117 0 0.332463912 80.62092045 -0.4331197 

35 0 0.096968641 21.82204786 -1.2990194
119 0.67836071 216.9648821 0.4631197 

40 0.1 63634582 37.09766155 -0.9796292
119 1 0.691793595 224.8326032 0.5009408 

47 0.1 81816202 41.41222876 -0.9084654 
122 0 0.35261324 86.44778239 -0.3782748 

48 1 0.1 99997822 45.80230241 -0.841629 
122 0.721551168 243.5316694 0.5874557 

58 0 0.1 09089721 24.54516765 -1.2313836
132 0.737875855 254.6417923 0.6368105 

59 0.238013937 55.2511 4882 -0.7127057 133 0.754200542 266.4543419 0.687768 

63 0.257848432 60.33991965 -0.6499928 133 0. 770525229 279.0660434 o.7405m 

64 0.277682927 65.54790077 -0.5897387 138 1 0.786849916 292.5950126 0.7955388 

64 0.297517422 70.88334133 -0.5315541 163 0 0.200793651 45.99627612 -0.8387898 

67 0.317351916 76.3549565 -0.47511 66 163 0 0.401587302 101.3388027 -0.2492407 

67 0.337186411 81.97203137 -0.4201542 163 0 0.602380952 1777401595 0.2595148 

163 67 0.357020906 87. 74452837 -0.3664333 1 0.812301587 315.8763629 0.8864096 

72 0.376855401 93.68320235 -0.3137502 174 0 0.410714286 104.2387681 -0.225708 

73 0.396689895 99. 79972782 -0.2619243 187 0.837662338 342.4104955 0.9848957 

84 190 1 0.41652439 106.1 068416 -0.210793 0.853896104 361.6446136 1.0532907 

86 0 0.218179443 50.27369978 -0.7783565 222 0.87012987 383.1239177 1.1270053 

86 0.455406297 11 9.0785779 -0.11 20136 238 0.886363636 407.448911 1.2074141 

87 0.474453708 273 125.7564975 -0.0640789 0.902597403 435.4987969 1.2964944 

94 289 0.4935011 2 132.6689087 -0.016291 0.918831169 468.636129 1.3972525 

98 0.512548532 139.8343146 0.0314597 306 0.935064935 509.1426864 1.5146142 

100 0.531595943 147.2733809 0.0792823 333 0.951298701 561.2940357 1.6575784 

103 0.550643355 155.009301 0.1 272869 459 0.967532468 634.6836503 1.8457049 

103 0.569690767 163.0682381 0.1 755869 2982 0.983766234 759.9003157 2.1386067 

        
   

    
      

        
    

   
         

   

values are denoted by q(i); i:=k+1, k+2,...,n, and the k quantiles associated with ND observations are 
denoted by q(ndi); i:= 1, 2, …, k.. 

An OLS regression line is obtained first by using the (n - k) pairs, (q(i), x(i)); i:= k + 1, k + 2, …, n, where x(i) 

are the (n-k) detected values arranged in ascending order. The OLS regression line fitted to the (n - k) pairs 
(q(i), x(i)); i:= k + 1, k + 2, …, n corresponding to the detected values is given by: 

x(i) = a + bq(i); i:= k + 1, k + 2, …, n. (4-4) 

Table  4-1. Plotting Positions, Gamma and Lognormal (Normal)  Quantiles (Q)  

When ROS is used on transformed data (e.g., log-transformed), then ordered values, x(i) ; i: = k + 1, k + 2, 
…, n represent ordered detected data in that transformed scale (e.g., log-scale, Box-Cox (BC)-type 
transformation). Equation (4-4) is then used to impute or estimate the ND values. Specifically, for quantile, 
q(ndi) corresponding to the ith ND, the imputed ND is given by x(ndi) = a + bq(ndi) ; i:=1,2,...k. When there is 
only a single DL and all values lying below the DL represent ND observations, then the quantiles 
corresponding to those ND values typically are lower than the quantiles associated with the detected 
observations. However, when there are multiple DLs, and when some of those DLs exceed detected values, 
then quantiles, q(ndi) corresponding to some of those ND values might become greater than the quantiles, q(i) 

associated with some of the detected values. 
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4.5.2.1 Influence of Outliers on Regression Estimates and Imputed NDs 

Like all other statistics, it is well-known (Rousseeuw and Leroy 1987; Singh and Nocerino 1995; Singh and 
Nocerino 2002) that presence of outliers (detects) also distorts the regression estimates of slope and 
intercept which are used to impute NDs based upon a ROS method. It is noted that for skewed data sets 
with outliers, the imputed values computed using the ROS method on raw data in the original scale become 
negative (e.g., GROS method). Therefore, inclusion of outliers (e.g., impacted locations) can yield distorted 
statistics and upper limits computed using the ROS method. This issue is also discussed later in this chapter. 

Note: It is noted that a linear regression line can be obtained even when only two detected observations are 
available. Therefore, methods (e.g., ROS) discussed here and incorporated in ProUCL can be used on data 
sets with 2 or more detected observations. However, to obtain a reliable OLS model (slope and intercept) 
and imputed NDs for computation of defensible upper limits, enough (> 4-6 as a rule of thumb, more are 
desirable) detected observations should be made available. 

4.5.3 ROS Method for Lognormal Distribution 

Let Org stand for the data in the original unit and Ln stand for the data in the natural logarithmic unit. The 
LROS method may be used when the log-transformed detected data follow a lognormal distribution. For 
the LROS method, the OLS model given by (4-4) is obtained using the log-transformed detected data and 
the corresponding normal quantiles. Using the OLS linear model on log-transformed, detected observations, 
the NDs in log-transformed scale are imputed corresponding to the k normal quantiles, q(ndi) associated with 
the ND observations which are back-transformed in original, Org scale by exponentiation. 

4.5.3.1 Fully Parametric Log ROS Method 

Once the k NDs have been imputed, the sample mean and sd can be computed using the back-transformation 
formula (El Shaarawi, 1989) given by equation (4-5) below. This method is called the fully parametric 
method (Helsel, 2005). The mean, �̂�𝜇𝐿𝐿𝑁𝑁 , and sd, 𝜎𝜎�𝐿𝐿𝑁𝑁, are computed in log-scale using a full data set obtained 
by combining the (n - k) detected log-transformed data values and the k imputed ND (in log scale) values. 
Assuming lognormality, El-Shaarawi (1989) suggested estimating μ and σ by back-transformation using 
the following equations as one of the several ways of computing these estimates. The estimates given by 
equation (4-5) are neither unbiased nor have minimum variance (Gilbert 1987). Therefore, it is 
recommended to avoid the use of this version of ROS method on log-transformed data to compute UCL95s 
and other statistics. This method is not available in the ProUCL software. 

2�̂�𝜇 = 𝑒𝑒𝑥𝑥𝑒𝑒(�̂�𝜇 2 /2), 𝑚𝑚𝑛𝑛𝑑𝑑 𝜎𝜎 = �̂�𝜇2 (𝑒𝑒𝑥𝑥𝑒𝑒(𝜎𝜎2 ) − 1) (4-5) 𝑂𝑂𝑟𝑟𝑙𝑙 𝐿𝐿𝑁𝑁 + 𝜎𝜎�𝐿𝐿𝑁𝑁 �𝑂𝑂𝑟𝑟𝑙𝑙 𝑂𝑂𝑟𝑟𝑙𝑙 �𝐿𝐿𝑁𝑁 

4.5.3.2 Robust ROS Method on Log-Transformed Data 

The robust ROS method is performed on log-transformed data as described above. In the robust ROS 
method, ND observations are first imputed in the log-scale, based upon a linear ROS model fitted to the 
log-transformed detects and normal quantiles. The imputed NDs are transformed back in the original scale 
by exponentiation. The process of using the ROS method based upon a lognormal distribution and imputing 
NDs by exponentiation does not yield negative estimates for ND values; perhaps that is why it got the name 
robust ROS (or LROS in ProUCL). This process yields a full data set of size n, and methods described in 
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Chapters 2 and 3 can be used to compute the decision statistics of interest including estimates of EPCs and 
BTVs. If the detected observations follow a lognormal, the data set consisting of detects and imputed NDs 
also follow a lognormal distribution. As expected, the process of imputing NDs using the LROS method 
does not reduce the skewness of the data set and therefore, appropriate methods need to be used to compute 
upper limits (Chapters 2 and 3) which provide specified (e.g., 0.95) coverage by adjusting for skewness. 

Note: The use of the robust ROS method has become quite popular. Helsel (2012b) suggests the use of a 
classical t-statistic or a percentile bootstrap method to compute a UCL of the mean based upon the full data 
set obtained using the LROS method. These methods are also available in his NADA packages. However, 
these methods do not adjust for skewness and for moderately skewed to highly skewed data sets, and UCLs 
based upon these two methods fail to provide the specified coverage to the population mean. For skewed 
data sets, methods described in Chapter 2 can be used on LROS data sets to compute UCLs of the mean. 

Example 4-3 (Oahu Data Set). Consider the Oahu arsenic data set of size 24 with 13 NDs. The detected 
data set of size 11 follows a lognormal distribution as shown in Figure 4-1; this graph simply represents a 
Q-Q plot of detects and does not account for NDs when computing quantiles. The censored probability plot 
is shown in Figure 4-2; its details can be found in the literature (Chapter 15 of Unified Guidance, EPA 
2009e). A censored probability plot is also based upon detected observations and it computes quantiles by 
accounting for NDs. The LROS data set consisting of 11 detects and 13 imputed NDs also follows a 
lognormal distribution as shown in Figure 4-3. Summary statistics and LROS UCLs are summarized in 
Table 4-2. 

Figure 4-1. Lognormal GOF Test on Detected Oahu Data Set—Does not Account for NDs to 
Compute Quantiles 
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Figure 4-2. Lognormal Censored Probability Plot (Oahu Data)—Uses Only Detects but Accounts 
for NDs to Compute Quantiles 

Note: The two graphs displayed in Figures 4-1 and 4-2 provide similar information about data distributions, 
as GOF tests simply use detected values (and not quantiles). Both graphs are okay without any preference. 

Figure 4-3. Lognormal GOF Test on LROS Data Obtained Using the Oahu Data Set 
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General Slalislics 

Total Number of Obseivations 24 Number of Distinct Observations 10 

Number of Detects 11 Number of Non-Detects 13 

Number of Distinct Detects 8 Number of Distinct Non-Detects 3 

Minimum Detect 0.5 Minimum Non-Detect 0.9 

Maximum Detect 3.2 Maximum Non-Detect 2 

Variance Detects 0.931 Percent Non-Detects 54.1 7% 

Mean Detects 1.236 SD Detects 0.965 

Median Detects 0.7 CV Detects 0.78 

Skewness Detects 1.322 Kurtosis Detects 0.517 

Mean of Logged Detects -0.0255 SD of Logged Detects 0.694 

lDgnonnal GOF Test on Detected Obser,alioos Only 

Shapiro Wilk Test Statistic 0.86 ~ro Wilk GOF Test 

5% Shapiro Wilk Critical Value 0.85 Detected Data appear lognonnal at 5% Significance Level 

Ulliefors Test Statistic 0.229 Lilliefor., GOF Test 

5% Ulliefors Critical Value 0.267 Detected Data appear lognonnal at 5% Significance Level 

Detected Data appear log,onnal al 5% Significance Level 

lDgnonnal ROS Slalislics l!Jsing lmi,t.ted Noo-Oetects 

Mean in Original Scale 0.972 Mean in log Scale -0.209 

SD in Original Scale 0.718 SD in Log Scale 0.571 

95% t UCL (assumes nonnality of ROS data) 1.224 95% Percentile Bootstrap UCL 1.22 

95% BCA Bootstrap UCL 1.308 95% Bootstrap t UCL 1.375 

95% H-UCL (Log ROS) 1.218 
 

       
    
     

   

  

     
       

     
  

     
     

        
 

            
  

Table 4-2. Summary Statistics and UCL95 Based upon LROS data 

The data set is moderately skewed with sd of logged detects equal to 0.694. All methods tend to yield 
comparable results. One may want to use a 95% BCA bootstrap UCL or a bootstrap-t UCL to estimate the 
EPC. However, the detected data follow a gamma distribution, therefore ProUCL recommends gamma 
UCLs as shown in the following section. 

4.5.3.3 Gamma ROS Method 

Many positively skewed data sets tend to follow a lognormal as well as a gamma distribution. Singh, Singh, 
and Iaci (2002) noted that the gamma distribution is better suited to model positively skewed environmental 
data sets. When a moderately skewed to highly skewed data set (uncensored data set or detected values in 
a left-censored data set) follows a gamma, as well as, a lognormal distribution, the use of a gamma 
distribution tends to result in more stable and realistic estimates of EPCs and BTVs (Examples 2-2 and 3-
2, Chapters 2 and 3). Furthermore, when using a gamma distribution to compute decision statistics such as 
a UCL of the mean, one does not have to transform the data and back-transform the resulting UCL into the 
original scale. 

Let x(k+1) ≤ x(k+2) ≤ ... ≤ x(n) represent the (n-k) ordered detected values. If (n-k) detected observations follow 
a gamma distribution (can be verified using GOF tests in ProUCL) then the NDs can be imputed using the 
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OLS line (4-4) based upon (n - k) pairs given by: (n - k) gamma quantiles, ordered (n - k) detected 
observations). Let xnd1, xnd2, …, xndk, xk+1, xk+2, …, xn be a random sample (with k NDs and (n-k) detects) of 
size n where the detected (n-k) observations follow a gamma distribution, G(k,θ). 

Note: Not to get confused with k, the shape parameter of a gamma distribution, G(k,θ), which is different 
from k, the number of ND observations. Due to these notations used in the statistical literature and also in 
ProUCL software and output sheet, the same letter k is used for the shape parameter of a gamma distribution 
and number of NDs. 

The n plotting positions, pi; i:=1,2,…,n used to compute the gamma quantiles are computed for each 
observation (detected and nondetected) using the methods described earlier in Section 4.5.1. To compute n 
gamma quantiles associated with the n plotting positions (percentiles, empirical probabilities), one needs to 
estimate the gamma parameters, k and θ based upon the (n-k) detected values. This process may have some 
effect on the accuracy of the estimated gamma quantiles (which use an estimated value of the shape 
parameter, k), and consequently on the accuracy of the imputed NDs. The availability of enough (at least 
8-10) detected gamma distributed observations is suggested to compute the estimates of k and θ. 

Let 𝑘𝑘� and 𝜃𝜃� represent the MLEs of k and θ, respectively, based upon detected data. 

The gamma quantiles, x0i are computed using the relationship between a gamma and a chi-square 
distribution; and are given by the equation, 𝑥𝑥0𝑖𝑖 = 𝑧𝑧0𝑖𝑖𝜃𝜃�/2; 𝑖𝑖: =1, 2, …, n, where quantiles z0i (already 
ordered) are obtained by using the inverse chi-square distribution given as follows: 

𝑧𝑧0𝑖𝑖 2∫ = (𝑖𝑖 − 1/2)/𝑛𝑛; 𝑖𝑖: =  1, 2, …, n (Single DL Case) (4-6) 0 
𝑓𝑓(𝜒𝜒2𝑘𝑘� 

𝑧𝑧0𝑖𝑖 2∫ 𝑓𝑓( 2 )𝑑𝑑𝜒𝜒2𝑘𝑘 = 𝑒𝑒𝑖𝑖; 𝑖𝑖: = 1, 2, …, n (Multiple DL Case) (4-7) 0 
𝜒𝜒2𝑘𝑘 � 

2In the above equation, 𝜒𝜒2𝑘𝑘� represents a chi-square random variable with 2𝑘𝑘� degrees of freedom (df), and pi 

are the plotting positions (percentiles) obtained using the process described above. The process of 
computing plotting positions, pi, i:=1,2,...,n, for left-censored data sets with multiple DLs has been 
incorporated in ProUCL. The inverse chi-square algorithm function (AS91) from Best and Roberts (1975) 
has been used to compute the inverse chi-square percentage points, z0i, as given by the above equations. 
Using the OLS line (4-4) fitted to the (n - k) detected pairs, one can impute the k NDs resulting in a full 
data set of size n = k + (n - k). 

Notes about GROS for smaller values of k (e.g., ≤): In the ProUCL 5.0 Technical Guide (and its earlier 
versions) and ProUCL software, a suggestion was made that GROS may not be used when the shape 
parameter, k is less than 0.1 or less than 0.5. However, during late 2014, some users pointed out that k 
should be higher. Therefore, starting with version of ProUCL 5.1 now suggests that GROS may not be used 
for values of k ≤ 1.0. It should be pointed out that the GROS algorithm incorporated in ProUCL works well 
for values of k > 2. 

The GROS method incorporated in ProUCL does not appear to work well for smaller values of k or its MLE 
estimate, 𝑘𝑘� (e.g., ≤1). The algorithm used to compute gamma quantiles is not efficient enough and does not 
perform well for smaller values of k. The developers thus far have not found time to look into this issue. In 
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January 2015, the developers of ProUCL requested the statistical community (via the American Statistical 
Association’s section on environmental statistics and/or personal communication) to provide 
code/algorithms which may be used to improve the computation of gamma quantiles for smaller values of 
k. 

For now, GROS may not be used when the data set with detected observations (used to compute OLS 
regression line) consists of outliers and/or is highly skewed (e.g., estimated values of k are small such as 
<=1.0). When the estimated value (MLE) of the shape parameter, k, based upon detected data is small (<= 
1.0), or when the data set consists of many tied NDs at multiple DLs with a high percentage of NDs (>50%), 
the GROS tends to not perform well and often yields negative imputed NDs, due to outliers distorting the 
OLS regression. Since environmental concentration data are non-negative, one needs to replace the imputed 
negative values by a small positive value such as 0.1, 0.001. In ProUCL, negative imputed values are 
replaced by 0.01. The use of such imputed values tends to yield inflated values of sd, UCLs, and BTV 
estimates (e.g., UPLs, UTLs). 

Preferred Method: Alternatively, when detected data follow a gamma distribution, one can use KM 
estimates (described above) in gamma distribution based equations to compute UCLs (and other limits) 
which account for data skewness, unlike KM estimates when used in normal UCL equations. This hybrid 
gamma-KM method for computing upper limits is available in ProUCL. The details are provided in Section 
4.6. The hybrid KM-gamma method yields reasonable UCLs and accounts for NDs as well as data skewness 
as demonstrated in Example 4-4.  

Note: It is noted that when 𝑘𝑘�∗>1, UCLs based upon the GROS method and gamma UCLs computed using 
KM estimates tend to yield comparable UCLs from practical a point of view. This can also be seen in 
Example 4-4 below. 

Example 4-4 (Oahu Data Set Continued): The detected data set of size 11 follows a gamma distribution 
as shown in Figure 4-4. The GROS data consisting of 11 detects and 13 imputed NDs also follows a gamma 
distribution as shown in Figure 4-5. Summary statistics and GROS UCLs are summarized in Table 4-3 
following Figure 4-5. Since the data set is only mildly skewed all methods (GROS and Hybrid KM-Gamma) 
yield comparable results. 
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Figure 4-4. Gamma GOF Test on Detected Concentrations of the Oahu Data Set 

Figure 4-5. Gamma GOF Test on GROS Data Obtained Using the Oahu Data Set 
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inimum 0.11 9 Mean 0.956 

Maximum 3.2 Median 0.7 

SD 0.758 CV 0.793 

k hat (MLE) 2071 k star (bias corrected M LE) 1.84 

Theta hat (M LE) 0.461 Theta star (bias corrected M LE) 0.519 

nu hat (MLE) 99.41 nu star (bias corrected) 88.32 

MLE Mean (bias corrected) 0.956 

M LE Sd (bias corrected) 0.704 Adjusted Level of Significance OJ) 0.0392 

Approximate Oii Square Value (88.32. a) 67.65 Adjusted Oii Square Value (88 32. Pl 66.38 

95% Gamma Approximate UCL (use when n>=50) 1.247 95% Gamma Adjusted UCL (use when n<50) 1.271 

Kaplan-Meier- (KM) Statistics Using Normal Critical Values 

Mean 0.949 Standard Error of Mean 0.1 65 

SD 0.713 95% KM (BCA) UCL 1.1 92 

95% KM~) UCL 1.231 95% KM (Percentile Bootstrap) UCL 1.219 

95% KM (z) UCL 1.22 95% KM Bootstrap t UCL 1.374 

90% KM Oiebyshev UCL 1.443 95% KM Oiebyshev UCL 1.667 

97.5% KM Oiebyshev UCL 1.977 99% KM Oiebyshev UCL 2.58.8 

Gamma Kaplan-Meier- (KM) Statistics 

k hat (KM) 1. 771 nu hat (KM) &5.02 

Approximate O,i Square Value (&5.02, a) 64.77 Adjusted O,i Square Value (&5.02, Pl 63.53 

95% Gamma Approximate KM-UCL (use when n>=50) 1.246 95% Gamma Adjusted KM-UCL (use when n<50) 1.27 

Suggested LCL lo Use 

95% KM~) UCL 1.231 95% GROS Adjusted Gamma UCL 1.271 

95% Adjusted Gamma KM-UCL 1.27  

 

     
 

     
       

   

   
    

 
       

     
    

    

    
   

   
    

Table 4-3. Summary Statistics and UCL95 Based upon Gamma ROS data 

ProUCL suggests using GROS UCL of 1.27. 

4.6 A Hybrid KM Estimates and Distribution of Detected Observations Based 
Approach to Compute Upper Limits for Skewed Data 

The KM method yields good estimates of the population mean and sd. Since it is hard to verify and justify 
the distribution of an entire left-censored data set consisting of detects and NDs with multiple DLs, it is 
suggested that the KM method be used to compute estimates of the mean, sd, and standard error of the 
mean. Depending upon the distribution and skewness of detected observations, one can use KM estimates 
in parametric upper limit computation formulae to compute upper limits including UCLs, UPLs, UTLs, and 
USLs. The use of this hybrid approach will yield more appropriate skewness adjusted upper limits than 
those obtained using KM estimates in normal distribution based UCL and UTL equations. Depending upon 
the distribution of detected data, ProUCL computes upper limits using KM estimates in parametric (normal, 
lognormal, and gamma) equations to compute the various upper limits. The use of this hybrid approach has 
also been suggested in Chapter 15 of EPA (2009e) to compute upper limits using KM estimates in the 
lognormal distribution based equations to compute the various upper limits. 

ProUCL computes a 95% UCL of the mean based upon the KM method using: 1) the standard normal 
critical value, zα and Student’s t-critical value, tα,(n-1); 2) bootstrap methods including the percentile bootstrap 
method, the bias-corrected accelerated (BCA) bootstrap method, and bootstrap-t method, and 3) the 
Chebyshev inequality. Additionally, when detected observations of a left- censored data set follow a gamma 
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or a lognormal distribution, ProUCL also computes KM UCLs and other upper limits using a lognormal or 
a gamma distribution. The use of these methods yields skewness adjusted upper limits. For a gamma 
distributed detected data, UCLs based upon the GROS and gamma distribution on KM estimates are 
generally in good agreement unless the data set is highly skewed (with estimated values of shape parameter, 
k≤1), or contains of outliers, or consists of many NDs (e.g., >50%) with NDs tied at multiple DLs. The 
various UCL computation formulae based upon KM estimates and incorporated in ProUCL are described 
as follows. 

4.6.1 Detected Data Set Follows a Normal Distribution 

Based upon Student's t-statistic, a 95% UCL of the mean based upon the KM estimates is as follows: 

KM UCL95 (t) =�̂�𝜇 + 𝑡𝑡.95,(𝑛𝑛−1)�𝜎𝜎�𝑆𝑆𝑆𝑆 
2 (4-8) 

The above KM UCL (t) represents a good estimate of the EPC when detected data are normally distributed 
or mildly skewed. However, KM UCLs, computed using a normal or t-critical value, do not account for 
data skewness. The various bootstrap methods for left-censored data described in Section 4.7 can also be 
used on KM estimates to compute UCLs of the mean. 

4.6.2 Detected Data Set Follows a Gamma Distribution 

For highly skewed gamma distributed left-censored data with a large percentage of NDs and several NDs 
tied at multiple RLs, the GROS method tends to yield impractical, negative imputed values for NDs. It is 
also well known that the OLS estimates get distorted by outliers, therefore, GROS estimates and upper 
limits also get distorted when outliers are present in a data set. 

In order to avoid these situations, one can use the gamma distribution on KM estimates to compute the 
various upper limits provided the detected data follow a gamma distribution. Using the properties of the 
gamma distribution, an estimate of the shape parameter, k, is computed based upon a KM mean and a KM 
variance. The mean and variance of a gamma distribution are given as follows: 

Mean=k*θ, and 

Variance = k*θ2 

2Substituting a KM mean, �̂�𝜇𝐾𝐾𝑀𝑀 , and a KM variance, 𝜎𝜎�𝐾𝐾𝑀𝑀 , in the above equations, an estimate of the shape 
parameter, k, is computed by using the following equation: 

� 2𝑘𝑘 = �̂�𝜇𝐾𝐾𝑀𝑀 /𝜎𝜎�𝐾𝐾𝑀𝑀 

2Using �̂�𝜇𝐾𝐾𝑀𝑀, 𝜎𝜎�𝐾𝐾𝑀𝑀 , n, and 𝑘𝑘� in equations (2-34) and (2-35), gamma distribution based approximate and 
adjusted UCLs of the mean can be computed. Similarly, for gamma distributed left-censored data sets with 
detected observations following a gamma distribution, KM mean and KM variance estimates can be used 
to compute gamma distribution based upper limits described in Chapter 3. ProUCL computes gamma 
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distribution and KM estimates based UCLs and upper limits to estimate BTVs when detected data follow a 
gamma distribution. 

Notes: It should be noted that the KM method does not require concentration data to be positive. In radio 
chemistry, the DLs (or minimum detectable concentration [MDC]) for the various radionuclides are often 
reported as negative values. Statistical models such as a gamma distribution cannot be used on data sets 
consisting of negative values. However, the hybrid gamma-KM method described above can be used on 
radionuclides data provided detected activities are all positive and follow a gamma distribution. One can 
compute KM estimates using the entire data sets consisting of negative NDs and detected positive values. 
Those KM estimates can be used to compute gamma UCLs described above provided �̂�𝜇𝐾𝐾𝑀𝑀>0.  

4.6.3 Detected Data Set Follows a Lognormal Distribution 

The EPA RCRA (2009) guidance document suggests computing KM estimates on logged data and 
computing a lognormal H-UCL based upon the H-statistic. ProUCL computes lognormal and KM estimates 
based UCLs and upper limits to estimate BTVs when detected data follow a lognormal distribution. Like 
uncensored lognormally distributed data sets, for moderately skewed to highly skewed left-censored data 
sets, the use of a lognormal distribution on KM estimates tends to yield unrealistically high values of the 
various decision statistics; especially when the data sets are of sizes less than 30 to 50. 

Example 4-5 (Oahu Data Set Continued): It was noted earlier that the detected Oahu data set follows a 
gamma as well as a lognormal distribution. The hybrid normal, lognormal and gamma UCLs obtained using 
the KM estimates are summarized in Table 4-4 as follows. 

The hybrid Gamma UCL is 1.27, close to the UCL obtained using the GROS method of 1.271 (Example 4-
4). The H-UCL as suggested in EPA (2009e) is 1.155 which appears to be a little lower than the other LROS 
BCA bootstrap UCL of 1.308 (Table 4-2). 
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Kaplan-Meier (KM) Slalislics using Normal Critical Values and other Nonparametric UC:L..s 

Mean 0.949 Standard Error of Mean 0.1 65 

SD 0.713 95% KM (BCA) UCL 1.228 

95%KM ~) UCL 1.231 95% KM (Percentile Bootstrap) UCL 1.21 

95% KM (z) UCL 1.22 95% KM Bootstrap t UCL 1.368 

90% KM O,ebyshev UCL 1.443 95% KM O,ebyshev UCL 1.667 

97.5% KM O,ebyshev UCL 1.977 99% KM O,ebyshev UCL 2.588 

Gamma GOF Tests on Detected Obse,vaiions Only 

A-D Test Statistic 0.787 Ander.!oo-Oa,ling GOF Test 

5% A-D Critical Value 0.738 Detected Data Not Gamma Distributed at 5% Signlicance Level 

K-S Test Statistic 0.254 KDlmogn,v-Smimoff GOF 

5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Signlicance Level 

Detected data follow App,. Gamma Dislnbt.cion al 5% Significance Level 

Gamma Slalislics on Detected Data Only 

k hat (MLE) 2.257 k star (bias corrected MLE) 1.702 

Theta hat (MLE) 0.548 Theta star (bias corrected MLE) 0.727 

nu hat (MLE) 49.65 nu star (bias corrected) 37.44 

MLE Mean (bias corrected) 1.236 MLE Sd (bias corrected) 0.948 

Gamma Kaplan-Meier (KM) Slalislics 

k hat (KM) 1. 771 nu hat (KM) 85.02 

Approximate O,i Square Value (85.02. a) 64.77 Adjusted O,i Square Value (85.02. ~) 63.53 

95% Gamma Approximate KM-UCL (use when n>=50) 1.246 95o/. Gamma Adjusted KM-UCL (use when n<50) 1.27 

UC:L..s using LDgnonnal Dislnbt.cion and KM Estimates when Detected data are I..Dgnonnally Distnbt.ted 

l(M Meon fogged) -0.2:lG ~5o/. I l·UCL (l(M ·Log) 1.155 

KM SD fogged) 0.547 95o/. Critical H Value (KM-Log) 2.023 

KM Standard Error of Mean fogged) 0.1 37  

 

           
 
  

   
 

 

Table 4-4. UCL95 Based on Hybrid KM Method and Normal, Lognormal and Gamma Distribution 

Example 4-6. A real data set of size 55 with 18.8% NDs is considered next. The data set can be downloaded 
from the ProUCL website. The minimum detected value is 5.2 and the largest detected value is 79000, sd 
of detected logged data is 2.79 suggesting that the data set is highly skewed. The detected data follow a 
gamma as well as a lognormal distribution as shown in Figures 4-6 and 4-7. It is noted that GROS data set 
with imputed values follows a gamma distribution and LROS data set with imputed values follows a 
lognormal distribution (results not included). 
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Lognormal Q-Q Plot (Statistics using Detected Data) for A-DL 
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.. 
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Theoretical Quantiles (Standard Normal) 

Gamma Q-Q Plot (Statistics using Detected Data) for A-DL 
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A-Ol 

Totlll N UIY'lberolOata • 55 

Ni..mber ol NDs • l O 

Percent NDs • 184 

Me-M•7_()31 

Sd • 2.788 
Slope • 2.789 

lntercepl • 7.031 

Corre~OO. R • Q.981 

LillieforsTest 

Test5tdistic • 0.1D4 

Cri'wVelue(0.05) • 0.132 

D-"'a~arlogr,:,rmal 

■ BestFilLM 

A-DL 
TotlllNI.ITlberolData • 55 

N\Ml'lberol NDs • lO 

MaxDL - 12, 

PercentNDs • 18% 

MeM• 10556.1867 

kstao- • O.l'.J18 

thela star - 3497'.l.7238 

Slope • 1.0745 

lntercept • -535.7060 

Cor,el.,tico-,,R •0.9644 

KOOJogatov-Sminovlest 

TestStatistic •0.115 

m iclll VM..le(0.05}• 0.143 

Data appear G~ Dis~Wed 

■ BestFitlm 

Figure 4-6. Lognormal GOF Test on Detected TRS Data Set 

Figure 4-7. Gamma GOF Test on Detected TRS Data Set 
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General Statistics 

Total Number of Observations 55 Number d IAsmct Observations 53 

Number d Detects 45 l'Urber of Non-Detects 10 

Number of IJismct Detects 45 Number d IAsmct Non-Detects 8 

Mininun Detect 5.2 f,fr;mum Non-Detect 3.8 

Maxinun Detect 79000 Maxinum Non-Detect 124 

Variance Detects 3.954E+8 Percent Non-Detects 18.l S-4 

Mean Detects 10556 SD Detects 19886 

Medan Detects 1940 CV Detects 1.884 

Skewness Detects 2.632 Kurtosis Detects 6.496 

Mean of logged Detects 7.031 SD d Logged Detects 2.788 

Kaplan-Meier (KN) Slatisli<:$ using Normal Critical Values and other Nor,parmeric UCLs 

Mean 8638 Standard Emir of Mean 2488 

SD 18246 

95% KM t) UCL 12802 

95% KM (z) UCL 12731 

90o/. KM Olebyshev UCL 16102 

97.5% KM Chebyshev UCL 24176 

95o/. KM (BCA) UCL 

95% KM (Percentile Boot,trap) UCL 

95% KM Bootstrap I UCL 

95% KM Chebyshev UCL 

99% KM Chebyohev UCL 

13396 

12792 

14509 

19483 

33394 

Gamma GOF Tests on Detected Observations Only 

A-0 Test Statistic: 0.591 .Anderson-Darting GOF Test 

5% A-0 Critical V,A,e 0.86 Detected ~a appear Gamma [);stJiluted at 5% Signiicance Level 

K·S Test Statistic 0.115 K,,1_..,v-Smimoff GOF 

5% K·S Critical V,Joe 0.143 Detected data appear Gamma Dis!Jiluted at 5% Signiicance Level 

Detected data - Gamma Oislribuled 81 51t Significance level 

Ganma Statistics on Detected Data Only 

k hat (MLE) 0.307 k star C,ias corrected MLE) 0.302 

Theta hat (MLE) 34333 Theta star C,ias corrected MLE) 34980 

nu hat (MLE) 27.67 ru star (bias corrected) 27.16 

MLE Mean t,ias corrected) 10556 MLE Sd (biascoirected) 19216 

Gamma Kaplan-Meier (KN) Slati.tics 

k hat (KM) 0.224 ru hat (KM) 24.66 

/1clpraximate Chi Square Value (24.66. a) 14.35 -A4nled Chi S(J,are Value (24.66. ~) 14.14 

95% Gamma /1clpraximate KM-UCL t.JSe when n>=50) 14844 95%Gamma /4.lsted KM-UCL (use ..t,en n<50) 15066 

Table  4-5. Statistics  and UCL95s Obtained Using  Gamma and  Lognormal  Distributions  
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Gamma ROS Stalislics using lmpt.ted Noo-Oetects 

Minimum 0.1 Mean 8637 

Maximum 79000 Median 588 

SD 18415 CV 2.1 32 

k hat (MLE) 0.1 98 k star (bias corrected MLE) 0.1 99 

Theta hat (MLE) 43697 Theta star (bias corrected MLE) 43402 

nu hat (MLE) 21.74 nu star (bias corrected) 21.89 

MLE Mean (bias corrected) 8637 MLE Sd (bias corrected) 19361 

Adjusted Level of Signiicance l}l) 0.0456 

Approximate O,i Square Value (21.89. a) 12.26 Adjusted O,i Square Value (21.89. ~) 12.06 

95o/. Gamma Approximate UCL (use when n>=50) 15426 95o/. Gamma Adjusted UCL (use when n<50) 15675 

l.ognonnal GOF Test on Detected Obser,alions Only 

Shapiro Wilk Test Statistic 0.939 ~ro Wilk GOF Test 

So/. Shapiro Wilk Critical Value 0.945 Detected Data Not Lognonnal at So/. Signiicance Level 

Lilliefors Test Statistic 0.1 04 LilliefOfS GOF Test 

So/. Lilliefors Critical Value 0.1 32 Detected Data appear lognonnal at 5% Significance Level 

Detected Data appear Approximate l.ognonnal al 5% Sigmicance Level 

l.ognonnal ROS Stalislics Using lmpt.ted Noo-Oetects 

Mean in Original Scale 8638 Mean in Log Scale 5.983 

SD in Original Scale 18414 SD in Log Scale 3.391 

95o/. J UCL (assumes nonnality of ROS data) 12793 95o/. Percentile Bootstrap UCL 12853 

95o/. BCA Bootstrap UCL 13904 95o/. Bootstrap t UCL 15032 

95o/. H-UCL (Log ROS) 1855231 

UCL.s using l.ognonnal Oistnbuion and KM Estimates when Detected data are l.ognonnally Oistnbued 

KM Mean Oogged) 6.03 95o/. H-UCL (KM ·log) 1173988 

KM SD Oogged) 3.286 95o/. Critical H Value (KM-Log) 5. 7 

KM Standard Error of Mean Oogged) 0.449 

Nonparametric Oistnbuion Free UCL Stalislics 

Detected Data appear Garrma Oislnbued al 5% Sigmicance Level 

Suggested UCL to Use 

95o/. KM (0,ebyshev) UCL 19483 95o/. GROS Approximate Gamma UCL 15426 

95o/. Approximate Gamma KM-UCL 14844 

 

      
 

     
   

   
    

    

Table 4-5 (continued). Statistics and UCL95s  Obtained Using Gamma and Lognormal Distributions  

From Table 4-5, it is noted that the percentile bootstrap method on LROS method as described in Helsel 
(2012b) yields a lower value of the UCL95 = 12797, which is comparable to a KM (t)-UCL =12802. The 
student's t statistic based upper limits (e.g., KM (t)-UCL) do not adjust for data skewness; the two UCLs, 
bootstrap LROS UCL and KM(t)-UCL, appear to represent underestimates of the population mean. As 
expected, H-UCL on the other hand, resulted in impractically large UCL values (using both the LROS and 
KM methods). Based upon the data skewness, ProUCL suggested three UCLs (e.g., Gamma UCL = 15426) 
out of several UCL methods available in the literature and incorporated in ProUCL software. 
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4.6.3.1 Issues Associated with the Use of Lognormal distribution to Compute a UCL of Mean for 
Data Sets with Nondetects 

Some drawbacks associated with the use of the lognormal distribution based UCLs on data sets with NDs 
are discussed next. 

Example 4-7. Consider the benzene data set (Benzene-H-UCL-RCRA.xls) of size 8 used in Chapter 21 of 
the RCRA Unified Guidance document (EPA 2009e). The data set consists of one ND value with DL of 
0.5 ppb. In the RCRA guidance, the ND value was replaced by 0.5/2=0.25 to compute a lognormal H-UCL. 
In this example, lognormal 95% UCLs (H-UCLs) are computed replacing the ND by the DL (0.5) and also 
replacing the ND by DL/2=0.25. Normal and lognormal GOF tests using DL/2 for the ND value are shown 
in Figures 4-8 and 4-9 as follows. 

Figure 4-8. Normal Q-Q Plot on Benzene Data with ND Replaced by DL/2 

From the above Q-Q plot, it is easy to see that observation 16.1 ppb represents an outlier. The Dixon test 
on logged data suggests that 2.779 (=ln(16.1)) is an outlier and observation 16.1 is an outlier in the original 
scale. The outlier, 2.779 was accommodated by the lognormal distribution resulting in the conclusion that 
the data set follows a lognormal distribution (Figure 4-9). 
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l...ogK>rmail GOF Test 

Shapiro Wilk Test Statistic 0.803 Shapiro Wilk lognormal GOF Test 

5% Shapiro Wilk Critical Value 0.818 Data Not Lognormal at 5% Significance Level 

Ulliefors Test Statistic 0.273 LllliefOIS lognormal GOF Test 

5% Ulliefors Critical Value 0.313 Data appear Lognormal at 5% Significance Level 

Data appear- Jlt,proximate lognonnal at 5¾ Significance Level 

lognonnal Statistics 

Minimum of Logged Data -0.693 Mean of logged Data 0.29 

Maximum of Logged Data 2.779 SD of logged Data 1.152 

Asstmng lognormal Dislribt.tion 

95'7. H-UCL 13.62 90"4 Chebyshev (MVU E) UCL 5.191 

95% Chebyshev (MVUE) UCL 6.496 97.5%Chebyshev (MVUE) UCL 8.306 

99% Chebyshev (MVUE) UCL 11.86 
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Figure 4-9. Lognormal Q-Q Plot on Benzene Data with ND Replaced by DL/2 

4.6.3.1.1 Impact of Using DL and DL/2 for Nondetects on UCL95 Computations 

Lognormal distribution based H-UCLs computed by replacing ND by DL and by DL/2 are respectively 
given in Tables 4-6 and 4-7 below. 

Table 4-6. Lognormal 95% UCL (H-UCL)  - Replacing  ND by  DL  (=0.5)  
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l..ognonnal GOF Test 

Shapiro Wilk Test Statistic 0.896 Shapiro Wilk l..ognonnal GOF Test 

5'o/. Shapiro Wilk Critical Value 0.818 Data appear Lognormal at 5% Significance Level 

Ulliefors Test Statistic 0.255 Lilliefors l..ognonnal GOF Test 

5% Ulliefors Critical Value 0.313 Data appear Lognormal at 5% Significance Level 

Data appear l..ognonnal at 5% Significance Level 

l..ognonnal Statistics 

Minimum of Logged Data -1.386 Mean of logged Data 0.204 

Maximum of logged Data 2. 779 SD of logged Data 1.257  

Asst.ming l..ognonnal Distribt.tion 

95% H-UCL 18.86 90% Olebyshev (MVUE) UCL 5.514 

95% Olebyshev (MVUE) UCL 6.952 97.5% Olebyshev (MVUE) UCL 8.948 

99% Olebyshev (MVUE) UCL 12.87  

 

   
      

    
  

  
 

       
             

   
   

   
    

 

  

  
     

Table 4-7. Lognormal 95% UCL (H-UCL)  - Replacing ND by DL/2 (=0.25)  

Note: 95% H-UCL (with ND replaced by DL/2) computed by ProUCL is in agreement with results 
summarized in Chapter 21 of the RCRA Guidance (EPA 2009e). However, it should be noted that the UCL 
computed using the DL for ND is 13.62, and the UCL computed using DL/2 for ND is 18.86. Substitution 
by DL/2 resulted in a data set with higher variability and a UCL higher than the one obtained using the DL 
method. These two UCLs differ considerably confirming that the use of substitution methods should be 
avoided. 

From results summarized above, it is noted that replacing NDs reported as <DL (=0.5) by DL/2 = 0.25 
resulted in an increase in the sd of the logged data from 1.152 to 1.257 which resulted in an increase in the 
H-critical value. The minor increase in the sd of logged data coupled with an increase in the H-critical value 
resulted in an unacceptable increase in the H-UCL, from 13.62 to 18.86. This gives another reason to avoid 
the use of the lognormal distribution to compute decision statistics. UCLs represent estimates of population 
means; inclusion of one outlier 16.1 resulted in a UCL95 of 18.86 (or 13.36) which appears to more closely 
represent the largest value of the data set rather than the average. This issue is illustrated as follows in 
Section 4.6.3.1.2. 

4.6.3.1.2 Impact of Outlier, 16.1 ppb on UCL95 Computations 

The benzene data set without the outlier follows a normal distribution, and normal distribution based 
UCL95s are summarized below in Tables 4-8 (KM estimates), 4-9 (ND by DL), and 4-10 (ND by DL/2). 
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Normal GOF Test on Detects Only 

Shapiro Wilk Test Statistic 0.&47 Shapiro Wilk GOF Test 

5% Shapiro Wilk Clitical Value 0.7&8 Detected Data appear Nom,al at 5% Signkance Level 

Ulliefors Test Statistic 0.265 Ulliefor., GOF Test 

5% Ulliefors Clitical Value 0.362 Detected Data appear Nom,al at 5% Signkance Level 

Detected Data appear- Normal al 5% Si!rificance Level 

Kaplan-Mei...- (KM) Statistics using Normal Critical Values and othe..- Nonparametric UCL.s 

Mean 1.0&6 Standard Error of Mean 0.225 

SD 0.544 95% KM (BCA) UCL NI A 

95% KM~) UCL 1.523 95% KM (Percentile Bootstrap) UCL N/ A  

   

Normal GOF Test 

Shapiro Vl/ilk Test Statistic 0.814 Shapiro Wilk GOF Test 

5% Shapiro Wilk Critical Value 0.800 Data appear Normal at 5% Significance Level 

Ulliefors Test Statistic 0.2G9 l..illiefors GOF Test 

5% Ulliefors Critical Value o.m Data appear Normal at 5•4 Significance Level 

Dala appear- Normal at 5¾ Sigvficance Level 

Asst.ming Normal Distribution 

95¾ Normal LCL 95¾ Leu (Adjusted for- Skewness) 

95% Student's-t UCL 1.517 95% Adjusted-CL T UCL (Chen-1995) 1.454 

95% Modified-t UCL (Johnson-1978) 1.518  

Normal GOF Test 

Shapiro Wilk Test Statistic 0.875 Shapiro Wilk GOF Test 

5% Shapiro Vl/ilk Critical Value 0.803 Data appear Normal at 5% Significance Level 

Ulliefors Test Statistic 0.236 l..illiefors GOF Test 

5% Ulliefors Critical Value O.ll5 Data appear Normal at 5% Significance Level 

Dala appear- Normal at 5¾ Sigvficance Level 

Assuming Normal Distribution 

95¾ Normal LCL 95¾ Leu (Adjusted for- Skewness) 

95% Student's-t UCL 1.516 95% Adjusted-CH UOL (Chen-1995) 1.436 

95% Modified-t UCL {Johnson-1978) 1.515  

 

   
    

    
      

 

Table 4-8. Normal 95% UCL Computed using KM  Estimates  

Table 4-9. Normal 95% UCL Computed by Replacing ND by DL = 0.5 

Table 4-10. Normal 95% UCL Computed by Replacing ND by DL/2 = 0.25  

Note: The recommended UCL is the KM UCL= 1.523. It is noted that normal UCLs are not influenced by 
changing a single ND from 0.5 (UCL95=1.517) to 0.25 (UCL95=1.516). Normal UCL95s without the 
outlier appear to represent more realistic estimates of the EPC (population mean). The Lognormal UCL 
based upon the data set with the outlier represents the outlying value(s) rather than representing the 
population mean. 

150 



    

  
        

       
     

            
       

   
    

  
     

       
   

    
   

    

         
      

  
          

        
            

     
   

        
  

      
  

      
       

        
     

    
          

      
      

   
         

           
    

4.7 Bootstrap UCL Computation Methods for Left-Censored Data Sets 

The use of bootstrap methods has become popular with the easy access to fast personal computers. As 
described in Chapter 2, for full-uncensored data sets, repeated samples of size n are drawn with replacement 
(that is each xi has the same probability = 1/n of being selected in each of the N bootstrap replications) from 
the given data set of n observations. The process is repeated a large number of times, N (e.g., 1000-2000), 
and each time an estimate, 𝜃𝜃� of θ (e.g., mean) is computed. These estimates are used to compute an estimate 
of the SE of the estimate, 𝜃𝜃�. Just as for the full uncensored data sets without any NDs, for left-censored data 
sets, the bootstrap resamples are obtained with replacement. An indicator variable, I (1 = detected value, 
and 0 = nondetected value), is tagged to each observation in a bootstrap sample (Efron 1981). 

Singh, Maichle, and Lee (EPA 2006) studied the performances, in terms of coverage probabilities, of four 
bootstrap methods for computing UCL95s for data sets with ND observations. The four bootstrap methods 
included the standard bootstrap method, the bootstrap-t method, the percentile bootstrap method, and the 
bias-corrected accelerated (BCA) bootstrap method (Efron and Tibshirani 1993; Manly 1997). Some 
bootstrap methods, as incorporated in ProUCL, for computing upper limits on left-censored data sets are 
briefly discussed in this section. 

4.7.1 Bootstrapping Data Sets with Nondetect Observations 

As before, let xnd1, xnd2, …, xndk, xk+1, xk+2, …, xn be a random sample of size n from a population (e.g., AOC, 
or background area) with an unknown parameter θ such as the mean, µ, or the pth upper percentile (used to 
compute bootstrap UTLs), xp, that needs to be estimated from the sampled data set with ND observations. 
Let 𝜃𝜃� be an estimate of θ, which is a function of k ND and (n – k) detected observations. For example, the 
parameter,θ , could be the population mean, μ, and a reasonable choice for the estimate,𝜃𝜃� , might be the 
robust ROS, gamma ROS, or KM estimate of the population mean. If the parameter, θ, represents the pth 

upper percentile, then the estimate, 𝜃𝜃� , may represent the pth sample percentile, 𝑥𝑥�𝑝𝑝, based upon a full data 
set obtained using one of the ROS methods described above. The bootstrap method can then be used to 
compute a UCL of the percentile, also known as upper tolerance limit. The computations of upper tolerance 
limits are discussed in Chapter 5. 

An indicator variable, I (taking only two values: 1 and 0), is assigned to each observation (detected or 
nondetected) when dealing with left-censored data sets (Efron 1981; Barber and Jennison 1999). The 
indicator variables, Ij : j:=1,2,...,n, represent the detection status of the sampled observations, xj ; j: = 1,  
2,..., n. A large number, N (1000, 2000) of two-dimensional bootstrap resamples, (xiJ, IiJ ),j:= j: = 1, 2,..., 
N, and i: = 1, 2,..., n, of size n are drawn with replacement. The indicator variable, I, takes on a value = 1 
when a detected value is selected and I = 0 if a nondetected value is selected. The two-dimensional bootstrap 
process keeps track of the detection status of each observation in a bootstrap re-sample. In this setting, the 
DLs are fixed as entered in the data set, and the number of NDs vary from bootstrap sample to bootstrap 
sample. There may be k1 NDs in the first bootstrap sample, k2 NDs in the second sample, ..., and kN NDs in 
the Nth bootstrap sample. Since the sampling is conducted with replacement, the number of NDs, ki, i: = 1, 
2, ..., N, in a bootstrap re-sample can take any value from 0 to n inclusive. This is typical of a Type I left-
censoring bootstrap process. On each of the N bootstrap resample, one can use any of the ND estimation 
methods (e.g., KM, ROS) to compute the statistics of interest (e.g., mean, sd, upper limits). It is possible 
that all (or most) observations in a bootstrap re-sample are the same. This is specifically true, when one is 
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dealing with small data sets. To avoid such situations (with all equal values) it is suggested that there be at 
least 15 to 20 (preferably more) observations in the data set. As noted in Chapter 2, it is not advisable to 
compute statistics based upon a bootstrap resample consisting of only a few detected values such as < 4-5. 

Let 𝜃𝜃� be an estimate of θ based upon the original left-censored data set of size n; if the parameter, θ, 
represents the population mean, then a reasonable choice for the estimate, 𝜃𝜃�, can be the sample ROS mean, 
or sample KM mean. Similarly, calculate the sd using one of these methods for left-censored data sets. The 
following two steps are common to all bootstrap methods incorporated in the ProUCL software. 

Step 1. Let (xi1, xi2, ... , xin) represent the ith bootstrap resample of size n with replacement from the original 
left-censored data set (x1, x2, ..., xn). Note that an indicator variable (as mentioned above) is tagged along 
with each data value, taking values 1 (if a detected value is chosen) and 0 (if a ND is chosen in the resample). 
Compute an estimate of the mean (e.g., KM, and ROS) using the ith bootstrap resample, i: = 1, 2, ..., N. 

Step 2. Repeat Step 1 independently N times (e.g., N = 2000), each time calculating new estimates (e.g., 
KM estimates) of the population mean. Denote these estimates (e.g., KM means, and ROS means) by 
𝑥𝑥1̅ , �̅�𝑥2, . . . , �̅�𝑥𝑁𝑁 . The bootstrap estimate of the population mean is given by the arithmetic mean, �̅�𝑥𝐵𝐵 , of the N 
estimates �̅�𝑥𝑖𝑖 (N ROS means or N KM means). The bootstrap estimate of the standard error is given by: 

1 𝑁𝑁 𝜎𝜎�𝐵𝐵 = � ∑𝑖𝑖=1(�̅�𝑥𝑖𝑖 − �̅�𝑥𝐵𝐵)2. (4-9) 
𝑁𝑁−1 

In general, a bootstrap estimate of θ may be denoted by 𝜃𝜃�̅�𝐵 (instead of �̅�𝑥𝐵𝐵). The estimate, 𝜃𝜃�̅�𝐵 is the arithmetic 

mean of the N bootstrap estimates (e.g., KM mean, or ROS mean) given by 𝜃𝜃�𝑖𝑖, i:=1,2,…N. If the estimate, 
𝜃𝜃�, represents the KM estimate of, θ, then 𝜃𝜃�𝑖𝑖 (denoted by �̅�𝑥𝑖𝑖 in the above paragraph) also represents the KM 
mean based upon the ith bootstrap resample. The difference, 𝜃𝜃�̅�𝐵 − 𝜃𝜃� , provides an estimate of the bias of the 
estimate, 𝜃𝜃�. After these two steps, a bootstrap procedure (percentile, BCA, or bootstrap-t) is used similarly 
to the conventional bootstrap procedure on a full uncensored data set as described in Chapter 2. 

Notes: Just like for small uncensored data sets, for small left-censored data sets (<8-10) with only a few 
distinct values (2 or 3), it is not advisable to use bootstrap methods. In these scenarios, ProUCL does not 
compute bootstrap limits. However, due to the complexity of decision tables and lack of enough funding, 
there could be some rare cases where ProUCL may recommend a bootstrap method based UCL which is 
not computed by ProUCL (due to lack of enough data). 

4.7.1.1 UCL of Mean Based upon Standard Bootstrap Method 

Once the desired number of bootstrap samples and estimates has been obtained following the two steps 
described above, a UCL of the mean based upon the standard bootstrap method can be computed as follows. 
The standard bootstrap confidence interval is derived from the following pivotal quantity, t: 

𝜃𝜃�−𝜃𝜃 𝑡𝑡 = . (4-10) 
𝜎𝜎�𝐵𝐵 
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A (1 – α)*100% standard bootstrap UCL for θ is given as follows: 

UCL = 𝜃𝜃� + 𝑧𝑧𝑎𝑎𝜎𝜎�𝐵𝐵 (4-11) 

Here zα is the upper αth critical value (quantile) of the standard normal distribution (SND). It is observed 
that the standard bootstrap method does not adequately adjust for skewness, and the UCL given by the 
above equation fails to provide the specified (1 – α)*100% coverage of the mean of skewed (e.g., lognormal 
and gamma) data distributions (populations). 

4.7.1.2 UCL of Mean Based upon Bootstrap-t Method 

A (1 – α)*100% UCL of the mean based upon the bootstrap-t method is given as follows. 

𝑠𝑠𝑥𝑥 UCL = �̅�𝑥 − 𝑡𝑡(𝛼𝛼𝑁𝑁) √𝑛𝑛 
(4-12) 

It should be noted that the mean and sd used in equation (4-12) represent estimates (e.g., KM estimates, 
ROS estimates) obtained using original left-censored data set. Similarly, the t-cutoff value used in equation 
(4-12) is computed using the pivotal t-values based upon KM estimates or some other estimates obtained 
using bootstrap re-samples. Typically, for skewed data sets (e.g., gamma, lognormal), the 95% UCL based 
upon the bootstrap-t method performs better than the 95% UCLs based upon the simple percentile and the 
BCA percentile methods. However, the bootstrap-t method sometimes results in unstable and erratic UCL 
values, especially in the presence of outliers (Efron and Tibshirani 1993). Therefore, the bootstrap-t method 
should be used with caution. In case this method results in erratic unstable UCL values. Additional 
suggestions on this topic are offered in Chapter 2. 

4.7.1.3 Percentile Bootstrap Method 

A detailed description of the percentile bootstrap method is given in Chapter 2. For left-censored data sets, 
sample means are computed for each bootstrap sample using a selected method (e.g., KM, ROS), which are 
arranged in ascending order. The 95% UCL of the mean is the 95th percentile and is given by: 

95% Percentile – UCL = 95th% �̅�𝑥𝑖𝑖; i: = 1, 2, ..., N (4-13) 

For example, when N = 1000, a simple 95% percentile-UCL is given by the 950th ordered mean value given 
by �̅�𝑥(950). It is observed that for skewed (lognormal and gamma) data sets, the BCA bootstrap method 
performs (described below) slightly better (in terms of coverage probability) than the simple percentile 
method. 

4.7.1.4 Bias-Corrected Accelerated (BCA) Percentile Bootstrap Procedure 

Singh, Maichle and Lee (2006) noted that for skewed data sets, the BCA method does represent a slight 
improvement, in terms of coverage probability, over the simple percentile method. However, for moderately 
skewed to highly skewed data sets with the sd of log-transformed data >1, this improvement is not adequate 
and yields UCLs with a coverage probability lower than the specified coverage of 0.95. The BCA UCL for 
a selected estimation method (e.g., KM, ROS) is given by the following equation: 
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𝛼𝛼2(1- α)*100% UCLPROC = BCA – UCL=�̅�𝑥 (4-14) 𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃 

𝛼𝛼2Here �̅�𝑥 is the α2100th percentile of the distribution of statistics given by �̅�𝑥𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃; i: = 1, 2, ..., N, and 
𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃 

PROC is one of the many (e.g., KM, DL/2, ROS) mean estimation methods. Here α2 is given by the 
following probability statement: 

0+𝑧𝑧(1−𝛼𝛼)�̂�𝑧𝛼𝛼2 = Φ ��̂�𝑧 � (4-15) 0 + 
1−𝛼𝛼�(�̂�𝑧0+𝑧𝑧(1−𝛼𝛼)) 

Φ(Z) is the standard normal cumulative distribution function and z(1 – α) is the 100*(1 – α)th percentile of a 
standard normal distribution. Also, �̂�𝑧0 (bias correction) and 𝛼𝛼� (acceleration factor) are given as follows: 

= Φ−1 �#(�̅�𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑖𝑖<�̅�𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 )�̂�𝑧0 𝑁𝑁 
�, i: = 1, 2, ..., N (4-16) 

Φ-1 (x) is the inverse standard normal cumulative distribution function, e.g., Φ-1 (0.95) = 1.645 and 𝛼𝛼� is the 
acceleration factor and is given by the following equation: 

∑(�̅�𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −�̅�𝑥−𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 )3 

𝛼𝛼� = 1.5 (4-17) 
6�∑(�̅�𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −�̅�𝑥−𝑖𝑖,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 )2� 

Summation in the above equation is being carried from i = 1 to n, the sample size. �̅�𝑥𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃 and �̅�𝑥−𝑖𝑖,𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃 are 

respectively the PROC mean (e.g., KM mean) based upon all n observations, and the PROC mean of (n-1) 
observations without the ith observation, i: = 1, 2, ..., n. 

4.8 (1-α)*100% UCL Based upon Chebyshev Inequality 

The use of the Chebyshev-type inequality (as used in Chapter 2) based UCLs has been suggested to provide 
better coverage to the population mean of skewed data distributions. The two-sided Chebyshev theorem 
(Dudewicz and Misra 1988) states that given a random variable, X, with finite mean and sd, µ1 and σ1, we 
have: 

𝑃𝑃(−𝑘𝑘𝜎𝜎1 ≤ 𝑋𝑋 − 𝜇𝜇1 ≤ 𝑘𝑘𝜎𝜎1) ≥ 1 − 1/𝑘𝑘2 . 

A (1 – α)*100 UCL of population mean, μ1, can be obtained by: 

UCL = �̅�𝑥 + �((1/𝛼𝛼) − 1)𝑠𝑠𝑥𝑥/√𝑛𝑛. (4-20) 

In the above UCL equation, the sample mean and sd are computed using one of the many estimation 
methods for left-censored data sets with ND observations as described in earlier sections of this chapter. 
The UCL95 based upon Chebyshev inequality (with KM estimates) yields a conservative UCL of the mean. 

Example 4-8. Pyrene Data Set(continued): A great deal of discussion has been provided in the literature 
(Helsel 2005, 2012; Helsel 2013 [NADA Package for R]) about estimation of mean and standard deviation 
based upon this data set; however, not much guidance is provided on how to compute upper limits such as 
a UCL of the mean for this data set. This data set is used here to illustrate the various bootstrap UCL 
computation methods incorporated in ProUCL, and how one can compute a UCL95 based upon this left-
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General Stalislics 

Total Number of Obseivations 56 
Number of Detects 45 

Number of Distinct Detects 39 

Minimum Detect 31 

Maximum Detect 2982 

Variance Detects 189219 

Mean Detects 190.1 

Median Detects 103 

Skewness Detects 6.282 

Number of Distinct Observations 

Number of Non-Detects 

Number of Distinct Non-Detects 

Minimum Non-Detect 

Maximum Non-Detect 

Percent Non-Detects 

SD Detects 

CV Detects 

Kurtosis Detects 

44 

11 

8 

28 

174 

19.64% 

435 

2.288 

41 

Mean of Logged Detects 4.711 SD of Logged Detects 0.805 

Kaplan-Meier (KM) Slalislics using Normal Oitical Values and other Nonparametric UC:L.s 

Mean 164.1 Standard Error of Mean 

SD 389.4 95% KM (BCA) UCL 

95%KM ~) UCL 252.2 95% KM (Percentile Bootstrap) UCL 

95% KM (z) UCL 250.7 95% KM Bootstrap t UCL 

90% KM Chebyshev UCL 322 95% KM Chebyshev UCL 

97.5% KM Chebyshev UCL 492.9 99% KM Chebyshev UCL 

Lognonnal ROS Slalislics Using lmpt.ted Noo-Oetects 

Mean in Original Scale 163.2 

SD in Original Scale 393.1 

95%1 UCL (assumes nonnality of ROS data) 251.1 

95% BCA Bootstrap UCL 322.1 

95% H·UCL (Luy ROS) 170.4 

Mean in log Scale 

SD in Log Scale 

95% Percentile Bootstrap UCL 

95% Bootstrap t UCL 

52.65 

271.8 

261 

507.5 

393.6 

687.9 

4.537 

0.843 

262.6 

507.8 

 
      

        
      

          
    

     
  

censored data set. This data set also illustrates the impact of a few outliers on the various estimates and 
statistics. Table 4-11a has statistics computed using the outlier, 2982, and Table 4-11b has statistics 
computed without the outlier. It is noted that the detected data with the outlier does not follow a gamma or 
a lognormal distribution however, the detected data set without the outlier follows a lognormal distribution. 

Table 4-11a. Statistics Computed Using Outlier=2982 

UCLs computed using the KM method and percentile bootstrap and t-statistic are 261 and 252.2. The 
corresponding UCLs obtained using the LROS method are 262.6 and 251.2, which appear to underestimate 
the population mean. The H-UCL based upon the LROS method is unrealistically lower (170.4) than the 
other UCLs. Depending upon the data skewness (sd of detected logged data =0.81), one can use the 
Chebyshev UCL95 (or Chebyshev UCL90) to estimate the EPC. Note that as expected, the presence of one 
outlier resulted in a bootstrap-t UCL95 significantly higher than the various other UCLs. Table 4-11b has 
UCLs computed without the outlier. Exclusion of the outlier resulted in all comparable UCL values. Any 
of those UCLs can be used to estimate the EPC. 
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Pyreoe 

General Slaiislics 

Total Number of Observations 55 Number of Distinct Observations 43 

Number of Detects 44 Number of Non-Detects 11 

Number of Distinct Detects 38 Number of Distinct Non-Detects 8 

Minimum Detect 31 Minimum Non-Detect 28 

Maximum Detect 459 Maximum Non-Detect 174 

Variance Detects 8226 Percent Non-Detects 20% 

Mean Detects 126.6 SD Detects 90.7 

Median Detects 103 CV Detects 0.716 

Skewness Detects 1.795 Kurtosis Detects 3.489 

Mean of Logged Detects 4.636 SD of Logged Detects 0.637 

Kaplan-Meier (KM) Slalislics using Normal Critical Values and other Norc,aramelric UCL.s 

Mean 112.9 Standard Error of Mean 11.84 

SD 86.03 95% KM (BCA) UCL 134 

95% KM 0) UCL 132. 7 95% KM (Percentile Bootstrap) UCL 132.4 

95% KM (z) UCL 132.3 95% KM Bootstrap ! UCL 135.3 

90% KM Chebyshev UCL 148.4 95% KM Chebyshev UCL 164.5 

97.So/. KM Chebyshev UCL 186.8 99o/. KM Chebyshev UCL 230. 7 

lognonnal GOF Test on Detected Obsenralioos Only 

Shapiro Wilk Test Statistic 0.973 Shapiro Wilk GOF Test 

So/. Shapiro Wilk Critical Value 0.944 Detected Data appear Lognonnal at 5% Sign~icance Level 

Lilliefors Test Statistic 0.0965 Lilliefor., GOF Test 
So/. Lilliefors Critical Value 0.1 34 Detected Data appear lognonnal at 5% Significance Level 

Detected Data appear lognonnal al 5% Sigmicance Level 

lognonnal ROS Stalislics Using lmpt.ted Non-Detects 

Mean in Original Scale 112.4 Mea-i in log Scale 4.49 

SD in Original Scale 86.61 S) in Log Scale 0.677 

95o/. t UCL (assumes nonnality of ROS data) 132 95o/. Percentile Bootstrap UCL 133 

95o/. BCA Bootstrap UCL 135.7 95o/. lbotstrap t UCL 137 

95o/. H-UCL (Log ROS) 134.9 

UCL.s using lognonnal Oislribuion and KM Estimates when Detected data are lognonnally Oislribued 

KM Mean Oogged) 4.491 95o/. H-JCL (KM -Log) 135 

KM SD Oogged) 0.676 95o/. Critical H Value (KM-Log) 2.013 

Kivi Standard Error of Mean Oogged) 0.0956  

    
   

     

Table 4-11b. Statistics Computed without Outlier=2982 

The data set is not highly skewed with sd = 0.64 of logged detected data. Most methods (including H-UCL) 
yield comparable results. Based upon data skewness, ProUCL recommends the use of a UCL95 based upon 
the KM BCA method (highlighted in blue in Table 4-11b). 
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4.9 Saving Imputed NDs Using Stats/Sample Sizes Module of ProUCL 

Using this option, NDs are imputed based upon the selected distribution (normal, lognormal, or gamma) of 
the detected observations. Using the menu option, “Imputed NDs using ROS Methods” ProUCL can be 
used to impute and save imputed NDs along with the original data in additional columns automatically 
generated by ProUCL. ProUCL assigns self-explanatory titles for those generated columns. This option is 
available in ProUCL for researchers and advanced users who want to experiment with the full data sets 
consisting of detected and imputed ND observations for other applications (e.g., ANOVA, PCA).  

4.10 Parametric Methods to Compute UCLs Based upon Left-Censored Data Sets 

Some researchers have suggested that parametric methods such as the expectation maximization (EM) 
method and maximum likelihood method (MLE) cited earlier in this chapter would perform better than the 
GROS method for data sets with NDs. As reported in ProUCL guidance and on ProUCL generated output 
sheets, the developers do realize that the GROS method does not perform well when the shape parameter, 
k, or its MLE estimate is small (≤1). The GROS method appears to work fine when k is large (> 2). However, 
for data sets with NDs and with many DLs, the developers are not sure if parametric methods such as the 
MLE method and the EM method perform better than the GROS method and other methods available in 
ProUCL. More research needs to be conducted to verify these statements. As noted earlier, it is not easy 
(perhaps not possible in most cases) to correctly assess the distribution of a data set containing NDs with 
multiple censoring points, a common occurrence in environmental data sets. If distributional assumptions 
are incorrect, the decision statistics computed using this incorrect distribution may also be incorrect. To the 
best of our knowledge, the EM method can be used on data sets with a single DL. Earlier versions of 
ProUCL (e.g., ProUCL 4.0, 2007) had some parametric methods including the MLE and RMLE methods; 
those methods were excluded from later versions of ProUCL due to their poor performances. 

The research in this area is limited; to the best of our knowledge, parametric methods (MLE and EM) for 
data sets with multiple censoring points are not well-researched. The enhancement of these parametric 
methods to accommodate left-censored data sets with multiple DLs will be a big achievement in 
environmental statistical literature. The developers will be happy to include contributed better performing 
methods in ProUCL. 

4.11 Summary and Suggestions 

Most of the parametric methods including the MLE, the RMLE, and the EM method assume that there is 
only one DL. Like parametric estimates computed using uncensored data sets, MLE and EM estimates 
obtained using a left-censored data set are influenced by outliers, especially when a lognormal model is 
used. These issues are illustrated by an example as follows. 

Example 4-9: Consider a left-censored data set of size 25 with multiple censoring points: <0.24, <0.24, <1, 
<0.24, <15, <10, <0.24, <22, <0 .24, < 5.56, <6.61, 1.33, 168.6, 0.28, 0.47, 18.4, 0.48, 0.26, 3.29, 2.35, 
2.46, 1.1, 51.97, 3.06, and 200.54. The data set appears to have 2 extreme outliers and 1 intermediate outlier 
as can be seen from Figure 4-10. From Figure 4-10 and the results of the Rosner outlier test performed on 
the data set, it can be concluded that the 3 high detected values represent outliers. The Shapiro-Wilk test 
results performed on detected data shown in Figure 4-11 (censored probability plot) suggest that the 
detected data set (with outliers) follows a lognormal distribution accommodating the outliers. 
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Figure 4-10. Exploratory Q-Q Plot to Identify Outliers Showing All Detects and Nondetects 

Figure 4-11. Censored Q-Q Plot Showing GOF Test Results on Detected Log-transformed Data 
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Frnm File: ND-Data-for M LE-1.ids 

Gener al Statistics for Uncensored Dataset T 

Variable NumObs It Missing Minimum Maximum Mean SD SEM MAD/11675 Skewness Kurtosis CV 

X 25 0 0.24 200.5 20.64 50.81 10.16 3.128 3095 8.876 2.462 

Percentiles for Uncensored Dataset T 

Variable NumObs It Missing 10%ile 20%ile 25%ile[Q1 ]50%ile[Q2]75%ile[Q3] 80%ile 90%ile 95%ile 99%ile 

X 25 0 0.24 0.256 0.28 2.35 10 15.68 39.98 145.3 192.9  

 

From File: ND-Data-forMLE-1.m 

General Statistics for Censored Datasets [with NDs) using Kapan Meier Method 

Variable NumObs It Missing Num Ds NumNDs % NDs Min ND Max ND KM Mean KM Var KM SD KM CV 

X 25 0 14 11 44.00% 0.24 22 18.48 2528 50.28 2.72  

     
     

 

  

  
 

 
 
 

    

    

 

     

 

   

 

Table 4- 12. Statistics Computed with Outliers 

Table 4-13. Nonparametric estimates of the mean and  sd  using the KM method. 

MLE estimates of the mean and sd obtained using Minitab 16, UCL95, and a 95%-95% upper tolerance 
limit based upon a lognormal distribution are summarized as follows. ML estimates in log scale are given 
in Table 4-14. 

Table 4-14. ML Estimates in Log-Scale (with outliers). 

Standard Upper 
Parameter Estimate Error Bound 

Location -0.247900 0.641686 0.807580 

Scale 2.71896 0.530176 3.74710 

Log Likelihood = -58. 151; MLE estimates in original raw scale are (back transformation): 

Mean = 31. 45, 

SE of mean = 43.1279 

UCL95 = 300.041 
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The use of the log-transformation has resulted in inflated estimates, mean = 31.45, UCL95 = 300.41, and a 
UTL95-95 = 346.54. The estimate of the mean based upon a data set with NDs should be smaller (e.g., KM 
mean = 18.48) than the mean estimate obtained using all NDs at their reported DLs, 20.64. For this left-
censored data set, the MLE of the mean based upon a lognormal distribution is 31.45 which appears to be 
incorrect. This is because the back-transformed mean of the log-transformed data (i.e., the geometric mean) 
is not equivalent to the arithmetic mean. This is the challenge of correctly interpreting statistics resulting 
from a transformation. 

Statistics Computed without Outliers 

Detected data without the 2 extreme outliers also follow a lognormal distribution. MLE estimates, UCL95, 
UTL95-95 computed without the outliers and lognormal distribution (using Minitab) are: 

Estimates in log scale are provided as follows: 

Table 4-15. ML Estimates in Log-Scale (without outliers). 

Standard 95% Upper 
Parameter Estimate Error Bound 

Location -0.561639 -0.561639 0.28616 

Scale 2.02381 0.421546 2.85079 

Log Likelihood = -38.56; MLE estimates in original raw scale are: 

Mean = 4.42, 

SE of mean = 3.688 

UCL95 = 17.433 

UTL95-95 = 63.42 

Substantial differences are noted in the UCL95s ranging from 300.04 to 17.43, and in the UTL95-95s 
ranging from 346.54 to 63.42. 

It is not easy to verify the data distribution of a left-censored data set consisting of detects and NDs with 
multiple DLs, therefore some poor performing estimation methods including the parametric MLE methods 
and the Winsorization method are not retained in ProUCL 4.1 and higher versions. Emphasis is given on 
the use of nonparametric UCL computation methods and hybrid parametric methods based upon KM 
estimates which account for data skewness in the computation of UCL95s. It is recommended that one 
avoid the use of transformations to achieve symmetry while computing the upper limits based upon left-
censored data sets. It is not easy to correctly interpret statistics computed in the transformed scale. 
Moreover, the results and statistics computed in the original scale do not suffer from transformation bias. 
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When the sd of the log-transformed data, σ, becomes >1.0, avoid the use of a lognormal model even when 
the data appear to be lognormally distributed. Its use often results in unrealistic statistics of no practical 
merit (Singh, Singh, and Engelhard 1997; Singh, Singh, and Iaci 2002). It is also recommended the user 
identifies potential outliers representing observations coming from population(s) different from the 
dominant population and investigate them separately. Decisions about the disposition of outliers should be 
made by all interested members of the project team. 

It is recommended that the use of the DL/2 (t) UCL method be avoided, as the DL/2 UCL does not provide 
the desired coverage (for any distribution and sample size) for the population mean, even for censoring 
levels as low as 10% and 15%. This is contrary to the conjecture and assertion (EPA 2006a) made that the 
DL/2 method can be used for lower (≤ 20%) censoring levels. The coverage provided by the DL/2 (t) 
method deteriorates fast as the censoring intensity increases. The DL/2 (t) method is not recommended by 
the authors or developers of this document and ProUCL software. 

The use of the KM estimation method is a preferred method as it can handle multiple DLs. Therefore, the 
use of KM estimates is suggested for computing decision statistics based upon methods which adjust for 
data skewness. However, the KM estimation method may cause underestimation of the mean and should 
be used with caution in cases where the KM UCL is less than the mean using substitution of half the DL. 
Depending upon the data set size, distribution of the detected data, and data skewness, the various 
nonparametric and hybrid KM UCL95 methods including the KM t-UCL, KM BCA UCL, KM H UCL, 
KM bootstrap-t UCL, and KM Gamma UCLs based upon the KM estimates provide good coverages for 
the population mean. Suggestions regarding the selection of a 95% UCL of the mean are provided to help 
the user select the most appropriate 95% UCL, and are similar to the suggestions given for data without 
NDs (refer to Appendeix A). It is advised that the project team collectively determine which UCL will be 
most appropriate for their site project. For additional insight, the user may want to consult a statistician. 
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CHAPTER  5  
 

Computing Upper Limits to Estimate  Background Threshold 
Values Based  upon  Data Sets Consisting of  Nondetect (ND) 

Observations  
5.1 Introduction 

As described in Chapter 3, a BTV considered in this chapter represents an upper threshold parameter (e.g., 
95th) of the background population; which is used to perform point-by-point comparisons of onsite 
observations. Estimation of BTVs and comparison studies require the computation of UPLs and UTLs 
based upon left-censored data sets containing ND observations. Not much guidance is available in the 
statistical literature on how to compute UPLs and UTLs based upon left-censored data sets of varying sizes 
and skewness levels. Like UCLs, the use of Student’s t-statistic and percentile bootstrap methods based 
UPLs and UTLs are difficult to defend for moderately skewed to highly skewed data sets with standard 
deviation (sd) of the log-transformed data exceeding 0.75-1.0. Since it is not easy to reliably perform GOF 
tests on left-censored data sets; emphasis is given on the use of distribution-free nonparametric methods 
including the KM, Chebyshev inequality, and other computer intensive bootstrap methods to compute upper 
limits needed to estimate BTVs. 

All BTV estimation methods for full uncensored data sets as described in Chapter 3 can be used on data 
sets consisting of detects and imputed NDs obtained using ROS methods (e.g., GROS and LROS). 
Moreover, all other comments about the use of substitution methods, disposition of outliers, and minimum 
sample size requirements as described in Chapter 4 also apply to BTV estimation methods for data sets with 
ND observations. 

5.2 Treatment of Outliers in Background Data Sets with NDs 

Just like full uncensored data sets, a few outlying observations present in a left-censored data set tend to 
yield distorted estimates of the population parameters (means, upper percentiles, OLS estimates) of interest. 
OLS regression estimates (slope and intercept) become distorted (Rousseeuw and Leroy 1987; Singh and 
Nocerino 1995) by the presence of outliers. Specifically, in the presence of outliers, the ROS method 
performed on raw data (e.g., GROS) tends to yield unfeasible imputed negative values for ND observations. 
Singh and Nocerino (2002) suggested the use of robust regression methods to compute regression estimates 
needed to impute NDs based upon ROS methods. Robust regression methods are beyond the scope of 
ProUCL. It is therefore suggested that potential outliers be identified after evaluating the distribution of the 
data sets. Identified potential outliers then need to be scientifically evaluated before proceeding with the 
computation of the various BTV estimates as described in this chapter. As mentioned in earlier chapters, 
upper limits may be affected by extreme values in the data set. It is therefore recommended that relevant 
statistics be computed using data sets with outliers and without outliers for comparison. This extra step 
helps the project team to see the potential influence of outlier(s) on the various decision-making statistics 
(e.g., UCLs, UPLs, UTLs); and helps the project team in making informative decisions about the disposition 
of outliers. That is, the project team and experts familiar with the site should decide which of the computed 
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statistics (with outliers or without outliers) represent more accurate estimate(s) of the population parameters 
(e.g., mean, EPC, BTV) under consideration. 

A couple of classical outlier tests (Dixon and Rosner tests) are available in the ProUCL software. These 
tests can be used on data sets with or without ND observations. However, these tests assume normal 
distribution of data set without outliers. This is often not the case with environmental data, which tend to 
be naturally right-skewed. Therefore, a distribution of the data needs to be verified before outlier tests are 
applied. If the data are not normally distributed, they should be symmetrized or approximately normalized 
by using an appropriate transformation before ProUCL outlier tests are applied. Additionally, one can use 
box plots and/or Q-Q plots to visually identify extreme values and distribution of the data set. It should be 
pointed out, that for environmental applications, it is the identification of high outliers (perhaps representing 
contaminated locations and hot spots) that is important. The occurrence of ND (less than values) 
observations and other low values is quite common in environmental data sets, especially when the data are 
collected from a background or a reference area. 

5.3 Estimating BTVs Based upon Left-Censored Data Sets 

This section describes methods for computing upper limits (UPLs, UTLs, USLs, upper percentiles) that 
may be used to estimate BTVs and other not-to-exceed levels from data sets with ND observations. Several 
Student’s t-type statistic and normal z-scores based methods have been described in the literature (Helsel 
2005; Millard and Neerchal 2002; USEPA 2007, 2010d, 2011) to compute UPLs and UTLs based upon 
statistics (e.g., mean, sd) obtained using MLE, KM, or ROS methods. The methods used to compute upper 
limits (e.g., UPL, UTL, and percentiles) based upon a Student’s t-type statistic are also described in this 
chapter; however, the use of such methods is not recommended for moderately skewed to highly skewed 
data sets. These methods may yield reasonable upper limits (e.g., with proper coverage) for normally 
distributed and mildly skewed to moderately skewed data sets with the sd of the detected log-transformed 
data less than 1.0. 

Singh, Maichle, and Lee (EPA 2006) demonstrated that the use of the t-statistic and the percentile bootstrap 
method on moderately to highly skewed left-censored data sets yields UCL95s with coverage probabilities 
much lower than the specified CC, 0.95. A similar pattern is expected in the behavior and properties of the 
various other upper limits (e.g., UTLs, UPLs) used in the decision making processes of the USEPA. It is 
anticipated that the performance (in terms of coverages) of the percentile bootstrap and Student’s t-type 
upper limits (e.g., UPLs, UTLs) computed using the KM and ROS estimates for moderately skewed to 
highly skewed left-censored data sets (sd of detected logged data >1) would also be less than acceptable. 
For skewed data sets, the use of the gamma distribution on KM estimates (when applicable) or 
nonparametric methods, which account for data skewness, is suggested for computing BTV estimates. A 
brief description of those methods is provided in the following sections. 

5.3.1 Computing Upper Prediction Limits (UPLs) for Left-Censored Data Sets 

This section describes some parametric and nonparametric methods for computing UPLs for left-censored 
data sets. 
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5.3.1.1 UPLs Based upon Normal Distribution of Detected Observations and KM Estimates 

When detected observations in a data set containing NDs follow a normal distribution (which can be verified 
by using the GOF module of ProUCL), one may use the normal distribution on KM estimates to compute 
the various upper limits needed to estimate BTVs (also available in ProUCL 4.1). A (1 – α)*100 UPL for 
a future (or next) observation (observation not belonging to the current data set) can be computed using the 
following KM estimates based equation: 

UPL1 =�̂�𝜇𝐾𝐾𝑀𝑀 + 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1))�𝜎𝜎�𝐾𝐾𝑀𝑀 (1 + 1/𝑛𝑛) (5-1) 

Here 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1)) is the critical value of the Student’s t-distribution with (n–1) degrees of freedom

 (df). If the distributions of the site data and the background data are comparable, then a new (next) 
observation coming from the site population (e.g., site) should lie at or below the UPL195 with probability 
0.95. A similar equation can be developed for upper prediction limits for future k observations (described 
in Chapter 3) and the mean of k future observations. 

5.3.1.2 UPL Based upon the Chebyshev Inequality 

The Chebyshev inequality can be used to compute a reasonably conservative UPL and is given as follows: 

UPL =�̅�𝑥 + ��((1/𝛼𝛼) − 1) ∗ (1 + 1/𝑛𝑛)�𝑠𝑠𝑥𝑥 (5-2) 

The mean, �̅�𝑥, and sd, sx, used in the above equation are computed using one of the estimation methods (e.g., 
KM) for left-censored data sets. Just like the Chebyshev UCL, a UPL based upon the Chebyshev inequality 
tends to yield higher estimate of BTVs than the other methods. This is especially true when skewness is 
moderately mild (sd of log-transformed data is low < 0.75), and the sample size is large n > 30). It is advised 
to apply professional/expert judgment before using this method to compute a UPL. 

5.3.1.3 UPLs Based upon ROS Methods 

As described earlier, ROS methods first impute k ND values using an OLS linear regression model (Chapter 
4). This results in a full data set of size n. For ROS methods (gamma, lognormal), ProUCL generates 
additional columns consisting of (n - k) detected values and k imputed values of the k ND observations 
present in a data set. Once, the ND observations have been imputed, the user may use any of the available 
parametric and nonparametric BTVs estimation methods for full data sets (without NDs), as described in 
Chapter 3. Those BTV estimation methods are not repeated here. The users may want to review the behavior 
of the various ROS methods as described in Chapter 4. 

5.3.1.4 UPLs when Detected Data are Gamma Distributed 

When detected data follow a gamma distribution, methods described in Chapter 3 can be used on KM 
estimates to compute gamma distribution based upper prediction limits for future k≥1 observations. These 
limits are described below when k=1. 
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3
Wilson-Hilferty (WH) UPL = 𝑚𝑚𝑚𝑚𝑥𝑥 �0, �𝑦𝑦�𝐾𝐾𝑀𝑀 + 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1)) ∗ 𝑠𝑠𝑦𝑦𝐾𝐾𝑀𝑀 ∗ �1 + 1/𝑛𝑛� � 

4
Hawkins-Wixley (HW) UPL = �𝑦𝑦�𝐾𝐾𝑀𝑀 + 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1)) ∗ 𝑠𝑠𝑦𝑦𝐾𝐾𝑀𝑀 ∗ �1 + 1/𝑛𝑛� 

Here 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1)) is a critical value from the Student’s t-distribution with (n–1) degrees of freedom (df), 
and KM estimates are computed based upon the transformed y data as described in Chapter 3. All detects 
and NDs are transformed to y-space to compute the KM estimates. 

One of the advantages of using this method is that one does not have to impute NDs based upon the data 
distribution using LROS or GROS method. 

5.3.1.5 UPLs when Detected Data are Lognormally Distributed 

When detected data follow a lognormal distribution, methods described in Chapter 3 can be used on KM 
estimates to compute lognormal distribution based upper prediction limits for future k≥1 observations. 
These limits are described below when k=1. An upper (1 – α)*100% lognormal UPL is given by the 
following equation: 

UPL = 𝑒𝑒𝑥𝑥𝑒𝑒�𝑦𝑦� + 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1)) ∗ 𝑠𝑠𝑦𝑦 ∗ �1 + 1/𝑛𝑛� 

Here 𝑡𝑡((1−𝛼𝛼),(𝑛𝑛−1)) is a critical value from Student’s t-distribution with (n–1) df, and 
𝑦𝑦� and sy represent the KM mean and sd based upon the log-transformed data (detects and NDs), y. All 
detects and NDs are transformed to y-space to compute the KM estimates. 

5.3.2 Computing Upper p*100% Percentiles for Left-Censored Data Sets 

This section briefly describes some parametric and nonparametric methods to compute upper percentiles 
based upon left-censored data sets. 

5.3.2.1 Upper Percentiles Based upon Standard Normal Z-Scores 

In a left-censored data set, when detected data are normally distributed, one can use normal percentiles and 
KM estimates (or some other estimates such as ROS estimates) of the mean and sd to compute the pth 

percentile given as given as follows: 

𝑥𝑥 = �̂�𝜇 2 (5-3) �𝑝𝑝 𝐾𝐾𝑀𝑀 + 𝑧𝑧𝑝𝑝�𝜎𝜎�𝐾𝐾𝑀𝑀 

Here zp is the p*100th percentile of a standard normal, N (0, 1), distribution which means that the area (under 
the standard normal curve) to the left of zp is p. If the distributions of the site data and the background data 
are comparable, then an observation coming from a population (e.g., site) similar (comparable) to that of 
the background population should lie at or below the p*100% percentile, with probability p. 
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5.3.2.2 Upper Percentiles when Detected Data are Lognormally Distributed 

When detected data follow a lognormal distribution, methods described in Chapter 3 can be used on the 
KM estimates to compute lognormal distribution based upper percentiles. The lognormal distribution based 
pth percentile based upon KM estimates is given as follows: 

= 𝑒𝑒�𝑦𝑦�+𝑠𝑠𝑦𝑦𝑧𝑧𝑝𝑝�𝑥𝑥�𝑝𝑝 

In the above equation, 𝑦𝑦� and sy represent the KM mean and sd based upon the log-transformed data (detects 
and NDs), y. All detects and NDs are transformed to y-space to compute the KM estimates. 

5.3.2.3 Upper Percentiles when Detected Data are Gamma Distributed 

When detected data are gamma distributed, gamma percentiles can be computed similarly using the HW 
and WH approximations to compute KM estimates. According to the WH approximation, the transformed 
detected data Y = X1/3 follow an approximate normal distribution; and according to the HW approximation, 
the transformed detected data Y = X1/4 follow an approximate normal distribution. Let 𝑦𝑦� and sy represent 
the KM mean and sd of the transformed data (detects and NDs), y. The percentiles based upon the WH and 
HW transformations respectively are given as follows: 

0, 
𝑥𝑥�𝑝𝑝 = 𝑚𝑚𝑚𝑚𝑥𝑥 � 3�𝑦𝑦� + 𝑧𝑧𝑝𝑝 ∙ 𝑠𝑠𝑦𝑦� 

𝑥𝑥�𝑝𝑝 = �𝑦𝑦� + 𝑧𝑧𝑝𝑝 ∗ 𝑠𝑠𝑦𝑦�
4 

Alternatively, following the process described in Section 4.6.2, one can use KM estimates to compute KM 
estimates, 𝑘𝑘� and 𝜃𝜃� of the shape, k and scale, θ parameters of the gamma distribution, and use the chi-square 
distribution to compute gamma percentiles using the equation: X = Y * θ /2, where Y follows a chi-square 
distribution with 2𝑘𝑘� degrees of freedom (df). This method does not require HW or WH approximations to 
compute gamma percentiles. Once an α*100% percentile, yα = y(α) 2k, of a chi-square distribution with 2𝑘𝑘� 
df is obtained, the α*100% percentile for a gamma distribution is computed using the equation: xα = yα 

*𝜃𝜃�/2. ProUCL computes gamma percentiles using this equation based upon KM estimates. 

5.3.2.4 Upper Percentiles Based upon ROS Methods 

As noted in Chapter 4, all ROS methods first impute k ND values using an OLS linear regression (Chapter 
4) assuming a specified distribution of detected observations. This process results in a full data set of size 
n consisting of k imputed NDs and (n-k) detected original values. For ROS methods (normal, gamma, 
lognormal), ProUCL generates additional columns consisting of the (n-k) detected values, and k imputed 
ND values. Once, the ND observations have been imputed, an experienced user may use any of the 
parametric or nonparametric percentile computation methods for full uncensored data sets as described in 
Chapter 3. Those methods are not repeated in this chapter. 
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5.3.3 Computing Upper Tolerance Limits (UTLs) for Left-Censored Data Sets 

UTL computation methods for data sets consisting of NDs are described in this section. 

5.3.3.1 UTLs Based on KM Estimates when Detected Data are Normally Distributed 

Normal distribution based UTLs computed using KM estimates may be used when the detected data are 
normally distributed (can be verified using GOF module of ProUCL) or moderately to mildly skewed, with 
the sd of log-transformed detected data, σ, less than 0.5-0.75. An upper (1 – α)*100% tolerance limit with 
tolerance or coverage coefficient, p, is given by the following statement: 

2UTL =�̂�𝜇𝐾𝐾𝑀𝑀 + 𝐾𝐾𝑛𝑛,𝛼𝛼,𝑝𝑝 ∗ �𝜎𝜎�𝐾𝐾𝑀𝑀 (5-4) 

Here K = K (n,α, p) is the tolerance factor used to compute upper tolerance limits and depends upon the 
sample size, n, CC = (1- α), and the coverage proportion = p. The K critical values are based upon the non-
central t-distribution, and have been tabulated extensively in the statistical literature (Hahn and Meeker 
1991). For samples of sizes larger than 30, one can use Natrella’s approximation (1963) to compute the 
tolerance factor, K = K (n, α, p). 

5.3.3.2 UTLs Based on KM Estimates when Detected Data are Lognormally Distributed 

When detected data follow a lognormal distribution, methods described in Chapter 3 can be used on KM 
estimates to compute lognormal distribution based upper tolerance limits. An upper (1 – α)*100% tolerance 
limit with tolerance or coverage coefficient, p, is given by the following statement: 

UTL = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑦𝑦� + 𝐾𝐾 ∗ 𝑠𝑠𝑦𝑦 ) 

The K factor in the above equation is the same as the one used to compute the normal UTL; 𝑦𝑦� and sy 

represent the KM mean and sd based upon the log-transformed data. All detects and NDs are transformed 
to y-space to compute KM estimates. 

5.3.3.3 UTLs Based on KM Estimates when Detected Data are Gamma Distributed 

According to the WH approximation, the transformed detected data Y = X1/3 follow an approximate normal 
distribution; and according to the HW approximation, the transformed detected data Y = X1/4 follow an 
approximate normal distribution when detected X data are gamma distributed. Let 𝑦𝑦� and sy represent the 
KM mean and sd based upon transformed data (detects and NDs), Y. 

Using the WH approximation, the gamma UTL (in original scale, X), is given by: 

UTL = 𝑚𝑚𝑚𝑚𝑥𝑥�0, (𝑦𝑦� + 𝐾𝐾 ∗ 𝑠𝑠𝑦𝑦 )3� 

Similarly, using the HW approximation, the gamma UTL in original scale is given by: 

UTL = (𝑦𝑦� + 𝐾𝐾 ∗ 𝑠𝑠𝑦𝑦 )4 
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5.3.3.4 UTLs Based upon ROS Methods 

As noted in Chapter 4, all ROS methods first impute k ND values using an OLS linear regression line 
assuming a specified distribution of detected and nondetected observations. This process results in a full 
data set of size n consisting of k imputed NDs and (n-k) detected original values. For ROS methods (normal, 
gamma, lognormal), ProUCL generates additional columns consisting of the (n-k) detected values, and k 
imputed ND values. Once, the ND observations have been imputed, an experienced user may use any of 
the parametric or nonparametric UTL computation methods for full data sets as described in Chapter 3. 
Those methods are not repeated in this chapter. 

Note: In the Stats/Sample Sizes module, using the General Statistics option for data sets with NDs, for 
information and summary purposes, percentiles are computed using detects and nondetects, where reported 
DLs are used for NDs. Those percentiles do not account for NDs. However, KM method based upper limits 
such as the UTL95-95 account for NDs; therefore, sometimes, a UTL95-95 computed based upon a ND 
method (e.g., KM method) may be lower than the 95% percentile computed using the General Statistics 
option of Stats/Sample Sizes module. 

5.3.4 Computing Upper Simultaneous Limits (USLs) for Left-Censored Data Sets 

Parametric and nonparametric USL computation methods for are described as follows. 

5.3.4.1 USLs Based upon Normal Distribution of Detected Observations and KM Estimates 

When detected observations follow a normal distribution (can be verified by using the GOF module of 
ProUCL), one can use the normal distribution on KM estimates to compute a USL95.  

A one-sided (1 – α) 100% USL providing (1 – α) 100% coverage for all sample observations is given by: 

𝑏𝑏 2USL = �̂�𝜇𝐾𝐾𝑀𝑀 + 𝑑𝑑2𝛼𝛼 ∗ �𝜎𝜎�𝐾𝐾𝑀𝑀 

𝑏𝑏 Here �𝑑𝑑2𝛼𝛼�
2 is the critical value of Max (Mahalanobis Distances) for 2*α level of significance. 

5.3.4.2 USLs Based upon Lognormal Distribution of Detected Observations and KM Estimates 

When detected data follow a lognormal distribution, methods described in Chapter 3 can be used on the 
KM estimates to compute lognormal distribution based USLs. Let y and sy represent the KM mean and 
sd of the log-transformed data (detects and NDs), y; a (1 – α) 100% USL is given by as follows: 

𝑏𝑏 𝑈𝑈𝑈𝑈𝐿𝐿 = 𝑒𝑒𝑥𝑥𝑒𝑒(𝑦𝑦� + 𝑠𝑠𝑦𝑦 ∗ 𝑑𝑑2𝛼𝛼) 

5.3.4.3 USLs Based upon Gamma Distribution of Detected Observations and KM Estimates 

According to the WH approximation, the transformed detected data Y = X1/3 follow an approximate normal 
distribution; and according to the HW approximation, the transformed detected data Y = X1/4 follow an 
approximate normal distribution. Let 𝑦𝑦� and sy represent the KM mean and sd of the transformed data 
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(detects and NDs), y. A gamma distribution based (using WH approximation), one-sided (1 – α) 100% USL 
is given by: 

𝑈𝑈𝑈𝑈𝐿𝐿 = 𝑚𝑚𝑚𝑚𝑥𝑥 �0, �𝑦𝑦 𝑏𝑏 �� + 𝑑𝑑2𝛼𝛼 ∗ 𝑠𝑠𝑦𝑦�
3 

A gamma distribution based (HW approximation) one-sided (1 – α) 100% USL is given as follows: 

𝑏𝑏 𝑈𝑈𝑈𝑈𝐿𝐿 = �𝑦𝑦� + 𝑑𝑑2𝛼𝛼 ∗ 𝑠𝑠𝑦𝑦�
4 

5.3.4.4 USLs Based upon ROS Methods 

Once, the ND observations have been imputed, one can use parametric or nonparametric USL computation 
methods for full data sets as described in Chapter 3. 

Example 5-1 (Oahu Data Set). The detected data are only moderately skewed (sd of logged detects = 
0.694) and follow a lognormal as well as a gamma distribution. The various upper limits computed using 
ProUCL 5.1 are listed in Tables 5-1 through 5-3 as follows. 
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Ar.!enic 

General Slalislics 

Total Number of Obseivations 24 Number of Missing Observations 0 

Number of Distinct Observations 10 

Number of Detects 11 Number of Non-Detects 13 

Number of Distinct Detects 8 Number of Distinct Non-Detects 3 

Minimum Detect 0.5 Minimum Non·Oetect 0.9 

Maximum Detect 3.2 Maximum Non-Detect 2 

Variance Detected 0.931 Percent Non-Detects 54.1 7% 

Mean Detected 1.236 SD Detected 0.965 

Mean of Detected Logged Data -0.0255 SD of Detected Logged Data 0.694 

Critical Values for Backgrot.nd Ttreshold Values (BTVs) 

Tolerance Factor K (For UTL) 2.309 d2max ~or USL) 2.644  

Nonna! GOF Test on Detects o-.ly 

Shapiro Wilk Test Statistic 0. m ~ro Wilk GOF Test 

5, . Shapiro Wilk Critical Val.Je 0.85 Data Not Nonncl at So/. Significance Level 

Liliefors Test Statistic 0.273 Lilliefors GOF Test 

5% Liliefors Critical Val.Je 0.267 Data Not Nonn, I at 5% Signlicance Level 

Data Not Normal at 5% Sign~icance Level 

Kaplan Meier (KM) Backgrou,d Slalislics Assuning Nonna! Oislnbuion 

Mean 0.949 SD 0.713 

95% UTL95, . Coverage 2.595 95% KM UPL ~) 2.1 96 

95% KM Chet,{Shev UPL 4.1 21 90% KM Percentle (z) 1.863 

95% KM Percentile (z) 2.1 22 99% KM Percentle (z) 2.608 
95'I. KM USL 2.834  

 

      
           

       
     

         
    

    

Table 5-1. Nonparametric and Normal Upper Limits Using KM Estimates   

Note that the upper limits, based upon the gamma and lognormal distribution, are comparable. The upper 
limits computed using KM estimates based upon normal equations are slightly lower than other upper limits 
which adjust for data skewness. Table 5-1 mostly contains normal distribution based upper limits computed 
using KM estimates as described in Helsel (2012b) irrespective of the distribution of the detected data. The 
detected data follow a gamma distribution as shown in Table 5-2 below. A gamma UTL95-95 using KM 
estimates = 2.66 (WH); and a UTL95-95 based upon the GROS method is 3.15 (WH). From Table 5-3, a 
lognormal UTL95-95 using KM estimates = 2.79, and a UTL95-95 using the LROS method =3.03. 
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Gamma GOF Tests on Detected Obsenralions Only 

A-D Test Statistic 0.787 Ander.!oo-Oaling GOF Test 

5% A-D Critical Value 

K-S Test Statistic 

0.738 

0.254 

Data Not Gamma Distributed at 5% Signlicance Level 

KDlmogn,v-Smimoff GOF 

5% K-S Critical Value 0.258 Detected data appear Gamma Distributed at 5% Signlicance Level 

Detected data follow App,. Gamma Oislribt.cion al 5% Significance Level 

Gamma Slalislics on Detected Data Only 

k hat (MLE) 2.257 k star (bias corrected MLE) 

Theta hat (MLE) 0.548 Theta star (bias corrected MLE) 

nu hat (MLE) 49.65 nu star (bias corrected) 

MLE Mean (bias corrected) 1.236 

MLE Sd (bias corrected) 0.948 95% Percentile of Chisquare (2k) 

Minimum 0.11 9 Mean 

Maximum 3.2 Median 

SD 0.758 CV 

k hat (MLE) 2.071 k star (bias corrected MLE) 

Theta hat (MLE) 0.461 Theta star (bias corrected MLE) 

nu hat (MLE) 99.41 nu star (bias corrected) 

MLE Mean (bias corrected) 0.956 MLE Sd (bias corrected) 

95% Percentile of Chisquare (2k) 8.964 90% Percentile 

95% Percentile 2.328 99o/. Percentile 

The following slalislics are compt.ted using Gamma ROS Slalislics on lmpt.ted Data 

~ Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods 

95% Approx. Gamma UTL with 95% Coverage 

95%Gamma USL 

WH 
3.1 49 

3.676 

HW 

3.299 

3.915 

95% Approx. Gamma UPL 

The following slalislics are compt.ted using gamma dislribt.cion and KM estimates 

~ Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods 

WH 

2.384 

1.702 

0.727 

37.44 

8.503 

0.956 

0.7 

0.793 

1.84 

0.519 

88.32 

0.704 

1.895 

3.291 

HW 
2.436 

k hat (KM) 1. 771 nu hat (KM) 85.02 

S5o/, Approx. Gamma UTL with S5o/, Coverage 

95%Gamma USL 

WH 

2.661 

3.051 

HW 

2.685 
3.107 

S5o/, Approx. Gamma UPL 

WH 

2.087 

HW 

2.077 

Table 5-2. Upper  Limits Using GROS, KM  Estimates and  Gamma Distribution of Detected Data  
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GOF Test on Detected Obser,alioos Only 

Shapiro Wilk Test Statistic 0.86 ~ro Wilk GOF Test 

5% Shapiro Wilk Critical Value 0.85 Detected Data appear Lognonnal at 5% Signfoance Level 

Lilliefors Test Statistic 0.229 LilliefOfS GOF Test 

5% Lilliefors Critical Value 0.267 Detected Data appear lognonnal at 5% Significance Level 

Detected Data appear l.ognonnal al 5% Sigmicance Level 

Backgrot.rd l.ognonnal ROS Stalislics Assuring l.ognonnal Oistnbuion Using Jmpt.ted Non-Detects 

Mean in Original Scale 0.972 Mean in log Scale -0.209 

SD in Original Scale 0.718 SD in Log Scale 0.571 

95% UTL95% Coverage 3.032 95% BCA UTL95% Coverage 3.2 

95% Bootstrap (°I.) UTL95% Coverage 3.2 95% UPL ~) 2.202 

90% Percentile (z) 1.686 95% Percentile (z) 2.075 

99% Percentile (z) 3.062 95% USL 3.671 

Stalislics using KM estimates on Logged Data and Assuring l.ognonnal Oislnbuion 

KM Mean of Logged Data -0.236 95% KM UTL (Lognonna)95% Coverage 2. 792 

KM SD of Logged Data 0.547 95% KM UPL (Lognonnal) 2.056 

95% KM Percentile Lognonnal (z) 1.942 95% KM USL (Lognonnal) 3.354  

 

    
      

    
     

       
    

 
  

Table 5-3. Upper Limits Using LROS method and KM Estimates and Lognormal Distribution of 
Detected Data 

Example 5-2. A real data set of size 55 with 18.8% NDs is considered next. This data was used in Chapter 
4 to illustrate the differences in UCLs computed using a lognormal and a gamma distribution. This data set 
is considered here to illustrate the merits of the gamma distribution based upper limits. It can be seen that 
the detected data follow a gamma as well as a lognormal distribution. The minimum detected value is 5.2 
and the largest detected value is 79000. The sd of the detected logged data is 2.79 suggesting that the 
detected data set is highly skewed. Relevant statistics and upper limits including a UPL95, UTL95-95, and 
UCL95 have been computed using both the gamma and lognormal distributions. The gamma GOF Q-Q 
plot is shown as follows. 
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A-DL 

General Slalistics 

Total Number of Observations 55 

Number of Distinct Observations 53 

Number of Detects 45 

Number of Distinct Detects 45 

Minimum Detect 52 
Maximum Detect 79000 

Variance Detected 3.954E+8 

Mean Detected 10556 

Mean of Detected logged Data 7.031 

Number of Missing Observations 0 

Number of Non"Detects 10 

Number of Distinct Non-Detects 8 

Minimum Non-Detect 3.8 

Maximum Non-Detect 124 

Percent Non-Detects 18.18% 

SD Detected 19886 

SD of Detected logged Data 2.788 

Critical Values for Backgrot.nd Threshold Values (BTVs) 

Tolerance Factor K (For UTL) 2.036 d2max ~or US L) 2.994 

  

-' 
~ .tOOOO 

.. •·· .. 

Gamma Q-Q Plot (Statistics using Detected Data) for A-DL 

20000 .tOOOO 60000 
Theoretical Quantiles of Gamma Distribution 

80000 

A·OL 

TolalNUlllbe{of0ata • 55 

Nu..be1ofND1• 10 

MairDL• 124 

N • 45 

Pe,centNOr-111% 

Mean - 10556_111i7 

Slope • l.0745 

lnt...-cepl • -535.7!li0 

Cmrelation. R • 0.9644 

Andem.,·Dad ing Test 

TestStatis tic • 0.591 

C,iticalValue(0.051 • 0.860 

Data appear Ga••a Oist,ibo.ed 

■Beslfit line 

Figure 5-1. Gamma Q-Q Plot.  

Table 5-4. Summary Statistics  for Data Set of Example 5-2  

Mean of detects (=10556) reported above ignores all 18.18% NDs. 
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Gamma GOF Tests on Detected Observations Only 

A-D Test Statistic 0.591 Ander.son-Darting GOF Test 

5% A"D Crnical Value 0.&6 Detected data appear Gamma Distributed at 5% Significance Level 

K-S Test Statistic 0.115 Kolmogrov-Smimoff GOF 

5% K-S Crnical Value 0.143 Detected data appear Gamma Distributed at 5% Significance Level 

Detected data appear Gamma Distributed at 57. Sigrificance Level 

Gamma Statistics on Detected Data, Only 

k hat (MLE) 0.307 k star \bias corrected M LE) 0.302 

Theta hat (M LE) J4n3 Theta star \bias corrected M LE) 349&0 

nu hat (M LE) 27. 67 nu star \bias corrected) 27.16 

M LE Mean \bias corrected) 10556 

M LE Sd \bias corrected) 19216 95% Percentile of Oiisquare (2k) 2.756  

 

Table 5-5. KM Method Based  Estimates of the  Mean, SE of the  Mean, and sd  

Mean &638 

SD 1&246 

Standard Error of Mean 24&8 j  
KM mean (= 8638) reported above  accounts for 18.18% NDs reported in the data  set.  

Notes: Direct estimate of KM sd = 18246 

Indirect Estimate of KM sd (Helsel 2012b) = 18451.5 

The gamma GOF test results on detected data and various upper limits including UCLs obtained using the 
GROS method and gamma distribution on KM estimates are provided in Tables 5-6 through 5-9; and the 
lognormal GOF test results on detected data and the various upper limits obtained using the LROS method 
and lognormal distribution on KM estimates are provided in Tables 5-10 and 5-11. Table 5-12 is a summary 
of the main upper limits computed using the lognormal and gamma distribution of the detected data. 

Table 5-6. Upper  Limits Using GROS, KM  Estimates and  Gamma Distribution of Detected  Data  
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Gamma ROS Statistics using lmptAed Non-Detects 

Minimum 1.121 Mean 8642 

Maximum 79000 Median 588 

SD 18412 CV 2.1 3 

k hat (MLE) 0.247 k star (bias corrected MLE) 0.246 

Theta hat (MLE) 35001 Theta star (bias corrected MLE) 35193 

nu hat (MLE) 27.1 6 nu star (bias corrected) 27.01 

MLE Mean (bias corrected) 8642 MLE Sd (bias corrected) 17440 

95% Percentile of Chisquare (2k) 2.39 90% Percentile 25972 

95% Percentile 42055 99o/. Percentile 84976 

The following statistics are compued using Gamma ROS Slalislics on lmpt.ted Data 

~ Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods 

WH HW WH HW 
95% Approx. Gamma UTL with 95% Coverage 47429 54346 95% Approx. Gamma UPL 33332 35476  

 

    

The following sl.allstlcs an, Cll>q)<.(ed using gamma dlst.r1bulon and KM estimates 

~ Limits using Wilson Hilferty (WH) and Hawkins Wixley (HW) Methods 

k hat (KM) 0.224 ru hat (KM) 24.66 

WH HW WH HW 

95% P!>prox. Gamma UTL wth 95% Coverage 46978 54120 95% P!>prox. Gamma UPL 32961 35195  

 

   

/lqusted Level of Signncance tl) 0.0456 

P!>proximate Chi Square Value (27.01. a ) 16.16 J'<ljusted Chi Square Value (27.01. 13) 15.93 

95o/. Gamma Approximate UCL ~ se when n>=50) 14445 95% Gamma Adjusted UCL (use when n<50) 14651  

 

     

Gamma Kaplan-Meier (KM) Slalislics 

k hat (KM) 0.224 nu hat (KM) 24.66 

Approximate Chi Square Value (24.66. a) 14.35 Adjusted Chi Square V"'-ie (24.66. 13) 14.14 

95% Gamma Approximate KM-UCL ~ e when n>=50) 14844 95o/. Gamma l\ci.Jsted KM-UCL (use when n<50) 15066  

Table 5-7. Upper  Limits Computed U sing Gamma ROS Method  

Table 5-8. Upper Limits Computed Using Gamma Distribution and KM Estimates 

Table 5-8. 95% UCL of the Mean Based upon GROS Method 

Table 5-9. 95% UCL of the Mean Using Gamma Distribution on KM Estimates 
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l.ognonnal GOF Test on Detected Obser,aiioos Only 

Shapiro Wilk Test Statistic 0.939 si-;ro Wilk GOF Test 

5% Shapiro Wilk Critical Value 0.945 Data Not Lognonnal at 5% Signiicance Level 

Lilliefors Test Statistic 0.1 04 Lilliefor., GOF Test 

5% Lilliefors Critical Value 0.1 32 Detected Data appear lognonnal at 5% Sign~icance Level 

Detected Data appear Approximate l.ognonnal al 5% Sigmicance level 

Backgrot.nd l.ognonnal ROS Stalislics Assuning l.ognonnal Oislribuion Using lmpt.ted Non-Detects 

Mean in Original Scale 8638 Mean in Log Scale 5.983 

SD in Original Scale 18414 SD in Log Scale 3.391 

95% UTL95%Coverage 394791 95% BCA UTL95%Coverage 77530 

95% Bootstrap (°I.) UTL95%Coverage 77530 95% UPL ~) 121584 

90o/. Percentile (z) 30572 95% Percentile (z) 104784 

99% Percentile (z) 1056400 95% USL 10156719 

Stalislics using KM estimates on Logged Data and Assuning l.ognonnal Oislribuion 

KM Mean of Logged Data 6.03 95% KM UTL (Lognonnal)95%Coverage 334181 

L 
KM SD of Logged Data 3.286 95% KM UPL (Lognonnal) 

95% KM Percenie l.ognom,al (z) 92417 
 

106741 

 

    
 

l.ognonnal ROS Stalislics Using lmpt.ted Non-Detects 

Mean in Original Scale 8638 Mean in Log Scale 5.983 

SD in Original Scale 18414 SD in Log Scale 3.391 

95%1 UCL (assumes nonnality of ROS data) 12793 95% Percentile Bootstrap UCL 12676 

95% BCA Bootstrap UCL 13762 95% Bootstrap I UCL 14659 

95% H-UCL (Log ROS) 1855231 

UCL.s using l.ognonnal Oislribuion and KM Estimates when Detected data are l.ognonnally Oislribued 

KM Mean Oogged) 6.03 95% H-UCL (KM ·log) 1173988 

KM SD Oogged) 3.286 95% Critical H Value (KM-Log) 5. 7 

KM Standard Error of Mean Oogged) 0.449 
 

 

      
    

      
     

Table 5-10. Upper Limits  Using LROS  and  KM  Estimates and Lognormal Distribution of Detected  
Data  

Table 5-11. 95% UCL of the mean Using LROS and Lognormal Distribution on KM Estimates 
Methods 

Nonparametric upper percentiles are: 9340 (80%), 25320 (90%), 46040 (95%), and 77866 (99%). Other 
upper limits, based upon the gamma and lognormal distribution, are described in Table 5-12. All 
computations have been performed using the ProUCL software. In the following Table 5-6, method 
proposed/described in the literature have been cited in the Reference Method of Calculation column. 
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Table 5-12. Summary of Upper Limits Computed using Gamma and Lognormal Distribution of 
Detected Data: Sample Size = 55, No. of NDs=10, % NDs = 18.18% 

Upper Limits 

Gamma Distribution Lognormal Distribution 

Result 
Reference/ 
Method of Calculation Result 

Reference/ 
Method of Calculation 

Min (detects) 5.2 -- 1.65 Logged 

Max (detects) 79,000 -- 11.277 Logged 

Mean (KM) 8,638 -- 6.3 Logged 

Mean (ROS) 8,642 -- 8,638 --

95% Percentile 
(ROS) 42,055 -- 104,784 --

UPL95 (ROS) 33,332 WH- ProUCL 121,584 Helsel (2012b), EPA 
(2009e) 

UTL95-95 (ROS) 47,429 WH- ProUCL 394,791 Helsel (2012b), EPA 
(2009e) 

UPL95 (KM) 32,961 WH-ProUCL 106,741 EPA (2009e) 

UTL95-95 (KM) 46,978 WH-ProUCL 334,181 EPA(2009e) 

UCL95 (ROS) 14,445 ProUCL 

14,659 bootstrap-t, ProUCL 5.0 

12,676 percentile bootstrap, 
Helsel (2012b) 

UCL (KM) 14,844 ProUCL 1,173,988 
H-UCL, KM mean and 
sd on logged data - EPA 
(2009e) 

The statistics listed in Tables 5-4 through 5-11, and summarized in Table 5-13 demonstrate the need and 
merits of using the gamma distribution for computing practical and meaningful estimates (upper limits) of 
the decision parameters (e.g., mean, upper percentile) of interest. 

Example 5.3. The benzene data set (Benzene-H-UCL-RCRA.xls) of size 8 used in Chapter 21 of the RCRA 
Unified Guidance document (EPA 2009e) was used in Section 4.6.3.1 to address some issues associated 
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l...ognonnal GOF Test on Detected Obseo<ations Only 

Shapiro Wilk Test Statistic 0.829 Shapiro Wilk GOF Test 

5% Shapiro Wilk Critical Value 0.803 Detected Data appear Lognonnal at 5% Significance Level 

Ulliefors Test Statistic 0.304 Lllliefors GOF Test 

5% Ulliefors Critical Value O.n5 Detected Data appear Lognonnal at 5% Significance Level 

Detected Data appear- 1...ognonna1 at 5¾ Significance Level 

~ lognonnal ROS Statistics Assuming l...ognonnal Distribt.tion Using Imputed Non-Detects 

Mean in Original Scale 2.913 Mean in Log Scale 

SD in Original Scale 5.364 SD in Log Scale 

95% UTL95% Coverage 109.2 95% BCA UTL95% Coverage 

95% Bootstrap {%) UTL95% Coverage 16.1 95% UP L ~) 

90% Percentile (z) 6.976 95% Percentile (z) 

99% Percentile (z) 31.52 95% USL 

Statistics using KM estimates on Logged Data and Asst.ming lognonnal Distribt.tion 

KM Mean of Logged Data 0.29 95% KM UTL (Lognonnal)95% Coverage 

KM SD of Logged Data 1.077 95% KM UPL (Lognormal) 

95% KM Percentile Lognormal (z) 7.865 95% KM USL (Lognormal) 

0.0926 

1.443 

16.1 

19.95 

11.79 

20.6 

41.42 

11 .65 

11 .93 

 

  
 

 Mean of logged Data 0.29 SD of logged Data 1.152 
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Shapiro VI/ilk Test Statistic 

5% Shapiro VI/ilk Critical Value 

Ulliefors Test Statistic 

lognonnal Test 

0.803 

0.818 

0.273 

Shapiro Wilk l...ognonnal GOF Test 

Data Not Lognormal at 5% Significance Level 

Lllliefors l...ognonnal GOF Test 

5% Ulliefors Critical Value 0.313 Data appear Lognormal at 5% Significance Level 

Data appear- /14lproximate L..ognormal at 57. Significance Level 

~ Statistics assuning L..ognormal Distribt.tion 

95% UTL with 95% Coverage 52.5 

95% UPL ~) 1353 

95% USL 1388 

90°4 Percentile (z) 

95% Percentile (z) 

99% Percentile (z) 

5.849 

8.888 

19.48 

GOF 

with the use of lognormal distribution to compute a UCL of mean for data sets with nondetects. The benzene 
data set is used in this example to illustrate similar issues associated with the computation of UTLs and 
UPLs based upon lognormal distribution using substitution methods. Lognormal distribution based upper 
limits using ROS and KM methods are summarized in Table 5-13. 

Table 5-13. Lognormal 95%-95%  Upper Limits  based  upon LROS and KM Estimates  

The data set has only one ND with a DL of 0.5. Lognormal upper limits computed by replacing the ND by 
DL and DL/2, respectively are given in Tables 5-14 and 5-15.  

Table 5-14. Lognormal Distribution Based Upper  Limits using DL (=0.5)  for ND  



Mean of logged Data 0.204 SD of logged Data 1.257  

lognonnal GOF Test 

Shapiro Wilk Test Statistic 0.&96 Shapiro Wilk lognonnal GOF Test 

5% Shapiro Wilk Critical Value 0.818 Data appear Lognonnal at 5% Significance Level 

Lillie/ors Test Statistic 0.255 Lilliefors lognonnal GOF Test 

5% Lillie/ors Critical Value 0.313 Data appear Lognonnal at 5% Sign~icance Level 

Data appear- lognonnal at 5¾ Significance Level 

~ Statistics assuming lognonnal Distribt.tion 

95% UTL wrth 95% Coverage 67.44 90'4 Percentile (z) 6.142 

95% UPL~) 15.34 95% Percentile (z) 9.699 

95% USL 15.78 99% Percentile (z) 22.85  

 

      
    

 
    

 

     
  

  

Normal GOF Test on Detects Only 

Shapiro Wilk Test Statistic 0.847 Shapiro Wilk GOF Test 

5% Shapiro Wilk Critical Value 0. 788 Detected Data appear Nonnal at 5% Sign~icance Level 

Lillie/ors Test Statistic 0.265 Lilliefors GOF Test 

5% Lillie/ors Critical Value 0.362 Detected Data appear Nonnal at 5% Sign~icance Level 

Detected Data appear- Normal at 5¾ Significance Level 

Kaplan Meier (KM) ~ Statistics Assuning Normal Distribt.tion 

Mean 1.086 SD 0.544 

95% UTL95% Coverage 2.933 95% KM UPL ~) 2.215 

95% KM Chebyshev UP L 3.619 90'4 KM Percentile (z) 1.782 

95% KM Percentile (z) 1.98 99% KM Percentile (z) 2.35 

95% KM USL 2.139  

 

Table 5-15. Lognormal Distribution Based Upper  Limits using DL/2 (=0.25)  for ND  

Note: Even though UPLs and UTLs computed using the lognormal distribution do not suffer from 
transformation bias, a minor increase in the sd of logged data (from 1.152 to 1.257 above) causes a 
significant increase in upper limits, especially in UTLs (from 52.5 to 67.44) computed using a small data 
set (<15-20). This is particularly true when the data set contains outliers. 

Impact of Outlier, 16.1 ppb on the Computations of Upper Limits 

Benzene data set without the outlier, 16.1 ppb, follows a normal distribution, and normal distribution based 
upper limits without the outlier 16.1 are summarized as follows in Tables 5-16 (KM estimates), 5-17 (ND 
by DL), and 5-18 (ND by DL/2). 

Table 5-16. Normal Distribution Based Upper Limits Computed Using KM e stimates  
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Normal GOF Test 

Shapiro Wilk Test Statistic 0.814 Shapiro Wilk GOF Test 

5% Shapiro Wilk Critical Value 0.803 Data appear Nonnal at 5% Significance Level 

Ulliefors Test Statistic 0.269 Lllliefors GOF Test 

5% Ulliefors Critical Value 0.33.5 Data appear Nonnal at 5% Significance Level 

Daia appear- Normal at 5¾ Sig,ificance Level 

BackgJot.nd Statistics Assuring, Normal Distribl.tion 

95% UTL with 95% Coverage 3. 081 90% Percentile (z) 1.-838 

95% UPL f ) 2.305 951/. Percentile (z) 2052 

95% USL 2.224 99'4 Percentile (z) 2.452  

 

     
    

Normal GOF Test 

Shapiro Wilk Test Statistic 0.875 Shapiro Wilk GOF Test 

5% Shapiro \'Vilk Critical Value 0.803 Data appear Nonnal at 5% Significance Level 

Ulliefors Test Statistic 0.236 Lllliefors GOF Test 

5% Ulliefors Critical Value 0.33.5 Data appear Nonnal at 5% Significance Level 

Daia appear- Normal at 5¾ Sig,ificance Level 

Back:gt>trd Statistics Assuring Normal Distribuiion 

95% UTL with 95% Coverage 3.206 91r4 Percentile (z) 1.863 

95% UPL ~) 2.368 95% Percentile (z) 2.094 

95% USL 2.28 99% Percentile (z) 2.526  

 

     
    

    
    
    

     
     

Table 5-17. Normal Distribution Based Upper Limits Computed using DL for ND   

Note: DL (=0.5) has been used for the ND value (does not accurately account for its ND status). Therefore, 
upper limits are slightly higher than those computed using KM estimates. 

Table 5-18. Normal Distribution Based Upper Limits Computed using DL/2 for ND   

Note: DL/2 (=0.25) has been used for the ND value (does not accurately account for its ND status). The use 
of DL/2 has increased the variance slightly which causes a slight increase in the various upper limits. 
Therefore, upper limits are slightly higher than those computed using KM estimates and using DL for the 
ND value. Based upon the benzene data set, normal UTL95-95 (= 2.93) computed using KM estimates 
appears to represent a more realistic estimate of background threshold value.  

Example 5-4. The manganese (Mn) data set used in Chapter 15 of the Unified RCRA Guidance (2009) has 
been used here to demonstrate how LROS method generates elevated BTVs. 
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General Statistics for Censored Datasets (with NDs) using Kaplan Meu Mdhod 

Variable NumDbs II Missing Num Ds NumNDs %NDs Min ND Max ND KM Mean KM Var KM SD KM CV 

Mn 25 0 19 6 24.00% 2 5 19.87 641 25.32 1.274 

General Statistics for Raw Dataset using Detected Data Ort, 

Variable NumDbs II Missing Minimum Maximum Mean Median Var SD MADI0.67!i Skewness CV 

Mn 19 0 3.3 106.3 25.46 12.6 752.7 27.44 9.34 1.942 1.078 

Percentiles using all Detects (Ds) and NonOeteds IND•) 

Variable NumDbs II Missing 10%ile 20%ile 25%ile(Q1) 50%ile(Q2) 75%ile(Q3) 80%ile 90%ile 95%ile 99%ile 

Mn 25 0 2.52 5 5 10 21.6 25.06 50.52 72.48 99.32  

 

    
   

  

  
  

    
 

Background Lognormal ROS Statistics A ssuming Lognormal Distribution Usi,g lqded NonOetects 

Mean in Original Scale 19.83 Mean in Log Scale 2.277 

SD in Original Scale 25.87 SD in Log Scale 1.261 

95% UTL95% Coverage 175.6 95% BCA UTL95% Coverage 106.3 

95% Bootstrap (%) UTL95% Coverage 106.3 95%UPL (t) 88.06 

90% Pescent~e (z) 49.1 95% Percentile (z] 77.64 

99% Pescentie (z] 183.4 95% USL 280.4 

Statistics using KM e stimates on Logged Data and A ssuming Lognormal Disbiuion 

KM Mean of Logged Data 2.309 95% KM UTL (LognormaI)95% Coverage 151 

KM SD o/ Logged Data 1.182 95% KM U PL (Lognormal) 79.12 

95% KM Percentile Lognormal (z] 70.31 95% KM USL (Lognormal] 234.1  

Table 5-19. Summary statistics  for  Example 5-4.  

The detected data follow a lognormal distribution, the maximum value in the data set is 106, and using the 
LROS method (robust ROS method), one gets a 99% percentile = 183.4, and a UTL of 175. These statistics 
are summarized in Table 5-20. 

The detected data also follows a gamma distribution. Gamma-KM method based upper limits are 
summarized as follows. The Gamma UTL95-95s (KM) are 92.5 (WH) and 99.32 (HW) and the 99% 
percentiles are: 94.42 (WH) and 101.8 (HW). The Gamma UTL (KM) appears to represent a reasonable 
estimate of BTV. These BTV estimates are summarized in Table 5-21. 

Table 5-20. LROS and Lognormal  KM  Method  Based Upper Limits  
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following statistics are computed using gamma distribution and KM esunates 

Upper Limits using Wilson Hilferty [\IIH I and Hawkins Wixley (I-IWJ Methods 

k hat (KM) 0.616 nu hat (KM) 30.79 

WH HW WH HW 

95¼ Approx. Gamma UTL with 95¼ Coverage 92.4 99.32 95¼ Approx Gamma U PL 63. 96 65.76 

95¼ KM Gamma Percentile 59.5 60.7 95:%: GammaUSL 115.8 128.4 
 

    
       

    
 

     
   

    
    

  
  

   

     
   

    
    

     
 

  

  
          

    
  

    

  
   

    
  

          
 

     
 

Table 5-21. Gamma KM Method Based Upper Limits 

Notes: Even though one can argue that there is no transformation bias when computing lognormal 
distribution based UTLs and UPLs, the use of a lognormal distribution on data with or without NDs often 
yields inflated values which are not supported by the data set used to compute them. Therefore, its use 
including LROS method should be avoided. 

Before using a nonparametric BTV estimate, one should make sure that the detected data do not follow a 
known distribution. When dealing with a data set with NDs, it is suggested to account for NDs and 
determine the distribution of detected values instead of using a nonparametric UTL as used in Example 17-
4 on page 17-21 of Chapter 17 of the EPA Unified Guidance, 2009. If detected data follow a parametric 
distribution, one may want to compute a UTL using that distribution and KM estimates; this approach will 
account for data variability instead defaulting to higher order statistics. 

5.3.5 Summary and Recommendation 

It is recommended that outliers confirmed as suspect by investigation not be used in the computation of 
decision-making statistics. The decision-making statistics (e.g., UCLs, UTLs, UPLs) should be computed 
using observations representing the population. The use of a lognormal distribution should be avoided in 
computing upper limits (UCLs, UTLs, UPLs) based upon data sets with sd of detected logged data for 
moderately skewed to highly skewed data sets of sizes smaller than 20-30. It is reasonable to state that, like 
uncensored data sets without NDs, the minimum sample size requirement increases as the skewness 
increases. 

The project team should collectively make a decision about the disposition of outliers. It is often helpful to 
compute decision statistics (upper limits) and hypothesis test statistics twice: once including outliers, and 
once without outliers. By comparing the upper limits computed with and without outliers, the project team 
can determine which limits are more representative of the site conditions under investigation. 

5.4 Computing Nonparametric Upper Limits Based upon Higher Order Statistics 

For full data sets without any discernible distribution, nonparametric UTLs and UPLs are computed using 
higher order statistics. Therefore, when the data set consists of enough detected observations, and if some 
of those detected data are larger than all of the NDs and the DLs, ProUCL computes USLs, UTLs, UPLs, 
and upper percentiles by using nonparametric methods as described in Chapter 3. Since, nonparametric 
UTLs, UPLs, USLs, and upper percentiles are represented by higher order statistics (or by some value in 
between higher order statistic obtained using linear interpolation) every effort should be made to make sure 
that those higher order statistics do not represent observations coming from population(s) other than the 
dominant (e.g., background) population under study. 
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CHAPTER 6  
 

Single and Two-sample  Hypotheses Testing Approaches  
Both single-sample and two-sample hypotheses testing approaches are used to make cleanup decisions at 
polluted sites, and compare constituent concentrations of two (e.g., site versus background) or more (GW 
in MWs) populations. This chapter provides guidance on when to use single-sample hypothesis test and 
when to use two-sample hypotheses approaches. These issues were also discussed in Chapter 1 of this 
Technical Guide. For interested users, this chapter presents a brief description of the mathematical 
formulations of the various parametric and nonparametric hypotheses testing approaches as incorporated in 
ProUCL. ProUCL software provides hypotheses testing approaches for data sets with and without ND 
observations. For data sets containing multiple nondetects, a new two-sample hypothesis test, the Tarone-
Ware (T-W; 1978) test has been incorporated in the current ProUCL, versions 5.0 and 5.1. The developers 
of ProUCL recommend supplementing statistical test results with graphical displays. It is assumed that the 
users have collected an appropriate amount of good quality (representative) data, perhaps based upon data 
quality objectives (DQOs). The Stats/Sample Sizes module can be used to compute DQOs based sample 
sizes needed to perform the hypothesis tests described in this chapter. 

6.1 When to Use Single Sample Hypotheses Approaches 

When pre-established background threshold values and not-to-exceed values (e.g., USGS background 
values, Shacklette and Boerngen 1984) exist, there is no need to establish, or collect a background or 
reference data set. Specifically, when not-to-exceed action levels or average cleanup standards are known, 
one-sample hypotheses tests can be used to compare onsite data with known and pre-established threshold 
values, provided enough onsite data needed to perform the hypothesis tests are available. When the number 
of available site observations is less than 4-6, one might perform point-by-point site observation 
comparisons with a BTV; and when enough onsite observations (> 8 to 10, more are preferable) are 
available, it is suggested to use single-sample hypothesis testing approaches. Some recent EPA guidance 
documents (EPA 2009e) also recommend the availability of at least 8-10 observations to perform statistical 
inference. Some minimum sample size requirements related to hypothesis tests are also discussed in Chapter 
1 of this Technical Guide. 

Depending upon the parameter (e.g., the average value, µ0, or a not-to-exceed action level, A0), representing 
a known threshold value, one can use single-sample hypothesis tests for the population mean (t-test, sign 
test) or single-sample tests for proportions and percentiles. Several single-sample tests listed below are 
available in ProUCL.  

One-Sample t-Test: This test is used to compare the site mean,µ, with some specified cleanup standard, Cs 

(µ0), where Cs represents a specified value of the true population mean, µ. The Student’s t- test or UCL of 
the mean is used (assuming normality of site data, or when the sample size is larger than 30, 50, or 100) to 
verify the attainment of cleanup levels at a polluted sites (EPA 1989a, 1994). Note that the large sample 
size requirement (n= 30, 50, or 100) depends upon the data skewness. Specifically, as skewness increases 
measured in terms of the sd, σ, of the log-transformed data, the large sample size requirement also increases 
to be able to apply the normal distribution and Student’s t-statistic, due to the central limit theorem (CLT). 
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One-Sample Sign Test or Wilcoxon Signed Rank (WSR) Test: These tests are nonparametric tests which can 
also handle ND observations, provided all NDs and therefore their associated DLs are less than the specified 
threshold value, Cs. These tests are used to compare the site location (e.g., median, mean) with some 
specified cleanup standard, Cs, representing the similar location measure. 

One-Sample Proportion Test or Percentile Test: When a specified cleanup standard, A0, such as a 
preliminary remediation goal (PRG), or a compliance limit (CL) represents an upper threshold value of a 
constituent concentration distribution rather than the mean threshold value, µ, a test for proportion or a test 
for percentile (e.g., UTL95-95, UTL95-90) can be used to compare exceedances to the actionable level. 
The proportion, p, of exceedances of A0 by site observations are compared to some pre-specified allowable 
proportion, P0, of exceedances. One scenario where this test may be applied is following remediation 
activities at an AOC. The proportion test can also handle NDs provided all NDs are below the action level, 
A0. 

It is beneficial to use DQO-based sampling plans to collect an appropriate amount of data. In any case, in 
order to obtain reasonably reliable estimates and compute reliable test statistics, an adequate amount of 
representative site data (at least 8 to 10 observations) should be made available to perform the single-sample 
hypotheses tests listed above. As mentioned before, if only a small number of site observations are 
available, instead of using hypotheses testing approaches, point-by-point site concentrations may be 
compared with the specified action level, A0. Individual point-by-point observations are not to be compared 
with the average cleanup or threshold level, Cs. The estimated sample mean, such as a UCL95, is compared 
with a threshold representing an average cleanup standard. 

6.2 When to Use Two-Sample Hypotheses Testing Approaches 

When BTVs, not-to-exceed values, and other cleanup standards are not available, then site data are 
compared directly with the background data. In such cases, a two-sample hypothesis testing approach is 
used to perform site versus background comparisons provided enough data are available from each of the 
two populations. Note that this approach can be used to compare concentrations of any two populations 
including two different site areas or two different MWs. The Stats/Sample Sizes module of ProUCL can 
be used to compute DQO-based sample sizes for two-sample parametric and nonparametric hypothesis 
testing approaches. While collecting site and background data, for better representation of populations 
under investigation, one may also want to account for the size of the background area (and site area for site 
samples) in sample size determinations. That is, a larger number (>10 to 15) of representative background 
(or site) samples may need to be collected from larger background (or site) areas to capture the greater 
inherent heterogeneity/variability typically present in larger areas. 

The two-sample hypotheses approaches are used when the site parameters (e.g., mean, shape, distribution) 
are compared with the background parameters (e.g., mean, shape, distribution). Specifically, two-sample 
hypotheses testing approaches can be used to compare the average (also medians or upper tails) constituent 
concentrations of two or more populations such as the background population and the potentially 
contaminated site areas. Several parametric and nonparametric two-sample hypotheses testing approaches, 
including Student’s t-test, the Wilcoxon-Mann-Whitney (WMW) test, Gehan’s test, and the T-W test are 
included in ProUCL. Some details of those methods are described in this chapter for interested users. It is 
recommended that statistical results and test statistics be supplemented with graphical displays, such as the 
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multiple Q-Q plots and side-by-side box plots as graphical displays do not require any distributional 
assumptions and are not influenced by outlying observations and NDs. 

Data Types: Analytical data sets collected from the two (or more) populations should be of the same type 
obtained using similar analytical methods and sampling equipment. Additionally, site and background data 
should be all discrete or all composite (obtained using the same design, pattern, and number of increments), 
and should be collected from the same medium (soil) at comparable depth levels (e.g., all surface samples 
or all subsurface samples) and time (e.g., during the same quarter in groundwater applications). Good 
sample collection methods and sampling strategies are described in Gerlach, R. W., and J. M. Nocerino 
(2003) and the ITRC ISM guidance documents (2012 and 2020). 

6.3 Statistical Terminology Used in Hypotheses Testing Approaches 

The first step in developing a hypothesis test is to state the problem in statistical terminology by developing 
a null hypothesis, H0, and an alternative hypothesis, HA. These hypotheses tests result in two alternative 
decisions: acceptance of the null hypothesis or the rejection of the null hypothesis based on the computed 
hypothesis test statistic (e.g., t-statistic, WMW test statistic). The statistical terminologies including error 
rates, hypotheses statements, Form 1, Form 2, and two-sided tests, are explained in terms of two-sample 
hypotheses testing approaches. Similar terms apply to all parametric and nonparametric single-sample and 
two-sample hypotheses testing approaches. Additional details may be found in EPA guidance documents 
(2002b, 2006b), and MARSSIM (2000) or in statistical text books including Bain and Engelhardt (1992), 
Hollander and Wolfe (1999), and Hogg and Craig (1995). 

Two forms, Form 1 and Form 2, of the statistical hypothesis test are useful for environmental applications. 
The null hypothesis in the first form (Form 1) states that the mean/median concentration of the potentially 
impacted site area does not exceed the mean/median of the background concentration. The null hypothesis 
in the second form (Form 2) of the test is that the concentrations of the impacted site area exceed the 
background concentrations by a substantial difference, S, with S≥0. 

Formally, let X1, X2, …, Xn represent a random sample of size n collected from Population 1 (e.g., 
downgradient MWs or a site AOC) with mean (or median) µX, and Y1, Y2, …, Ym represent a random sample 
of size m from Population 2 (upgradient MWs or a background area) with mean (or median) µY. Let Δ = µX 

- µY represent the difference between the two means (or medians). 

6.3.1 Test Form 1 

The null hypothesis (H0): The mean/median of Population 1 (constituent concentration in samples collected 
from potentially impacted areas (or monitoring wells)) is less than or equal to the mean/median of 
Population 2 (concentration in samples collected from background (or upgradient wells) areas) with 
H0: Δ ≤ 0. 

The alternative hypothesis (HA). The mean/median of Population 1 (constituent concentration in samples 
collected from potentially impacted areas) is greater than the mean of Population 2(background areas) with 
HA: Δ > 0. 
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When performing this form of hypothesis test, the collected data should provide statistically significant 
evidence that the null hypothesis is false leading to the conclusion that the site mean/median does exceed 
background mean/median concentration. Otherwise, the null hypothesis cannot be rejected based on the 
available data, and the mean/median concentration found in the potentially impacted site areas is considered 
equivalent and comparable to that of the background areas. 

6.3.2 Test Form 2 

The null hypothesis (H0): The mean/median of Population 1 (constituent concentration in potentially 
impacted areas) exceeds the mean/median or Population 2 (background concentrations) by more than S 
units. Symbolically, the null hypothesis is written as H0: ∆ ≥ S, where S≥0. 

The alternative hypothesis (HA): The mean/median of Population 1 (constituent concentration in potentially 
impacted areas) does not exceed the mean/median of Population 2 (background constituent concentration) 
by more than S (HA: ∆ < S). 

Here, S is the background investigation level. When S>0, Test Form 2 is called Test Form 2 with substantial 
difference, S. Some details about this hypothesis form can be found in the background guidance document 
for CERCLA sites (EPA 2002b). 

6.3.3 Selecting a Test Form 

The test forms described above are commonly used in background versus site comparison evaluations. 
Therefore, these test forms are also known as Background Test Form 1 and Background Test Form 2 (EPA, 
2002b). Background Test Form 1 uses a conservative investigation level of Δ = 0, but relaxes the burden of 
proof by selecting the null hypothesis that the constituent concentrations in potentially impacted areas are 
not statistically greater than the background concentrations. Background Test Form 2 requires a stricter 
burden of proof, but relaxes the investigation level from 0 to S. 

6.3.4 Errors Rates and Confidence Levels 

Due to the uncertainties that result from sampling variation, decisions made using hypotheses tests will be 
subject to errors, also known as decision errors. Decisions should be made about the width of the gray 
region, Δ, and the degree of decision errors that is acceptable. There are two ways to err when analyzing 
sampled data (Table 6-1) to derive conclusions about population parameters. 

Type I Error: Based on the observed collected data, the test may reject the null hypothesis when in fact the 
null hypothesis is true (a false positive or equivalently a false rejection). This is a Type I error. The 
probability of making a Type I error is often denoted by α (alpha); and 

Type II Error: On the other hand, based upon the collected data, the test may fail to reject the null hypothesis 
when the null hypothesis is in fact false (a false negative or equivalently a false acceptance). This is called 
Type II error. The probability of making a Type II error is denoted by β (beta). 
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Table 6-1. Hypothesis Testing: Type I and Type II Errors 

Decision Based on 
Sample Data 

Actual Site Condition 

H0 is True H0 is not true 

H0 is not rejected Correct Decision: (1 – α) 
Type II Error: 
False Negative (β) 

H0 is rejected 
Type I Error: 
False Positive (α) 

Correct Decision: (1 – β) 

The acceptable level of decision error associated with hypothesis testing is defined by two key parameters: 
confidence level and power. These parameters are related to two error probabilities, α and β. 

Confidence level 100(1– α)%: As the confidence level is lowered (or alternatively, as α is increased), the 
likelihood of committing a Type I error increases. 

Power 100(1 – β)%: As the power is lowered (or alternatively, as β is increased), the likelihood of 
committing a Type II error increases. 

Although a range of values in the interval (0, 1) can be selected for these two parameters, as the demand 
for precision increases, the number of samples and the associated cost (sampling and analytical cost) will 
generally also increase. The cost of sampling is often an important determining factor in selecting the 
acceptable level of decision errors. However, unwarranted cost reduction at the sampling stage may incur 
greater costs later in terms of increased threats to human health and the environment, or unnecessary 
cleanup at a site area under investigation. The number of samples, and hence the cost of sampling, can be 
reduced but at the expense of a higher possibility of making decision errors that may result in the need for 
additional sampling, or increased risk to human health and the environment. 

There is an inherent tradeoff between the probabilities of committing a Type I or a Type II error, a 
simultaneous reduction in both types of errors can only occur by increasing the number of samples. If the 
probability of committing a false positive error is reduced by increasing the level of confidence associated 
with the test (in other words, by decreasing α), the probability of committing a false negative is increased 
because the power of the test is reduced (increasing β). The choice of α determines the probability of the 
Type I error. The smaller the α-value, the less likely to incorrectly reject the null hypothesis (H0). However, 
a smaller value for α also means lower power with decreased probability of detecting a difference when 
one exists. The most commonly used α value is 0.05. With α = 0.05, the chance of finding a significance 
difference that does not really exist is only 5%. In most situations, this probability of error is considered 
acceptable. 

Suggested values for the Two Types of Error Rates: Typically, the following values for error probabilities 
are selected as the minimum recommended performance measures: 

For the Background Test Form 1, the confidence level should be at least 80% (α = 0.20) and the power 
should be at least 90% (β = 0.10). 
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For the Background Test Form 2, the confidence level should be at least 90% (α = 0.10) and the power 
should be at least 80% (β = 0.20). 

Seriousness of the Two Types of Error Rates: 

When using the Background Test Form 1, a Type I error (false positive) is less serious than a Type II error 
(false negative). This approach favors the protection of human health and the environment. To ensure that 
there is a low probability of committing a Type II error, a Test Form 1 statistical test should have adequate 
power at the right edge of the gray region. 

When the Background Test Form 2 is used, a Type II error is preferable to committing a Type I error. This 
approach favors the protection of human health and the environment. The choice of the hypotheses used in 
the Background Test Form 2 is designed to be protective of human health and the environment by requiring 
that the data contain evidence of no substantial contamination. 

6.4 Parametric Hypotheses Tests 

Parametric statistical tests assume that the data sets follow a known statistical distribution (mostly normal); 
and that the data sets are statistically independent with no expected spatial and temporal trends in the data 
sets. Many statistical tests (e.g., two-sample t-test) and models are only appropriate for data that follow a 
particular distribution. Statistical tests that rely on knowledge of the form of the population distribution of 
data are known as parametric tests. The most commonly used distribution for tests involving environmental 
data is the normal distribution. It is noted that GOF tests which are used to determine data set’s distribution 
(e.g., S-W test for normality) often fail if there are not enough observations, if the data contain multiple 
populations, or if there is a high proportion of NDs in the collected data set. Tests for normality lack 
statistical power for small sample sizes. In this context, a sample consisting of less than 20 observations 
may be considered a small sample. However, in practice, many times it may not be possible, due to resource 
constraints, to collect data sets of sizes greater than 10. This is especially true for background data sets, as 
the decision makers often do not want to collect many background samples. Sometimes they want to make 
cleanup decisions based upon data sets of sizes even smaller than 10. Statistics computed based upon small 
data sets of sizes < 5 cannot be considered reliable to derive important decisions affecting human health 
and the environment. 

6.5 Nonparametric Hypotheses Tests 

Statistical tests that do not assume a specific statistical form for the data distribution(s) are called 
distribution-free or nonparametric statistical tests. Nonparametric tests have good test performance for a 
wide variety of distributions, and their performances are not unduly affected by NDs and outlying 
observations. In two-sample comparisons (e.g., t-test), if one or both of the data sets fail to meet the test for 
normality, or if the data sets appear to come from different distributions with different shapes and 
variability, then nonparametric tests may be used to perform site versus background comparisons. 
Typically, nonparametric tests and statistics require larger size data sets to derive correct conclusions. 
Several two-sample nonparametric hypotheses tests, the WMW test, Gehan test, and Tarone-Ware (T-W) 
test, are available in ProUCL. Like the Gehan test, the T-W test is used for data sets containing NDs with 
multiple RLs. The T-W test was new in ProUCL 5.0. 
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The relative performances of different testing procedures can be assessed by comparing, p-values associated 
with those tests. The p-value of a statistical test is defined as the smallest value of α (level of significance, 
Type I error) for which the null hypothesis would be rejected based upon the given data sets of sampled 
observations. The p-value of a test is sometimes called the critical level or the significance level of the test. 
Whenever possible, critical values and p-values have been computed using the exact or approximate 
distribution of the test statistics (e.g., GOF tests, t-test, Sign test, WMW test, Gehan test, M-K trend test). 

Performance of statistical tests is also compared based on their robustness. Robustness means that the test 
has good performance for a wide variety of data distributions, and that its performance is not significantly 
affected by the occurrence of outliers. Not all nonparametric methods are robust and resistant to outliers. 
Specifically, nonparametric upper limits used to estimate BTVs can get affected and misrepresented by 
outliers. This issue has been discussed earlier in Chapter 3 of this Technical Guide. 

• If a parametric test for comparing means is applied to data from a non-normal population and 
the sample size is large, then a parametric test may work well, provided that the data sets are 
not heavily skewed. For heavily skewed data sets, the sample size requirement associated with 
the CLT can become quite large, sometimes larger than 100. A brief simulation study 
elaborating on the sample size requirements to apply the CLT on skewed data sets is given in 
Appendix B. For moderately skewed (Chapter 4) data sets, the CLT ensures that parametric 
tests for the mean will work because parametric tests for the mean are robust to deviations from 
normal distributions as long as the sample size is large. Unless the population distribution is 
highly skewed, one may choose a parametric test for comparing means when there are at least 
25-30 data points in each group. 

• If a nonparametric test for comparing means is applied on a data set from a normal population 
and the sample size is large, then the nonparametric test will work well. In this case, the p-
values tend to be a little too large, but the discrepancy is small. In other words, nonparametric 
tests for comparing means are only slightly less powerful than parametric tests with large 
samples. 

• If a parametric test is applied on a data set from a non-normal population and the sample size 
is small (< 20 data points), then the p-value may be inaccurate because the CLT does not apply 
in this case. 

• If a nonparametric test is applied to a data set from a non-normal population and the sample 
size is small, then the p-values tend to be too high. In other words, nonparametric tests may 
lack statistical power with small samples. 

Notes: It is suggested that the users supplement their test statistics and conclusions by using graphical 
displays for visual comparisons of two or more data sets. ProUCL software has side-by-side box plots and 
multiple Q-Q plots that can be used to graphically compare two or more data sets with and without ND 
observations. 

6.6 Single Sample Hypotheses Testing Approaches 

This section describes the mathematical formulations of parametric and nonparametric single-sample 
hypotheses testing approaches incorporated in ProUCL software. For the sake of interested users, some 
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directions to perform these hypotheses tests are described as follows. The directions are useful when the 
user wants to manually perform these tests. 

6.6.1 The One-Sample t-Test for Mean 

The one-sample t-test is a parametric test used for testing a difference between a population (site area, 
AOC) mean and a fixed pre-established mean level (cleanup standard representing a mean concentration 
level). The Stats/Sample Sizes module of ProUCL can be used to determine the minimum number of 
observations needed to achieve the desired DQOs. The collected sample should be a random sample 
representing the AOC under investigation. 

6.6.1.1 Limitations and Robustness of One-Sample t-Test 

The one-sample t-test is not robust in the presence of outliers and may not yield reliable results in the 
presence of ND observations. Do not use this test when dealing with data sets containing NDs. Some 
nonparametric tests described below may be used in cases where NDs are present in a data set. This test 
may yield reliable results when performed on mildly or moderately skewed data sets. Note that levels of 
skewness are discussed in Chapters 3 and 4. The use of a t-test should be avoided when data are highly 
skewed (sd of log-transformed data exceeding 1, 1.5), even when the data set is of a large size such as 
n=100. 

6.6.1.2 Directions for the One-Sample t-Test 

Let x1, x2, . . . , xn represent a random sample (analytical results) of size, n, collected from a population 
(AOC). The use of the One-Sample t-Test requires that the data set follows a normal distribution; that is 
when using a typical software package (e.g., Minitab), the user needs to test for the normality of the data 
set. For the sake of users and to make sure that users do not skip this step, ProUCL verifies normality of 
the data set automatically. 

STEP 1: Specify an average cleanup goal or action level, µ0 (Cs), and choose one of the following 
combination of null and alternative hypotheses: 

Form 1: H0: site µ ≤ µ0 vs. HA: site µ > µ0 

Form 2: H0: site µ ≥ µ0 vs. HA: site µ < µ0 

Two-Sided: H0: site µ = µ0 vs. HA: site µ ≠ µ0. 

Form 2 with substantial difference, S: H0: site µ ≥ µ0 + S vs. HA: site µ < µ0 + S, here S> 0. 

STEP 2: Calculate the test statistic: 

�̅�𝑥−𝜇𝜇0−𝑆𝑆 𝑡𝑡0 = (6-1) 𝑠𝑠𝑠𝑠 

√𝑛𝑛 

In the above equation, S is assumed to be equal to “0”, except for Form 2 with substantial difference. 
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STEP 3: Use Student’s t-table (ProUCL computes them) to find the critical value tn-1, 1-α 

Conclusion: 

Form 1: 

If t0 > tn-1,α, then reject the null hypothesis that the site population mean is less than the cleanup level, µ0 

Form 2: 

If t0 < -tn-1,α, then reject the null hypothesis that the site population mean exceeds the cleanup level, µ0 

Two-Sided: 

If |t0 | > tn-1, α/2, then reject the null hypothesis that the site population mean is same as the cleanup level, µ0 

Form 2 with substantial difference, S: If t0 < -tn-1, 1-α, then reject the null hypothesis that the site population 
mean is more than the cleanup level, µ0 + the substantial difference, S. Here, tn-1,α represents the critical 
value from t-distribution with (n-1) degrees of freedom (df) such that the area to the right of tn-1,α under the 
t-distribution probability density function is α. 

6.6.1.3 P-values 

In addition to computing critical values (some users still like to use critical values for a specified α), ProUCL 
computes exact or approximate p-values. A p-value is the smallest value for which the null hypothesis is 
rejected in favor of the alternative hypotheses. Thus, based upon the given data set, the null hypothesis is 
rejected for all values of α (the level of significance) greater than or equal to the p-value. The details of 
computing a p-value for a t-test can be found in any statistical text book such as Daniel (1995). ProUCL 
computes p-values for t-tests associated with each form of the null hypothesis. Specifically, if the computed 
p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis based upon 
the collected data set. 

6.6.1.4 Relation between One-Sample Tests and Confidence Limits of the Mean or Median 

There has been some confusion among the users whether to use a LCL or a UCL of the mean to determine 
if the remediated site areas have met the cleanup standards. There is a direct relation between one sample 
hypothesis tests and confidence limits of the mean or median. For example, depending upon the hypothesis 
test form, a t-test is related to the upper or lower confidence limit of the mean, and a Sign test is related to 
the confidence limits of the median. In confirmation sampling, either a one sample hypothesis test (e.g., t-
test, WSR test) or a confidence interval of the mean (e.g., LCL, UCL) can be used. Both approaches result 
in the same conclusion. 

These relationships have been illustrated for the t-test and the LCLs and upper UCLs for normally 
distributed data sets. The use of a UCL95 to determine if a polluted site has attained the cleanup standard, 
µ0, after remediation is very common. If a UCL95 < µ0, then it is concluded that the site meets the standard. 
The conclusion based upon the UCL or LCL, or the interval (LCL, UCL) is derived from hypothesis test 
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statistics. For an example, while using a 95% lower confidence limit (LCL95), one is testing hypothesis 
test Form 1, and when using UCL95, one is testing hypothesis Form 2. 

For a normally distributed data set: x1,x2, . . . , xn ( e.g., collected after excavation), the UCL95 and LCL95 
are given as follows: 

𝑈𝑈𝐶𝐶𝐿𝐿95 = �̅�𝑥 + 𝑡𝑡𝑛𝑛−1,0.05 ∗ 𝑠𝑠𝑑𝑑/√𝑛𝑛, and 

𝐿𝐿𝐶𝐶𝐿𝐿95 = �̅�𝑥 − 𝑡𝑡𝑛𝑛−1,0.05 ∗ 𝑠𝑠𝑑𝑑/√𝑛𝑛 

Objective: Does the site average, µ, meet the cleanup level, µ0? 

Form 1: H0: site µ ≤ µ0 vs. HA: site µ > µ0 

Form 2: H0: site µ ≥ µ0 vs. HA: site µ < µ0 

Two-Sided: H0: site µ = µ0 vs. a HA: site µ ≠ µ0. 

Based upon the t-test, conclusions are: 

Form 1: 

If t > tn-1, 0.05, then reject the null hypothesis in favor of the alternative hypothesis 

Form 2: 

If t0 < -tn-1, 0.05, then reject the null hypothesis in favor of the alternative hypothesis 

Two-Sided: 

If |t0 | > tn-1, 0.025, then reject the null hypothesis that the site population mean is same as the cleanup level 

Here tn-1, 0.05 represents a critical value from the right tail of the t-distribution with (n-1) degrees of freedom 
such that area to right of tn-1, 0.05 is 0.05. 

For Form 1, we have: 

Reject H0 if t>tn-1,0.05 , that is reject the null hypothesis when 

�̅�𝑥 > 𝜇𝜇0 + 𝑡𝑡𝑛𝑛−1,0.05 ∗ 𝑠𝑠𝑑𝑑/√𝑛𝑛 

Equivalently reject the null hypothesis and conclude that site has not met the cleanup standard when 

�̅�𝑥 − 𝑡𝑡𝑛𝑛−1,0.05 ∗ 𝑠𝑠𝑑𝑑/√𝑛𝑛 > 𝜇𝜇0; or when LCL95>cleanup goal, µ0. 

The site is concluded dirty when LCL95> µ0. 
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For Form 2, we have: 

Reject H0 if t< -tn-1,0.05 , that is reject the null hypothesis when 

𝑠𝑠𝑑𝑑 
�̅�𝑥 < 𝜇𝜇0 − 𝑡𝑡𝑛𝑛−1,0.05 ∙ √𝑛𝑛 

Equivalently reject the null hypothesis and conclude that site meets the cleanup standard when 

< 𝜇𝜇0 − 𝑡𝑡𝑛𝑛−1,0.05 ∙ 
𝑠𝑠𝑑𝑑 �̅�𝑥 < 𝜇𝜇0 or 
√𝑛𝑛 

UCL95 < 𝜇𝜇0 

The site is concluded clean when UCL95< µ0. 

6.6.2 The One-Sample Test for Proportions 

The one-sample test for proportions represents a test for evaluating the difference between the population 
proportion, P, and a specified threshold proportion, P0. Based upon the sampled data set and sample 
proportion, p, of exceedances of a pre-specified action level, A0, by the n sample observations (e.g., onsite 
observations); the objective is to determine if the population proportion (of exceedances of the threshold 
value, A0) exceeds the pre-specified proportion level, P0. This proportion test is equivalent to a sign test 
(described next), when P0 = 0.5. The Stats/Sample Sizes module of ProUCL can be used to determine the 
minimum sample size needed to achieve pre-specified DQOs. 

6.6.2.1 Limitations and Robustness 

Normal approximation to the distribution of the test statistic is applicable when both (nP0) and n (1- P0) are 
at least 5. For smaller data sets, ProUCL uses the exact binomial distribution (e.g., Conover, 1999) to 
compute the critical values when the above statement is not true. 

The Proportion test may also be used on data sets with ND observations, provided all ND values (DLs, 
reporting limits) are smaller than the action level, A0. 

6.6.2.2 Directions for the One-Sample Test for Proportions 

Let x1, x2, . . . , xn represent a random sample (data set) of size, n, from a population (e.g., the site (e.g., 
exposure area) under investigation. Let A0 represent a compliance limit or an action level to be met by site 
data. It is expected (e.g., after remediation) that the proportion of site observations exceeding the action 
level, A0, is smaller than the specified proportion, P0. 

Let B = number of site values in the data set exceeding the action level, A0. A typical observed sample 
value of B (based upon a data set) is denoted by b. It is noted that the random variable, B follows a binomial 
distribution (BD) ~ B(n, P) with n equal to the number of trials and P being the unknown population 
proportion (probability of success). Under the null hypothesis, the variable B follows a binomial distribution 
(BD) ~ B(n, P0 ). 
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The sample proportion, p=b/n = (number of site values in the sample > A0)/n 

STEP 1: Specify a proportion threshold value, P0, and state the following null hypotheses: 

Form 1: H0: P ≤ P0 vs. HA: P > P0 

Form 2: H0: P ≥ P0 vs. HA: P < P0 

Two-Sided: H0: P = P0 vs. HA: P ≠ P0 

STEP 2: Calculate the test statistic: 

𝑝𝑝+𝐴𝐴−𝑃𝑃0𝑧𝑧0 = (6-2) 
�𝑃𝑃0(1−𝑃𝑃0)/𝑛𝑛 

−0.5 𝑖𝑖𝑓𝑓, 𝑒𝑒 > 𝑃𝑃0𝑛𝑛 𝑥𝑥(# 𝑙𝑙𝑜𝑜 𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖 𝑖𝑖𝑎𝑎𝑙𝑙𝑠𝑠𝑖𝑖𝑠𝑠 > 𝐴𝐴0)Where 𝑠𝑠 = � and 𝑒𝑒 = 0.5 𝑛𝑛 
𝑛𝑛 
𝑖𝑖𝑓𝑓, 𝑒𝑒 < 𝑃𝑃0 

Here c is the continuity correction factor for use of the normal approximation. 

Large Sample Normal Approximation 

STEP 3: Typically, one should use BD (as described above) to perform this test. However, when both (nP0) 
and n (1- P0) are at least 5, a normal (automatically computed by ProUCL) approximation may be used to 
compute the critical values (z-values) and p-values. 

STEP 4: Conclusion described for the approximate test based upon the normal approximation: 

Form 1: If z0 > zα, then reject the null hypothesis that the population proportion, P, of exceedances of action 
level, A0, is less than the specified proportion, P0. 

Form 2: If z0 < -zα, then reject the null hypothesis that the population proportion, P, is more than the 
specified proportion, P0. 

Two-Sided: If |z0 | > zα/2, then reject the null hypothesis that the population proportion, P, is the same as the 
specified proportion, P0. 

Here, zα represents the critical value of a standard normal variable, Z, such that area to the right of zα under 
the standard normal curve is α. 

P-Values Based upon a Normal Approximation 

As mentioned before, a p-value is the smallest value for which the null hypothesis is rejected in favor of 
the alternative hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of 
α (the level of significance) greater than or equal to the p-value. The details of computing a p-value for the 
proportion test based upon large sample normal approximation can be found in any statistical text book 
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such as Daniel (1995). ProUCL computes large sample p-values for the proportion test associated with each 
form of null hypothesis. 

6.6.2.3 Use of the Exact Binomial Distribution for Smaller Samples 

ProUCL also performs the proportion test based upon the exact binomial distribution when the sample size 
is small and one may not be able to use the normal approximation as described above. ProUCL checks for 
the availability of appropriate amount of data, and performs the tests using a normal approximation or the 
exact binomial distribution accordingly. 

STEP 1: When the sample size is small (e.g., < 30), and either (nP0), or n (1 – P0) is less than 5, one should 
use the exact BD to perform this test. ProUCL performs this test based upon the BD, when the above 
conditions are not satisfied. In such cases, ProUCL computes the critical values and p-values based upon 
the BD and its cumulative distribution function (CDF). The probability statements concerning the 
computation of p-values can be found in Conover (1999). 

STEP 2: Conclusion Based upon the Binomial Distribution 

Form 1: Large values of B cause the rejection of the null hypothesis. Therefore, reject the null hypothesis, 
when B ≥ b. Here b is obtained using the binomial cumulative probabilities based upon a BD (n, P0). The 
critical value, b (associated with α) is given by the probability statement: P(B≥b) = α, or equivalently, P(B 
< b) = (1 – α). Since B is a discrete binomial random variable, the level, α may not be exactly achieved by 
the critical value, b. 

Form 2: For this form, small values of B will cause the rejection of the null hypothesis. Therefore, reject 
the null hypothesis, when B ≤ b. Here b is obtained using the binomial cumulative probabilities based upon 
a BD(n, P0). The critical value, b is given by the probability statement: P(B≤b) = α. As mentioned before, 
since B is a discrete binomial random variable, the level, α may not be exactly achieved by the critical 
value, b. 

Two-Sided Alternative: The critical or the rejection region for the null hypothesis is made of two areas, one 
in the right tail (of area ~ α2) and the other in the left tail (with area ~ α1), so that the combined area of the 
two tails is approximately, α = α1 + α2. That is for this hypothesis form, both small values and large values 
of B will cause the rejection of the null hypothesis. Therefore, reject the null hypothesis, when B ≤ b1 or B 
> b2. Typically α1 and α2 are roughly equal, and in ProUCL, both are chosen to be equal to α /2; b1 and b2 

are given by the probability statements: P (B ≤ b1) ~ α/2, and P(B > b2) ~ α/2. B being a discrete binomial 
random variable, the level, α may not be exactly achieved by the critical values, b1 and b2. 

P-Values Based upon Binomial Distribution as Incorporated in ProUCL: The probability statements for 
computing a p-value for a proportion test based upon BD can be found in Conover (1999). Using the BD, 
ProUCL computes p-values for the proportion test associated with each form of null hypothesis. If the 
computed p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis 
based upon the collected data set used in the computations. There are some variations in the literature 
regarding the computation of p-values for a proportion test based upon the exact BD. Therefore, the p-value 
computation procedure as incorporated in ProUCL is described below. 
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Let b be the calculated value of the binomial random variable, B under the null hypothesis. ProUCL 
computes the p-values using the following probability (Prob) statements: 

Form 1: p-value = Prob(B ≥ b) 

Form 2: p-value = Prob(B ≤ b) 

Two-sided Alternative: 

For b > (n - b): P-value = 2* Prob(B ≤ b) 

For b ≤ (n - b): P-value = 2*Prob(B ≥ b) 

6.6.3 The Sign Test 

The Sign test is used to detect a difference between the population median and a fixed cleanup goal, C (e.g., 
representing the desired median value). Like the WSR test, the Sign test can also be used on paired data to 
compare the location parameters of two dependent populations. This test makes no distributional 
assumptions. The Sign test is used when the data are not symmetric and the sample size is small (EPA, 
2006). The Stats/Sample Sizes module of ProUCL can be used to determine minimum number of 
observations needed to achieve pre-specified DQOs associated with the Sign test. 

6.6.3.1 Limitations and Robustness 

Like the Proportion test, the Sign test can also be used on data sets with NDs, provided all values reported 
as NDs are smaller than the cleanup level/action level, C. For data sets with NDs, the process to perform a 
Sign test is the same as that for data sets without NDs, provided DLs associated with all NDs are less than 
the cleanup level. Per EPA guidance document (2006), all NDs exceeding the action level are discarded 
from the computation of Sign test statistic; also all observations, detects and NDs equal to the action level 
are discarded from the computation of the Sign test statistic. Discarding of observations (detects and NDs) 
will have an impact on the power of the test (reduced power). ProUCL has the Sign test for data sets with 
NDs as described in USEPA (2006). However, the performance of the Sign test on data sets with NDs 
requires some evaluation. 

6.6.3.2 Sign Test in the Presence of Nondetects 

A principal requirement when applying the sign test is that the cleanup level, C, should be greater than the 
largest ND value; in addition all observations (detects and NDs) equal to the action level and all NDs greater 
than or equal to the action level are discarded from the computation of the Sign test statistic. 

6.6.3.3 Directions for the Sign Test 

Let x1, x2, . . . , xn represent a random sample of size n collected from a site area under investigation. As 
before, S ≥ 0 represents the substantial difference used in Form 2 hypothesis tests. 

STEP 1: Let 𝜇𝜇�𝑋𝑋 be the site population median. 
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State the following null and the alternative hypotheses: 

Form 1: H0: 𝜇𝜇�𝑋𝑋≤ C vs. HA: 𝜇𝜇�𝑋𝑋> C 

Form 2: H0: 𝜇𝜇�𝑋𝑋≥ C vs. HA: 𝜇𝜇�𝑋𝑋< C 

Two-Sided: H0: 𝜇𝜇�𝑋𝑋= C vs. HA: 𝜇𝜇�𝑋𝑋≠ C 

Form 2 with substantial difference, S: Ho: 𝜇𝜇�𝑋𝑋 ≥ C + S vs. HA: 𝜇𝜇�𝑋𝑋< C + S 

STEP 2: Calculate the n differences,𝑑𝑑𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝐶𝐶. If some of the 𝑑𝑑𝑖𝑖 = 0, then reduce the sample size until 
all the remaining |di|>0. This means that all observations (detects and NDs) tied at C are ignored from the 
computation. Compute the binomial random variable, B representing the number of𝑑𝑑𝑖𝑖 > 0, i: = 1,2,...,n. 
Note that under the null hypothesis, the binomial random variable, B follows a binomial distribution (BD) 
~ BD (n, ½) where n represents the reduced sample size after discarding observations as described above. 
Thus, one can use the exact BD to compute the critical values and p-values associated with this test. 

STEP 3: For n ≤ 40, ProUCL computes the exact BD based test statistic, B; and 

For n > 40, one may use the approximate normal test statistic given by, 

𝐵𝐵−𝑛𝑛2−𝑆𝑆 
𝑧𝑧0 = . (6-3) 

�𝑛𝑛 
4 

The substantial difference, S =0, except for Form 2 hypotheses with substantial difference. 

STEP 4: For n ≤ 40, one can use the BD table as given in EPA (2006). These critical values are 
automatically computed by ProUCL) to calculate the critical values. For n > 40, use the normal 
approximation and the associated normal z critical values. 

STEP 5: Conclusion when n ≤ 40 (following EPA 2006): 

Form 1: If B ≥ BUPPER (n, 2α), then reject the null hypothesis that the population median is less than the 
cleanup level, C. 

Form 2: If B ≤ BUPPER (n, 2α), then reject the null hypothesis that the population median is more than the 
cleanup level. 

Two-Sided: If B ≥ BUPPER (n, α) or B ≤ BUPPER (n, α) - 1, then reject the null hypothesis that the population 
median is comparable to the cleanup level, C. 

Form 2 with substantial difference, S: If B ≤ BUPPER (n, 2α), then reject the null hypothesis that the 
population median is more than the cleanup level, C + substantial difference, S. 

ProUCL calculates the critical values and p-values based upon the BD (n, ½) for both small samples and 
large samples. 
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Conclusion: Large Sample Approximation when n>40 

Form 1: If z0 > zα, then reject the null hypothesis that population median is less than the cleanup level, C. 

Form 2: If z0 <- zα, then reject the null hypothesis that the population median is greater than the cleanup 
level, C. 

Two-Sided: If |z0 | > zα/2, then reject the null hypothesis that the population median is comparable to the 
cleanup level, C. 

Form 2 with substantial difference, S: If z0 <- zα, then reject the null hypothesis that the population median 
is more than the cleanup level, C + substantial difference, S. 

Here, zα represents the critical value of a standard normal distribution (SND) such that area to the right of 
zα under the standard normal curve is α. 

P-Values for One-Sample Sign Test 

ProUCL calculates the critical values and p-values based upon: the BD(n, ½) for small data sets; and normal 
approximation for larger data sets as described above. 

6.6.4 The Wilcoxon Signed Rank Test 

The Wilcoxon Signed Rank (WSR) test is used for evaluating the difference between the location parameter 
(mean or median) of a population and a fixed cleanup standard such as C, with Cs representing a location 
value. It can also be used to compare the medians of paired populations (e.g., placebo versus treatment). 
Hypotheses about parameters of paired populations require that data sets of equal sizes are collected from 
the two populations. 

6.6.4.1 Limitations and Robustness 

For symmetric distributions, the WSR test appears to be more powerful than the Sign test. However, WSR 
test tends to yield incorrect results in the presence of many tied values. On data sets with NDs, the process 
to perform a WSR test is the same as that for data sets without NDs once all NDs are assigned some 
surrogate value. However, like the Sign test, not much guidance is available in the literature for performing 
WSR test on data sets consisting of ND observations. The WSR test for data sets with NDs as described in 
USEPA (2006) and incorporated in ProUCL requires further investigation especially when multiple DLs 
with NDs exceeding the detects are present in the data set. 

For data sets with NDs with a single DL, DL, a surrogate value of DL/2 is used for all ND values (EPA, 
2006). The presence of multiple DLs makes this test less powerful. It is suggested not to use this test when 
multiple DLs are present with NDs exceeding the detected values. Per EPA (2006) guidance, when multiple 
DLs are present, then all detects and NDs less than the largest DL may be censored which tends to reduce 
the power of the test. In ProUCL, all NDs including the largest ND value are replaced by half of their 
respective reporting limit values. All detected values are used as reported. 
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6.6.4.2 Wilcoxon Signed Rank (WSR) Test in the Presence of Nondetects 

Following the suggestions made in the EPA guidance document (2006), ProUCL uses the following process 
to perform WSR test in the presence of NDs. 

For left-censored data sets with a single DL (it is preferred to have all detects greater than the NDs), it is 
suggested (EPA, 2006) to replace all NDs by DL/2. This suggestion (EPA, 2006) has been used in the WSR 
test as incorporated in ProUCL software. Specifically, if there are k ND values with the same DL, then they 
are considered as “ties” and are assigned the average rank for this group. 

The presence of multiple DLs makes this test less powerful. When multiple DLs are present, then all NDs 
are replaced by half of their respective DLs. All detects are used as reported. 

6.6.4.3 Directions for the Wilcoxon Signed Rank Test 

Let x1, x2, . . . , xn represent a random sample of size, n collected from a site area under investigation, and C 
represent the cleanup level. 

STEP 1: State/select one of the following null hypotheses: 

Form 1: H0: Site location ≤ C vs. HA: Site location > C 

Form 2: H0: Site location ≥ C vs. HA: Site location < C 

Two-Sided: H0: Site location = C vs. HA: Site location ≠ C 

Form 2 with substantial difference, S: H0: Site location ≥ C + S vs. Ha: Site location < C + S, here S ≥ 0. 

STEP 2: Calculate the deviations, 𝑑𝑑𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝐶𝐶. If some 𝑑𝑑𝑖𝑖 = 0, then reduce the sample size until all 
|di| > 0. That is, ignore all observations with 𝑑𝑑𝑖𝑖 = 0. 

STEP 3: Rank the absolute deviations, |di|, from smallest to the largest. Assign an average rank to the tied 
observations. 

STEP 4: Let Ri be the signed rank of |di|, where the sign of Ri is determined by the sign of di. 

STEP 5: Test statistic calculations: 

For n ≤ 20, compute 𝑇𝑇+ = ∑{𝑖𝑖:𝑃𝑃𝑖𝑖>0} 𝑅𝑅𝑖𝑖, where 𝑇𝑇+ is the sum of the positive signed ranks. 

For n > 20, use a normal approximation and compute the test statistic given by 

𝑇𝑇+−𝑛𝑛(𝑛𝑛+1)/4𝑧𝑧0 = (6-4) 
�𝑖𝑖𝑎𝑎𝑟𝑟(𝑇𝑇+) 

Here 𝑣𝑣𝑚𝑚𝑟𝑟(𝑇𝑇+) is the variance of T+ and is given by 
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𝑛𝑛(𝑛𝑛+1)(2𝑛𝑛+1) 𝑙𝑙 𝑣𝑣𝑚𝑚𝑟𝑟(𝑇𝑇+) = − 
1 ∑ 𝑡𝑡𝑎𝑎 (𝑡𝑡𝑎𝑎2 − 1); g = number of tied groups. 𝑎𝑎=1 24 48 

STEP 6: Conclusion when n ≤ 20: 

Form 1: Larger values of the test statistic, T+ , will cause the rejection of the Form 1 null hypothesis. That 
is if 𝑇𝑇+ ≥ 

𝑛𝑛(𝑛𝑛+1) 
2 

- wα = w(1-α), then reject the null hypothesis that the location parameter is less than the 
cleanup level, C. 

Form 2: Smaller values of the test statistic will cause the rejection of the Form 2 null hypothesis. If 𝑇𝑇+ ≤ 
𝑟𝑟𝛼𝛼, then reject the null hypothesis that the location parameter is greater than the cleanup level, C. 

Two-Sided Alternative: If 𝑇𝑇+ ≥ 
𝑛𝑛(𝑛𝑛+1) − 𝑟𝑟𝛼𝛼/2 or 𝑇𝑇+ ≤ 𝑟𝑟𝛼𝛼/2 , then reject the null hypothesis that the 

2 

location parameter is comparable to the action level, C. 

Form 2 with substantial difference, S: If 𝑇𝑇+ ≤ 𝑟𝑟𝛼𝛼, then reject the null hypothesis that the location parameter 
is more than the cleanup level, C + the substantial difference, S. 

Notes: In the above, wα represents the αth quantile (lower αth critical value) of the distribution of the test 
statistic T+. The upper αth critical value, w(1-α) (=(1-α)th quantile of the test statistic, T+ , as needed for the 
Form 1 hypothesis is given as follows: 

𝑃𝑃(𝑇𝑇+ ≤ 𝑟𝑟1−𝛼𝛼) = 1 − 𝛼𝛼, with 

𝑟𝑟1−𝛼𝛼 = 𝑛𝑛(𝑛𝑛 + 1)/2 − 𝑟𝑟𝛼𝛼 

The lower critical values (quantiles of the test statistic, T+) for α≤0.5 are tabulated in the various statistics 
books (e.g., Conover, 1999; Hollander and Wolfe, 1999) and Technical Guidance document (EPA 2006b). 
The upper quantiles used in the Form 1 hypothesis or two-sided hypothesis are obtained using the equation 
described above. 

Conclusion when n > 20: 

Form 1: If z0 > zα, then reject the null hypothesis that location parameter is less than the cleanup level, C. 

Form 2: If z0 < - zα, then reject the null hypothesis that the location parameter is greater than the cleanup 
level, C. 

Two-Sided: If |z0 | > zα/2, then reject the null hypothesis that the location parameter is comparable to the 
cleanup level, C. 

Form 2 with substantial difference, S: If z0 <- zα, then reject the null hypothesis that the location parameter 
is more than the cleanup level, C + the substantial difference, S. 

It should be noted that WSR can be used to compare medians (means when data are symmetric) of two 
correlated (paired) data sets. 
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From Rle SuperFund Jds 

Full Precision OFF 

Confidence Coefficient 95,. 
Substantial Difference 0.000 

Action Level 10000.000 

Selected Null Hypothesis Mean >= Action Level (Form 2) 

AJtemative Hypothesis Mean < the Action Level 

Alt.minun 

Ore Sample t-T est 

Raw Statistics 

Number of Valid Observations 24 

f Number of Distinct Observations 24 

Minimum 1710 

Maximum 16200 

Mean 7789 

Median 7010 

SD 4264 

SE of Mean 870.4 

HO: Sample Mean >: 10000 (Form 2) 

Test Value 

Degrees of Freedom 

Critical Value (0. 05) 

P-Value 

Conclusion with Alpha : 0.05 

Reject HO. Conclude Mean < 10000 

P-Value < Alpha (0.05) 

-2.54 

23 

-1.714 

0.00915 

   

Date/Time of Computation 3/9/2013 8:46:40 AM 

Notes: The critical values, 𝑟𝑟𝛼𝛼 as tabulated in EPA (2006b) have been programmed in ProUCL. For smaller 
data sets with n ≤ 20 the p-values are computed using the BD; and for larger data sets with n > 20 the normal 
approximation is used to compute the critical values and p-values. 

Example 6-1: Consider the aluminum and thallium concentrations of the real data set used in Example 2-
4 of Chapter 2. Please note that the aluminum data set follows a normal distribution and the thallium data 
set does not follow a discernible distribution. One-sample t-test (Form 2), Proportion test (2-sided) and 
WRS test (Form 1) results are shown below. 

Table 6-2. Single-sample t-Test, H0:  Aluminum Mean Concentration ≥10000  

Conclusion: Reject the null hypothesis and conclude that mean aluminum concentration <10000. 
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Confidence Coefficient % 

User Specified Proportion 0 100 (PO of Exceedances of Action Level) 

Action/ compliance Umtt 0.200 

Select Null Hypothesis Sample Proportion , P of Ex.ceedances of Action Level = User Spedied Proportion (2 Sided Alternative) 

Alternative Hypothesis Sample Proportion . P of Exceedances of Action Level o User Sped ied Proportion 

Thallit.m 

One Sample Proportion Test 

Raw Statistics 

Number of Valid Observations 24 r 
Number of Distinct Observations 18 

Minimum 0.066 

Maximum 0.456 

Mean 0.147 

Median 0.07 

SD 0.13.3 

SE of Mean 0.0271 

Number of Ex.ceedances 6 

Sample Proportion of Ex.ceedances 0.25 

HO: Sample Proportion = O_ 1 

.Approximate P-Value 0.0349 

Conclusion with Alpha = 0.05 

Reject HO. Conclude Sample Proportion <> O_ 1  

 

Table 6-3. Single-Sample Proportion Test 
(H0: Proportion, P, of exceedances by thallium values exceeding the action level of 0.2 

is equal to 0.1, vs. HA: Proportion of exceedances is not equal to 0.1). 

Conclusion: Proportion of thallium concentrations exceeding 0.2 is not equal to 0.1. 
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Confidence Coefficient 95% 

Substantial Difference 0.000 

Action Level 0.200 

Selected Null Hypothesis Mean/ Median <= Action Level (Form 1) 

Alternative Hypothesis Mean/ Median > the Action Level 

Thall;..., 

One Sample Wilcoxon Signed Rane Test 

Raw Statistics 

Number of Valid Observations 24 

Number of Distinct Observations 1S 

Minimum 0.066 

Maximum 0.456 

Mean 0.147 
HO: Sample Mean/Median<= 0_2 (Form 1) 

Median 0.07 

SD 0.133 large Sample z-Test Statistic -1.644 

SE of Mean 0.0271 Critical Value (0 05) 1.645 

Number Above Action Level 6 P-Value 0.95 

Number Equal Action Level 0 

Number Below Action Level 18 Conclusion with Alpha = 0.05 

T-plus 93 Do Not Reject HO. Conclude Mean/Medan <= 0_2 

T;ninus 207 P-Value > Alpha (0.05)  

   

    
    

       
 

 

       
 

Box Plot for Blood_Pb 

Table 6-4. Single-sample  WRS Test  (H0: Median of thallium  concentrations  ≤0.2)  

Conclusion: Do not reject the null hypothesis and conclude that median of thallium concentrations < 0.2. 

Example 6-2: Consider the blood lead-levels data set discussed in the environmental literature (Helsel, 
2013). The data set consists of several NDs. The box plot shown in Figure 6-1 suggests that median of lead 
concentrations is less than the action level. The WSR tests the null hypothesis: Median lead concentrations 
in blood ≥ action level of 0.1 

Figure 6-1. Box Plot of Lead in Blood Data Comparing Pb Concentrations with the 
Action Level of 0.1 
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Blood_Pb 

One Sample Wilcoxon Signed Rank Test 

Raw Statistics 

Number of Valid Data 27 

Number of Distinct Data 13 

Number of Non"Detects 19 

Number of Detects 8 

Percent Non-Detects 70.Ji4 

Minimum Non~etect 0.0137 

Maximum Non~etect 0.02 

Minimum Detect 0.0235 

Maximum Detect 0.269 

Mean of Detects 

Median of Detects 

0.107 

0.0776 
HO: Sample Median >= 0. 1 (F-orm 2) 

SD of Detects 0.0911 
Large Sample z-Test Statistic -3.667 

Median of Processed Data used in WSR 0.o1 Critical Value (0 05) -1.645 
Number Above Action Level 4 P-Value 1.2291 E-4 
Number Equal Action Level 0 

Number Below Action Level 23 Conclusion with Alpha = 0.05 

T-plus 39 Reject HO. Conclude Mean/Median < 0. 1 

T-minus l39 P-Value < Alpha [0.05)  

 

    
 

   

    
  

       
  

     

      
   

     
     

  

Table 6-5. One-Sample Wilcoxon  Signed  Rank Test  for Example 6-2  

Conclusion: Both the graphical display and the WSR test suggest that median of lead concentrations in 
blood is less than 0.1. 

6.7 Two-sample Hypotheses Testing Approaches 

The use of parametric and nonparametric two-sample hypotheses testing approaches is quite common in 
environmental applications including site versus background comparison studies. Several of those 
approaches for data sets with and without ND observations have been incorporated in the ProUCL software. 
Additionally some graphical methods (box plots and Q-Q plots) for data sets with and without NDs are also 
available in ProUCL to visually compare two or more populations. 

Student’s two-sample t-test is used to compare the means of the two independently distributed normal 
populations such as the potentially impacted site area and a background reference area. Two cases arise: 1) 
the variances (dispersion) of the two populations are comparable, and 2) the variances of the two 
populations are not comparable. Generally, a t-test is robust and not sensitive to minor deviations from the 
assumptions of normality. 
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6.7.1 Student’s Two-sample t-Test (Equal Variances) 

6.7.1.1 Assumptions and their Verification 

X1, X2, …, Xn represent site samples and Y1, Y2, … , Ym represent background samples that are collected at 
random from the two independent populations. The validity of random samples and independence 
assumptions may be confirmed by reviewing the procedures described in EPA (2006b). Let 𝑋𝑋� and 𝑌𝑌� 
represent the sample means of the two data sets. Using the GOF tests (available in ProUCL 5.2 under 
Statistical Tests Module), one needs to verify that the two data sets are normally distributed. If both m and 
n are large (and the data are mildly to moderately skewed), one may make this assumption without further 
verification (due to the CLT). If the data sets are highly skewed (skewness discussed in Chapters 3 and 4), 
the use of nonparametric tests such as the WMW test supplemented with graphical displays is preferable. 

6.7.1.2 Limitations and Robustness 

The two-sample t-test with equal variances is fairly robust to violations of the assumption of normality. 
However, if the investigator has tested and rejected normality or equality of variances and sample sizes are 
small, then nonparametric procedures such as the WMW may be applied. It is suggested that a t-test not be 
used on log-transformed data sets as a t-test on log-transformed data tests the equality of medians and not 
the equality of means. For skewed distributions there are significant differences between mean and median. 
The Student’s t- test assumes the equality of variances of the two populations under comparison; if the two 
variances are not equal and the normality assumption of the means is valid, then the Satterthwaite’s t-test 
(described below) can be used. 

In the presence of NDs, it is suggested to use a Gehan test or T-W test. Sometimes, users tend to use a t-
test on data sets obtained by replacing all NDs by surrogate values, such as respective DL/2 values, or DL 
values. The use of such methods can yield incorrect results and conclusions. The use of substitution methods 
(e.g., DL/2) should be avoided. 

6.7.1.3 Guidance on Implementing the Student’s Two-sample t-Test 

The number of site (Population 1), n and background (Population 2), m measurements required to conduct 
the two-sample t-test should be calculated based upon appropriate DQO procedures (EPA [2006a, 2006b]). 
In case, it is not possible to use DQOs, or to collect as many samples as determined using DQOs, one may 
want to follow the minimum sample size requirements as described in Chapter 1. The Stats/Sample Sizes 
module of ProUCL can be used to determine DQOs based sample sizes. ProUCL also has an F-test to verify 
the equality of two variances. ProUCL automatically performs this test to verify the equality of two 
dispersions. The user should review the output for the equality of variances test conclusions before using 
one of the two tests: Student’s t-test or Satterthwaite’s t-test. If some measurements appear to be unusually 
large compared to the majority of the measurements in the data set, then a test for outliers (Chapter 7) 
should be conducted. Once any identified outliers have been investigated to determine if they are mistakes 
or errors and, if necessary, discarded, the site and background data sets should be re-tested for normality 
using formal GOF tests and normal Q-Q plots. 

The project team should decide the proper disposition of outliers. In practice, it is advantageous to carry 
out the tests on data sets with and without the outliers. This extra step helps the users to assess and determine 
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the influence of outliers on the various test statistics and the resulting conclusions. This process also helps 
the users in making appropriate decisions about the proper disposition (include or exclude from the data 
analyses) of outliers. 

6.7.1.4 Directions for the Student’s Two-sample t-Test 

Let X1, X2,…, Xn represent a random sample collected from a site area (Population 1) and Y1, Y2, . . . , Ym 

represent a random data set collected from another independent population such as a background 
population. The two data sets are assumed to be normally distributed or mildly skewed. 

STEP 1: State the following null and the alternative hypotheses: 

Form 1: H0: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 ≤ 0 vs. HA: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 > 0 

Form 2: H0: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 ≥ 0 vs. HA: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 < 0 

Two-Sided: H0: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 = 0 vs. HA: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 ≠ 0 

Form 2 with substantial difference, S: H0: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 ≥ 𝑈𝑈 vs. HA: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 < 𝑈𝑈 

STEP 2: Calculate the sample mean 𝑥𝑥� and the sample variance 𝑈𝑈𝑥𝑥2 for the site (e.g., Population 1, Sample 
21) data and compute the sample mean 𝑦𝑦� and the sample variance 𝑈𝑈𝑦𝑦 for the background data (e.g., 

Population 2, Sample 2). 

STEP 3: Determine if the variances of the two populations are equal. If the variances of the two populations 
are not equal, use the Satterthwaite’s test. Calculate the pooled sd, Sp and the t-test statistic, t0: 

2 

= �
(𝑛𝑛−1)𝑠𝑠𝑥𝑥2+(𝑚𝑚−1)𝑠𝑠𝑦𝑦 𝑠𝑠𝑝𝑝 (6-5) 

(𝑚𝑚−1)+(𝑛𝑛−1) 

(�̅�𝑥−𝑦𝑦�)−𝑆𝑆 𝑡𝑡0 = (6-6) 
1𝑠𝑠𝑝𝑝� 

1 +𝑚𝑚 𝑛𝑛 

Here S = 0, except when used in Form 2 hypothesis with substantial difference, S ≥ 0. 

STEP 4: Compute the critical value tm+n-2,1-α such that 100(1 – α) % of the t-distribution with (m + n - 2) df 
is below tm+n-2,1-α. 

STEP 5: Conclusion: 

Form 1: If t0 > tm+n-2, 1-α, then reject the null hypothesis that the site population mean is less than or equal 
(comparable) to the background population mean. 

Form 2: If t0 < -tm+n-2, 1-α, then reject the null hypothesis that the site population mean is greater than or equal 
to the background population mean. 
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Two-Sided: If |t0 | > tm+n-2, 1-α/2, then reject the null hypothesis that the site population mean comparable to 
the background population mean. 

Form 2 with substantial difference, S: If t0 <- tm+n-2, 1- α, then reject the null hypothesis that the site mean is 
greater than or equal to the background population mean + the substantial difference, S. 

6.7.2 The Satterthwaite Two-sample t-Test (Unequal Variances) 

Satterthwaite’s t-test is used to compare two population means when the variances of the two populations 
are not equal. It requires the same assumptions as the two-sample t-test (described above) except for the 
assumption of equal variances. 

6.7.2.1 Limitations and Robustness 

In the presence of NDs, replacement by a surrogate value such as the DL or DL/2gives biased results. As 
mentioned above, the use of these substitution methods should be avoided. Instead the use of nonparametric 
tests such as the Gehan test or Tarone-Ware test is suggested when the data sets consist of NDs. In cases 
where the assumptions of normality of means are violated, the use of nonparametric tests such as the WMW 
test is preferred. 

6.7.2.2 Directions for the Satterthwaite Two-sample t-Test 

Let X1, X2, . . . , Xn represent random site (Population 1) samples and Y1, Y2, . . . , Ym represent random 
background (Population 2) samples collected from two independent populations. 

STEP 1: State the following null and the alternative hypotheses: 

Form 1: H0: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 ≤ 0 vs. HA: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 > 0 

Form 2: H0: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 ≥ 0 vs. HA: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 < 0 

Two-Sided: H0: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 = 0 vs. HA: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 ≠ 0 

Form 2 with substantial difference, S: H0: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 ≥ 𝑈𝑈 vs. HA: 𝜇𝜇𝑥𝑥 − 𝜇𝜇𝑦𝑦 < 𝑈𝑈 

STEP 2: Calculate the sample mean  𝑥𝑥�  and the sample variance 𝑈𝑈2 
𝑥𝑥  for the site data and compute the sample  

mean  𝑦𝑦� and the  sample variance  𝑈𝑈2𝑦𝑦  for  the background data. 

STEP 3: Use the F-test described below (in ProUCL) to verify if the variances of the two populations are 
comparable. Compute the t-statistic: 

(�̅�𝑥−𝑦𝑦�)−𝑆𝑆 𝑡𝑡0 = (6-7) 
22 𝑠𝑠𝑦𝑦 �𝑠𝑠𝑥𝑥+𝑛𝑛 𝑚𝑚 

Here S = 0, except when used in Form 2 hypothesis with substantial difference, S ≥ 0. 
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STEP 4: Use a t-table (ProUCL computes them) to find the critical value t1-α such that 100(1 – α)% of the 
t-distribution with df degrees of freedom is below t1-α, where the Satterthwaite’s Approximation for df is 
given by: 

2 

�𝑠𝑠𝑥𝑥
2 2𝑠𝑠𝑦𝑦 
𝑛𝑛 𝑚𝑚 

𝑑𝑑𝑓𝑓 = 4 2 (6-8) 
𝑠𝑠𝑥𝑥 𝑠𝑠𝑦𝑦 

𝑛𝑛2(𝑛𝑛−1)+𝑚𝑚2(𝑚𝑚−1) 

STEP 5: Conclusion: 

Form 1: If t0 > tdf, 1-α, then reject the null hypothesis that the site (Population 1) mean is less than or equal 
(comparable) to the background (Population 2) mean. 

Form 2: If t0 < -tdf, 1-α, then reject the null hypothesis that the site (Population 1) mean is greater than or 
equal to the background (Population 2) mean. 

Two-Sided: If |t0 | > tdf, 1-α/2, then reject the null hypothesis that the site (Population 1) mean is comparable 
to the background (Population 2) mean. 

Form 2 with substantial difference, S: If t0 < -tdf, 1- α, then reject the null hypothesis that the site (Population 
1) mean is greater than or equal to the background (Population 2) mean + the substantial difference, S. 

P-Values for Two-sample t-Test 

A p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative 
hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of α (the level of 
significance) greater than or equal to the p-value. ProUCL computes (based upon an appropriate t-
distribution) p-values for two-sample t-tests associated with each form of the null hypothesis. If the 
computed p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis 
based upon the collected data set used in the various computations. 

6.8 Tests for Equality of Dispersions 

This section describes a test that verifies the assumption of the equality of two variances. This assumption 
is needed to perform a simple two-sample Student’s t-test described above. 

6.8.1 The F-Test for the Equality of Two-Variances 

An F-test is used to verify whether the variances of two populations are equal. Usually the F-test is 
employed as a preliminary test, before conducting the two-sample t-test for the equality of two means. The 
assumptions underlying the F-test are that the two-samples represent independent random samples from 
two normal populations. The F-test for equality of variances is sensitive to departures from normality. There 
are other statistical tests such as the Levene's test (1960) which also tests the equality of the variances of 
two normally distributed populations. However, the inclusion of the Levene test will not add any new 
capability to the software. Therefore, taking the budget constraints into consideration, the Levene's test has 
not been incorporated in the ProUCL software. 
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Moreover, it should be noted that, although it makes sense to first determine if the two variances are equal 
or unequal, this is not a requirement to perform a t-test. The t-distribution based confidence interval or test 
for µ1 - µ2 based on the pooled sample variance does not perform better than the approximate confidence 
intervals based upon Satterthwaite's test. Hence testing for the equality of variances is not required to 
perform a two-sample t-test. The use of Welch-Satterthwaite's or Cochran's method is recommended in all 
situations (see, for example, F. Hayes [2005]). 

6.8.1.1 Directions for the F-Test 

Let X1, X2, . . . , Xn represent the n data points from site (Population 1) and Y1, Y2, . . . , Ym represent the m 
data points from background (Population 2). To manually perform an F-test, one can proceed as follows: 

STEP 1: Calculate the sample variances 𝑈𝑈𝑥𝑥2 (for the X’s) and 𝑈𝑈𝑦𝑦2 (for the Y’s) 

2 2 2 2STEP 2: Calculate the variance ratios FX = sX /sY and FY = sY /sX . Let F equal the larger of these two 
values. If F = Fx, then let k = n - 1 and q = m - 1. If F = Fy, then let k = m - 1 and q = n – 1. 

STEP 3: Using a table of the F- distribution (ProUCL computes them), find a cutoff, U = f1-α/2(k, q) 
associated with the F distribution with k and q degrees of freedom for some significance level, α. If the 
calculated F value > U, conclude that the variances of the two populations are not equal. 

P-Values for Two-sample Dispersion Test for Equality of Variances 

ProUCL computes p-values for the two-sample F-test based upon an appropriate F-distribution. If the 
computed p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis 
based upon the collected data sets. 

Example 6-3: Consider a real manganese data set collected from an upgradient well (Well 1) and two 
downgradient MWs (Wells 2 and 3). The side-by-side box plots comparing concentrations of the three wells 
are shown in Figure 6-2. The two-sample t-test comparing the manganese concentrations of the two 
downgradient MWs are summarized in Table 6-6. 
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Figure 6-2. Box Plots Comparing Concentrations of Three Wells: One Upgradient and Two 
Downgradient 
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Selected Null Hypothesis Sample 1 Mean = Sample 2 Mean (Two Sided J\Jtemative) 

J\Jtemative Hypothesis Sample 1 Mean o Sample 2 Mean 

Sample 1 Dala: ~9(8) 

Sample 2 Dala: ~9(9) 

Raw Statistics 

Sample 1 Sample 2 

Number of Valid Observations 16 16 

Number of Distinct Observations 16 15 

Minimum 1270 1050 

Maximum 4600 30&0 

Mean 1998 1968 

Median 1750 2055 

SD 3l8.8 500.2 

SE of Mean 209.7 125 
1 

Sample 1 vs Sample 2 liwo-Sample t-Test 

f 
HO: Mean of Sample 1 = Mean of Sample 2 

t-Test Lower C.Val IJpper C.Val 

Method DF Value t {0.025) t (0975) P-Value 

Pooled (Equal Variance) 30 0.123 -2.042 2.042 0.903 

Welch-Satterthwaite (Unequal Varian, 24.5 0.123 -2.064 2.064 0.903 

Pooled SD: 690.548 

Conclusion with Npha = 0.050 

Student t {Pooled): Do Not Reject HO, Conclude Sample 1 = Sample 2 

Welch-Satterthwaite : Do Not Reject HO, Conclude Sample 1 = Sample 2 

Test of Equality of Variances 

Variance of Sample 1 71B523 

Variance of Sample 2 250190 f 
Numerator D F Denominator DF F-T est Value P-Value 

15 15 2.812 t 0.054 

Conclusion with Npha = 0.05 

Two variances appear to be equal t 

Table  6-6. T-Test Comparing Mn in MW8  vs. MW9  
H0: Mean Mn  concentrations of  MW 8 and MW9 are comparable  

Conclusion: The variances of the two populations are comparable, both the t-test and Satterthwaite test lead 
to the conclusion that there are no significant differences in the mean manganese concentrations of the two 
downgradient monitoring wells. 
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6.9 Nonparametric Tests 

When the data do not follow a discernible distribution, the use of parametric statistical tests may lead to 
inaccurate conclusions. Additionally, if the data sets contain outliers or ND values, an additional level of 
uncertainty is faced when conducting parametric tests. Since most environmental data sets tend to consist 
of observations from two or more populations including some outliers and ND values, it is unlikely that the 
current wide-spread use of parametric tests is justified, given that these tests may be adversely affected by 
outliers and by the assumptions made for handling ND values. Several nonparametric tests have been 
incorporated in ProUCL that can be used on data sets consisting of ND observations with single and 
multiple DLs. 

6.9.1 The Wilcoxon-Mann-Whitney (WMW) Test 

The Mann-Whitney (M-W) (or WMW) test (Bain and Engelhardt, 1992) is a nonparametric test used for 
determining whether a difference exists between the site and the background population distributions. This 
test is also known as the WRS test. The WMW test statistic tests whether or not measurements (location, 
central) from one population consistently tend to be larger (or smaller) than those from the other population 
based upon the assumption that the dispersion/shapes of the two distributions are roughly the same 
(comparable). 

6.9.1.1 Advantages and Disadvantages 

The main advantage of the WMW test is that the two data sets are not required to be from a known type of 
distribution. The WMW test does not assume that the data are normally distributed, although a normal 
distribution approximation is used to determine the critical value of the WMW test statistic for large sample 
sizes. The WMW test may be used on data sets with NDs provided the DL or the reporting limit (RL) is the 
same for all NDs. If NDs with multiple DLs are present, then the largest DL is used for all ND observations. 
Specifically, the WMW test handles ND values by treating them as ties. Due to these constraints, other tests 
such as the Gehan test and theTarone-Ware test are better suited to perform two-sample tests on data sets 
consisting of NDs. The WMW test is more resistant to outliers than two-sample t-tests discussed earlier. It 
should be noted that the WMW test does not place enough weight on the larger site and background 
measurements. This means, a WMW may lead to the conclusion that two populations are comparable even 
when the observations in the right tail of one distribution (e.g., site) are significantly larger than the right 
tail observations of the other population (e.g., background). Like all other tests, it is suggested that the 
WMW test results be supplemented with graphical displays. 

6.9.1.2 WMW Test in the Presence of Nondetects 

If there are t ND values with a single DL, then they are considered as “ties” and are assigned the average 
rank for this group. If more than one DL is present in the data set, then WMW test censors all of the 
observations below the largest DL, and are treated as NDs at the largest DL. This of course results in loss 
of power associated with WMW test. 
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6.9.1.3 WMW Test Assumptions and Their Verification 

The underlying assumptions of the WMW test are: 

The soil sample measurements obtained from the site and background areas are statistically and spatially 
independent (not correlated). This assumption requires: 1) that an appropriate probability-based sampling 
design strategy be used to determine (identify) the sampling locations of the soil samples for collection, and 
2) those soil sampling locations are spaced far enough apart that a spatial correlation among concentrations 
at different locations is not likely to be present. 

The probability distribution of the measurements from a site area (Population 1) is similar to (e.g., including 
variability, shape) the probability distribution of measurements collected from a background or reference 
area (Population 2). The assumption of equal variances of the two regions: site vs. background should also 
be evaluated using descriptive statistics and graphical displays such as side-by-side box plots. The WMW 
test may result in an incorrect conclusion if the assumption of equality of variability is not met. 

6.9.1.4 Directions for the WMW Test when the Number of Site and Background Measurements is 
small (n ≤ 20 or m ≤20) 

Let X1, X2, . . . , Xn represent systematic and random site samples (Group 1, Sample 1) and Y1, Y2, . . . , Ym 

represent systematic and random background samples (Group 2, Sample 2) collected from two independent 
populations. It should be noted that instead of 20, some texts suggest to use 10 as a small sample size for 
the two populations. 

STEP 1: Let 𝜇𝜇�𝑥𝑥 represent site (Population 1) median and 𝜇𝜇�𝑦𝑦 represent the background (Population 2) 
median. State the following null and the alternative hypotheses: 

Form 1: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≤ 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 > 0 

Form 2: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≥ 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 < 0 

Two-Sided: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 = 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≠ 0 

Form 2 with substantial difference, S: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≥ 𝑈𝑈 𝑣𝑣𝑠𝑠. 𝐻𝐻𝐴𝐴: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 < 𝑈𝑈 

It should be noted that when the Form 2 hypothesis is used with substantial difference, S, the value S is 
added to all observations in the background data set before ranking the combined data set of size (n+m) as 
described in the following. 

STEP 2: List and rank the pooled data set of size, N = n + m site and background measurements from 
smallest to largest, keeping track of which measurements came from the site and which came from the 
background area. Assign a rank of 1 to the smallest value among the pooled data, a rank of 2 to the second 
smallest value among the pooled data, and so forth. 
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• If a few measurements are tied (identical in value), then assign the average of the ranks that 
would otherwise be assigned to those tied observations. If several measurement values have 
ties, then average the ranks separately for each of those measurement values. 

• If a few less-than values (NDs) occur (say, < 10%), and if all such values are less than the 
smallest detected measurement in the pooled data set, then treat all NDs as tied values at the 
reported DL or at an arbitrary (when no DL is reported) value less than the smallest detected 
measurement. Assign the average of the ranks that would otherwise be assigned to these tied 
less-than values (the same procedure as for tied detected measurements). Today with the 
availability of advanced technologies and instruments, instead of reporting NDs as less-than 
values, NDs are typically reported at DL levels below which the instrument cannot accurately 
measure the concentrations present in a sample. The use of DLs is particularly helpful when 
NDs are reported with multiple DLs (RLs). 

• If between 10% and 40% of the pooled data set are reported as NDs, and all are less than the 
smallest detected measurement, then one may use the approximate WMW test procedure 
described below provided enough (e.g., n > 10 and m > 10) data are available. However, the 
use of the WMW test is not recommended in the presence of multiple DLs or RLs with NDs 
larger than the detected values. 

STEP 3: Calculate the sum of the ranks of the n site measurements. Denote this sum by WS and then 
calculate the Mann-Whitney (M-W), U-statistic as follows: 

𝑈𝑈 = 𝑊𝑊𝑠𝑠 − 𝑛𝑛(𝑛𝑛 + 1)/2 (6-9) 

The test proposed by Wilcoxon based upon the rank sum, Ws is called the WRS test. The test based upon 
the U-statistic given by (6-9) was proposed by Mann and Whitney and is called the WMW test. These two 
tests are equivalent tests and yield the same results and conclusions. ProUCL outputs both statistics; 
however the conclusions are derived based upon the U-statistic and its critical and p-values. Mean and 
variance of the U-statistic are given as follows: 

𝐸𝐸(𝑈𝑈) = 𝑛𝑛𝑚𝑚/2 

𝐶𝐶𝑚𝑚𝑟𝑟(𝑈𝑈) = 𝑛𝑛𝑚𝑚(𝑛𝑛 + 𝑚𝑚 + 1)/12 

Notes: Note the difference between the definitions of U and Ws. Obviously the critical values for Ws and U 
are different. However, critical values for one test can be derived from the critical values of the other test 
by using the relationship given by the above equation (6-9). These two tests (WRS test and WMW test) are 
equivalent tests, and the conclusions derived by using these test statistics are equivalent. For data sets of 
small sizes (with m or n <20), ProUCL computes exact as well as normal distribution based approximate 
critical values. For large samples with n and m both greater than 20, ProUCL computes normal distribution 
based approximate critical values and p-values. 

STEP 4: For specific values of n, m, and α, find an appropriate WMW critical value, wα, from the table as 
given in EPA (2006) and also in Daniel (1995). These critical values have been incorporated in the ProUCL 
software. 
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STEP 5: Conclusion: 

Form 1: If U ≥ nm - wα, then reject the null hypothesis that the site population median is less than or equal 
to the background population median. 

Form 2: If U ≤ wα, then reject the null hypothesis that the site population median is greater than or equal to 
the background population median. 

Two-Sided: If U ≥ nm - wα/2 or U≤ wα/2, then reject the null hypothesis that the site population median 
(location) is comparable to that of the background population median (location). 

Form 2 with substantial difference, S: If U≤ wα, then reject the null hypothesis that the site population 
median is greater than or equal to the background population median + the substantial difference, S. S takes 
a positive value only for this form of the hypothesis with substantial difference, in all other forms of the 
null hypothesis, S = 0. 

P-Values for Two-sample WMW Test for Small Samples 

For small samples, ProUCL computes only approximate (as computed for large samples) p-values for the 
WMW test. Details of computing approximate p-values are given in the next section for larger data sets. If 
the computed p-value is smaller than the specified value of, α, the conclusion is to reject the null hypothesis 
based upon the collected data set. 

6.9.1.5 Directions for the WMW Test when the Number of Site and Background Measurements is 
Large (n > 20 and m > 20) 

It should be noted that some texts suggest that both n and m needs to be ≥10 to be able to use the large 
sample approximation. ProUCL uses large sample approximations when n>20 and m>20. 

STEP 1: As before, let 𝜇𝜇�𝑥𝑥 represent the site and 𝜇𝜇�𝑦𝑦 represent the background population medians (means). 
State the following null and the alternative hypotheses: 

Form 1: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≤ 0 vs. H1: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 > 0 

Form 2: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≥ 0 vs. H1: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 < 0 

Two-Sided: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 = 0 vs. H1: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≠ 0 

Form 2 with substantial difference, S: H0:𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≥ 𝑈𝑈 𝑣𝑣𝑠𝑠. 𝐻𝐻𝐴𝐴: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 < 𝑈𝑈 

Note that when the Form 2 hypothesis is used with substantial difference, S, the value S is added to all 
observations in the background data set before ranking the combined data set of size (n+m). For data sets 
with NDs, the Form 2 hypothesis test with substantial difference, S is not incorporated in ProUCL. 

STEP 2: List and rank the pooled set of n + m site and background measurements from smallest to largest, 
keeping track of which measurements came from the site and which came from the background area. Assign 
the rank of 1 to the smallest value among the pooled data, the rank of 2 to the second smallest value among 
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the pooled data, and so forth. All observations tied at a give value, x0, are assigned the average rank of the 
observations tied at x0. The same process is used for all tied values. 

The WMW test is not recommended when many NDs observations with multiple DLs and /or NDs 
exceeding the detected values are present in the data sets. Other tests such as the T-W and Gehan tests also 
available in ProUCL are better suited for data sets consisting of many NDs with multiple DLs and/or NDs 
exceeding detected values. 

It should however be noted these nonparametric tests (WMW test, Gehan test, and T-W test) assume that 
the shape (variability) of the two data distributions (e.g., background and site) are comparable. If this 
assumption is not met, these tests may lead to incorrect test statistics and conclusions. 

STEP 3: Calculate the sum of the ranks of the site (Population 1) measurements. Denote this sum by Ws. 
ProUCL computes the WMW test statistics by adjusting for tied observations using equation (6-11); that is 
the large sample variance of the WMW test statistic is computed using equation (6-11) which adjusts for 
ties. 

STEP 4: When no ties are present, calculate the approximate WMW test statistic, Z0 as follows: 

𝑊𝑊𝑠𝑠−
𝑛𝑛(𝑛𝑛+𝑚𝑚+1) 

𝑍𝑍0 = 2 (6-10) 
�𝑛𝑛𝑚𝑚(𝑛𝑛+𝑚𝑚+1) 

12 

The above test statistic, Z0 is equivalent to the following approximate Z0 statistic based upon the Mann-
Whitney U-statistic: 

𝑈𝑈−𝑛𝑛𝑚𝑚/2𝑍𝑍0 = 
�𝑛𝑛𝑚𝑚 
12 

(𝑛𝑛+𝑚𝑚+1) 

When ties are present in the combined data set of size (n+m), the adjusted large sample approximate test 
value, Z0 is computed by using the following equation: 

𝑊𝑊𝑠𝑠−
𝑛𝑛(𝑛𝑛+𝑚𝑚+1) 

𝑍𝑍0 = 2 
𝑔𝑔 (6-11) 

∑ 𝑡𝑡𝑗𝑗(𝑡𝑡2𝑗𝑗 −1)
�𝑛𝑛𝑚𝑚 𝑗𝑗=1 �(𝑛𝑛+𝑚𝑚+1)− �12 (𝑛𝑛+𝑚𝑚)(𝑛𝑛+𝑚𝑚−1) 

Here g represents the number of tied groups and tj is the number of tied values in the jth group. 

STEP 5: For large data sets with both n and m ≥ 20, ProUCL computes an approximate test statistic given 
by equations (6-10) and (6-11) and computes a normal distribution-based p-value and critical value, zα , 
where zα is the upper α*100 critical value of the standard normal distribution and is given by the probability 
statement: P(Z> zα)=α. 

STEP 6: Conclusion for Large Sample Approximations: 

Form 1: If Z0 > zα, then reject the null hypothesis that the site population mean/median is less than or equal 
to the background population mean/median. 
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Form 2: If Z0 < - zα, then reject the null hypothesis that the site population mean is greater than or equal to 
the background population mean. 

Two-Sided: If |Z0| > zα/2, then reject the null hypothesis that the site population mean is same as the 
background population mean. 

Form 2 with substantial difference, S: If Z0 < - zα, then reject the null hypothesis that the site population 
mean is greater than or equal to the background population location + the substantial difference, S. 

P-Values for Two-sample WMW Test – For Large Samples 

A p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative 
hypotheses. Thus, based upon the given data, the null hypothesis is rejected for all values of α (the level of 
significance) greater than or equal to the p-value. Based upon the normal approximation, ProUCL computes 
p-values for each form of the null hypothesis of the WMW test. If the computed p-value is smaller than the 
specified value of, α, the conclusion is to reject the null hypothesis based upon the collected data set used 
in the various computations. 

Example 6-4. The data set used here can be downloaded from the ProUCL website. The data set consists 
of several tied observations. The test results are summarized in Table 6-7. 
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Selected Null Hypothesis Sample 1 Mean/ Median >= Sample 2 Mean/ Median (Fonn 2) 

Alternative Hypothesis Sample 1 Mean/ Median < Sample 2 Mean/ Median 

Sample 1 Data: X3 

Sample 2 Data: Y3 

Raw Stalislics 

Sample 1 Sample 2 

Number of Valid Observations 24 25 

Number of Distinct Observations 18 19 

Minimum 5.687 1.85 

Maximum 31.2 79.06 

Mean 17.38 39.8 

Median 17.56 44.63 

SD 7.421 19.39 

SE of Mean 1.515 3.878 

.- Wilcoxon-Marn-Whitney (WNW} Test 

f HO: Mean/Median of Sample 1 >= Mean/Median of Sample 2 
• 

Sample 1 Rank Sum W·Stat 

Standardized WMW U-Stl!I 

Mean (U) 

SD(U) -Adj ties 

pproximate U-Stat Ctiical Value (0.05} 

396 
-4.093 

300 
49.97 

-1.645 

P-Value (Adjusted for Ties} 2.1298E-5 

1 
Conclusion with Alpha = 0.05 

1 Reject HO. Conclude Sample 1 < Sample 2 

P-Value < alpha (0.05} 

Table  6-7. WMW Test Comparing  Location Parameters of X3 versus Y3  
Null hypothesis:  Location Parameter of X3 > Location Parameter of Y3  
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Conclusion: Based upon the WMW test results, the null hypothesis is rejected, and it is concluded that the 
median of X3 is significantly less than the median of Y3. This conclusion is also supported by the box plots 
shown in following figure. 

Figure 6-3. Box Plots Comparing Values of Two Groups used in Example 6-4. 

Note about Quantile Test: For smaller data sets, the Quantile test as described in EPA documents ((1994, 
2006 a) and Hollander and Wolfe (1999) is available in ProUCL 4.1 (see ProUCL 4.1 Technical Guide). In 
the past, some of the users incorrectly have used this test for larger data sets. Due to lack of resources, this 
test has not been expanded for data sets of all sizes. Therefore, to avoid confusion and its misuse for large 
data sets, the Quantile test was not included in ProUCL 5.0 and newer. Interested users may use R script to 
perform the Quantile test. 

6.9.2 Gehan Test 

The Gehan test (Gehan 1965) is one of several nonparametric tests that have been proposed to test for the 
differences between two populations when the data sets have multiple censoring points and DLs. Among 
these tests, Palachek et al. (1993) indicate that they selected the Gehan test primarily because: 1) it was the 
easiest to explain, 2) other methods (e.g., Tarone-Ware test) generally behave comparably, and 3) it reduces 
to the WRS test, a relatively well-known test to environmental professionals. The Gehan test as described 
here is available in the ProUCL software. 

6.9.2.1 Limitations and Robustness 

The Gehan test can be used when the background or site data sets contain many NDs with varying DLs. 
This test also assumes that the variabilities of the two data distributions (e.g., background vs. site, 
monitoring wells) are comparable. 

The Gehan test is somewhat tedious to perform by hand. The use of a computer program is desirable. 
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If the censoring mechanisms are different for the site and background data sets, then the test results may be 
an indication of this difference in censoring mechanisms rather than an indication that the null hypothesis 
is rejected. 

The Gehan test is used when many ND observations or multiple DLs are present in the two data sets; 
therefore, the conclusions derived using this test may not be reliable when dealing with samples of sizes 
smaller than 10. Furthermore, it has been suggested throughout this guide to have a minimum of 8-10 
observations (from each of the population) to use hypotheses testing approaches, as decisions derived based 
upon smaller data sets may not be reliable enough to draw important decisions about human health and the 
environment. For data sets of sizes ≥ 10, the normal distribution based approximate Gehan’s test statistic is 
described as follows. 

6.9.2.2 Directions for the Gehan Test when m ≥ 10 and n ≥ 10 

Let X1, X2, . . . , Xn represent data points from the site population and Y1, Y2, . . . , Ym represent background 
data from the background population. Like the WMW test, this test also assumes that the variabilities of 
the two distributions (e.g., background vs. Site, MW1 vs. MW2) are comparable. Since we are dealing with 
data sets consisting of many NDs, the use of graphical methods such as the side-by-side box plots and 
multiple Q-Q plots is also desirable to compare the spread/variability of the two data distributions. For data 
sets of sizes larger than 10 (recommended), a test based upon normal approximations is described in the 
following. 

STEP 1: Let 𝜇𝜇�𝑥𝑥 represent the site and 𝜇𝜇�𝑦𝑦 represent the background population medians. State the following 
null and the alternative hypotheses: 

Form 1: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≤ 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 > 0 

Form 2: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≥ 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 < 0 

Two-Sided: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 = 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≠ 0 

For data sets with NDs, the Form 2 hypothesis test with substantial difference, S is not incorporated in 
ProUCL. The user may want to adjust their background data sets accordingly to perform this hypothesis 
test form. 

STEP 2: List the combined m background and n site measurements, including the ND values, from smallest 
to largest, where the total number of combined samples is N = m + n. The DLs associated with the ND (or 
less-than values) observations are used when listing the N data values from smallest to largest. 

STEP 3: Determine the N ranks, R1, R2, …, Rn, for the N ordered data values using the method described in 
the example given below. 

STEP 4: Compute the N scores, a(R1), a(R2),…, a(Rn), using the formula a(Ri) = 2Ri – N – 1, where i is 
successively set equal to 1, 2, …, N. 

STEP 5: Compute the Gehan statistic, G, as follows: 
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𝑁𝑁 
𝑖𝑖=1 ℎ𝑖𝑖𝛼𝛼(𝑃𝑃𝑖𝑖)𝐺𝐺 = ∑

1/2 (6-12) 
2�𝛼𝛼(𝑃𝑃𝑖𝑖)�𝑁𝑁 �𝑚𝑚𝑛𝑛 ∑ �𝑖𝑖=1𝑁𝑁(𝑁𝑁−1) 

ℎ𝑖𝑖 = 1Where � = 0 orℎ𝑖𝑖 

hi = 1 if the ith datum is from the site population 

hi = 0 if the ith datum is from the background population 

N = n + m 

a(Ri) = 2 Ri – N –1, as indicated above. 

STEP 6: Use the normal z-table to get the critical values. 

STEP 7: Conclusion based upon the approximate normal distribution of the G-statistic: 

Form 1: If G ≥ z1-α, then reject the null hypothesis that the site population median is less than or equal to the 
background population median. 

Form 2: If G ≤- z1-α, then reject the null hypothesis that the site population median is greater than or equal 
to the background population median. 

Two-Sided: If |G| ≥ z1-α/2, then reject the null hypothesis that the site population median is same as the 
background population median. 

P-Values for Two-sample Gehan Test 

For the Gehan’s test, p-values are computed using a normal approximation for the Gehan’s G-statistic. The 
p-values can be computed using the simple procedure as used for computing large sample p-values for the 
two-sample nonparametric WMW test. ProUCL computes p-values for the Gehan test for each form of the 
null hypothesis. If the computed p-value is smaller than the specified value of, α, the conclusion is to reject 
the null hypothesis based upon the collected data set used in the various computations. 

6.9.3 Tarone-Ware (T-W) Test 

Like the Gehan test, the T-W test (1978) is a nonparametric test which can be used to test for the differences 
between the distributions of two populations (e.g., two sites, site versus background, two monitoring wells) 
when the data sets have multiple censoring points and DLs. The T-W test as described below has been 
incorporated in ProUCL 5.0 and newer. It is noted that the Gehan and T-W tests yield comparable test 
results. 
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6.9.3.1 Limitations and Robustness 

The T-W test can be used when the background and/or site data sets contain multiple NDs with different 
DLs and NDs exceeding detected values. 

If the censoring mechanisms are different for the site and background data sets, then the test results may be 
an indication of this difference in censoring mechanisms (e.g., high DLs due to dilution effects) rather than 
an indication that the null hypothesis is rejected. 

Like the Gehan test, the T-W test can be used when many ND observations or multiple DLs may be present 
in the two data sets; conclusions derived using this test may not be reliable when dealing with samples of 
small sizes (<10). Like the Gehan test, the T-W test described below is based upon the normal 
approximation of the T-W statistic and should be used when enough (e.g., m ≥ 10 and n ≥ 10) site and 
background (or monitoring well) data are available. 

6.9.3.2 Directions for the Tarone-Ware Test when m ≥ 10 and n ≥ 10 

Let X1, X2, . . . , Xn represent n data points from the site population and Y1, Y2, . . . , Ym represent sample data 
from the background population. Like the Gehan test, this test also assumes that the variabilities of the two 
data distributions (e.g., background vs. site, monitoring wells) are comparable. One may use exploratory 
graphical methods to informally verify this assumption. Graphical displays are not affected by NDs and 
outlying observations. 

STEP 1: Let 𝜇𝜇�𝑥𝑥 represent the site and 𝜇𝜇�𝑦𝑦 represent the background population medians. The following null 
and alternative hypotheses can be tested: 

Form 1: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≤ 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 > 0 

Form 2: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≥ 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 < 0 

Two-Sided: H0: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 = 0 vs. HA: 𝜇𝜇�𝑥𝑥 − 𝜇𝜇�𝑦𝑦 ≠ 0 

STEP 2: Let N denote the number of distinct detected values in the combined background and site data set 
of size (n+m) including the ND values. Arrange the N distinct detected measurements in the combined data 
set in ascending order from smallest to largest. Note that N will be less than n+m. Let 
𝑧𝑧1 < 𝑧𝑧2 < 𝑧𝑧3 <. . . < 𝑧𝑧𝑁𝑁 represent N distinct ordered detected values in the data set of size, (n+m). 

STEP 3: Determine the N ranks, R1, R2, …, RN, for the N ordered distinct detected data values: 
𝑧𝑧1 < 𝑧𝑧2 < 𝑧𝑧3 <. . . < 𝑧𝑧𝑁𝑁 in the combined data set of size (n+m). 

STEP 4: Count the number, ni, i=1,2, …, N of detects and NDs (reported as DLs or reporting limits) less 
than or equal to zi in the combined data set of size (n+m). For each distinct detected value, zi compute ci = 
number of detects exactly equal to zi ; i=1,2,….N 

STEP 5: Repeat Step 4 on the site data set. That is count the number, mi ,i=1,2,….N of detects and NDs 
(reported as DLs or reporting limits) less than or equal to zi in site data set of size, (n). Also, for each distinct 
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detected value, zi, compute di = number of detects in the site data set exactly equal to zi; i=1,2,….N. Finally, 
compute, li ,i=1,2,….N, the number of detects and NDs (reported as DLs or reporting limits) less than or 
equal to zi in background data set of size (m). 

STEP 6: Compute the expected value and variance of detected values in the site data set of size, n, using 
the following equations: 

𝐸𝐸𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖 (Detection) = 𝑠𝑠𝑖𝑖 ∙ 
𝑚𝑚𝑖𝑖 (6-13) 
𝑛𝑛𝑖𝑖 

𝐴𝐴𝑖𝑖∙(𝑛𝑛𝑖𝑖−𝐴𝐴𝑖𝑖)∙𝑚𝑚𝑖𝑖∙𝑙𝑙𝑖𝑖 𝐶𝐶𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖(Detection) = (6-14) 
𝑛𝑛𝑖𝑖
2∙(𝑛𝑛𝑖𝑖−1) 

STEP 7: Compute the normal approximation of the TW test statistic using the following equation: 

∑𝑁𝑁 �𝑛𝑛𝑖𝑖(𝑑𝑑𝑖𝑖−𝑆𝑆𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆 (𝐷𝐷𝑖𝑖𝑡𝑡𝑖𝑖𝐴𝐴𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛)𝑖𝑖=1 𝑇𝑇 − 𝑊𝑊 = (6-15) 
�∑𝑁𝑁 (𝑉𝑉𝑆𝑆𝑖𝑖𝑡𝑡𝑆𝑆 (𝐷𝐷𝑖𝑖𝑡𝑡𝑖𝑖𝐴𝐴𝑡𝑡𝑖𝑖𝑙𝑙𝑛𝑛)) 𝑖𝑖=1 

STEP 8: Conclusion based upon the approximate normal distribution of the T-W statistic: 

Form 1: If T-W ≥ z1-α, then reject the null hypothesis that the site population median is less than or equal to 
the background population median. 

Form 2: If T-W ≤- z1-α, then reject the null hypothesis that the site population median is greater than or equal 
to the background population median. 

Two-Sided: If |T-W| ≥z1-α/2, then reject the null hypothesis that the site population median is same as the 
background population median. 

P-Values for Two-sample T-W Test 

Critical values and p-values for the T-W test are computed following the same procedure as used for the 
Gehan test. ProUCL computes normal distribution based approximate critical values and p-values for the 
T-W test for each form of the null hypothesis. If the computed p-value is smaller than the specified value 
of, α, the conclusion is to reject the null hypothesis based upon the data set used in the computations. 

Example 6-5. The copper (Cu) and zinc (Zn) concentrations data with NDs (from Millard and Deverel 
1988) collected from groundwater of the two zones, Alluvial Fan and Basin Trough, is used to perform the 
Gehan and T-W tests using ProUCL 5.0. Box plots comparing Cu in the two zones are shown in Figure 6-
4 and box plots comparing Zn concentrations in the two zones are shown in Figure 6-5. 
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Figure 6-4. Box plots Comparing Cu in Two Zones: Alluvial Fan versus Basin Trough 

Figure 6-5. Box Plots Comparing Zn in Two Zones: Alluvial Fan versus Basin Trough 
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Selected Null Hypothesis Sample 1 Mean/ Median = Sample 2 Mean/ Median (Two Sided Alternative) 

Alternative Hypothesis Sample 1 Mean/ Median o Sample 2 Mean/ Median 

Sample 1 Data: Cu(alluvial fan) 

Sample 2 Data: Cu(basin t~) 

Raw Statistics 

Sample 1 

Number of Valid Data 65 

Number of Missing Observations 3 

Number of Non"Detects 17 

Number of Detect Data 48 

Minimum Non-Detect 

Maximum Non-Detect 20 

Percent Non-detects 26.15% 

Minimum Detect 1 

Maximum Detect 20 

Mean of Detects 4.146 

Median of Detects 2 

Sample 2 

49 
+ 

14 

35 

15 

28.57°1. 

1 

23 

5.229 

3 

+ 

+ 

SD of Detects 4.005 5.214 

Sample 1 vs Sample 2 Gehan Test 

HID: Mean of Sample 1 := Mean of bac:kgJt>tJ.Dd 

Gehan z Test Value -1.372 

Lower Oitical z (0.025) -1.9 6 

Upper Oitical z (0.975) 1.9 6 

IP-Value 0.17 

Conclusion with .Alpha = 0_05 

Do Not Reiect HOm Conclude Sample 1 = Samp -le 2 

P-:Value >= alpha (0_05) 

        
         

   

Table 6-8. Gehan Test Comparing the Location Parameters of Copper (Cu) in Two Zones 
H0: Cu concentrations in two zones, Alluvial Fan and Basin Trough, are comparable 

Conclusion: Based upon the box plots shown in Figure 6-3 and the Gehan test summarized in Table 6-8, 
the null hypothesis is not rejected, and it is concluded that the mean/median Cu concentrations in 
groundwater from the two zones are comparable. 
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Selected Null H'fpothesis Sample 1 Mean/ Median : Sample 2 Mean/ Median (Two Sided Alternative) 

Alternative Hypothesis Sample 1 Mean/ Median o Sample 2 Mean/ Median 

T 

Sample 1 Data: Zn(alluvial fan) 
+ 

Sample 2 Data: Zn(basin trough) 
+ 

+ 
RawSt atistics 

Sample 1 Sample 2 
+ 

ata Number of Valid D 67 50 
+ 

Number of Missing Observati ons 1 0 
+ 

Number of Non·Dete els 16 4 
+ 

Number of Dete els 51 46 

Minimum Non-Det eel 3 3 
+ 

Maximum Non-Det eel 10 10 

Percent Non-dete els 23.&8°4 8.00% 
+ 

Minimum Det eel 5 3 
+ 

Maximum Det eel 620 90 
+ 

Mean of Dete els 27.88 23.13 
+ 

Median of Dete els 11 20 

SD of Dete els 85.02 19.03 

Sample 1 YS Sample 2 Jarnne-Ware Jest 

HO: Mean/Median of .Sample ·1 = Mean/Median of Sample 2 

T\V Statistic -2.1 13 

Lower n v Oitic al ValLJJe(0.025) -1.96 

Upper TW Oitic al Value (0.975) 1.96 t 
P-Value 0.0346 

CondllliSion with Alpha = O_ 5 O 

Reject HO., Conclude Sampl • e 1 <> Sample 2 

P-Value < alpha 1(0 .05} 

Table 6-9. Tarone-Ware Comparing Location Parameters of Zinc Concentrations 
H0: Zn concentrations in groundwaters of Alluvial Fan = groundwaters of Basin Trough 

Conclusion: Based upon the box plots shown in Figure 6-5 and the T-W test results summarized in Table 
6-9, the null hypothesis is rejected, and it is concluded that the Zn concentrations in groundwaters of two 
zones are not comparable (p-value = 0.0346). 
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CHAPTER  7  
 

Outlier  Tests for  Data Sets with and without Nondetect Values  
Due to resource constraints, it is not possible (nor needed) to sample an entire population (e.g., reference 
area) of interest under investigation; only parts of the population are sampled to collect a random data set 
representing the population of interest. Statistical methods are then used on sampled data sets to draw 
conclusions about the populations under investigation. In practice, a sampled data set can consist of some 
wrong/incorrect values, which often result from transcription errors, data-coding errors, or instrument 
breakdown errors. Such wrong values could be outlying with respect to the rest of the data set; these outliers 
need to be fixed and corrected or when correction is not possible, removed before performing a statistical 
method. However, a sampled data set can also consist of some correct measurements that are extremely 
large or small relative to the majority of the data. If the sampling design was representative and competently 
executed, then these outlying measurements are truly reflective of the background population, which may 
indeed be skewed or even multimodal. 

In practice, the boundaries of an environmental population (background) of interest may not be well-defined 
and the selected population actually may consist of areas (concentrations) not belonging to the dominant 
population of interest (e.g., reference area). Therefore, a sampled data set may consist of outlying 
observations coming from population(s) not belonging to the dominant background population of interest. 
Statistical tests based on parametric methods generally are more sensitive to the existence of outliers than 
are those based on nonparametric distribution-free methods. It is well-known (e.g., Rousseeuw and Leroy 
1987; Barnett and Lewis 1994; Singh and Nocerino 1995) that the presence of outliers in a data set distorts 
the computations of all classical statistics (e.g., sample mean, sd, upper limits, hypotheses test statistics, 
GOF statistics, OLS regression estimates, covariance matrices, and also outlier test statistics themselves) 
of interest. Outliers also lead to both Types I and Type II errors by distorting the test statistics used for 
hypotheses testing. Statistics computed using a data set with outliers lack statistical power to address the 
objective/issue of interest (e.g., use of a BTV to identify contaminated locations). The use of such distorted 
statistics (e.g., two-sample tests, UCL95, UTL95-95) may lead to incorrect cleanup decisions which may 
not be cost-effective or protective of human health and the environment. 

It is also well-known that classical outlier tests such as the Rosner Test suffer from masking effects (Huber 
1981; Rousseeuw and Leroy 1987; Barnett and Lewis 1994; Singh and Nocerino 1995, and Marona, Martin, 
and Yohai 2006); this is especially true when outliers are present in clusters of data points and /or the data 
set represents multiple populations. Masking means that the presence of some outliers hides the presence 
of other intermediate outliers. The use of robust and resistant outlier identification methods is recommended 
in the presence of multiple outliers. Several modern robust outlier identification methods exist in the 
statistical literature cited above. However, robust outlier identification procedures are beyond the scope of 
the ProUCL software and this technical guidance document. 

7.1 Outliers in Environmental Data Sets 

In addition to representing contaminated locations, outliers in an environmental data set occur due to non-
random, random and seasonal fluctuations in the environment. Outliers tests identify statistical outliers 
present in a data set. The variabilities of data sets originating from environmental applications are much 

227 



            
  

  
       

    
   

    
 

   
        

    
      

 
       

       
        

 
     

      
              
      

 

            
    

     
       

 

      
     

             
   

 
          

    
    

          
  

   

    
     

higher than the variabilties of data sets collected from other applications such as the biological and 
manufacturing processes, therefore, in environmental applications, not all outliers identified by a statistcial 
test may represent real physical outliers. Typically, extreme statistical outliers in a data set represent non-
random situations potentially representing impacted locations; extreme outliers should not be included in 
statistical evaluations. Mild and intermediate statistical outliers may be present due to random natural 
fluctuations and variability in the environment; those outlying observations may be retained in statistical 
evaluations such as estimating BTVs. Based upon site CSM and expert knowledge, the project team should 
make these determinations. 

The use of graphical displays is very helpful in distingushing between extreme statistical outliers (real 
physical outliers) and intermediate statistical outliers. It is suggested that outlier tests be supplemented with 
exploratory graphical displays such as Q-Q plots and box plots (Johnson and Wichern 2002; Hoaglin, 
Moseteller and Tukey 1983). ProUCL has several of these graphical methods which can be used to identify 
multiple outliers potentially present in a data set. Graphical displays provide additional insight into a data 
set that cannot be revealed by tests statistics (e.g., Rosner test, Dixon test, S-W test). Graphical displays 
help identify observations that are much larger or smaller than the bulk (majority) of the data. Based upon 
historical and current site and regional information, graphical displays, outlier test results, and investigation 
of suspect data, the project team and the decision makers should decide about the proper disposition of 
outliers to include or not to include them in the computation of the various decision-making statistics such 
as UCL95 and UTL95-95. Performing statistical analyses twice on the same data set, once using the full 
data set with outliers and once using the data set without high/extreme outliers coming from the far tails, 
helps the project team in determining the proper disposition of those outliers. Several examples illustrating 
these issues have been discussed in this technical guidance document (e.g., Chapters 2 through 5). 

Note 1: In practice, extreme outliers represent: 1) nonrepresentative sampling, 2) gross measurement errors, 
3) highly skewed distributions, or 4) observations coming from population(s) different from the dominant 
population of interest. On a normal exploratory Q-Q plot, observations well-separated (sticking out, 
significantly higher than the majority of the data) from the majority of observations may represent extreme 
physical outliers. 

Note 2 (about Normality): Rosner and Dixon outlier tests require normality of a data set without the 
suspected outliers. Literature about these outlier tests is somewhat confusing and users tend to believe that 
the original data (with outliers) should follow a normal distribution. A data set with outliers very seldom 
follow a normal distribution as the presence of outliers tends to destroy the normality of a data set. 

Note 3 (Outlier tests on Log-tranformed data): Statistical literature is abundant with methods applicable to 
normally distributed data sets. From theoretical point of view, one can use methods applicable to a normally 
distributed data set on log-transformed data sets following a lognormal distribution. Based upon this 
scenario, the use of a lognormal distribution is quite common on environmental data sets without realizing 
the problems and issues associated with its use (e.g., as described in Chapters 2-5 of this documents). While 
performing outlier tests on a background data set, in addition to accommodating contamination (extreme 
elevated outliers), the use of those outlier tests (e.g., Rosner test) may incorrectly identify the lower 
background level concentrations as outliers. Without looking into these issues carefully, some 
environmental documents (e.g., EPA 2009e, Helsel (2005, 2012)) suggest the use of statistical methods on 
log-transformed data sets. These documents suggest the use of outlier (e.g., Rosner test) tests on log-
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tranformed data without realizing the pitfalls associated with its use. Based upon a real data set, an Example 
7-0 illustrating these issues is provided below in Section 7.2. 

Note 4: Methods incorporated in ProUCL can be used on any data set with or without NDs, and with or 
without the outliers. In the past, some practitioners have mis-stated that ProUCL software is restricted and 
can be used only on data sets without outliers. Just like any other software, it is not a requirement to exclude 
outliers before using any of the statistical methods incorporated in ProUCL. However, it is the intent of the 
developers of the ProUCL software to inform the users on how the inclusion of outliers can yield distorted 
UCL95; UPLs, UTLs, as well as other statistics. The outlying observations should be investigated 
separately to determine the reasons for their occurrences (e.g., nonrepresentative sampling, errors or 
contaminated locations). It is suggested that statistics be computed with and without the outliers followed 
by evaluation of the potential impact of outliers on the decision-making processes. 

7.2 Outliers and Normality 

The presence of outliers in a data set destroys the normality of the data set (Wilks 1963; Barnett and Lewis 
1994; Singh and Nocerino 1995). It is highly likely that a data set which contains outliers will not follow a 
normal distribution unless the outliers are present in clusters. The classical outlier tests, Dixon and Rosner 
tests, assume that the data set without the suspected outliers follow a normal distribution; that is for both 
Rosner and Dixon tests, the data set representing the main body of the data obtained after removing the 
outliers, and not the original data set with outliers needs to follow a normal distribution. There appears to 
be some confusion among some practitioners (Helsel and Gilroy 2012) who mistakenly assume that one 
can perform Dixon and Rosner tests only when the data set, including outliers, follows a normal distribution, 
which is only rarely true. 

A Q-Q plot is a more reliable guide as to whether the bulk of the data, without outliers, may follow an 
approximate normal distribution. Outliers are not known in advance. ProUCL has normal Q-Q plots which 
can be used to get an idea about the number of outliers or mixture populations potentially present in a data 
set. This can help a user to determine the suspected number of outliers needed to perform the Rosner test. 
Since the Dixon and Rosner tests may not identify all potential outliers present in a data set, the data set 
obtained, even without the identified outliers, may not follow a normal distribution.  

The following example illustrates an issue to be careful of when applying outlier tests to log-transformed 
data sets. 

Example 7-1. Rosner Test on Log-transformed Data Set. 

A background data set for total polycyclic aromatic hydrocarbons (tPAH) from a Superfund site was used 
by the consultanats for the responsible party (RP) to establish BTVs. Based upon the log-transformed data, 
they failed to identiy potential outliers present in the upper end of the distribution and determined 
observations in the lower end of the data set as outliers which probably represent real background level 
concentrations. An exploratory Q-Q plot based upon the tPAH data set is shown in Figure 7-1. From this 
figure, it is noted that there are at least 3 high observations which may represent outliers. The Rosner test 
for 3 outliers was performed on raw and log-transformed data, those results are presented in Tables 7-1 and 
Table7-2. Rosner test performed on raw background data set identified higher observations: 42258, 47505, 
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Ros ner's Outlier Test for IP.AH_~ 

Mean 12044 

Standard Devialion 13006 

Numberofdala 39 

Number of suspeded <Uliers 3 

Potential Obs. 

:: Mean sd outlier Number 

12044 12839 55075 

2 10912 11062 47505 

3 9923 9358 42258 

For 5¼ significance level. there are 3 Potential Outliers 

Poterbal outliers are. 

55075.47505.42258 

For 1¼ Significance Level. there are 3 Potential Outliers 

Potential outliers are. 

55075.47505. 42258 

39 

38 

37 

Test Critical Critical 

V"alue V"alue (5¼) value (1 ¼) 

3.352 3.03 3.37 

3.308 3.01 3.36 

3.455 3 3.34 
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(/) 

48000 

40000 

~ 32000 
0 

:a;: 
'2 
O> 
~ 124000 
I 

~ 
16000 

8000 

Q-Q Plot for tPAH_ugkg-Non-CSO 
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Theoretical Quantiles (Standard Normal) 

I • tPAH_ ug kg-Non-CSO 

1.8 

tPAH_ ugkg-Non-CSO 

Mea n • 12044 

Sd • 1J006 

Slope • 116 13 

Intercept • 120M 

Conelation. R • 0.873 

0Best Filline 

and 55075 (Table 7-1) as outliers, whereas Rosner test performed on log-transformed data identified lower 
values 146, 153, and 222.1 (Table 7-2). 

Figure 7-1. Q-Q Plot of tPAH Data 

Table 7-1. Rosner Outlier Test Results on Raw tPAH Data Set 
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Outlier Test b ln(IPAH-ug/kg)-Non-CS() 

Mean 8.776 

Standard Devialion 1.368 

Number of data 39 

Numberofsuspecled <Ulier.s 3 
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# Mea sd outlier Number value value (5%) value ( %) 
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1 For 5% si ificance level, there are 3 Pot tial Outliers 
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4.984, 5.031. 5.403 

For 1 % Significance Level , there are 3 Po ti al Outliers 
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Table 7-2. Rosner Outlier Test Results on Log-transformed tPAH Data Set 

7.3 Outlier Tests for Data Sets without Nondetect Observations 

A couple of classical outlier tests discussed in the environmental literature (EPA 2006b, and Gilbert 1987) 
and included in ProUCL software are described as follows. It is noted that these classical tests suffer from 
masking effects and may fail to identify potential outliers present in a data set. This is especially true when 
multiple outliers or multiple populations (e.g., various AOCs of a site) may be present in a data set. Such 
scenarios can be revealed by using exploratory graphical displays including Q-Q and box plots. 

7.3.1 Dixon’s Test 

Dixon’s Extreme Value test (1953) can be used to test for statistical outliers when the sample size is less 
than or equal to 25. Initially, this test was derived for manual computations. This test is described here for 
historical reasons. It is noted that Dixon’s test considers both extreme values that are much smaller than the 
rest of the data (Case 1) and extreme values that are much larger than the rest of the data (Case 2). This test 
assumes that the data without the suspected outlier are normally distributed; therefore, one may want to 
perform a test for normality on the data without the suspected outlier. However, since the Dixon test may 
not identify all potential outliers present in a data set, the data set obtained after excluding the identified 
outliers may still not follow a normal distribution. This does not imply that the identified extreme value 
does not represent an outlier. 
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7.3.1.1 Directions for the Dixon’s Test 

Steps described below are provided for interested users, as ProUCL performs all of the operations described 
as follows: 

STEP 1: Let X(1), X(2), . . . , X(n) represent the data ordered from smallest to largest. Check that the data 
without the suspect outlier are normally distributed. 

STEP 2: X(1) is a potential outlier (Case 1): Compute the test statistic, C, where 

𝑋𝑋(2)−𝑋𝑋(1) 𝑋𝑋(3)−𝑋𝑋(1)𝐶𝐶 = for 3 ≤ n ≤ 7, 𝐶𝐶 = for 11 ≤ n ≤ 13, 
𝑋𝑋(𝑛𝑛)−𝑋𝑋(1) 𝑋𝑋(𝑛𝑛−1)−𝑋𝑋(1) 

𝑋𝑋(2)−𝑋𝑋(1) 𝑋𝑋(3)−𝑋𝑋(1)𝐶𝐶 = for 8 ≤ n ≤ 10, 𝐶𝐶 = for 14 ≤ n ≤ 25, 
𝑋𝑋(𝑛𝑛−1)−𝑋𝑋(1) 𝑋𝑋(𝑛𝑛−2)−𝑋𝑋(1) 

STEP 3: If C exceeds the critical value for the specified significance level α, then X(1) is an outlier. Since 
X(1) is the sample minimum, it need not be investigated if flagged as an outlier unless some potential error 
in sampling, sample handling and preservation or analysis is suspected. 

STEP 4: X(n), the sample maximum, is a potential outlier (Case 2): Compute the test statistic, C, where 

𝑋𝑋(𝑛𝑛)−𝑋𝑋(𝑛𝑛−1) 𝑋𝑋(𝑛𝑛)−𝑋𝑋(𝑛𝑛−2)𝐶𝐶 = for 3 ≤ n ≤ 7, 𝐶𝐶 = for 11 ≤ n ≤ 13, 
𝑋𝑋(𝑛𝑛)−𝑋𝑋(1) 𝑋𝑋(𝑛𝑛)−𝑋𝑋(2) 

𝑋𝑋(𝑛𝑛)−𝑋𝑋(𝑛𝑛−1) 𝑋𝑋(𝑛𝑛)−𝑋𝑋(𝑛𝑛−2)𝐶𝐶 = for 8 ≤ n ≤ 10, 𝐶𝐶 = for 14 ≤ n ≤ 25, 
𝑋𝑋(𝑛𝑛)−𝑋𝑋(2) 𝑋𝑋(𝑛𝑛)−𝑋𝑋(3) 

STEP 5: If C exceeds the critical value for the specified significance level α, then X(n) is an outlier and 
should be further investigated. 

7.3.2 Rosner’s Test 

An outlier test developed by Rosner (1975, 1983) can be used to identify up to 10 outliers in data sets of 
sizes ≥ 25. The details of the test can be found in Gilbert (1987). Like the Dixon test, the critical values 
associated with the Rosner test are computed using the normal distribution of the data set without the k 
(≤10) suspected outliers. The assumption here is that the data set without the suspected outliers follows a 
normal distribution, as a data set with outliers tends not to follow a normal distribution. A graphical display, 
such as a Q-Q plot, can be used to identify suspected outliers needed to perform the Rosner test. Like the 
Dixon test, the Rosner test also suffers from masking. 

7.3.2.1 Directions for the Rosner’s Test 

To apply Rosner’s test, first determine an upper limit, r0, on the number of outliers (r0 ≤ 10), then order the 
r0 extreme values from most extreme to least extreme. Rosner’s test statistic is computed using the sample 
mean and sample sd. 

232 



           
     

   

            
     

     
        

            
 

 

    

      
  

            
         

             
        

   

    

      
  

  
    

  

   
   

     
  

      
     

   
  

     

STEP 1: Let X1, X2, . . . , Xn represent the ordered data points. By inspection, identify the maximum number 
of possible outliers, r0. Check that the data are normally distributed (without outliers). A data set with 
outliers seldom passes the normality test. 

STEP 2: Compute the sample mean, �̅�𝑥, and the sample sd, s, for all the data. Label these values �̅�𝑥(0) and 
𝑠𝑠(0), respectively. Determine the value that is farthest from �̅�𝑥(0) and label this observation 𝑦𝑦(0). Delete 𝑦𝑦(0) 

from the data and compute the sample mean, labeled �̅�𝑥(1), and the sample sd, labeled 𝑠𝑠(1). Then determine 
the observation farthest from �̅�𝑥(1) and label this observation 𝑦𝑦(1). Delete 𝑦𝑦(1) and compute �̅�𝑥(2) and 𝑠𝑠(2). 
Continue this process until r0 extreme values have been eliminated. After carrying out the above process, 
we have: 

(0) (1) (𝑟𝑟0−1)��̅�𝑥 , 𝑠𝑠(0), 𝑦𝑦(0)�; ��̅�𝑥 , 𝑠𝑠(1), 𝑦𝑦(1)�; . . . , ��̅�𝑥 , 𝑠𝑠(𝑟𝑟0−1), 𝑦𝑦(𝑟𝑟0−1)�where 

1 2(𝑖𝑖) 𝑛𝑛−𝑖𝑖 𝑛𝑛−𝑖𝑖 (𝑖𝑖)�̅�𝑥 = ∑𝑎𝑎=1 𝑥𝑥𝑎𝑎 , 𝑠𝑠(𝑖𝑖) = � 1 ∑𝑎𝑎=1�𝑥𝑥𝑎𝑎 − �̅�𝑥(𝑖𝑖)� , and 𝑦𝑦(𝑖𝑖) is the farthest value �̅�𝑥 .
𝑛𝑛−1 𝑛𝑛−𝑖𝑖 

The above formulae for �̅�𝑥(𝑖𝑖) and 𝑠𝑠(𝑖𝑖) assume that the data have been re-numbered after each outlying 
observation is deleted. 

�𝑦𝑦(𝑟𝑟−1)−𝑥𝑥(𝑟𝑟−1)�STEP 3: To test if there are “r” outliers in the data, compute: 𝑅𝑅𝑟𝑟 = ̅ and compare 𝑅𝑅𝑟𝑟 to the 
𝑠𝑠(𝑟𝑟−1) 

critical value 𝜆𝜆𝑟𝑟 in the tables from any statistical literature. If 𝑅𝑅𝑟𝑟 ≥ 𝜆𝜆𝑟𝑟 , conclude that there are r outliers. 

First, test if there are r0outliers (compare 𝑅𝑅𝑟𝑟0−1 to 𝜆𝜆𝑟𝑟0−1). If not, then test if there are r0 - 1 outliers (compare 
𝑅𝑅𝑟𝑟0−2 to 𝜆𝜆𝑟𝑟0−2). If not, then test if there are r0 - 2 outliers, and continue, until either it is determined that 
there are a certain number of outliers or that there are no outliers. 

7.4 Outlier Tests for Data Sets with Nondetect Observations 

In environmental studies, identification of detected high outliers, coming from the right tail of the data 
distribution and potentially representing impacted locations, is important as locations represented by those 
extreme high values may require further investigation. Therefore, for the purpose of the identification of 
high outliers, one may replace the NDs by their respective DLs, DL/2, or may just ignore them (especially 
when elevated DLs are associated with NDs and/or when the number of detected values is large) from any 
of the outlier test (e.g., Rosner test) computations, including the graphical displays such as Q-Q plots. Both 
of these procedures, ignoring NDs with elevated DLs or replacing them by DL/2, for identification of 
outliers are available in ProUCL for data sets containing NDs. Like uncensored full data sets, outlier tests 
on data sets with NDs should be supplemented with graphical displays. ProUCL can be used to generate Q-
Q plots and box plots for data sets with ND observations. 

Notes: Outlier identification procedures represent exploratory tools and are used for pre-processing of a 
data set to identify outliers or multiple populations that may be present in a data set. Except for the 
identification of high outlying observations, the outlier identification statistics, computed with NDs or 
without NDs, are not used in any of the estimation and decision-making process. Therefore, for the purpose 
of the identification of high outliers, it should not matter how the ND observations are treated. To compute 
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test statistics (e.g., Gehan test) and decision statistics (e.g., UCL95, UTL95-95), one should follow the 
procedures as described in Chapters 4 through 6. 

Example 7-1. Consider a lead data set of size 10 collected from a Superfund site. The site data set appears 
to have some outliers. Since the data set is of small size, only the Dixon test can be used to identify outliers. 
The normal Q-Q plot of the lead data is shown in Figure 7-2 below. Figure 7-2 immediately suggests that 
the data set has some outliers. The Dixon test cannot directly identify all outliers present in a data set, only 
robust methods can identify multiple outliers. Multiple outliers may be identified one at a time iteratively 
by using the Dixon test on data sets after removing outliers identified in previous iterations. However, due 
to masking, the iterative process based upon the Dixon test may or may not be able to identify multiple 
outliers. 

Figure 7-2. Normal Q-Q Plot Identifying Outliers 
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's Ou lier Test for OS _Lead 

Number of Obseivations = 10 

10% critical value: 0.409 

5% critical value: 0.477 

1% critical value: 0.597 

1. Obser,aiion Value 1940 is a Potenlial Oulier (l,\,per Tail)? 

Test Statistic: 0.836 

For 10% significance level. 1940 is an outlier. 

For 5% significance level. 1940 is an outlier. 

For 1% significance level. 1940 is an outlier. 

2. Obser,aiion Value 19 .7is a Potenlial Oulier (lower Tail)? 

Test Statistic: 0.013 

For 10%significance level. 19.7 is not an outlier. 

For 5%significance level. 19.7 is not an outlier. 

For 1%significance level. 19.7 is not an outlier. 

        
   

 

Table 7-3. Dixon Outlier Test Results for Site Lead Data Set 

Example 7-2. Consider She's (1997) pyrene data set of size n=56 with 11 NDs. The Rosner test results on 
data without the 11 NDs are summarized in Table 7-4, and the normal Q-Q plot without NDs is shown in 
Figure 7-3 below. 
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6 104.6 56.1 273 40 3.001 3.038 3.378 

7 100.3 49.65 238 39 2.773 3.026 3.366 

8 96.68 44.78 222 38 2.798 3.014 3.354 

9 93.3 40.17 190 37 2408 3.002 3.342 
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Figure 7-3. Normal Q-Q Plot of Pyrene Data Set Excluding NDs 

Table 7-4. Rosner Test Results on Pyrene Data Set Excluding NDs 

Example 7-3. Consider the aluminum data set of size 28 collected from a Superfund site. The normal Q-Q 
plot is shown in Figure 7-4 below. Figure 7-4 suggests that there are 4 outliers (at least the 
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observation=30,000) present in the data set. The Rosner test results are shown in Table 7-5. Due to masking, 
the Rosner test could not even identify the outlying observation of 30,000. 

Figure 7-4. Normal Q-Q Plot of Aluminum Concentrations 

Table 7-5. Rosner Test Results on Pyrene Data Set Excluding NDs 
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As mentioned earlier, there are robust outlier identification methods which can be used to identify multiple 
outliers/multiple populations present in a data set. Several of those methods are incorporated in Scout 2008 
(EPA 2009d). A couple of formal (with test statistics) robust graphs based upon the PROP influence 
function and MCD method (Singh and Nocerino 1995) are shown in Figures 7-5 and 7-6. The details of 
these methods are beyond the scope of ProUCL. The two graphs suggest that there are several outliers 
present including the elevated value of 30,000. All observations exceeding the horizontal lines displayed at 
critical values of the Largest Mahalanobis Distance (MD) (Wilks 1963; Barnett and Lewis 1994) represent 
outliers. 

Figure 7-5. Robust Index Plot of MDs Based Upon the PROP Influence Function 
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Figure 7-6. Robust Index Plot of MDs Based upon the MCD Method 
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CHAPTER  8  
 

Determining Minimum Sample Sizes  for User Specified  Decision  
Parameters  and Power Assessment  

This chapter describes mathematical formulae used to determine data quality objectives (DQOs)-based 
minimum sample sizes required by estimation, and hypothesis testing approaches used to address statistical 
issues for environmental projects (EPA 2006a, 2006b). The sample size determination formulae for 
estimation of the unknown population parameters (e.g., mean, percentiles) depend upon the pre-specified 
values of the decision parameters: CC, (1-α), and the allowable error margin, Δ, between the estimate and 
the unknown true population parameter. For example, if the environmental problem requires the calculation 
of the minimum number of samples required to estimate the true unknown population mean, Δ would 
represent the maximum allowable difference between the estimate of the sample mean and the unknown 
population mean. Similarly, for hypotheses testing approaches, sample size determination formulae depend 
upon the pre-specified values of the decision parameters chosen while defining and describing the DQOs 
associated with an environmental project. The decision parameters associated with hypotheses testing 
approaches include the Type I false positive error rate, α; and the Type II false negative error rate, β=1-
power; and the allowable width, Δ, of the gray region. For values of the parameter of interest (e.g., mean, 
proportion) lying in the gray region, the consequences of committing the two types of errors described in 
Chapter 6 are not significant from both the human health and the cost effectiveness points of view. 

Even though the same symbol, Δ, has been used to denote the allowable error margin in an estimate (e.g., 
of mean) and the width of the gray region associated with the various hypothesis testing approaches, there 
are differences in the meanings of the error margin and width of the gray region. A brief description of 
these terminology is provided in this chapter. The user is advised to consult the already existing EPA 
guidance documents (EPA 2006a, 2006b; MARSSIM 2000) for the detailed description of the terms with 
interpretation used in this chapter. Both parametric (assuming normality) and nonparametric (distribution 
free) DQOs-based sample size determination formulae as described in EPA guidance documents 
(MARSSIM 2000; EPA 2002c, 2006a, 2006b, and 2009) are available in the ProUCL software. These 
formulae yield minimum sample sizes needed to perform statistical methods meeting pre-specified DQOs. 
The Stats/ Sample Sizes module of ProUCL has the minimum sample size determination methods for most 
of the parametric and nonparametric one-sided and two-sided hypotheses testing approaches available in 
ProUCL.  

ProUCL includes the DQOs-based parametric minimum sample size formula to estimate the population 
mean, assuming that the sample mean follows a normal distribution or assuming that the criteria is met due 
to the CLT]. ProUCL outputs a non-negative integer as the minimum sample size. This minimum sample 
size is calculated by rounding the value, obtained by using a sample size formula, upward. For all sample 
size determination formulae incorporated in ProUCL, it is implicitly assumed that samples (e.g., soil, 
groundwater, sediment samples) are randomly collected from the same statistical population (e.g., AOC or 
MW), and therefore the sampled data (e.g., analytical results) represent independently and identically 
distributed (i.i.d) observations from a single statistical population. During the development of the 
Stats/Sample Sizes module of ProUCL, emphasis was given to assure that the module is user friendly with 
a straight forward unambiguous mechanism (e.g., graphics user interface [GUIs]) to input desired decision 
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parameters (e.g., α, β error rates, width, Δ of the gray region) needed to compute the minimum sample size 
for a selected statistical application. 

Most of the sample size formulae available in the literature and incorporated in ProUCL) require an estimate 
(e.g., preliminary from other sites and pilot studies or based upon actual collected data) of the population 
variability. In practice, the population variance, 𝜎𝜎2 , is unknown, and is estimated by the sample variance, 
𝑠𝑠2 . During the planning stage, an estimate of the population variance is usually computed using: 1) 
historical information when available, 2) data collected from a pilot study when possible, or 3) information 
from a similar site. If historical, similar site or pilot data are not available, the minimum sample size can be 
computed for a range of values of the variance, and an appropriate and practical sample size from both a 
defensible decision making and budget point of view is selected. 

New in ProUCL 5.0 and higher: The Sample Size module in ProUCL can be used at two different stages 
of a project. As mentioned above, most of the sample size formulae require some estimate of the population 
standard deviation (variability). Depending upon the project stage, a standard deviation: 1) represents a 
preliminary estimate of the population (e.g., study area) variability needed to compute the minimum sample 
size during the planning stage; or 2) represents the sample standard deviation computed using the data 
collected without considering the DQOs process, which is used to assess the power of the test based upon 
the collected data. During the power assessment stage, if the computed sample size is larger than the size 
of the already collected data set, it can be inferred that the size of the collected data set is not large enough 
to achieve the desired power. The formulae to compute the sample sizes during the planning stage and after 
performing a statistical test are the same except that the estimates of standard deviations are 
computed/estimated differently. 

These two stages are briefly described as follows: 

Planning stage before collecting data: Sample size formulae are commonly used during the planning stage 
of a project to determine the minimum sample sizes needed to address project objectives (estimation, 
hypothesis testing) with specified values of the decision parameters (e.g., Type I and II errors, width of gray 
region). During the planning stage, since the data are not collected a priori, a preliminary rough estimate 
of the population standard deviation, to be expected in sampled data, is obtained from other similar sites, 
pilot studies, or expert opinions. An estimate of the expected standard deviation along with the specified 
values of the other decision parameters are used to compute the minimum sample sizes needed to address 
the project objectives during the sampling planning stage. The project team is expected to collect the 
number of samples thus obtained. The detailed discussion of the sample size determination approaches 
during the planning stage can be found in EPA 2006a and MARSSIM 2000. 

Power assessment stage after performing a statistical method: Often, in practice, environmental 
samples/data sets are collected without taking the DQOs process into consideration. Under this scenario, 
the project team performs statistical tests on the already collected data set. However, once a statistical test 
(e.g., WMW test) has been performed, the project team can assess the power associated with the test in 
retrospect. That is for specified DQOs and decision errors (Type I error and power of the test =1-Type II 
error) and using the sample standard deviation computed based upon the already collected data, the 
minimum sample size needed to perform the test for specified values of the decision parameters is 
computed. 
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If the computed sample size obtained using the sample variance is less than the size of the already collected 
data set used to perform the test, it may be determined that the power of the test has been achieved. However, 
if the sample size of the collected data is less than the minimum sample size computed in retrospect, the 
user may want to collect additional samples to assure that the test achieves the desired power. 

It should be pointed out that there could be differences in the sample sizes computed in the two different 
stages due to the differences in the values of the estimated variability. Specifically, the preliminary estimate 
of the variance computed using information from similar sites could be significantly different from the 
variance computed using the available data already collected from the study area under investigation which 
will yield different values of the sample size. 

Sample size determination methods in ProUCL can be used for both stages. The only difference will be in 
the input value of the standard deviation/variance. It is the users’ responsibility to input a correct value for 
the standard deviation during the two stages. 

8.1 Sample Size Determination to Estimate the Population Mean 

In exposure and risk assessment studies, a UCL95 of the population mean is used to estimate the EPC term. 
Listed below are several variations of methods available in the literature to compute the minimum sample 
size, n, needed to estimate the population mean with specified confidence coefficient (CC), (1 - α), and 
allowable/tolerable error margin (allowable absolute difference between the estimate and the parameter), Δ 
in an estimate of the mean. 

8.1.1 Sample Size Formula to Estimate Mean without Considering Type II (β) Error Rate 

The sample size can be computed using the following normal distribution based equation (when population 
variance is known), 

2𝑛𝑛 = 𝜎𝜎2𝑧𝑧1−(𝛼𝛼/2)/Δ2 , (8-1) 

or by using the following approximate standard normal distribution based equation (when population 
variance is not known), 

2𝑛𝑛 = 𝑠𝑠2𝑧𝑧1−(𝛼𝛼/2)/Δ2 (8-2) 

or, alternatively, by using the t- distribution based equation (when population variance is not known): 

2𝑛𝑛 = 𝑠𝑠2𝑡𝑡(𝑛𝑛−1),(1−𝛼𝛼/2)/Δ2 (8-3) 

Here Δ represents the allowable error margin (±) in the mean estimate. The computed sample size assures 
that the sample mean will be within ± Δ units of the true population mean with probability (1-α). 

Throughout this chapter, zν represents that value from a standard normal distribution (SND) for which the 
proportion of the distribution to the left of this value (zν) is ν; and t(n-1), ν represents that value from a t-
distribution with (n-1) degrees of freedom for which the proportion of the distribution to the left of this 
value is ν. 
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Size for Estimation of Mean 

Based on S pecilied Values of Decision P arameters/D Q Os (D ala Q uaiy Objeclives) 

Date/Time of Computation 2/26/201 0 12: 12: 37 PM 

User Selected Options 

Confidence Coefficient 95% 

Allowable Error Margin 10 

Estimate of Standard Deviation 25 

95% Confidence Coefficient: 

Approximate Minimum Sample Size 

26 

          
  

     
     

   
         

     

Note: The sample size formulae described above are for estimating the population mean (and not for the 
median) and are based upon the underlying assumption that the distribution of the sample mean follows a 
normal distribution (which can be assumed due to the CLT). ProUCL does not compute minimum sample 
sizes required to estimate the population median. While estimating the mean, the symbol Δ represents the 
allowable error margin (+/-) in the mean estimate. For example for Δ = 10, the sample size is computed to 
assure that the error in the estimate will be within ±10 units of the true unknown population mean with 
specified CC of (1-α). 

For estimation of the mean, the most commonly used formula to compute the sample size, n, is given by 
(8-2) above; however, under normal theory, the use of t-distribution based formula (8-3) is more appropriate 
to compute n. It is noted that the difference between the sample sizes obtained using (8-2) or (8-3) is not 
significant. They usually differ by only 2 to 3 samples (Blackwood 1991; Singh, Singh, and Engelhardt 
1999). It is a common practice to address this difference by using the following adjusted formula (Kupper 
and Hafner 1989; Bain and Engelhardt 1991) to compute the minimum sample size needed to estimate the 
mean for specified CC, (1 - α), and margin of error, Δ. 

2 2𝑛𝑛 = 𝑠𝑠2𝑧𝑧1−(𝛼𝛼/2)/Δ2 + 𝑧𝑧1−(𝛼𝛼/2)/2 (8-4) 

To be able to use a normal (instead of t-critical value) distribution based critical value, as used in (8-4), a 
similar adjustment factor is used in other sample size formulae described in the following sections (e.g., 
two-sample t-test, WRS test). This adjustment is also used in various sample size formulae described in 
EPA guidance documents (MARSSIM 2000; EPA 2002c, 2006a, 2006b). ProUCL uses equation (8-4) to 
compute sample sizes needed to estimate the population mean for specified values of CC, (1- α), and error 
margin, Δ. An example illustrating the sample size determination to estimate the mean is given as follows. 

Table 8-1. Sample Size for Estimation of the Mean (CC = 0.95, s = 25, error margin, Δ = 10) 

8.1.2 Sample Size Formula to Estimate Mean with Consideration to Both Type I (α) and Type 
II (β) Error Rates 

This scenario corresponds to the single-sample hypothesis testing approach. For specified decision error 
rates, α and β, and width, Δ, of the gray region, ProUCL can be used to compute the minimum sample size 
based upon the assumption of normality. ProUCL also has nonparametric minimum sample size 
determination formulae to perform Sign and WSR tests. The nonparametric Sign test and WSR test are used 
to perform single sample hypothesis tests for the population location parameter (mean or median). 
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A brief description of the standard terminology used in the sample size calculations associated with 
hypothesis testing approaches is described first as follows. 

α = False Rejection Rate (Type I Decision Error), i.e., the probability of rejecting the null 
hypothesis when in fact the null hypothesis is true 

β = False Acceptance Rate (Type II Decision Error), i.e., the probability of not rejecting 
the null hypothesis when in fact the null hypothesis is false 

z1-α = a value from a standard normal distribution for which the proportion of the 
distribution to the left of this value is 1 – α 

z1-β = a value from a standard normal distribution for which the proportion of thedistribution 
to the left of this value is 1 – β 

Δ = width of the gray region (specified by the user); in a gray region, decisions are “too 
close to call”, a gray region is that area where the consequences of making a decision error 
(Type I or Type II) are relatively minor. 

The user is advised to note the difference between the gray region (associated with hypothesis testing 
approaches) and error margin (associated with estimation approaches). 

Example illustrating the above terminology: Let the null and alternative hypotheses be: H0: µ ≤ Cs, and HA: 
µ > Cs. The width, Δ, of the gray region for this one sided alternative hypothesis is Δ = µ1 - Cs, where Cs is 
the cleanup standard specified in the null hypothesis, and µ1 (>Cs) represents an alternative value belonging 
to the parameter value set determined by the alternative hypothesis. Note that the gray region lies to the 
right (e.g., see Figure 8-1) of the cleanup standard, Cs, and for all values of µ in the interval, (Cs, µ1], with 
length of the interval = width of gray region= Δ = µ1 - Cs. The consequences of making an incorrect decision 
(e.g., accepting the null hypothesis when in fact it is false) will be minor. 

8.2 Sample Sizes for Single-Sample Tests 

8.2.1 Sample Size for Single-Sample t-test (Assuming Normality) 

This section describes formulae to determine the minimum number of samples, n, needed to conduct a 
single-sample t-test, for 1-sided as well as two-sided alternatives, with pre-specified decision error rates 
and width of the gray region. This hypothesis test is used when the objective is to determine whether the 
mean concentration of an AOC exceeds an action level (AL); or to verify the attainment of a cleanup 
standard, Cs (EPA 1989a). In the following, s represents an estimate (e.g., an initial guess, historical 
estimate, or based upon expert knowledge) of the population sd, σ. 

Three cases/forms of hypothesis testing as incorporated in ProUCL are described as follows: 

8.2.1.1 Case I (Right-Sided Alternative Hypothesis, Form 1) 

H0: site mean, µ ≤ AL or a Cs vs. 
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HA: site mean, µ > AL or a Cs 

Gray Region: Range of the mean concentrations where the consequences of deciding that the site mean is 
less than the AL when in fact it is greater (that is a dirty site is declared clean) are not significant. The upper 
bound of the gray region, Δ, is defined as the alternative mean concentration level, µ1 (> Cs), where the 
human health and environmental consequences of concluding that the site is clean (when in fact it is not 
clean) are relatively significant. The false acceptance error rate, β, is associated with this upper bound (µ1) 
of the gray region: Δ=µ1- Cs. These are illustrated in Figure 8-1 below (EPA 2006a). A similar explanation 
of the gray region applies to other single-sample Form 1 right-sided alternative hypotheses tests (e.g., Sign 
test, WSR test) considered later in this chapter. 

Figure 8-1. Gray Region for Right-Sided (Form 1) Alternative Hypothesis Tests (EPA 2006a) 

8.2.1.2 Case II (Left-Sided Alternative Hypothesis, Form 2) 

H0: site mean, µ ≥ AL or Cs vs. 

HA: site mean, µ <AL or Cs 

Gray Region: Range of true mean concentrations where the consequences of deciding that the site mean is 
greater than or equal to the cleanup standard or action level, AL, when in fact it is smaller (that is a clean 
site is declared dirty) are not considered significant. The lower bound of the gray region is defined as the 
alternative mean concentration, µ1 (< Cs), where the consequences of concluding that the site is dirty (when 
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in fact it is not dirty) would be costly requiring unnecessary cleaning of a site. The false acceptance rate, β, 
is associated with that lower bound (µ1) of the gray region, Δ= Cs - µ1. These are illustrated in Figure 8-2. 

A similar explanation of the gray region applies to other single-sample left-sided (left-tailed) alternative 
hypotheses tests including the Sign test and WSR test. 

Figure 8-2. Gray Region for Left-Sided (Form 2) Alternative Hypothesis Tests (EPA 2006a) 

The minimum sample size, n, needed to perform the single-sample one-sided t-test (both Forms 1 and 2 
described above) is given by 

2 22 �𝑠𝑠 𝑧𝑧1−𝛼𝛼 𝑛𝑛 = �𝑧𝑧1−𝛼𝛼 + 𝑧𝑧1−𝛽𝛽 � Δ
� + 

2 
(8-5) 

8.2.1.3 Case III (Two-Sided Alternative Hypothesis) 

H0: site mean, µ = Cs; vs. 

HA: site mean, µ ≠ Cs 

The minimum sample size for specified performance (decision) parameters is given by: 

2 22 �𝑠𝑠 𝑧𝑧1−𝛼𝛼/2𝑛𝑛 = �𝑧𝑧1−𝛼𝛼 + 𝑧𝑧1−𝛽𝛽 � Δ
� + 

2 
(8-6) 
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Sizes for Single Sample t Test 

Based on Specified Values of Decision Par ameters/D Q Os [D ala Q uaiy Objectives) 

Date/Time of Computation 2/26/201 0 12: 41 : 58 PM 

User Selected Options 

False Rejection Rate [Alpha] 0.05 

False Acceptance Rate [B eta] 0.2 

Width of Gra)' Region [D elta] 10 

Estimate of Standard Deviation 10. 41 

Approximate Minimum Sample Size 

Single Sided Alternative H)'pothesis: 9 

Two Sided Alternative H)'pothesis: 11 t 
  

      
  

       

I 

Δ = width of the gray region, Δ= abs (Cs - µ1), abs represents the absolute value operation. 

In this case, the gray region represents a two-sided region symmetrically placed around the mean 
concentration level equal to Cs, or AL; consequences of committing the two types of errors in this gray 
region would be minor (not significant). A similar explanation of the gray region applies to other single-
sample two-sided (two-tailed) alternative hypotheses tests such as the Sign test and WSR test. 

In equations (8-5) and (8-6), the computation of the estimated variance, s2 depends upon the project stage. 
Specifically, 

s2 = a preliminary estimate of the population variance (e.g., estimated from similar sites, 
pilot studies, expert opinions) which is used during the planning stage; or 

s2 = actual sample variance of the collected data to be used when assessing the power of 
the test in retrospect based upon collected data. 

Note: ProUCL outputs the estimated variance based upon the collected data on single sample t-test output 
sheet; ProUCL sample size GUI draws users’ attention to input an appropriate estimate of variance, the user 
should input an appropriate value depending upon the project stage/data availability. 

The following example: “Sample Sizes for Single-sample t-Test” discussed in Guidance on Systematic 
Planning Using the Data Quality Objective Process (EPA 2006a, page 49) is used here to illustrate the 
sample size determination for a single-sample t-test. For specified values of the decision parameters, the 
minimum number of samples is given by n ≥ 8.04. For a one-sided alternative hypothesis, ProUCL 
computes the minimum sample size to be 9 (rounding up), and a sample size of 11 is computed for a two-
sided alternative hypothesis. 

Table 8-2. Sample Size for Single-Sample t-Test Sample Sizes (α = 0.05, β = 0.2, s = 10.41, Δ = 10) 

8.2.2 Single Sample Proportion Test 

This section describes formulae used to determine the minimum number of samples, n, needed to compare 
an upper percentile or proportion, P, with a specified proportion, P0 (e.g., proportion of exceedances, 
proportion of defective items/drums, proportion of observations above the specified AL), for user selected 
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decision parameters. The details are given in EPA guidance document (2006a). Sample size formulae for 
three forms of the hypotheses testing approach are described as follows. 

8.2.2.1 Case I (Right-Sided Alternative Hypothesis, Form 1) 

H0: population proportion ≤ specified value (P0)vs. 

HA: population proportion > specified value (P0) 

Gray Region: Range of true proportions where the consequences of deciding that the site proportion, P, is 
less than the specified proportion, P0, when in fact it is greater (that is a dirty site is declared clean) are not 
significant. The upper bound of the gray region, Δ, is defined as the alternative proportion, P1 (> P0), where 
the human health and environmental consequences of concluding that the site is clean (when in fact it is not 
clean) are relatively significant. The false acceptance error rate, β, is associated with this upper bound (P1) 
of the gray region (Δ=P1- P0). 

8.2.2.2 Case II (Left-Sided Alternative Hypothesis, Form 2) 

H0: population proportion ≥ specified value (P0)vs. HA: population proportion < specified value (P0) 

Gray Region: Range of true proportions where the consequences of deciding that the site proportion, P, is 
greater than or equal to the specified proportion, P0, when in fact it is smaller (a clean site is declared dirty) 
are not considered significant. The lower bound of the gray region is defined as the alternative proportion, 
P1 (< P0), where the consequences of concluding that the site is dirty (when in fact it is not dirty) would be 
costly requiring unnecessary cleaning of a clean site. The false acceptance rate, β, is associated with that 
lower bound (P1) of the gray region (Δ= P0 - P1). 

The minimum sample size, n, for the single-sample proportion test (for both cases I and II) is given by 

2
𝑧𝑧1−𝛼𝛼 �𝑃𝑃0(1−𝑃𝑃0)+𝑧𝑧1−𝛽𝛽�𝑃𝑃1(1−𝑃𝑃1)𝑛𝑛 = � �  (8-7) 

𝑃𝑃1−𝑃𝑃0 

8.2.2.3 Case III (Two-Sided Alternative Hypothesis) 

H0: population proportion = specified value (P0) vs. 

HA: population proportion ≠ specified value (P0) 

The following procedure is used to determine the minimum sample size needed to conduct a two-sided 
proportion test. 

2
𝑧𝑧1−𝛼𝛼/2�𝑃𝑃0(1−𝑃𝑃0)+𝑧𝑧1−𝛽𝛽�𝑃𝑃1(1−𝑃𝑃1)𝑚𝑚 = � � for right-sided alternative; 

𝑃𝑃1−𝑃𝑃0 

when P1 = P0 + Δ; and 
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Sizes for Single Sample Proportion Test 

Based on Specified Values of Decision Parameters/DQOs (Data Qtdy 0~) 

Dale/ Time of Computation 212612010 12:50:52 PM 

Use, Selected Options 

False Rejection Rate [Alpha] 0.05 

False Acceptance Rate (Beta] 0.2 

Width of Glay Region [Delta] 0.05 

Proportion/Action Level [PO] 0.2 

App1oximate Minimum Sample Size 

Right Sided Altemative H9polhesis: 419 

Left Sided Altemative H.vpolhesis: 368 
+ 

Two Sided Altemative H.vpothesis: ma,[471 , 528)  

      
      

  
        
   

2
𝑧𝑧1−𝛼𝛼/2�𝑃𝑃0(1−𝑃𝑃0)+𝑧𝑧1−𝛽𝛽�𝑃𝑃1(1−𝑃𝑃1)𝑃𝑃 = � � for left-sided alternative; 

𝑃𝑃1−𝑃𝑃0 

when P1 = P0 – Δ 

P0 = specified proportion 

P1 = outer bound of the gray region. 

Δ = width of the gray region = |P0 - P1|=abs (P0 - P1) 

The sample size, n, for two-sided proportion test (Case III) is given by 

𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑥𝑥(𝛼𝛼, 𝛽𝛽) (8-8) 

An example illustrating the single-sample proportion test is considered next. This example: “Sample Sizes 
for Single-sample Proportion Test” is also discussed in EPA 2006a (page 59). For this example, for the 
specified decision parameters, the number of samples is given by n ≥ 365. However, ProUCL computes the 
sample size to be 419 for the right-sided alternative hypothesis, 368 for the left-sided alternative hypothesis, 
and 528 for the two-sided alternative hypothesis. 

Table 8-3. Output for Single-Sample Proportion Test Sample Size (α = 0.05, β = 0.2, P0 = 0.2, Δ = 
0.05) 

Notes: The correct use of the Sample Size module, to determine the minimum sample size needed to 
perform a proportion test, requires that the users have some familiarity with the single-sample hypothesis 
test for proportions. Specifically the user should input feasible values for the specified proportion, P0, and 
width, Δ, of the gray region. The following example shows the output screen when unfeasible values are 
selected for these parameters. 
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Sizes for Single Sample Proportion Test 

Based on Specified Values of Decision Parameters/DQOs (Data QuaiJ, Dbjectiyes) 

Date/Time of Computation 2/26/201 0 12: 55: 51 PM 

User Selected D ptions 

False Rejection Rate [Alpha] 0.05 

False Acceptance Rate [Beta] 0.2 

Width of Gray Region (Delta] 0.8 

Proportion/Action Level [PO] 0. 7 

Approximate Minimum Sample Size 

Right Sided Alternative Hypothesis: Not Feasible - Please check your Decision Parameters/DOD, 

Left Sided Alternative Hypothesis: Not Feasible - Please check your Decision Parameters/DOD, 

Two Sided Alternative Hypothesis: Not Feasible - Please check your Decision Parameters/DOD, 

Table 8-4. Output - Single-sample Proportion Test Sample Sizes (α = 0.05, β = 0.2, P0 = 0.7, Δ = 0.8) 

8.2.3 Nonparametric Single-sample Sign Test (does not require normality) 

The purpose of the single-sample nonparametric Sign test is to test a hypothesis involving the true location 
parameter (mean or median) of a population against an AL or Cs without assuming normality of the 
underlying population. The details of sample size determinations for nonparametric tests can be found in 
Conover (1999). 

8.2.3.1 Case I (Right-Sided Alternative Hypothesis) 

H0: population location parameter ≤ specified value, Cs vs. 

HA: population location parameter > specified value, Cs 

A description of the gray region associated with the right-sided Sign test is given in Section 8.2.1.1. 

8.2.3.2 Case II (Left-Sided Alternative Hypothesis) 

H0: population location parameter ≥ specified value, Cs vs. 

HA: population location parameter < specified value, Cs 

A description of the gray region associated with this left-sided Sign test is given in Section 8.2.1.2. 

The minimum sample size, n, for the single-sample one-sided (both left-sided and right-sided) Sign test is 
given by the following equation: 

�𝑧𝑧1−𝛼𝛼+𝑧𝑧1−𝛽𝛽�
2 

𝑛𝑛 = , where (8-9) 
4(𝑆𝑆𝑖𝑖𝑙𝑙𝑛𝑛 𝑃𝑃−0.5)2 

𝑈𝑈𝑖𝑖𝑙𝑙𝑛𝑛 𝑃𝑃 = Φ� 
Δ � (8-10) 
𝑠𝑠𝑑𝑑 

Δ = width of the gray region 

250 



        
 

     

   
   

  

     
 

     

       

  
 

 

  
   

      
  

      
     

 

     
      

    
  

   

sd = an estimate of the population (e.g., reference area, AOC, survey unit) standard 
deviation 

Some guidance on the selection of an estimate of the population sd, σ, is given in Section 8.1.1 above. 

Φ(x) = Cumulative probability distribution representing the probability that a standard 
normal variate, Z, takes on a value ≤ x. 

8.2.3.3 Case III (Two-Sided Alternative Hypothesis) 

H0: population location parameter = specified value, Cs  vs. HA: population location parameter ≠ specified 
value, Cs 

A description of the gray region associated with the two-sided Sign test can be found in Section 8.1.2.3. 

The minimum sample size, n, for a two-sided Sign test is given by the following equation: 

2
�𝑧𝑧1−𝛼𝛼/2+𝑧𝑧1−𝛽𝛽�𝑛𝑛 = 
4(𝑆𝑆𝑖𝑖𝑙𝑙𝑛𝑛 𝑃𝑃−0.5)2 

In the following example, ProUCL computes the sample size to be 35 for a single-sided alternative 
hypothesis and 43 for a two-sided alternative hypothesis for default values of the decision parameters. 

Note: Like the parametric t-test, the computation of the standard deviation (sd) depends upon the project 
stage. Specifically, 

sd2 (used to compute P in equation (8-10)) = a preliminary estimate of the population 
variance (e.g., estimated from similar sites, pilot studies, expert opinion) which is used 
during the planning stage; and 

sd2 (used to compute P) = sample variance computed using the actual collected data to be 
used when assessing the power of the test in retrospect based upon the collected data. 

ProUCL outputs the sample variance based upon the collected data on the Sign test output sheet; and 
ProUCL sample size GUI draws user's attention to input an appropriate estimate, sd2, the user should input 
an appropriate value depending upon the project stage/data availability. 
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Table 8-5. Output for  Single-Sample Sign Test  Sample  Sizes (α = 0.05, β = 0.1, sd  = 3, Δ = 2)  

Sizes for Single Sample Sign Test 

Based on Specified Values of Decision Par ameters/D Q Os [D ala Q way Objeclives) 

Date/Time of Computation 2/26/2010 12:15:27 PM 

User Selected D ptions 

False Rejection Rate [Alpha] 0.05 

False Acceptance Rate [Beta] 0.1 

W idth of Gray Region [Delta] 2 

Estimate of Standard Deviation 3 

Approximate Minimum Sample Size 

Single Sided Alternative Hypothesis: 35 

Two Sided Alternative Hypothesis: 43 t I I  

8.2.4 Nonparametric Single Sample Wilcoxon Sign Rank (WSR) Test 

The purpose of the single WSR test is similar to that of the Sign test described above. This test is used to 
compare the true location parameter (mean or median) of a population against an AL or Cs without assuming 
normality of the underlying population. The details of this test can be found in Conover (1999) and EPA 
(2006a). 

8.2.4.1 Case I (Right-Sided Alternative Hypothesis) 

H0: population location parameter ≤ specified value, Cs vs. 

HA: population location parameter > specified value, Cs 

A description of the gray region associated with this right-sided test is given in Section 8.1.2.1. 

8.2.4.2 Case II (Left-Sided Alternative Hypothesis) 

H0: population location parameter ≥ specified value, Cs vs. 

HA: population location parameter < specified value, Cs 

A description of the gray region associated with this left-sided (left-tailed) test is given in Section 8.1.2.2. 

The minimum sample size, n, needed to perform the single-sample one-sided (both left-sided and right-
sided) WSR test is given as follows. 

𝑠𝑠𝑑𝑑2�𝑧𝑧1−𝛼𝛼 +𝑧𝑧1−𝛽𝛽�
2 2𝑧𝑧1−𝛼𝛼 𝑛𝑛 = 1.16 � 

Δ2 + 
2
�  (8-11) 

Where: 

sd2 = a preliminary estimate of the population variance which is used during the planning 
stage; and 
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sd2 = actual sample variance computed using the collected data to be used when assessing 
the power of the test in retrospect based upon collected data 

Note: ProUCL sample size GUI draws user's attention to input an appropriate estimate, sd2; the user should 
input an appropriate value depending upon the project stage/data availability. 

8.2.4.3 Case III (Two-Sided Alternative Hypothesis) 

H0: population location parameter = specified value, Cs vs. 

HA: population location parameter ≠ specified value, Cs 

A description of the gray region associated with the two-sided WSR test is given in Section 8.1.2.3. 

The sample size, n, needed to perform the single-sample two-sided WSR test is given by: 

2 2𝑠𝑠𝑑𝑑2�𝑧𝑧1−𝛼𝛼/2+𝑧𝑧1−𝛽𝛽� 𝑧𝑧1−𝛼𝛼/2𝑛𝑛 = 1.16 � 
Δ2 + 

2
� (8-12) 

Where: 

sd2 = a preliminary estimate of the population variance (e.g., estimated from similar sites) 
which is used during the planning stage; and 

sd2 = sample variance computed using actual collected data to be used to assess the power 
of the test in retrospect. 

Note: ProUCL sample size GUI draws user's attention to input an appropriate estimate, sd2, the user should 
input an appropriate value depending upon the project stage/data availability. 

The following example: “Sample Sizes for Single-sample Wilcoxon Signed Rank Test” is discussed in the 
EPA 2006a (page 65). ProUCL computes the sample size to be 10 for a one-sided alternative hypothesis, 
and 14 for a two-sided alternative hypothesis. 
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Sizes for Single Sample Wilcoxon Signed Rari<. Test 

Based on Specified Values of Decision Par amelers/D () 0 s (D ala () uaiy Objectives) 

Date/Time of Computation 2/26/2010 1: 13: 58 PM 

User Selected Options 

False Rejection Rate [Alpha] 0.1 

False Acceptance Rate [Beta] 0.2 

Width of Gray Region [Delta] 100 

Estimate of Standard Deviation 130 

Approximate Minimum Sample Size 

Single Sided Alternative Hypothesis: 10 

Two Sided Alternative Hypothesis: 14  
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Table 8-6. Output for Single-sample WSR Test Sample Sizes (α = 0.1, β = 0.2, sd = 130, Δ = 100) 

8.3 Sample Sizes for Two-Sample Tests for Independent Sample 

This section describes minimum sample size determination formulae needed to compute sample sizes (same 
number of samples (n=m) from two populations) to compare the location parameters of two populations 
(e.g., reference area vs. survey unit, two AOC, two MW) for specified values of the decision parameters. 
ProUCL computes sample sizes for one-sided as well as two-sided alternative hypotheses. The sample size 
formulae described in this section assume that samples are collected following the simple random or 
systematic random sampling (e.g., EPA 2006a) approaches. It is also assumed that samples are collected 
randomly from two independently distributed populations (e.g., two different uncorrelated AOCs); and 
samples (analytical results) collected from each of population represent independently and identically 
distributed observations from their respective populations. 

8.3.1 Parametric Two-sample t-test (Assuming Normality) 

The details of the two-sample t-test can be found in Chapter 6 of this ProUCL Technical Guide. 

8.3.1.1 Case I (Right-Sided Alternative Hypothesis) 

H0: site mean, µ1 ≤ background mean, μ2 vs. 

HA: site mean, µ1 > background mean, μ2 

Gray Region: Range of true concentrations where the consequences of deciding the site mean is less than 
or equal to the background mean (when in fact it is greater), that is, a dirty site is declared clean, are 
relatively minor. The upper bound of the gray region is defined as the alternative site mean concentration 
level, µ1 (> μ2), where the human health, and environmental consequences of concluding that the site is 
clean (or comparable to background) are relatively significant. The false acceptance rate, β, is associated 
with the upper bound of the gray region, Δ. 
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8.3.1.2 Case II (Left-Sided Alternative Hypothesis) 

H0: site mean, µ1 ≥ background mean, μ2 vs. 

HA: site mean, µ1 < background mean, μ2 

Gray Region: Range of true mean values where consequences of deciding the site mean is greater than or 
equal to the background mean (when in fact it is smaller); that is, a clean site is declared a dirty site, are 
considered relatively minor. The lower bound, µ1 (< μ2) of the gray region, is defined as the concentration 
where consequences of concluding that the site is dirty would be too costly, potentially requiring 
unnecessary cleanup. The false acceptance rate is associated with the lower bound of the gray region. 

The minimum sample sizes (equal sample sizes for both populations) for the two-sample one-sided t-test 
(both cases I and II described above) are given by: 

2 22 𝑠𝑠𝑝𝑝 𝑧𝑧1−𝛼𝛼 𝑚𝑚 = 𝑛𝑛 = 2�𝑧𝑧1−𝛼𝛼 + 𝑧𝑧1−𝛽𝛽� � ∆ � + (8-13) 
4 

The decision parameters used in equations (8-13) and (8-14) have been defined earlier in Section 8.1.1.2. 

Δ = width (e.g., difference between two means) of the gray region 

Sp = a preliminary estimate of the common population standard deviation, σ, of the two 
populations (discussed in Chapter 6). Some guidance on the selection of an estimate of the 
population sd, σ, is given above in Section 8.1.2. 

Sp = pooled standard deviation computed using the actual collected data to be used when 
assessing the power of the test in retrospect. 

8.3.1.3 Case III (Two-Sided Alternative Hypothesis) 

H0: site mean, µ1 = background mean, μ2 vs. 

HA: site mean, µ1 ≠ background mean, μ2 

The minimum sample sizes for specified decision parameters are given by: 

2 22 𝑠𝑠𝑝𝑝 𝑧𝑧1−𝛼𝛼/2𝑚𝑚 = 𝑛𝑛 = 2�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−𝛽𝛽 � � � +  (8-14) 
∆ 4 

The following example: “Sample Sizes for Two-sample t Test” is discussed in the EPA 2006a guidance 
document (page 68). According to this example, for the specified decision parameters, the minimum 
number of samples from each population comes out to be m = n ≥ 4.94. ProUCL computes minimum sample 
sizes for the two populations to be 5 (rounding up) for the single sided alternative hypotheses and 7 for the 
two-sided alternative hypothesis. 

Note: Sp represents the pooled estimate of the populations under comparison. During the planning stage, the 
user inputs a preliminary estimate of variance while computing the minimum sample sizes; and while 
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of Computation 

User Selected Options 

False Rejection Rate (Alpha] 

False Acceptance Rate [Beta] 

Width of Gray Region [Delta] 

Estimate of Pooled SO 

Single Sided Alternative Hypothesis: 

Two Sided Alternative Hypothesis: 

Sample Sizes for Two Sample t Test 

Based on Specified Values of Decision Parameters/DQOs (Data Quality Objedives) 

2/26/20101:17:57 PM 

0.05 

0.2 

2.5 
1.467 

Approximate Minimum Sample Size 

5 

7 

    

      
   

  

     

 

            

assessing the power associated with the t-test, the user inputs the pooled standard deviation, Sp, computed 
using the actual collected data. 

Sp = a preliminary estimate of the common population standard deviation (e.g., estimated 
from similar sites, pilot studies, expert opinion) which is used during the planning stage; 
and 

Sp = pooled standard deviation computed using the collected data to be used when assessing 
the power of the test in retrospect. 

ProUCL outputs the pooled standard deviation, Sp, based upon the collected data on the two sample t-test 
output sheet; ProUCL sample size GUI draws user's attention to input an appropriate estimate of the 
standard deviation, the user should input an appropriate value depending upon the project stage/data 
availability. 

Table 8-7. Output for Two-Sample t-Test Sample Sizes (α = 0.05, β = 0.2, sp = 1.467, Δ = 2.5) 

8.3.2 Wilcoxon-Mann-Whitney (WMW) Test (Nonparametric Test) 

The details of the two-sample nonparametric WMW can be found in Chapter 6; this test is also known as 
the two-sample WRS test. 

8.3.2.1 Case I (Right-Sided Alternative Hypothesis) 

H0: site median ≤ background median vs. 

HA: site median > background median 

The gray region for the WMW Right-Sided alternative hypothesis is similar to that of the two-sample t- test 
described in Section 8.1.3.1.  
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8.3.2.2 Case II (Left-Sided Alternative Hypothesis) 

H0: site median ≥ background median vs. 

HA: site median < background median 

The gray region for the WMW left-sided alternative hypothesis is similar to that of two-sample t-test 
described in Section 8.1.3.2. 

The sample sizes n and m, for one-sided two-sample WMW tests are given by 

2 22 �𝑠𝑠𝑑𝑑 𝑧𝑧1−𝛼𝛼 𝑚𝑚 = 𝑛𝑛 = 1.16 �2�𝑧𝑧1−𝛼𝛼 + 𝑧𝑧1−𝛽𝛽 � ∆ 
� + 

4
� (8-15) 

Here: 

sd2 =a preliminary estimate of the common variance, σ2 (obtained from similar sites, expert 
opinions), of the two populations and to be used during the planning stage; and 

sd2 = pooled variance computed using the collected data to be used when assessing the 
power of the test in retrospect. 

Note: ProUCL outputs the pooled variance based upon the collected data; ProUCL sample size GUI draws 
user's attention to input an appropriate estimate of sd2 . The user should input an appropriate value depending 
upon the project stage/data availability. 

8.3.2.3 Case III (Two-Sided Alternative Hypothesis) 

H0: site median = background median vs. 

HA: site median ≠ background median 

The sample sizes (equal number of samples from the two populations) for the two-sided alternative 
hypothesis for specified decision parameters are given by: 

2 22 �𝑠𝑠𝑑𝑑 𝑧𝑧1−𝛼𝛼/2𝑚𝑚 = 𝑛𝑛 = 1.16 �2�𝑧𝑧1−𝛼𝛼/2 + 𝑧𝑧1−𝛽𝛽� � + � (8-16) 
∆ 4 

Here: 

sd2 =a preliminary estimate of the common variance, σ2 (obtained from similar sites, expert 
opinions), of the two populations and to be used during the planning stage; and 

sd2 = pooled variance computed using the collected data to be used when assessing the 
power of the test in retrospect. 

Note: ProUCL sample size GUI draws user's attention to input an appropriate estimate of sd2 . The user 
should input an appropriate value depending upon the project stage/data availability. 
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Sizes for Two Sample Wilcoxon-M ann-\!Jtiney Test 

Based on S pecilied Values of Decision Par ameters/D Q Os (D ala Q ~ Objectives) 

Date/Time of Computation 2/26/2010 12:18:47 PM 

User Selected Options 

False Rejection Rate [Alpha] 0.05 

False Acceptance Rate [Beta] 0.1 

Width of Gray Region [Delta] 2 

Estimate of Standard Deviation 3 

Approximate Minimum Sample Size 

Single Sided Alternative Hypothesis: 46 

Two Sided Alternative Hypothesis: 56 t 
   

     
 

     
     

    

   

  

  

   
   

      
   

    

   

  
    

I I 

In the following example, ProUCL computes (default option) the sample size to be 46 for the single-sided 
alternative hypothesis and 56 for the two-sided alternative hypothesis when the user selects the default 
values of the decision parameters. 

Table 8-8. Output for Two-sample WMW Test Sample Sizes (α = 0.05, β = 0.1, s = 3, Δ = 2) 

8.3.3 Sample Size forWMW Test Suggested by Noether (1987) 

For the two-sample WRS test (WMW test), the MARSSIM guidance document (EPA 2000) uses the 
following combined sample size formula suggested by Noether (1987). The combined sample size, 
N=(m+n) equation for the one-sided alternative hypothesis defined in Case I (Section 8.3.2.1) and Case II 
(Section 8.3.2.2) above is given as follows: 

�𝑧𝑧1−𝛼𝛼 +𝑧𝑧1−𝛽𝛽�
2 

𝑁𝑁 = 𝑚𝑚 + 𝑛𝑛 = , where 
3(𝑃𝑃−0.5)2 

Δ𝑃𝑃 = Φ� �
√2𝑠𝑠𝑑𝑑 

Δ = Width of the gray region 

sd = an estimate of the common standard deviation of the two populations. 

P = Φ(x) = Cumulative probability distribution representing the probability that a standard 
normal variate, Z, takes on a value ≤ x. 

Some guidance on the selection of an estimate of the population standard deviation, σ, is given in Section 
1.1.1. More details can be found in EPA 2006a. The combined sample size, N=(n+m) for the two-sided 
alternative hypothesis (Case III, Section 8.3.2.3) is given as follows: 

2
�𝑧𝑧1−𝛼𝛼/2+𝑧𝑧1−𝛽𝛽�𝑁𝑁 = 𝑚𝑚 + 𝑛𝑛 = 

3(𝑃𝑃−0.5)2 

Note: In practice the sample sizes obtained using equations described in Sections 8.3.2.1 through 8.3.2.3 
are slightly higher than those obtained using Noether's equations described in this Section, 8.3.3. This could 
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Sizes for Two Sample 'Wilcoxon-M ann-\l,ltmiey Test 

Based on Specified Values of Decision Par ameters/D Q Os (Data Q ~ Objedives) 

Date/Time of Computation 7/23/2010 11 : 58: 40 AM 

User Selected Options 

False Rejection Rate [Alpha] 0.05 

False Acceptance Rate [8 eta] 0.1 

Width of Gray Region [Delta] 2 

Estimate of Standard Deviation 3 

Approximate Minimum Sample Size 

Single Sided Alternative Hypothesis: 46 

Two Sided Alternative Hypothesis: 56 

MARSSIM 'WAS Test (Noether, 1!117) 

Single Sided Alternative Hypothesis: 

Two Sided Alternative Hypothesis: 

Approximate Minimum Sample Size 

87 

107 

   

    
     

    
     

    
       

     
   

   
      

     
             

      
   

 

be the reason that the MARSSIM guidance document suggests increasing the sample size obtained using 
Noether equations by 20%; ProUCL does not increase the calculated sample size by 20%. 

Example: An example illustrating these sample size calculations is discussed as follows. In the following 
example, ProUCL computes the sample size to be 46 for the single sided alternative hypothesis and 56 for 
the two sided alternative hypothesis when the user selects the default values of the decision parameters. 

Using Noether’s formula (as used in MARSSIM document), the combined sample size, N= m + n (assuming 
m = n) is 87 for the single sided alternative hypothesis, and 107 for the two sided alternative hypothesis. 

Table 8-9. Output for Two-Sample WMW Test Sample Sizes (α = 0.05, β = 0.1, s = 3, Δ = 2) 

8.4 Acceptance Sampling for Discrete Objects 

ProUCL can be used to determine the minimum number of discrete items that should be sampled, from a 
lot consisting of n discrete items, to accept or reject the lot (drums containing hazardous waste) based upon 
the number of defective items (e.g., mean contamination above an action level, not satisfying a 
characteristic of interest) found in the sampled items. This acceptance sampling approach is specifically 
useful when the sampling is destructive, that is an item needs to be destroyed (e.g., drums need to be 
sectioned) to determine if the item is defective or not. The number of items that need to be sampled is 
determined for the allowable number of defective items, d= 0, 1, 2, …, n. The sample size determination is 
not straight forward as it involves the use of the beta and hypergeometric distributions. Several researchers 
(Scheffe and Tukey 1944; Laga and Likes 1975; Hahn and Meeker 1991) have developed statistical 
methods and algorithms to compute the minimum number of discrete objects that should be sampled to 
meet specified (desirable) decision parameters. These methods are based upon nonparametric tolerance 
limits. That is, computing a sample size so that the associated UTL will not exceed the acceptance threshold 
of the characteristic of interest. The details of the terminology and algorithms used for acceptance sampling 
of lots (e.g., a batch of drums containing hazardous waste) can be found in the RCRA guidance document 
(EPA 2002c). 
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In acceptance sampling, sample sizes based upon the specified values of decision parameters can be 
computed using the exact beta distribution (Laga and Likes 1975) or the approximate chi-square distribution 
(Scheffe and Tukey 1944). Exact as well as approximate algorithms have been incorporated in ProUCL 4.1 
and higher versions of ProUCL. It is noted that the approximate and exact results are often in complete 
agreement for most values of the decision parameters. A brief description now follows. 

8.4.1 Acceptance Sampling Based upon Chi-square Distribution 

The sample size, n, for acceptance sampling using the approximate chi-square distribution is given by: 

𝑚𝑚−1 + � 
(1+𝑝𝑝)𝑛𝑛 = � 𝜒𝜒𝛼𝛼2(2𝑚𝑚) (8-17) 

2 4(1−𝑝𝑝) 

Where: 

m = number of non-conforming defective items (always ≥ 1, m = 1 implies ‘0’ exceedance 
rule) 

p = 1 – proportion 

proportion = pre-specified proportion of non-conforming items 

α = 1 – confidence coefficient, and 

𝜒𝜒𝛼𝛼2 
,2𝑚𝑚 = the cumulative percentage point of a chi-square distribution with 2m df; the area to 

2the left of 𝜒𝜒𝛼𝛼,2𝑚𝑚 is α. 

8.4.2 Acceptance Sampling Based upon Binomial/Beta Distribution 

Let x be a random variable with arbitrary continuous probability density function f(x). Let x1 <x2 < … < xn 

be an ordered sample size n from this distribution. 

For a pre-assigned proportion, p, and confidence coefficient, (1–α), let the following probability statement 
given by equation (8-10) be true. 

𝑥𝑥𝑛𝑛+1−𝑠𝑠 𝑃𝑃 �∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 > 𝑒𝑒� = 1 − 𝛼𝛼 (8-18) 𝑥𝑥𝑟𝑟 

The statement given by (8-18) implies that the interval (𝑥𝑥𝑟𝑟 , 𝑥𝑥𝑛𝑛+1−𝑠𝑠) contains at least a proportion, p, of the 
distribution with the probability, (1 – α). The interval, (𝑥𝑥𝑟𝑟 , 𝑥𝑥𝑛𝑛+1−𝑠𝑠), whose endpoints are the rth smallest 
and sth largest observations in a sample size of n, is a nonparametric 100p% tolerance interval with a 
confidence coefficient of (1 – α), and xr and xn+1-s are the lower and upper tolerance limits respectively. 

𝑥𝑥𝑛𝑛+1−𝑠𝑠 The variable 𝑧𝑧 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 has the following beta probability density function: 𝑥𝑥𝑟𝑟 

∙ 𝑧𝑧𝑛𝑛−𝑚𝑚 ∙ (1 − 𝑧𝑧)𝑚𝑚−1 1  , 0 < 𝑧𝑧 < 1 𝑙𝑙(𝑧𝑧) = �𝐵𝐵(𝑛𝑛−𝑚𝑚, 𝑚𝑚)  (8-19) 
0 otherwise 

260 



 

  

       

         

           
 

           

         

 

   

 

  

 

Acceptance Sampling for Pre-specified Proportion of Non-a>ffonning Items 

Based on SpecifiedValues of Decision Pararnete,s/D(lOs 

of Computation 2/26/2010 12:20:34 PM 

User Selected Options 

Confidence Coefficient 0.95 

Pre-specified proportion of non-conforming items in the lot 0.05 

Number of allowable non-conforming items in the lot 0 

Approximate Minimum Sample Size 

Exact Binomial/Beta Distribution 59 

Approximate Chisquare Distribution (T ukey-Scheffe) 59  

Where 

m = r + s and B (p, q) denotes the well known beta function. 

The probability P (z ≥ p) can be expressed in terms of binomial distribution as follows: 

𝑃𝑃(𝑧𝑧 ≥ 𝑒𝑒) = ∑𝑛𝑛−𝑚𝑚 �𝑛𝑛𝑡𝑡�𝑒𝑒
𝑡𝑡 (1 − 𝑒𝑒)𝑛𝑛−𝑡𝑡 (8-20) 𝑡𝑡=0 

For given values of m, p and α, the minimum sample size, n, for acceptance sampling is obtained by solving 
the inequality: 

𝑃𝑃(𝑧𝑧 ≥ 𝑒𝑒) ≥ 1 − 𝛼𝛼 (8-21) 

𝑛𝑛 𝑛𝑛−𝑚𝑚 
𝑡𝑡 � 𝑒𝑒𝑡𝑡 (1 − 𝑒𝑒)𝑛𝑛−𝑡𝑡 ∑ � ≥ 1 − 𝛼𝛼 𝑡𝑡=0 (8-22) 

Where: 

m = number of non-conforming items (always greater than 1) 

p = 1 – proportion 

proportion = pre-specified proportion of non-conforming items; and 

α = 1 – confidence coefficient. 

An example output  generated by ProUCL is given as  follows.  

Table 8-10. Output Screen for Sample Sizes for Acceptance Sampling  (default options)  
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CHAPTER  9  
 

Oneway Analysis of Variance Module  
Both parametric and nonparametric Oneway Analysis of Variance (ANOVA) methods are available in 
ProUCL under the Statistical Tests module. A brief description of Oneway ANOVA is described in this 
chapter. 

9.1 Oneway Analysis of Variance (ANOVA) 

In addition to the two-sample hypothesis tests, ProUCL software has Oneway ANOVA to compare the 
location (mean, median) parameters of more than two populations (groups, treatments, monitoring wells). 
Both classical and nonparametric ANOVA are available in ProUCL. Classical Oneway ANOVA assumes 
the normality of all data sets collected from the various populations under comparison; classical ANOVA 
also assumes the homoscedasticity of the populations that are being compared. Homoscedasticity means 
that the variances (spread) of the populations under comparisons are comparable. Classical Oneway 
ANOVA represents a generalization of the two-sample t-test (Chapter 6). ProUCL has GOF tests to evaluate 
the normality of the data sets but a formal F-test to compare the variances of more than two populations has 
not been incorporated in ProUCL. The users may want to use graphical displays such as side-by-side box 
plots to compare the spreads present in data sets collected from the populations that are being compared. A 
nonparametric Oneway ANOVA test: Kruskal-Wallis (K-W) test is also available in ProUCL. The K-W 
test represents a generalization of the two-sample WMW test described in Chapter 6. The K-W test does 
not require the normality of the data sets collected from the various populations/groups. However, for each 
group, the distribution of the characteristic of interest should be continuous and those distributions should 
have comparable shapes and variabilities. 

9.1.1 General Oneway ANOVA Terminology 

Statistical terminology used in Oneway ANOVA is described as follows: 

g  number of groups, populations, treatments under comparison 
i an index used for the ith group, i = 1, 2, …, g 

ni number of observations in the ith group 
j an index used for the jth observation in a group; for the ith , j = 1, 2, …, ni 

xij the jth observation of the response variable in the ith group 
n total number of observations= 𝑛𝑛1 + 𝑛𝑛2+. . . +𝑛𝑛𝑙𝑙 

𝑛𝑛𝑖𝑖 ∑ 𝑥𝑥𝑎𝑎,𝑖𝑖 sum of all observations in the ith group 𝑎𝑎=1 

�̅�𝑥 mean of the observations collected from the ith group 𝑖𝑖 

�̅�𝑥 mean of all, nt (the observations) 
μi true (unknown) mean of the ith group 
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In Oneway ANOVA, the null hypothesis, H0, is stated as: the g groups under comparison have equal means 
(medians) and that any differences in the sample means/medians are due to chance. The alternative 
hypothesis, HA is stated as: the means/medians of the g groups are not equal. 

The decision to reject or accept the null hypothesis is based upon a test statistic computed using the available 
data collected from the g groups. 

9.2 Classical Oneway ANOVA Model 

The ANOVA model is represented by a regression model in which the predictor variables are the treatment 
or group variables. The Oneway ANOVA model is given as follows: 

𝑥𝑥𝑖𝑖,𝑎𝑎 = 𝜇𝜇𝑖𝑖 + 𝑒𝑒𝑖𝑖,𝑎𝑎 (9-1) 

Where μi is the population mean (or median) of the ith group, and errors, ei,j, are assumed to be independently 
and normally distributed with mean = 0 and with a constant variance, σ2. All observations in a given group 
have the same expectation (mean) and all observations have the same variance regardless of the group. The 
details of Oneway ANOVA can be found in most statistical books including the text by Kunter et al. (2004). 

The null and the alternative hypotheses for Oneway ANOVA are given as follows: 

𝐻𝐻0: 𝜇𝜇1 = 𝜇𝜇2 = ⋯ = 𝜇𝜇𝑖𝑖 = ⋯ = 𝜇𝜇𝑙𝑙 

𝐻𝐻𝐴𝐴: 𝐴𝐴𝑡𝑡 𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠𝑡𝑡 𝑙𝑙𝑛𝑛𝑒𝑒 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛𝑠𝑠 (𝑙𝑙𝑟𝑟 𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑚𝑚𝑛𝑛𝑠𝑠) 𝑖𝑖𝑠𝑠 𝑛𝑛𝑙𝑙𝑡𝑡 𝑒𝑒𝑞𝑞𝑠𝑠𝑚𝑚𝑙𝑙 𝑡𝑡𝑙𝑙 𝑙𝑙𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑠𝑠 

Based upon the available data collected from the g groups, the following statistics are computed. ProUCL 
summarizes these results in an ANOVA Table. 

Sum of Squares Between Groups is given by: 

𝑙𝑙 = ∑ ̅𝑖𝑖 − �̅�𝑥)2𝑈𝑈𝑈𝑈𝐵𝐵𝑖𝑖𝑡𝑡𝐵𝐵𝑖𝑖𝑖𝑖𝑛𝑛 𝐺𝐺𝑟𝑟𝑙𝑙𝑠𝑠𝑝𝑝𝑠𝑠 𝑛𝑛𝑖𝑖(𝑥𝑥𝑖𝑖=1 (9-2) 

Sum of Squares Within Groups is given by: 

𝑙𝑙 2𝑛𝑛𝑖𝑖 = ∑ ∑ �𝑥𝑥𝑎𝑎,𝑖𝑖 − �̅�𝑥𝑈𝑈𝑈𝑈𝑊𝑊𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑛𝑛 𝐺𝐺𝑟𝑟𝑙𝑙𝑠𝑠𝑝𝑝𝑠𝑠 𝑖𝑖=1 𝑎𝑎=1 𝑖𝑖� (9-3) 

Total Sum of Squares is given by: 

𝑙𝑙 2𝑛𝑛𝑖𝑖 = ∑ ∑ �𝑥𝑥𝑎𝑎,𝑖𝑖 − �̅�𝑥𝑈𝑈𝑈𝑈𝑇𝑇𝑙𝑙𝑡𝑡𝑎𝑎𝑙𝑙 𝑖𝑖=1 𝑎𝑎=1 𝑖𝑖� (9-4) 

Between Groups Degrees of Freedom (df): g-1 

Within Groups df: n-g 

Total df: n-1 

Mean Squares Between Groups is given by: 
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𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝑡𝑡𝐵𝐵𝑆𝑆𝑆𝑆𝑛𝑛 𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠 =𝑀𝑀𝑈𝑈𝐵𝐵𝑖𝑖𝑡𝑡𝐵𝐵𝑖𝑖𝑖𝑖𝑛𝑛 𝐺𝐺𝑟𝑟𝑙𝑙𝑠𝑠𝑝𝑝𝑠𝑠 𝑙𝑙−1 
(9-5) 

Mean Squares Within Groups: 

𝑆𝑆𝑆𝑆𝑊𝑊𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑛𝑛 𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠 =𝑀𝑀𝑈𝑈𝑊𝑊𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑛𝑛 𝐺𝐺𝑟𝑟𝑙𝑙𝑠𝑠𝑝𝑝𝑠𝑠 𝑛𝑛−𝑙𝑙 
(9-6) 

Scale estimate is given by: 

𝑈𝑈 = �𝑀𝑀𝑈𝑈𝑊𝑊𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑛𝑛 𝐺𝐺𝑟𝑟𝑙𝑙𝑠𝑠𝑝𝑝𝑠𝑠 (9-7) 

R2 is given by: 

𝑆𝑆𝑆𝑆𝑊𝑊𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑛𝑛 𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠 𝑅𝑅2 = 1 − 
𝑆𝑆𝑆𝑆𝑇𝑇𝐺𝐺𝑡𝑡𝑇𝑇𝑙𝑙 

(9-8) 

Decision statistic, F, is given by: 

𝑀𝑀𝑆𝑆𝐵𝐵𝑆𝑆𝑡𝑡𝐵𝐵𝑆𝑆𝑆𝑆𝑛𝑛 𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠 𝐹𝐹 𝑈𝑈𝑡𝑡𝑚𝑚𝑡𝑡𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑠𝑠 = 
𝑀𝑀𝑆𝑆𝑊𝑊𝑖𝑖𝑡𝑡ℎ𝑖𝑖𝑛𝑛 𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝑝𝑝𝑠𝑠 

(9-9) 

Under the null hypothesis, the F-statistic given in equation (9-9) follows the F(g-1), (n-g) distribution with (g-
1) and (n-g) degrees of freedom, provided the data sets collected from the g groups follow normal 
distributions. ProUCL software computes p-values using the F distribution, F(g-1), (n-g). 

Conclusion: The null hypothesis is rejected for all levels of significance, α ≥ p-value. 

9.3 Nonparametric Oneway ANOVA (Kruskal-Wallis Test) 

Nonparametric Oneway ANOVA or the K-W test (Kruskal and Wallis 1952, Hollander and Wolfe 1999) 
represents a generalization of the two-sample WMW, test which is used to compare the equality of medians 
of two groups. Like the WMW test, analysis for the K-W test is also conducted on ranked data, therefore, 
the distributions of the g groups under comparisons do not have to follow a known statistical distribution 
(e.g., normal). However, distributions of the g groups should be continuous with comparable shapes and 
variabilities. Also the g groups should represent independently distributed populations. 

The null and alternative hypotheses are defined in terms of medians, mi of the g groups: 

𝐻𝐻0: 𝑚𝑚1 = 𝑚𝑚2 =. . . = 𝑚𝑚𝑖𝑖 =. . . = 𝑚𝑚𝑙𝑙 (9-10) 
𝐻𝐻𝐴𝐴: 𝐴𝐴𝑡𝑡 𝑙𝑙𝑒𝑒𝑚𝑚𝑠𝑠𝑡𝑡 𝑙𝑙𝑛𝑛𝑒𝑒 𝑙𝑙𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙 𝑚𝑚𝑒𝑒𝑑𝑑𝑖𝑖𝑚𝑚𝑛𝑛𝑠𝑠 𝑖𝑖𝑠𝑠 𝑛𝑛𝑙𝑙𝑡𝑡 𝑒𝑒𝑞𝑞𝑠𝑠𝑚𝑚𝑙𝑙 𝑡𝑡𝑙𝑙 𝑙𝑙𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑠𝑠 

While performing the K-W test, all n observations in the g groups are arranged in ascending order with the 
smallest observation receiving the smallest rank and the largest observation getting the highest rank. All 
tied observations receive the average rank of those tied observations. 

K-W Test on Data Sets with NDs: It should be noted that the K-W test may be used on data sets with NDs 
provided all NDs are below the largest detected value. All NDs are considered as tied observations 
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irrespective of reporting limits (RLs) and receive the same rank. However, the performance of the K-W test 
on data sets with NDs is not well studied; therefore, it is suggested that the conclusion derived using the K-
W test statistics be supplemented with graphical displays such as side-by-side box plots. Side-by-side box 
plots can also be used as an exploratory tool to compare the variabilities of the g populations based upon 
the g data sets collected from those populations. 

The K-W ANOVA table displays the following information and statistics: 

Mean Rank of the ith Group, 𝑅𝑅�𝑖𝑖: Average of the ranks (in the combined data set of size, n) of the ni 

observations in the ith group.  

Overall Mean Rank, 𝑅𝑅�: Average of the ranks of all n observations. 

Z-value of each group are computed using the following equation (Standardized Z): 

𝑃𝑃�𝑖𝑖−𝑃𝑃 𝑍𝑍𝑖𝑖 = 
� 

(9-11) 
��(𝑛𝑛+1)� 

𝑛𝑛 −1��𝑛𝑛𝑖𝑖 
12 

n total number of observations = 𝑛𝑛1 + 𝑛𝑛2+. . . +𝑛𝑛𝑙𝑙 

ni observation in the ith group 

g number of groups 

Zi given by (9-11) represents standardized normal deviates. The Zi can be used to determine the significance 
of the difference between the average rank of the ith group and the overall average rank, R, of the combined 
data set of sized n. 

Kruskal-Wallis H-Statistic (without ties) is given by: 

𝑔𝑔 12 ∑ 𝑛𝑛𝑖𝑖(𝑃𝑃�𝑖𝑖−𝑃𝑃�)2 
𝑖𝑖=1 𝐻𝐻 = (9-12) 
𝑛𝑛(𝑛𝑛+1) 

K-W H-Statistic adjusted for ties is given by: 

𝐻𝐻 𝐻𝐻𝑎𝑎𝑑𝑑𝑎𝑎−𝑡𝑡𝑖𝑖𝑖𝑖𝑠𝑠 = 
∑𝑔𝑔 𝑡𝑡3𝑖𝑖 −𝑡𝑡𝑖𝑖 

(9-13) 
𝑖𝑖=1 1−� �𝑛𝑛3−𝑛𝑛 

Where 𝑡𝑡𝑖𝑖 = number of tied values in ith group 

For large values of n, the H-statistic given above follows an approximate chi-square distribution with (g-1) 
degrees of freedom. P-values associated with the H-statistic given by (9-12) and (9-13) are computed by 
using a chi-square distribution with (g-1) degrees of freedom. The p-values based upon a chi-square 
approximation test are fairly accurate when the number of observations, n, is large such as ≥ 30. 

Conclusion: The null hypothesis is rejected in favor of the alternative hypothesis for all levels of 
significance, α ≥ p-value. 
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Oneway ANOVA 

Date/Time of Computation 3/2/2013 1:25:29 PM 

From Flle FULLIRIS.xls 

Full Precision OFF 

pt-widh 

Group Obs Mean SD 

1 50 0.246 0.105 

2 50 1.326 0.1 98 

3 50 2.026 0.275 

Grand Statistics (All data) 150 1.199 0.762 

Oassical One-Way Analysis of Variance Table 

Variance 

0.0111 

0.0391 

0.0754 

0.581 

Source SS DOF MS V.R.(F Stat) P-Value 

Between Groups 80.41 2 40.21 960 0 

Within Groups 6.1 57 147 0.0419 

Total 86.57 149 

Pooled Standard Deviation 0.205 

R-Sq 0.929 

Note: A p-value <= 0 .05 (or some other selected level) suggests that there are sigmicart <iffereoces in 

mean/medan characteristics of the various groups al 0 .05 or other selected level of sigmicance 

A p-value > 0.05 (or other selected level) suggests that mean/medan characteristics of the various groups are comparable. 

Table 9-1. Classical Oneway ANOVA Results Comparing Petal Widths of 3 Iris Species from 
Fisher's Famous Iris Data Set (Fisher 1936). 
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Oneway ANOVA (Kruskal-Wallis Test} 

Date/Time of Computation 3/2/2013 1:29:1 2 PM 

From File FULLIRIS.xls 

Full Precision OFF 

pt-widh 

Group Obs Median Ave Rank z 
50 0.2 25.5 -~.%7 

2 50 1.3 76.4S 0.1 95 

3 50 2 124.5 9.771 

Overall 150 1.3 75.5 

K-W (H-Stat) DOF P-Value (Approx. Chisquare) 

129.9 2 0 

131.2 2 0 (Adjusted for Ties) 

Note: A p-value <= 0 .05 (or some other selected level) suggests that there are significant <ifferences in 

mean/median characterislics of the various groups al 0 .05 or other selected level of significance 

A p-value > 0.05 (or other selected level) suggests that mean/median characterislics of the various groups are comparable. 

  

Table 9-2 (Iris Data). The K-W Oneway ANOVA Results Comparing Petal Widths of 3 iris Species. 
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CHAPTER  10  
 

Ordinary Least Squares Regression  and Trend Analysis  
Trend tests and ordinary least squares (OLS) regression methods are used to determine trends (e.g., 
decreasing, increasing) in time series data sets. Typically, OLS regression is used to determine linear 
relationships between a dependent response variable and one or more predictor (independent) variables 
(Draper and Smith 1998); however statistical inference on the slope of the OLS line can also be used to 
determine trends in the time series data used to estimate an OLS line. A couple of nonparametric statistical 
tests, the Mann-Kendall (M-K) test and the Theil-Sen (T-S) test to perform trend analysis have also been 
incorporated in ProUCL since version 5.0. Methods to perform trend analysis and OLS Regression with 
graphical displays are available under the Statistical Tests module of ProUCL. In environmental 
monitoring studies, OLS regression and trend tests can be used on time series data sets to determine 
potential trends in constituents' concentrations over a defined period of time. Specifically, the OLS 
regression with time or a simple index variable as the predictor variable can be used to determine a potential 
increasing or decreasing trend in mean concentrations of an analyte over a period of time. A significant 
positive (negative) slope of the regression line obtained using the time series data set with predictor variable 
as a time variable suggests an upward (downward) trend. A brief description of the classical OLS regression 
as function of the time variable, T (t), is described as follows. It should however be noted that the OLS 
regression and associated graphical displays can be used to determine a linear relation for any pair of 
dependent variable, Y, and independent variable, X. The independent variable does not have to be a time 
variable. 

10.1 Ordinary Least Squares Regression 

The linear regression model for a response variable, Y and a predictor (independent) variable, t is given as 
follows: 

𝑌𝑌 = 𝑃𝑃0 + 𝑃𝑃1𝑡𝑡 + 𝑒𝑒; (10-1) 

𝐸𝐸[𝑌𝑌] = 𝑃𝑃0 + 𝑃𝑃1𝑡𝑡 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛 𝑟𝑟𝑒𝑒𝑠𝑠𝑒𝑒𝑙𝑙𝑛𝑛𝑠𝑠𝑒𝑒 𝑚𝑚𝑡𝑡 𝑡𝑡 

In (10-1), variable e is a random variable representing random measurement error in the response variable, 
Y (concentrations). The error variable, e, is assumed to follow a normal distribution, N (0, σ2), with mean 
0 and unknown variance, σ2 . Let (ti, yi); i: =1, 2,….n represent the paired data set of size n, where yi is the 
measured response when the predictor variable, t =ti. It is noted that multiple observations may be collected 
at one or more values of the prediction variable, t. Using the regression model (10-1) on this data set, we 
have: 

𝑦𝑦𝑖𝑖 = 𝑃𝑃0 + 𝑃𝑃1𝑡𝑡𝑖𝑖 + 𝑒𝑒; (10-2) 

𝐸𝐸[𝑦𝑦𝑖𝑖] = 𝑃𝑃0 + 𝑃𝑃1𝑡𝑡𝑖𝑖 = 𝑚𝑚𝑒𝑒𝑚𝑚𝑛𝑛 𝑟𝑟𝑒𝑒𝑠𝑠𝑒𝑒𝑙𝑙𝑛𝑛𝑠𝑠𝑒𝑒 𝑟𝑟ℎ𝑒𝑒𝑛𝑛 𝑡𝑡 = 𝑡𝑡𝑖𝑖 
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For each fixed value, ti of the predictor variable, t, the random error,ei is normally distributed with N(0,σ2). 
Random errors, ei, are independently distributed. Without the random error, e, all points will lie exactly on 
the population regression line estimated by the OLS line. The OLS estimates of the intercept, b0 and slope, 
b1 are obtained by minimizing the residual sum of squares. The details of deriving the OLS estimates, 
𝑃𝑃�0 𝑚𝑚𝑛𝑛𝑑𝑑 𝑃𝑃�1of the intercept and slope can be found in Draper and Smith (1998). 

The OLS regression method can be used to determine increasing or decreasing trends in the response 
variable Y (e.g., constituent concentrations in a MW) over a time period (e.g., quarters during a 5 year time 
period). A positive statistically significant slope estimate suggests an upward trend and a statistically 
significant negative slope estimate suggests a downward or decreasing trend in the mean constituent 
concentrations. The significance of the slope estimate is determined based upon the normal assumption of 
the distribution of error terms, 𝑒𝑒𝑖𝑖, and therefore, of responses, yi, i:=1,2,...,n 

ProUCL computes OLS estimates of parameters b0 and b1; performs inference about the slope and intercept 
estimates, and outputs the regression ANOVA table including the coefficient of determination, R2, and 
estimate of the error variance, σ2 . Note that R2 represents the square of the Pearson correlation coefficient 
between the dependent response variable, y, and the independent predictor variable, t. ProUCL also 
computes confidence intervals and prediction intervals around the OLS regression line; and can be used to 
generate scatter plots of n pairs, (t, y), displaying the OLS regression line, confidence interval for mean 
responses, and prediction interval band for individual observations (e.g., future observations). 

General OLS terminology and sum of squares computed using the collected data are described as follows: 

𝑛𝑛 𝑛𝑛 𝑛𝑛 𝑈𝑈𝑡𝑡𝑦𝑦 = ∑ 𝑡𝑡𝑖𝑖𝑦𝑦𝑖𝑖 − (∑ 𝑡𝑡𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖)/𝑛𝑛 ; 𝑚𝑚𝑛𝑛𝑑𝑑 (10-3) 𝑖𝑖=1 𝑖𝑖=1 𝑖𝑖=1 

𝑛𝑛 𝑛𝑛 2 𝑛𝑛 𝑛𝑛 2 

2 2𝑈𝑈𝑡𝑡𝑡𝑡 = � 𝑡𝑡𝑖𝑖 − �� 𝑡𝑡𝑖𝑖� /𝑛𝑛 ; 𝑚𝑚𝑛𝑛𝑑𝑑 𝑈𝑈𝑦𝑦𝑦𝑦 = �𝑦𝑦𝑖𝑖 − ��𝑦𝑦𝑖𝑖� /𝑛𝑛 
𝑖𝑖=1 𝑖𝑖=1 𝑖𝑖=1 𝑖𝑖=1 

The OLS estimates of slope and intercept are given as follows: 

𝑃𝑃� = 𝑈𝑈𝑡𝑡𝑦𝑦 /𝑈𝑈𝑡𝑡𝑡𝑡; 𝑚𝑚𝑛𝑛𝑑𝑑 1 

𝑃𝑃� = 𝑦𝑦� − 𝑃𝑃�1𝑡𝑡̅0 

𝑛𝑛 𝑡𝑡̅ = ∑ 𝑡𝑡𝑖𝑖/𝑛𝑛 (10-4) 𝑖𝑖=1 

The estimated OLS regression line is given by: 𝑦𝑦� = 𝑃𝑃�0 + 𝑃𝑃�1𝑡𝑡 and error estimates also called residuals are 
given by �̂�𝑒𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖; 𝑖𝑖 = 1,2, . . . , 𝑛𝑛. It should be noted that for each i, 𝑦𝑦�𝑖𝑖 represents the mean response at 
value, ti of the predictor variable, t, for i:=1,2,…,n. 

The residual sum of squares is given by: 

𝑛𝑛 𝑈𝑈𝑈𝑈𝐸𝐸 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 (10-5) 𝑖𝑖=1 

Estimate of the error variance, σ2, and variances of the OLS estimates, 𝑃𝑃�0 𝑚𝑚𝑛𝑛𝑑𝑑 𝑃𝑃�1 are given as follows: 
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𝜎𝜎�2 = 𝑀𝑀𝑈𝑈𝐸𝐸 = 𝑈𝑈𝑈𝑈𝐸𝐸/(𝑛𝑛 − 2) 

� 2𝑡𝑡̅𝐶𝐶𝑚𝑚𝑟𝑟(𝑃𝑃0) = 𝜎𝜎2 �1 + �
𝑛𝑛 𝑆𝑆𝑡𝑡𝑡𝑡 

𝐶𝐶𝑚𝑚𝑟𝑟(𝑃𝑃�1) = 𝜎𝜎2/𝑈𝑈𝑡𝑡𝑡𝑡 (10-6) 

Estimates of the variances of the OLS estimates 𝑃𝑃�0 𝑚𝑚𝑛𝑛𝑑𝑑 𝑃𝑃�1 are obtained by replacing σ2 by its estimate, 
mean sum of squares error (MSE), given in (10-6). Standard errors (SEs) of the OLS estimates: 𝑃𝑃�0 𝑚𝑚𝑛𝑛𝑑𝑑 𝑃𝑃�1 

are their respective standard deviations. ProUCL tests the significance of slope and intercept of the 
regression line given by (10-1). Details for testing the significance of the slope are given as follows. It 
should be noted that the parametric OLS regression line given by (10-4) estimates the change in the mean 
concentration over time. 

Testing Significance of the Slope, b1: Under normality and independence of random errors, ei, in responses, 
yi, the test statistic given by (10-7) follows a Student’s t-distribution with (n-2) degrees of freedom. One 
can perform any of the 3 hypothesis forms including: 1) H0: 𝑃𝑃1 = 0 vs. the alternative hypothesis, H1: 𝑃𝑃1 ≠ 
0 ; 2) H0: 𝑃𝑃1 = 0 vs. the alternative, H1:𝑃𝑃1 > 0; and 3) or H0: 𝑃𝑃1 = 0 vs. the alternative, H1: 𝑃𝑃1 < 0. Under 
the null hypothesis, the test statistic is obtained by dividing the regression estimate by its SE: 

𝑡𝑡 = 𝑃𝑃�1/𝑈𝑈𝐸𝐸(𝑃𝑃�1) (10-7) 

Under normality of the responses, yi (and the random errors, ei), the test statistic given in (10-7) follows a 
Student’s t-distribution with (n-2) degrees of freedom (df). A similar process is used to perform inference 
about the intercept, b0 of the regression line. The test statistic associated with the OLS estimate of the 
intercept, 𝑃𝑃�0 also follows a Student’s t-distribution with (n-2) degrees of freedom. 

P-values: ProUCL computes and outputs t-distribution based p-values associated with the two-sided 
alternative hypothesis, H1: 𝑃𝑃1 ≠ 0. The p-values are displayed on the output sheet as well as on the 
regression graph generated by ProUCL. 

Note: ProUCL displays residuals including standardized residuals on the OLS output sheet. Those residuals 
can be imported (copying and pasting) in an excel data file to assess the normality of those OLS residuals. 
The parametric trend evaluations based upon the OLS slope (significance, confidence interval) are valid 
provided the OLS residuals are normally distributed. Therefore, it is suggested that the user assesses the 
normality of OLS residuals before drawing trend conclusions using a parametric test based upon the OLS 
slope estimate. When the assumptions are not met, one can use graphical displays and nonparametric trend 
tests, M-K and T-S tests, to determine potential trends in time series data set. 

10.1.1 Regression ANOVA Table 

The following statistics are displayed on the regression ANOVA table. 

Sum of Squares Regression (SSR): SSR represents that part of the variation in the response variable, Y, 
which is explained by the regression model, and is given by: 

𝑛𝑛 SSR =∑ (𝑦𝑦�𝑖𝑖 − 𝑦𝑦�)2 (10-8) 𝑖𝑖=1 
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Sum of Squares Error (SSE): SSE represents that part of the variation in the response variable, Y, which is 
attributed to random measurement errors, and is given by: 

𝑛𝑛 SSE = ∑𝑖𝑖=1(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 

Sum of Squares Total (SST): SST is the total variation present in the response variable, Y and is equal to 
the sum of SSR and SSE. 

𝑛𝑛 𝑈𝑈𝑈𝑈𝑇𝑇 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 = 𝑈𝑈𝑈𝑈𝑅𝑅 + 𝑈𝑈𝑈𝑈𝐸𝐸 (10-9) 𝑖𝑖=1 

Regression Degrees of Freedom (df): 1 (1 predictor variable) 

Error df: n-2; and Total df: n-1 

Mean Sum of Squares (MS) Regression (MSR): is given by SSR divided by the regression df which is equal 
to 1 in the present scenario with only one predictor variable. 

𝑀𝑀𝑈𝑈𝑅𝑅 = 𝑈𝑈𝑈𝑈𝑅𝑅 

Mean Sum of Squares Error (MSE): is given by SSE divided by the error degrees of freedom 

𝑆𝑆𝑆𝑆𝑆𝑆 𝑀𝑀𝑈𝑈𝐸𝐸 = 
𝑛𝑛−2 

MSE represents an unbiased estimate of the error variance, 𝜎𝜎2 . In regression terminology, σ is called the 
scale parameter, and √𝑀𝑀𝑈𝑈𝐸𝐸 is called the scale estimate. 

F-statistic: is computed as the ratio of MSR to MSE, and follows an F distribution with 1 and (n-2) degrees 
of freedom (df). 

𝑀𝑀𝑆𝑆𝑃𝑃 𝐹𝐹 = (10-10) 
𝑀𝑀𝑆𝑆𝑆𝑆 

P-value: The overall p-value associated with the regression model is computed using the F1,(n-2) distribution 
of the test- statistic given by equation (10-10). 

R2: represents the variation explained in the response variable, Y, by the regression model, and is given by: 

= 1 − 
𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅2 (10-11) 
𝑆𝑆𝑆𝑆𝑇𝑇 

Adjusted R square (Adjusted R2): The adjusted R2 is considered a better measure of the variation explained 
in the response variable, Y, and is given by: 

= 1 − �𝑛𝑛−1� 
𝑆𝑆𝑆𝑆𝑆𝑆 2𝑅𝑅𝑎𝑎𝑑𝑑𝑎𝑎𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑑𝑑 𝑛𝑛−2 𝑆𝑆𝑆𝑆𝑇𝑇 
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10.1.2 Confidence Interval and Prediction Interval around the Regression Line 

ProUCL also computes confidence and prediction intervals around the regression line and displays these 
intervals along with the regression line on the scatter plot of the paired data used in the OLS regression. 
ProUCL generates, when selected, a summary table displaying these intervals and residuals. 

Confidence Interval (LCL, UCL): represents a band within which the estimated mean responses, 𝑦𝑦�𝑖𝑖 , are 
expected to fall with specified confidence coefficient, (1-α). Upper and lower confidence limits (LCL and 
UCL) are computed for each mean response estimate, 𝑦𝑦�𝑖𝑖, observed at value, ti, of the predictor variable, t. 
These confidence limits are given by: 

𝑦𝑦�𝑖𝑖 ± 𝑡𝑡((1−𝛼𝛼/2),(𝑛𝑛−2))𝑠𝑠𝑑𝑑[𝑦𝑦�𝑖𝑖] (10-12) 

Where the estimated standard deviation, 𝑠𝑠𝑑𝑑(𝑦𝑦�𝑖𝑖), of the mean response, 𝑦𝑦�𝑖𝑖 , is given by: 

(𝑡𝑡𝑖𝑖−�̅�𝑡)2 
𝑠𝑠𝑑𝑑[𝑦𝑦�𝑖𝑖] = �𝑀𝑀𝑈𝑈𝐸𝐸 �1 + � ; 𝑖𝑖 = 1,2, . . . , 𝑛𝑛 

𝑛𝑛 𝑆𝑆𝑡𝑡𝑡𝑡 

A confidence band can be generated by computing the confidence limits given by (10-12) for each value, ti 

of the predictor variable, t; i:=1,2,…n. 

Prediction Limits (LPL, UPL): represents a band within which a predicted response (and not the mean 
response), ŷ0 , for a specified new value, t0 ,of the predictor variable, t, is expected to fall. Since the variances 
of the individual predicted responses are higher than the variances of the mean responses, a prediction band 
around the OLS line is wider than the confidence band. The LPL and UPL comprising the prediction band 
are given by: 

𝑦𝑦�0 ± 𝑡𝑡((1−𝛼𝛼/2),(𝑛𝑛−2))𝑠𝑠𝑑𝑑(𝑦𝑦�0); 𝑟𝑟𝑖𝑖𝑡𝑡ℎ 𝑦𝑦�0 = 𝑃𝑃�0 + 𝑃𝑃�1𝑥𝑥0 (10-13) 

Where the estimated standard deviation, 𝑠𝑠𝑑𝑑(𝑦𝑦�0), of a new response, 𝑦𝑦�0,(or the individual response for 
existing observations) is given by: 

(𝑡𝑡0−𝑡𝑡̅)2 
𝑠𝑠𝑑𝑑(𝑦𝑦�0) = �𝑀𝑀𝑈𝑈𝐸𝐸 �1 + 1 + �;

𝑛𝑛 𝑆𝑆𝑡𝑡𝑡𝑡 

Like the confidence band, a prediction band around the OLS line can be generated by computing the 
prediction limits given by (10-13) for each value, ti , of the predictor variable, t, and also other values of t 
(within the experiment range) for which the response, y, was not observed. 

Notes: Unlike M-K and T-S trend tests, multiple observations may be collected at one or more values of 
the predictor variable. Specifically, OLS can be performed on data sets with multiple measurements 
collected at one or more values of the predictor variable (e.g., sampling time variable, t). 
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Paramater 

intercept 

Date 

Number Reported (x.-values) 22 

Dependendant Variable Suttate 

Independent Variable Date 

Regression Estimates and Inference Table 

Estimates Std . Error T-values p-values 

-2503 410.7 -6.095 5.&&53E-6 

33.12 4.422 7.49 3.1763E-7 

OLS ANOVA Table 

Sout:e of Variation ss OOF 

Regression 126230 

Error 45003 

Total 171233 

R Square 

Adjusted R Square 

Sqrt(MSE) = Scale 

1 

20 

21 

0.737 

0.724 

47.44 

NS 

126230 

2250 

F-Value P-Value 

56.1 0.0000 

1200 

, .. 
800 

200 

,200 

"·' 

Classical Regression 

91.4 92.4 93.< "·' Date 
95.< 

OLS 

22 
Slope 33.1230 

Intercept -2.503.2768 

073n 

0.8586 
Scale Estimate 47.4355 

P-value(Reg) 0.0000 

P-value(Slope) 0.0000 

187.0000 

SOof S 35.39TT 
StandardizedS 5.2546 

~oxnnate p-value 0.0000 

Confidence Coefficient 0.9500 

Red • F'Tediction lnterval 

Green • Confideoce lnterval 

96.4 96.8 

Example 10-1. Consider the time series data set for sulfate as described in RCRA Guidance (EPA 2009e). 
The OLS graph with relevant test statistics is shown in Figure 10-1 below. The positive slope estimate, 
33.12, is significant with a p-value of 0 suggesting that there is an upward trend in sulfate concentrations. 

Figure  10-1. OLS Regression of Sulfate as a Function of Time  

Table 10-1. Regression Results from Example 10-1  
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10.2 Trend Analysis 

Time Series Data Set: When the predictor variable, t, represents a time variable (or an index variable), the 
data set (ti, yi); i:=1,2,….n is called a time series data set, provided values of the variable, t, satisfy: 
𝑡𝑡1 < 𝑡𝑡2 < 𝑡𝑡3 <. . . < 𝑡𝑡𝑛𝑛 . 

The Trend Analysis module of ProUCL includes two trend tests, the M-K) test and the T-S test. The trend 
tests in ProUCL are performed on time series data sets. Both M-K and T-S tests in ProUCL can handle 
missing values. Like all other methods, these tests can be performed by a group variable - performing the 
selected trend test for each group in the data set. A detailed description of these tests is described in the 
following sections. 

Notes: The two trend tests are meant to identify trends in time series data (data collected over a certain 
period of time such as daily, monthly, quarterly, etc) with distinct values of the time variable (time of 
sampling events); that is only one measurement is reported (collected) at each sampling event time. If 
multiple measurements are collected at a sampling event, the user may want to use the average (or median, 
mode, minimum or maximum) of those measurements resulting in a time series with one measurement per 
sampling time event. When multiple observations are present for a sampling event, ProUCL computes the 
average of those observations. Trend tests in ProUCL software assume that the user has entered data in 
chronological order. If the data are not entered properly in chronological order, the graphical trend displays 
may be meaningless. T-S tests takes sampling events into consideration; however, those sampling events 
do not have to be performed at regular intervals. When sampling events are not provided, the user can assign 
numeric values in chronological order for sampled observations. At present ProUCL does not does not read 
dates (years, quarters etc.). If dates are provided, the user needs to assign numeric values in chronological 
order. 

Handling Nondetects: The trend module in ProUCL does not recognize a nondetect column consisting of 
zeros and ones. For data sets consisting of nondetects with varying DLs, one can replace all NDs with half 
of the lowest DL (DL/2) or by replacing all NDs by a single value lower than the lowest DL. When multiple 
DLs are present in a data set, the use of substitution methods should be avoided. Replacing NDs by their 
respective DLs or by their DL/2 values is like performing trend test on DLs or on DL/2s, especially when 
the percentage of NDs present in the data set is high. 

10.2.1 Mann–Kendall Test 

The M-K trend test is a nonparametric test which is used on a time series data set, (ti, yi); i:=1,2,….n as 
described earlier. As a nonparametric procedure, the M-K test does not require the underlying data to follow 
a specific distribution. The M-K test can be used to determine increasing or decreasing trends in 
measurement values of the response variable, y, observed during a certain time period. If an increasing trend 
in measurements exists, then the measurement taken first from any randomly selected pair of measurements 
should, on average, have a lower response (concentration) than the measurement collected at a later point. 

The M-K statistic, S, is computed by examining all possible distinct pairs of measurements in the time series 
data set and scoring each pair as follows. It should be noted that for a measurement data set of size, n, there 
are n(n-1)/2 distinct pairs, (yj, yi) with j>i, which are being compared. 
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• If an earlier measurement, yi, is less in magnitude than a later measurement, yj, then that pair is 
assigned a score of 1; 

• If an earlier measurement value is greater in magnitude than a later value, the pair is assigned 
a score of –1; and 

• Pairs with identical (yi = yj) measurements values are assigned a score of 0. 

The M-K test statistic, S, equals the sum of scores assigned to all pairs. The following conclusions are 
derived based upon the values of the M-K statistic, S. 

• A positive value of S implies that a majority of the differences between earlier and later 
measurements are positive suggesting the presence of a potential upward and increasing trend 
over time. 

• A negative value for S implies that a majority of the differences between earlier and later 
measurements are negative suggesting the presence of a potential downward/decreasing trend. 

• A value of S close to zero indicates a roughly equal number of positive and negative scores 
assigned to all possible distinct pairs, (yj, yi) with j>i, suggesting that the data do not exhibit 
any evidence of an increasing or decreasing trend. 

When no trend is present in time series measurements, positive differences in randomly selected pairs of 
measurements should balance negative differences. In other words, the expected value of the test statistic 
S, E[S], should be close to ‘0’ when the measurement data set does not exhibit any evidence of a trend. To 
account for randomness and inherent variability in measurements, the statistical significance of the M-K 
test statistic is determined. The larger the absolute value of S, the stronger the evidence for a real increasing 
or decreasing trend. The M-K test in ProUCL can be used to test the following hypotheses: 

Null Hypothesis, H0: Data set does not exhibit sufficient evidence of any trends (stationary measurements) 
vs. 

• HA: Data set exhibits an upward trend (not necessarily linear); or 

• HA: Data set exhibits a downward trend(not necessarily linear); or 

• HA: Data set exhibits a trend (two-sided alternative - (not necessarily linear)). 

Under the null hypothesis of no trend, it is expected that the mean value of S =0; that is E[S] =0. 

Notes: The M-K test in ProUCL can be used for testing a two-sided alternative, HA, stated above. For a two-
sided alternative hypothesis, the p-values (exact as well as approximate) reported by ProUCL need to be 
doubled. 

10.2.1.1 Large Sample Approximation for M-K Test 

When the sample size n is large, the exact critical values for the statistic S are not readily available. 
However, as a sum of identically-distributed random quantities, the distribution of S tends to approximately 
follow a normal distribution by the CLT. The exact p-values for the M-K test are available for sample sizes 
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up to 22 and have been incorporated in ProUCL. For samples of sizes larger than 22, a normal 
approximation to S is used. In this case, a standardized S-statistic, denoted by Z is computed by using the 
expected mean value and sd of the test statistic, S. 

The sd of S, sd(S) is computed using the following equation: 

𝑙𝑙 𝑠𝑠𝑑𝑑(𝑈𝑈) = � 
1 �𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5) − ∑ 𝑡𝑡𝑎𝑎 (𝑡𝑡𝑎𝑎 − 1)(2𝑡𝑡𝑎𝑎 + 5)� (10-14) 𝑎𝑎=1 18 

Where n is the sample size, g represents the number of groups of ties (if any) in the data set, and tj is the 
number of tied observations in the jth group of ties. If no ties or NDs are present, the equation reduces to 
the simpler form: 

𝑠𝑠𝑑𝑑(𝑈𝑈) = � 1 [𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5)] (10-15) 
18 

The standardized S statistic denoted by Z for an increasing (or decreasing) trend is given as follows: 

(𝑆𝑆−1)𝑍𝑍 = 𝑖𝑖𝑓𝑓 𝑈𝑈 > 0; 
𝑠𝑠𝑑𝑑(𝑆𝑆) 

𝑍𝑍 = 0 𝑖𝑖𝑓𝑓 𝑈𝑈 = 0; 𝑚𝑚𝑛𝑛𝑑𝑑 (10-16) 
(𝑆𝑆+1)𝑍𝑍 = 𝑖𝑖𝑓𝑓 𝑈𝑈 < 0 
𝑠𝑠𝑑𝑑(𝑆𝑆) 

Like the S statistic, the sign of Z determines the direction of a potential trend in the data set. A positive 
value of Z suggests an upward (increasing) trend and a negative value of Z suggests a downward or 
decreasing trend. The statistical significance of a trend is determined by comparing Z with the critical value, 
zα, of the standard normal distribution; where zα represents that value such that the area to the right of zα 

under the standard normal curve is α. 

10.2.1.2 Step-by-Step Procedure to perform the Mann-Kendall Test 

The M-K test does not require the availability of an event or a time variable. However, if graphical trend 
displays (e.g., T-S line) are desired, the user should provide the values for a time variable. When a time or 
an event variable is not provided, ProUCL generates an index variable and displays the time-series graph 
using the index variable. 

Step 1. Order the measurement data: y1, y2, …., yn by sampling event or time of collection. If the numerical 
values of data collection times (event variable) are not known, the user should enter data values according 
to the order they were collected. Next, compute all possible differences between pairs of measurements, (yj 

– yi) for j > i. For each pair, compute the sign of the difference, defined by: 

1 𝑖𝑖𝑓𝑓 (𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑖𝑖) > 0 
𝑠𝑠𝑙𝑙𝑛𝑛(𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑖𝑖) = � 0 𝑖𝑖𝑓𝑓 (𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑖𝑖) = 0 (10-17) 

−1 𝑖𝑖𝑓𝑓 (𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑖𝑖) < 0 

Step 2. Compute the M-K test statistic, S, given by the following equation: 
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𝑛𝑛 𝑛𝑛 𝑈𝑈 = ∑𝑖𝑖=1 ∑ 𝑠𝑠𝑙𝑙𝑛𝑛 (𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑖𝑖) (10-18) 𝑎𝑎=𝑖𝑖+1 

In the above equation the summation starts with a comparison of the very first sampling event against each 
of the subsequent measurements. Then the second event is compared with each of the samples taken after 
it (i.e., the third, fourth, and so on). Following this pattern is probably the most convenient way to ensure 
that all distinct pairs have been considered in computing S. For a sample of size n, there will be n(n-1)/2 
distinct pairs, (i, j) with j>i. 

Step 3. For n<23, the tabulated critical levels, αcp (tabulated p-values) given in Hollander and Wolfe (1999), 
have been incorporated in ProUCL. If S > 0 and α > αcp, conclude there is statistically significant evidence 
of an increasing trend at the α significance level. If S < 0 and α> αcp, conclude there is statistically significant 
evidence of a decreasing trend. If α ≤ αcp, conclude that data do not exhibit sufficient evidence of any 
significant trend at the α level of significance. 

Specifically, the M-K test in ProUCL tests for one-sided alternative hypothesis as follows: 

H0: no trend vs. HA: upward trend 

or 

H0: no trend vs. HA: downward trend 

ProUCL computes tabulated p-values (for sample sizes <23) based upon the sign of the M-K statistic, S, as 
follows: 

If S>0, the tabulated p-value (αcp) is computed for H0: no trend, vs. HA: upward trend 

If S<0, the tabulated p-value (αcp) is computed for H0: no trend vs. HA: downward trend 

If the p-value is larger than the specified α (e.g., 0.05), the null hypothesis of no trend is not rejected. 

Step 4. For n > 22, large sample normal approximation is used for S, and a standardized S is computed. 
Under the null hypothesis of no trend, E(S) =0, and the sd is computed using equations (10-14) or (10-15). 
When ties are present, sd(S) is computed by adjusting for ties as given in (10-14). Standardized S, denoted 
by Z is computed using equation (10-16). 

Step 5. For a given significance level (α), the critical value zα is determined from the standard normal 
distribution. 

If Z >0, a critical value and p-value are computed for H0: no trend, vs. HA: upward trend. 

If Z<0, a critical value and p-value are computed for H0: no trend vs. HA: downward trend 

If the p-value is larger than the specified α (e.g., 0.05), the null hypothesis of no trend is not rejected. 

Specifically, compare Z against this critical value, zα. If Z>0 and Z > zα, conclude there is a statistically 
significant evidence of an increasing trend at an α-level of significance. If Z<0 and Z < –zα, conclude there 
is statistically significant evidence of a decreasing trend. If neither exists, conclude that the data do not 
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l Trend Test Analysis 

User Selected Options 

Date/Tlme of Computation 3/2/2013 3:45:38 PM 

From Rle Trend-data forN~rate_a~ s 

Full Precision OFF 

Confidence Coefficient 0.95 

Level of Significance 0.05 

Ntral:e 

General Statistics 

Number Values 204 

Number Values Missing 2 

Number Values Reported (n) 202 

Minimum 9.312 

Maximum 19.96 

Mean 14.29 

Geometric Mean 14.2 

Median 13.96 

Standard Deviation 1.6&8 

Nam-Kendall Test 

Test Value (S) -4684 

Crnical Value (0.05) -1.645 

Standard Deviation of S 960.5 

Standardized Value of S -4 .876 

Approximate p-value 5.4240E-7 

Statistically sigvficart evidence of a decreasing 

trend al the specified level of sigvficance_ 

exhibit sufficient evidence of any significant trend. For large samples, ProUCL computes the p-value 
associated with Z. 

Notes: As mentioned, the M-K test in ProUCL can be used for testing a two-sided alternative, HA stated 
above. For a two-sided alternative hypothesis, p-values (both exact and approximate) reported by ProUCL 
need to be doubled. 

Example 10-2. Consider a nitrate concentration data set collected over a period of time. The objective is to 
determine if there is a downward trend in nitrate concentrations. No sampling time event values were 
provided. The M-K test has been used to establish a potential trend in nitrate concentrations. However, if 
the user also wants to see a trend graph, ProUCL generates an index variable and displays the trend graph 
along with OLS line and the T-S nonparametric line (based upon the index variable) as shown in Figure 
10-2 below. Figure 10-2 displays all the statistics of interest. 

Table 10-2. M-K Trend Statistics. 
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Trend Test 
19.96 

19 18.85 

17 

13 

11 

, . 2 

.3 27 57 87 117 

Generated Index 

17.78 

1'7 m 207 

Mitnn-KendalTA!lldAnatysis 

202.0000 

Confidence Coefficient 0.9500 

Level of Significance 0.0500 

StandardDevi;,lionofS 960.4981 

Standardized ValueolS -4.8756 

Tes! Value(S) -4.6$4 

Aw,., Critical Value{0.05) -1.6449 

Approximatep-value 0.0000 

OLS Regression Line (Blue) 

OLSRegressionSlope -0.0102 

OLSRegression lntercepl 15.3308 

The il- SenTnnlLine(Red) 

Theil-Sen Slope --00093 

Theil-Sen lntei-cept 14.9034 

Statisticallysi9nificantevidence 

of11decreasingtrend11tthe 

specified level of s ignificance 

Figure 10-2. Trend Graph with M-K Test Results and OLS Line and 
Nonparametric Theil-Sen Line 

10.2.2 Theil - Sen Line Test 

The details of T-S test can be found in Hollander and Wolfe (1999). The T-S test represents a nonparametric 
version of the parametric OLS regression analysis and requires the values of the time variable at which the 
response measurements were collected. The T-S procedure does not require normally distributed trend 
residuals and responses as required by the OLS regression procedure. It is also not critical that the residuals 
be homoscedastic (having equal variance over time). For large samples, even a relatively mild to modest 
slope of the T-S trend line can be statistically significantly different from zero. It is best to first identify 
whether or not a significant trend (slope) exists, and then determine how steeply the concentration levels 
are increasing (or decreasing) over time for a significant trend. 

New since ProUCL 5.1: ProUCL computes y-hat values and residuals based upon the Theil-Sen 
nonparametric regression line. ProUCL outputs the slope and intercept of the T-S trend line, which can be 
used to compute residuals associated with the T-S regression line. 

Unlike the M-K test, actual concentration values are used in the computation of the slope estimate 
associated with the T-S trend test. The test is based upon the idea that if a simple slope estimate is computed 
for every pair (n(n-1)/2 pairs in all) of distinct measurements in the sample (known as the set of pairwise 
slopes), the average of this set of n(n-1)/2 slopes would approximate the true unknown slope. Since the T-
S test is a nonparametric test, instead of taking an arithmetic average of the pairwise slopes, the median 
slope value is used as an estimate of the unknown population slope. By taking the median pairwise slope 
instead of the mean, extreme pairwise slopes - perhaps due to one or more outliers or other errors - are 
ignored and have little or negligible impact on the final slope estimator. 
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The T-S trend line is also nonparametric because the median pairwise slope is combined with the median 
concentration value and the median of the time values to construct the final trend line. Therefore, the T-S 
line estimates the change in median concentration over time and not the mean as in linear OLS regression; 
the parametric OLS regression line described in Section 10.1 estimates the change in the mean 
concentration over time (when the dependent variable represents the time variable). 

Averaging of Multiple Measurements at Sampling Events: In practice, when multiple observations are 
collected/reported at one or more sampling events (times), one or more pairwise slopes may become 
infinite, resulting in a failure to compute the T-S test statistic. In such cases, the user may want to pre-
process the data before using the T-S test. Specifically, to assure that only one measurement is available at 
each sampling event, the user pre-processes the time series data by computing average, median, mode, 
minimum, or maximum of the multiple observations collected at those sampling events. The T-S test in 
ProUCL provides the option of averaging multiple measurements collected at the various sampling events. 
This option also computes M-K test and OLS regression statistics using the averages of multiple 
measurements collected at the various sampling event. 

Note: The OLS regression and M-K test can be performed on data sets with multiple measurements taken 
at the various sampling time events. However, often it is desirable to use the averages (or median) of 
measurements taken at the various sampling events to determine potential trends present in a time-series 
data set. 

10.2.2.1 Step-by-Step Procedure to Compute Theil-Sen Slope 

Step 1. Order the data set by sampling event or time of collection of those measurements. Let y1, y2, …, yn 

represent ordered measurement values. Consider all possible distinct pairs of measurements, (yi, yj) for j > 
i. For each pair, compute the simple pairwise slope estimate given by: 

(𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑖𝑖)𝑚𝑚𝑖𝑖𝑎𝑎 = 𝑓𝑓𝑙𝑙𝑟𝑟 𝑗𝑗 > 𝑖𝑖 
𝑗𝑗 − 𝑖𝑖 

For a time-series data set of size n, there are N=n(n–1)/2 such pairwise slope estimates, mij. If a given 
observation is a ND, one may use half of the DL or the RL as its estimated concentration. Alternatively, 
depending upon the distribution of detected values (also called the censored data set), the users may want 
to use imputed estimates of ND values obtained using the GROS or LROS method. 

Step 2. Order the N pairwise slope estimates, mij from the smallest to the largest and re-label them as m(1), 
m(2),…, m(N). Determine the T-S estimate of slope, Q, as the median value of this set of N ordered slopes. 
Computation of the median slope depends on whether N is even or odd. The median slope is computed 
using the following algorithm: 

𝑚𝑚([𝑁𝑁+1]/2) 𝑖𝑖𝑓𝑓 𝑁𝑁 = 𝑙𝑙𝑑𝑑𝑑𝑑 
𝑄𝑄 = � (10-19) �𝑚𝑚([𝑁𝑁/2]) + 𝑚𝑚([𝑁𝑁/2]/2)� 𝑖𝑖𝑓𝑓 𝑁𝑁 = 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛 2 

Step 3. Arrange the n measurements in ascending order from smallest to the largest value: y(1), y(2),…, 
y(n). Determine the median measurement using the following algorithm: 
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𝑦𝑦([𝑛𝑛+1]/2) 𝑖𝑖𝑓𝑓 𝑛𝑛 = 𝑙𝑙𝑑𝑑𝑑𝑑 
𝑦𝑦� = � (10-20) �𝑦𝑦([𝑛𝑛/2]) + 𝑦𝑦([𝑛𝑛/2]/2)� 𝑖𝑖𝑓𝑓 𝑛𝑛 = 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛 2 

Similarly, compute the median time, �̃�𝑡 of the n ordered sampling times: t1, t2, to tn by using the same median 
computation algorithm as used in (10-19) and (10-20). 

Step 4. Compute the T-S trend line using the following equation: 

𝑦𝑦 = 𝑦𝑦� + 𝑄𝑄(𝑡𝑡 − �̃�𝑡) = (𝑦𝑦� − 𝑄𝑄�̃�𝑡) + 𝑄𝑄𝑡𝑡 

10.2.2.2 Large Sample Inference for Theil – Sen Test Based upon Normal Approximation 

As described in Step 2 above, order the N pairwise slope estimates, mij in ascending order from smallest to 
the largest: m(1), m(2),…, m(N). Compute S given in (10-18) and its sd given below: 

𝑙𝑙 𝑠𝑠𝑑𝑑(𝑈𝑈) = � 
1 �𝑛𝑛(𝑛𝑛 − 1)(2𝑛𝑛 + 5) − ∑ 𝑡𝑡𝑎𝑎 (𝑡𝑡𝑎𝑎 − 1)(2𝑡𝑡𝑎𝑎 + 5)� (10-21) 𝑎𝑎=1 18 

ProUCL can be used to test the following hypotheses: 

H0: Data set does not exhibit sufficient evidence of any trends (stationary measurements) vs. 

HA: Data set exhibits a trend (two-sided alternative) 

HA: Data set exhibits an upward trend; or 

HA: Data set exhibits a downward trend. 

Case I. Testing for the null hypothesis, H0: Time series data set does not exhibit any trend, vs. the two-sided 
alternative hypothesis, HA: Data Set exhibits a trend. 

Compute the critical value, Cα using the following equation: 

𝐶𝐶𝛼𝛼 = 𝑍𝑍𝛼𝛼�2𝑠𝑠𝑑𝑑(𝑈𝑈) 

Compute M1 and M2 as: 

= �𝑁𝑁−𝑃𝑃𝛼𝛼 = �𝑁𝑁+𝑃𝑃𝛼𝛼 𝑀𝑀1 2 
�;       and 𝑀𝑀2 2 

� 

Obtain the 𝑀𝑀1
𝑡𝑡ℎ largest and 𝑀𝑀2

𝑡𝑡ℎ largest slopes, (𝑚𝑚(𝑀𝑀1)) and (𝑚𝑚(𝑀𝑀2)), from the set consisting of all n(n-1)/2 

slopes. Then the probability of the T-S slope, Q, lying between these two slopes is given by the statement: 

𝑃𝑃(𝑚𝑚(𝑀𝑀1) < 𝑄𝑄 < 𝑚𝑚(𝑀𝑀2)) = 1 − 𝛼𝛼 

On ProUCL output, (𝑚𝑚(𝑀𝑀1)) is labeled as LCL and (𝑚𝑚(𝑀𝑀2)) is labeled as UCL. 
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Conclusion: If 0 belongs to the interval, (𝑚𝑚(𝑀𝑀1), 𝑚𝑚(𝑀𝑀2)), conclude that T-S test slope is insignificant; that 
is, conclude that there is no significant trend present in the time series data set. 

Cases II and III: Test for an upward (downward) trend with Null hypothesis, H0: Time series data set does 
not exhibit any trend, vs. the alternative hypothesis, HA: data set exhibits an upward (downward) trend. 

For specified level of significance, α, compute the following: 

𝐶𝐶𝛼𝛼 = 𝑍𝑍𝛼𝛼 ∗ 𝑠𝑠𝑑𝑑(𝑈𝑈) 

= �𝑁𝑁−𝑃𝑃𝛼𝛼 = �𝑁𝑁+𝑃𝑃𝛼𝛼 𝑀𝑀1 2 
� and 𝑀𝑀2 2 

� 

𝑡𝑡ℎ Obtain the 𝑀𝑀1
𝑡𝑡ℎ largest and 𝑀𝑀2 largest slopes, (𝑚𝑚(𝑀𝑀1)) and (𝑚𝑚(𝑀𝑀2)) from the set consisting of all 

n(n-1)/2 slopes. 

Conclusion: 

If (𝑚𝑚(𝑀𝑀1)) > 0, then the data set exhibits a significant upward trend. 

If (𝑚𝑚(𝑀𝑀2)) < 0, then the data set exhibits a significant downward trend. 

Example 10-3. Time series data (time event, concentration) were collected from several groundwater MWs 
on a Superfund site. The objective is to determine potential trends present in concentration data collected 
quarterly from those wells over a period of time. Some missing sampling events (quarters) are also present. 
ProUCL handles the missing values, computes trend test statistics and generates a time series graph along 
with the OLS and T-S lines.  

Figure 10-3. Time Series Plot and OLS and Theil-Sen Results with Missing Values 
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General Statistics 

Number of Events 14 

Number Values Observations 16 

Number Values Missing 2 

Number Values Reported (.n) 14 

Minimum 450 

Maximum 700 

Mean 536.8 

Geometric Mean 533.6 

Median 525 

Standard Deviation 62.99 

.Apprnxirnale inference for Theil-Sen Trend Test 

Mann-Kendall Statistic (S) 72 

Standard Deviation of S lB.24 

Standardized Value of S 3.&93 

Approximate p-value 4.9562E0 5

Number of Slopes 91 

Theil-Sen Slope 31.43 

Theil-Sen Intercept -2349 

M1' 30.5 

One~ ided 95% lower lim~ of Slope 21.36 

95% LCL of Slope (0.025) 20 

95% UCL of Slope (0.975) 42.16 

Statistically sigrificart evidence of an increasing 

trend at the specified level of sigmicance_ 

 

      
     

             
      

     
  
   

     
        

     
     
      

    

   

        
     

        
 

   
  

   

Table 10-3. The Excel output sheet, generated by ProUCL and showing all relevant results. 

Notes: As with other statistical tests (e.g., Shapiro-Wilk and Lilliefors GOF tests for normality), it is very 
likely, that based upon a given data set, the three trend tests described here will lead to different trend 
conclusions. It is important that the user verifies the underlying assumptions required by these tests (e.g., 
normality of OLS residuals). A parametric OLS slope test is preferred when the underlying assumptions 
are met. Conclusions derived using nonparametric tests supplemented with graphical displays are preferred 
when OLS residuals are not normally distributed. These tests can also yield different results when the data 
set consists of missing values and/or there are gaps in the time series data set. It should be pointed out that 
an OLS line (therefore slope) can become significant even by the inclusion of an extreme value (e.g., 
collected after skipping of several intermediate sampling events) extending the domain of the sampling 
events time interval. For example, a perfect OLS line can be generated using two points at two extreme 
ends resulting in a significant slope; whereas nonparametric trend tests are not as influenced by such 
irregularities in the data collection and sampling events. In such circumstances, the user should draw a 
conclusion based upon the site CSM, expert and historical site knowledge and expert opinions. 

10.3 Multiple Time Series Plots 

The Time Series Plot option of the Trend Analysis module can generate time series plots for multiple 
groups/wells comparing concentration levels of those groups over a period of time. Time series plots are 
also useful for comparing concentrations of a MW during multiple periods (every 2 years, 5 years, ...) 
collected quarterly, semi-annually. This option can also handle missing sampling events. However, the 
number of observations in each group should be the same, sharing the same time event variable (if 
provided). An example time series plot comparing concentrations of three MWs during the same period of 
time is shown as follows. 
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Figure 10-4. Time Series Plot Comparing Concentrations of Multiple Wells over a Period of Time 

This option is specifically useful when the user wants to compare the concentrations of multiple groups 
(wells) and the exact sampling event dates are not available (data only option). The user may just want to 
graphically compare the time-series data collected from multiple groups/wells during several quarters 
(every year, every 5 years, …). Each group (e.g., well) defined by a group variable must have the same 
number of observations and should share the same sampling event values (when available). That is the 
number of sampling events and values (e.g., quarter ID, year ID, etc.) for each group (well) must be the 
same for this option to work. However, the exact sampling dates (not needed to use this option) in the 
various quarters (years) do not have to be the same as long as the values of the sampling quarters 
(1,3,5,6,7,9, etc.) used in generating the time-series plots for the various groups (wells) match. Using the 
geological and hydrological information, this kind of comparison may help the project team in identifying 
non-compliance wells (e.g., with upward trends in constituent concentrations) and associated reasons. 
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APPENDIX  A  
 

Simulated Critical Values for Gamma GOF Tests,  the  Anderson-
Darling Test and the  Kolmogorov-Smirnov Test  

Critical Values of Gamma GOF Test Statistics 

For values of the gamma distribution shape parameter, k ≤ 0.2, critical values of the two gamma empirical 
distribution tests (EDF) GOF tests: Anderson-Darling (A-D) and Kolmogorov Smirnov (K-S) tests 
incorporated in ProUCL 4.1 and earlier versions have been updated in ProUCL 5.0. Critical values 
incorporated in earlier versions of ProUCL were simulated using the gamma deviate generation algorithm 
(Whittaker 1974) available at the time and with the source code provided in the book Numerical Recipes in 
C, the Art of Scientific Computing (Press et al. 1990). It is noted that the gamma deviate generation 

296 

http://www.epa.gov/esd/tsc/TSC_form.htm
http://www.epa.gov/esd/tsc/TSC_form.htm
http://www.epa.gov/esd/tsc/TSC_form.htm


 

  
     

   
   

   
      

     
   

      
   

    
          

  
   

      
     

             
     

 

 

 
  

      
     

    
   

    

    
  

      
       

     

       
       

  

              
        

algorithm available at the time was not very efficient, especially for smaller values of the shape parameter, 
k ≤ 0.1. For small values of the shape parameter, k, significant discrepancies were found in the critical 
values of the two gamma GOF test statistics obtained using the two gamma deviate generation algorithms: 
Whitaker (1974) and Marsaglia and Tsang (2000). 

Even though, discrepancies were identified in critical values of the two GOF tests for value of k ≤ 0.1, for 
comparison purposes, critical values of the two tests have also been re-generated for k=0.2. For values of k 
≤ 0.2, critical values for the two gammas EDF GOF tests have been re-generated and tables of critical values 
of the two gamma GOF tests have been updated in this Appendix A. Specifically, for values of the shape 
parameter, k (e.g., k ≤ 0.2), critical values of the two gamma GOF tests have been generated using the more 
efficient gamma deviate generation algorithm as described in Marsaglia and Tsang (2000) and Best (1983). 
Detailed description about the implementation of Marsaglia and Tsang's algorithm to generate gamma 
deviates can be found in Kroese, Taimre, and Botev (2011). It is noted that for values of k > 0.1, the 
simulated critical values obtained using Marsaglia and Tsang's algorithm (2000) are in general agreement 
with the critical values of the two GOF test statistics incorporated in ProUCL 4.1 for the various values of 
the sample size considered. Therefore, those critical values for values of k > 0.2 have not been updated in 
tables as summarized in this Appendix A. The developers double checked the critical values of the two 
GOF tests by using MatLab to generate gamma deviates. Critical values obtained using MatLab code are 
in general agreement with the newly simulated critical values incorporated in critical value tables 
summarized in this appendix. 

Simulation Experiments 

The simulation experiments performed are briefly described here. The experiments were carried out for 
various values of the sample size, n = 5(25)1, 30(50)5, 60(100)10, 200(500)100, and 1000. Here the 
notation n=5(25)1 means that n takes values starting at 5 all the way up to 25 at increments of 1 each; 
n=30(50)5 means that n takes values starting at 30 all the way up to 50 at increments of 5 each, and so on. 
Random deviates of sample size n were generated from a gamma, (k, θ), population. The considered values 
of the shape parameter, k, are: 0.025, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, and 50.0. These values of 
k cover a wide range of values of skewness, 2/√k. The distributions of the Kolmogorov-Smirnov (K-S) test 
statistic, D, and the Anderson-Darling (A-D) test statistic, A2, do not depend upon the scale parameter, θ, 
therefore, the scale parameter, θ, has been set equal to 1 in all of the simulation experiments. A typical 
simulation experiment can be described in the following four steps. 

Step 1. Generate a random sample of the specified size, n, from a gamma, G (k, 1), distribution. For values 
of k>0.2, the algorithm as outlined in Whittaker (1974) was used to generate the gamma deviates; and for 
values of k ≤ 0.2, Marsaglia and Tsang's algorithm (2000) has been used to generate gamma deviates. 

Step 2. For each generated sample, compute the MLEs of k and θ (Choi and Wette 1969), and the K-S and 
the A-D test statistics (Anderson and Darling, 1954; D’Agostino and Stephens 1986; Schneider and 
Clickner 1976) using the incomplete gamma function (details can be found in Chapter 2 of this document). 

Step 3. Repeat Steps 1 and 2, a large number (iterations) of times. For values of k>0.2, 20,000 iterations 
were used to compute critical values. However, since generation of gamma deviates are quite unstable for 

297 



      
   

   
  

      
    
   

    
       

          
    

   
   

 
          

     
   

 
  

  

smaller values of k (≤0.1), 500,000 iterations have been used to obtain the newly generated critical values 
of the two test statistics based upon Marsaglia and Tsang's algorithm. 

Step 4. Arrange the resulting test statistics in ascending order. Compute the 90%, 95%, and 99% percentiles 
of the K-S test statistic and the A-D test statistic. 

The resulting raw 10%, 5%, and 1% critical values for the two tests are summarized in Tables 1 through 6 
as follows. The critical values as summarized in Tables 1-6 are in agreement (up to 3 significant digits) 
with all available exact or asymptotic critical values (note that critical values of the two GOF tests are not 
available for values of k<1). It is also noted that the critical values for the K-S test statistic are more stable 
than those for the A-D test statistic. It is hoped that the availability of the critical values for the GOF tests 
for the gamma distribution will result in the frequent use of more practical and appropriate gamma 
distributions in environmental and other applications. 

Note on computation of the gamma distribution based decision statistics and critical values: While 
computing the various decision statistics (e.g., UCL and BTVs), ProUCL uses biased corrected estimates, 

�∗ �∗kstar, 𝑘𝑘 , and theta star, 𝜃𝜃 (described in Section 2.3.3) of the shape, k, and scale, 𝜃𝜃, parameters of the 
gamma distribution. It is noted that the critical values for the two gamma GOF tests reported in the literature 
(D’Agostino and Stephens 1986; Schneider and Clickner 1976; Schneider 1978) were computed using the 
MLE estimates, 𝑘𝑘� and 𝜃𝜃�, of the two gamma parameters, k and 𝜃𝜃. Therefore, the critical values of A-D and 
K-S tests incorporated in ProUCL have also been computed using the MLE estimates: khat, 𝑘𝑘�, and theta 
hat, 𝜃𝜃�, of the two gamma parameters, k and 𝜃𝜃. 
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Table A-1. Critical Values for A-D Test Statistic for Significance Level = 0.10 

n\k 0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 50 

5 0.919726 0.802558 0.715363 0.655580 0.612 0.599 0.594 0.591 0.589 0.589 0.588 
6 0.923855 0.819622 0.735533 0.670716 0.625 0.61 0.603 0.599 0.599 0.598 0.598 
7 0.924777 0.829767 0.746369 0.684718 0.635 0.618 0.609 0.607 0.606 0.604 0.605 
8 0.928382 0.834365 0.758146 0.694671 0.641 0.624 0.616 0.612 0.61 0.609 0.608 
9 0.928959 0.840361 0.765446 0.701756 0.648 0.629 0.62 0.614 0.613 0.613 0.612 
10 0.930055 0.847992 0.771909 0.707396 0.652 0.632 0.623 0.618 0.616 0.615 0.614 
15 0.934218 0.864609 0.792009 0.727067 0.663 0.642 0.63 0.624 0.622 0.621 0.621 
16 0.934888 0.866151 0.795984 0.727392 0.665 0.642 0.632 0.626 0.624 0.622 0.621 
17 0.935586 0.866978 0.796929 0.729339 0.666 0.644 0.632 0.626 0.623 0.623 0.622 
18 0.936246 0.869658 0.799900 0.731904 0.668 0.643 0.634 0.626 0.623 0.624 0.623 
19 0.937456 0.870368 0.800417 0.732093 0.67 0.645 0.633 0.626 0.625 0.624 0.624 
20 0.937518 0.871858 0.801716 0.733548 0.669 0.645 0.633 0.627 0.626 0.624 0.624 
21 0.937751 0.874119 0.803861 0.735995 0.671 0.646 0.634 0.628 0.626 0.626 0.624 
22 0.938503 0.874483 0.804803 0.736736 0.67 0.646 0.636 0.628 0.627 0.625 0.625 
23 0.938587 0.875008 0.805412 0.737239 0.671 0.645 0.635 0.629 0.627 0.625 0.625 
24 0.939277 0.875990 0.806629 0.738236 0.672 0.647 0.635 0.628 0.627 0.626 0.625 
25 0.940150 0.876204 0.807918 0.738591 0.673 0.648 0.636 0.629 0.627 0.626 0.625 
30 0.941743 0.882689 0.811964 0.741572 0.674 0.65 0.637 0.629 0.628 0.627 0.626 
35 0.943737 0.885557 0.814862 0.743736 0.676 0.65 0.638 0.631 0.629 0.628 0.627 
40 0.945107 0.885878 0.817072 0.747438 0.677 0.651 0.637 0.631 0.629 0.628 0.628 
45 0.947909 0.887142 0.817778 0.748890 0.677 0.651 0.639 0.632 0.63 0.628 0.629 
50 0.947922 0.887286 0.818568 0.749399 0.677 0.652 0.64 0.632 0.63 0.629 0.629 
60 0.948128 0.890153 0.820774 0.749930 0.679 0.652 0.64 0.632 0.631 0.629 0.629 
70 0.948223 0.891061 0.822280 0.750605 0.679 0.653 0.641 0.633 0.63 0.63 0.63 
80 0.949613 0.891764 0.823067 0.751452 0.68 0.654 0.641 0.633 0.631 0.63 0.629 
90 0.951013 0.892197 0.823429 0.752461 0.68 0.654 0.642 0.634 0.631 0.629 0.63 

100 0.951781 0.892833 0.824216 0.752765 0.681 0.654 0.642 0.633 0.631 0.63 0.63 
200 0.952429 0.893123 0.826133 0.753696 0.682 0.654 0.642 0.634 0.631 0.631 0.63 
300 0.953464 0.893406 0.826715 0.754433 0.682 0.655 0.641 0.634 0.633 0.631 0.63 
400 0.955133 0.898383 0.827845 0.755130 0.683 0.655 0.641 0.635 0.633 0.631 0.631 
500 0.956040 0.898554 0.827995 0.755946 0.683 0.655 0.643 0.635 0.632 0.631 0.631 

1000 0.957279 0.898937 0.828584 0.757750 0.684 0.655 0.643 0.635 0.632 0.631 0.63 
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Table A-2. Critical Values for K-S Test Statistic for Significance Level = 0.10 

n\k 0.025 0.050 0.10 0.2 0.50 1.0 2.0 5.0 10.0 20.0 50.0 

5 0.382954 0.377607 0.370075 0.358618 0.346 0.339 0.336 0.334 0.333 0.333 0.333 
6 0.359913 0.352996 0.343783 0.332729 0.319 0.313 0.31 0.307 0.307 0.307 0.307 
7 0.336053 0.329477 0.321855 0.312905 0.301 0.294 0.29 0.288 0.288 0.287 0.287 
8 0.315927 0.312018 0.305500 0.295750 0.284 0.278 0.274 0.272 0.271 0.271 0.271 
9 0.300867 0.296565 0.290030 0.280550 0.27 0.264 0.26 0.258 0.257 0.257 0.257 

10 0.286755 0.283476 0.276246 0.268807 0.257 0.251 0.248 0.246 0.245 0.245 0.245 
15 0.238755 0.237248 0.231259 0.223045 0.214 0.209 0.206 0.204 0.204 0.203 0.203 
16 0.232063 0.228963 0.224049 0.216626 0.208 0.203 0.2 0.198 0.198 0.197 0.197 
17 0.225072 0.222829 0.218089 0.211438 0.202 0.197 0.194 0.193 0.192 0.192 0.192 
18 0.218863 0.216723 0.212018 0.205572 0.197 0.192 0.189 0.188 0.187 0.187 0.187 
19 0.213757 0.211493 0.206688 0.201002 0.192 0.187 0.184 0.183 0.182 0.182 0.182 
20 0.209044 0.205869 0.202242 0.196004 0.187 0.183 0.18 0.179 0.178 0.178 0.178 
21 0.204615 0.201904 0.197476 0.191444 0.183 0.179 0.176 0.175 0.174 0.174 0.174 
22 0.199688 0.197629 0.193503 0.187686 0.179 0.175 0.172 0.171 0.17 0.17 0.17 
23 0.195776 0.193173 0.188985 0.182952 0.175 0.171 0.169 0.167 0.167 0.166 0.166 
24 0.192131 0.189663 0.185566 0.179881 0.172 0.168 0.165 0.164 0.163 0.163 0.163 
25 0.188048 0.185450 0.181905 0.176186 0.169 0.165 0.162 0.161 0.16 0.16 0.16 
30 0.172990 0.169910 0.166986 0.161481 0.155 0.151 0.149 0.147 0.147 0.147 0.147 
35 0.160170 0.158322 0.155010 0.150173 0.144 0.14 0.138 0.137 0.136 0.136 0.136 
40 0.150448 0.148475 0.145216 0.140819 0.135 0.132 0.13 0.128 0.128 0.128 0.128 
45 0.142187 0.140171 0.137475 0.133398 0.127 0.124 0.122 0.121 0.121 0.121 0.121 
50 0.135132 0.133619 0.130496 0.126836 0.121 0.118 0.116 0.115 0.115 0.115 0.115 
60 0.123535 0.122107 0.119488 0.116212 0.111 0.108 0.107 0.106 0.105 0.105 0.105 
70 0.114659 0.113414 0.110949 0.107529 0.103 0.1 0.099 0.098 0.098 0.097 0.097 
80 0.107576 0.106191 0.104090 0.100923 0.096 0.094 0.093 0.092 0.092 0.091 0.091 
90 0.101373 0.100267 0.097963 0.095191 0.091 0.089 0.088 0.087 0.086 0.086 0.086 

100 0.096533 0.095061 0.093359 0.090566 0.086 0.084 0.083 0.082 0.082 0.082 0.082 
200 0.068958 0.067898 0.066258 0.064542 0.062 0.06 0.059 0.059 0.058 0.058 0.058 
300 0.056122 0.055572 0.054295 0.052716 0.05 0.049 0.048 0.048 0.048 0.048 0.048 
400 0.048635 0.048048 0.047103 0.045745 0.044 0.043 0.042 0.042 0.042 0.041 0.041 
500 0.043530 0.042949 0.042053 0.040913 0.039 0.038 0.038 0.037 0.037 0.037 0.037 
1000 0.030869 0.030621 0.029802 0.028999 0.028 0.027 0.027 0.026 0.026 0.026 0.026 
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Table A-3. Critical Values for A-D Test Statistic for Significance Level = 0.05 

n\k 0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 50 

5 1.151052 0.993916 0.867326 0.775584 0.711 0.691 0.684 0.681 0.679 0.679 0.678 
6 1.163733 1.015175 0.892648 0.801734 0.736 0.715 0.704 0.698 0.698 0.697 0.697 
7 1.164504 1.027713 0.910212 0.822761 0.752 0.728 0.715 0.71 0.708 0.707 0.708 
8 1.164753 1.033965 0.926242 0.835780 0.762 0.736 0.724 0.719 0.715 0.716 0.715 
9 1.165715 1.039023 0.936047 0.847305 0.771 0.743 0.73 0.723 0.722 0.721 0.721 

10 1.165767 1.051305 0.945231 0.855135 0.777 0.748 0.736 0.729 0.725 0.725 0.724 
15 1.166499 1.072701 0.971851 0.883252 0.793 0.763 0.747 0.739 0.737 0.735 0.734 
16 1.166685 1.072764 0.976822 0.883572 0.796 0.763 0.75 0.741 0.739 0.737 0.735 
17 1.168544 1.074729 0.979261 0.885946 0.798 0.766 0.749 0.742 0.739 0.738 0.737 
18 1.168987 1.076805 0.982322 0.889231 0.8 0.767 0.753 0.743 0.739 0.739 0.738 
19 1.169801 1.078026 0.983408 0.891016 0.803 0.769 0.752 0.742 0.741 0.74 0.74 
20 1.169916 1.080724 0.985352 0.892498 0.803 0.768 0.752 0.745 0.742 0.741 0.739 
21 1.170231 1.082101 0.988749 0.895978 0.805 0.77 0.754 0.745 0.743 0.743 0.741 
22 1.170651 1.083139 0.989794 0.896739 0.804 0.771 0.756 0.746 0.744 0.74 0.743 
23 1.170815 1.084161 0.990147 0.897642 0.805 0.769 0.755 0.747 0.744 0.742 0.741 
24 1.171897 1.085896 0.991640 0.898680 0.806 0.772 0.755 0.746 0.744 0.742 0.742 
25 1.173062 1.086184 0.991848 0.899874 0.807 0.773 0.756 0.747 0.745 0.743 0.742 
30 1.174361 1.095072 1.000576 0.903940 0.809 0.775 0.758 0.746 0.745 0.744 0.744 
35 1.174900 1.095964 1.000838 0.907253 0.812 0.776 0.76 0.75 0.748 0.747 0.745 
40 1.177053 1.097870 1.004925 0.909633 0.813 0.779 0.759 0.751 0.748 0.747 0.746 
45 1.178564 1.099630 1.006416 0.911353 0.813 0.777 0.761 0.753 0.748 0.748 0.747 
50 1.178640 1.100960 1.007896 0.912084 0.814 0.78 0.763 0.754 0.75 0.748 0.748 
60 1.179045 1.103255 1.009514 0.914286 0.816 0.779 0.763 0.753 0.751 0.749 0.748 
70 1.179960 1.105666 1.013808 0.914724 0.817 0.78 0.763 0.754 0.751 0.749 0.749 
80 1.180934 1.106509 1.014011 0.914808 0.819 0.782 0.763 0.754 0.75 0.751 0.748 
90 1.183445 1.106661 1.015090 0.915898 0.818 0.783 0.765 0.755 0.752 0.75 0.751 

100 1.183507 1.107269 1.015433 0.917512 0.818 0.783 0.765 0.754 0.752 0.75 0.75 
200 1.184370 1.108491 1.018998 0.920264 0.821 0.784 0.766 0.756 0.751 0.751 0.75 
300 1.186474 1.112771 1.019934 0.920502 0.822 0.784 0.766 0.757 0.755 0.751 0.752 
400 1.186711 1.113282 1.020022 0.920551 0.823 0.785 0.766 0.757 0.754 0.751 0.752 
500 1.186903 1.114064 1.020267 0.921806 0.822 0.785 0.767 0.756 0.753 0.752 0.752 
1000 1.188089 1.114697 1.020335 0.923848 0.824 0.785 0.768 0.757 0.753 0.752 0.75 
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Table A-4. Critical Values for K-S Test Statistic for Significance Level = 0.05 

n\k 0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 50 

5 0.425015 0.416319 0.405292 0.388127 0.372 0.364 0.36 0.358 0.358 0.357 0.357 
6 0.393430 0.384459 0.374897 0.364208 0.349 0.341 0.336 0.333 0.332 0.332 0.332 
7 0.367179 0.361553 0.353471 0.342709 0.327 0.32 0.315 0.313 0.312 0.311 0.311 
8 0.348874 0.342809 0.335397 0.323081 0.309 0.301 0.297 0.295 0.294 0.294 0.293 
9 0.331231 0.325179 0.317725 0.308264 0.294 0.287 0.282 0.28 0.279 0.279 0.279 

10 0.315236 0.311210 0.303682 0.294373 0.281 0.274 0.27 0.267 0.267 0.266 0.266 
15 0.262979 0.260524 0.253994 0.245069 0.234 0.228 0.224 0.222 0.222 0.221 0.221 
16 0.255659 0.251621 0.246493 0.238415 0.227 0.221 0.218 0.216 0.215 0.215 0.214 
17 0.247795 0.244721 0.240192 0.231881 0.221 0.215 0.212 0.21 0.209 0.209 0.208 
18 0.240719 0.237832 0.233566 0.226194 0.215 0.209 0.206 0.204 0.203 0.203 0.203 
19 0.235887 0.232558 0.227223 0.220341 0.21 0.204 0.201 0.199 0.199 0.198 0.198 
20 0.229517 0.227125 0.222103 0.214992 0.205 0.199 0.196 0.194 0.194 0.193 0.193 
21 0.224925 0.221654 0.217434 0.209979 0.2 0.195 0.192 0.19 0.189 0.189 0.189 
22 0.219973 0.217725 0.212415 0.205945 0.196 0.191 0.188 0.186 0.185 0.185 0.185 
23 0.215140 0.212869 0.207622 0.201004 0.192 0.187 0.184 0.182 0.182 0.181 0.181 
24 0.211022 0.208355 0.203870 0.197443 0.188 0.183 0.18 0.178 0.178 0.178 0.177 
25 0.207233 0.204154 0.200009 0.193701 0.184 0.18 0.177 0.175 0.175 0.174 0.174 
30 0.187026 0.187026 0.183312 0.177521 0.169 0.165 0.162 0.16 0.16 0.16 0.16 
35 0.176132 0.174396 0.170208 0.165130 0.157 0.153 0.151 0.149 0.149 0.148 0.148 
40 0.165449 0.163501 0.159727 0.154749 0.148 0.144 0.141 0.14 0.139 0.139 0.139 
45 0.156286 0.154614 0.151477 0.146553 0.139 0.136 0.133 0.132 0.132 0.132 0.131 
50 0.148646 0.146991 0.143731 0.139040 0.132 0.129 0.127 0.126 0.125 0.125 0.125 
60 0.135915 0.134711 0.131391 0.127762 0.121 0.118 0.116 0.115 0.115 0.114 0.114 
70 0.126014 0.124810 0.122186 0.118044 0.113 0.11 0.108 0.107 0.106 0.106 0.106 
80 0.118350 0.116873 0.114417 0.111066 0.105 0.103 0.101 0.1 0.1 0.099 0.099 
90 0.111619 0.110232 0.107708 0.104276 0.1 0.097 0.095 0.094 0.094 0.094 0.094 

100 0.106157 0.104696 0.102748 0.099320 0.095 0.092 0.091 0.09 0.089 0.089 0.089 
200 0.070489 0.074659 0.072990 0.070805 0.067 0.065 0.064 0.064 0.064 0.064 0.063 
300 0.061746 0.061067 0.059533 0.057851 0.055 0.054 0.053 0.052 0.052 0.052 0.052 
400 0.053335 0.052747 0.051917 0.050257 0.048 0.047 0.046 0.045 0.045 0.045 0.045 
500 0.047696 0.047419 0.046238 0.044893 0.043 0.042 0.041 0.041 0.04 0.04 0.04 
1000 0.034028 0.033719 0.032830 0.031659 0.03 0.03 0.029 0.029 0.029 0.029 0.029 
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Table A-5. Critical Values for A-D Test Statistic for Significance Level = 0.01 

n\k 0.025 0.05 0.1 0.2 0.5 1 2 5 10 20 50 

5 1.749166 1.518258 1.258545 1.068746 0.945 0.905 0.89 0.883 0.882 0.879 0.879 
6 1.751877 1.543508 1.305996 1.123216 0.99 0.946 0.928 0.918 0.916 0.911 0.912 
7 1.752404 1.556906 1.332339 1.162744 1.019 0.979 0.951 0.944 0.938 0.935 0.938 
8 1.752700 1.561426 1.358108 1.187751 1.044 0.99 0.97 0.961 0.955 0.956 0.953 
9 1.758051 1.567347 1.372050 1.210845 1.058 1.007 0.984 0.967 0.968 0.969 0.967 
10 1.759366 1.575002 1.384541 1.218849 1.071 1.018 0.994 0.981 0.977 0.975 0.973 
15 1.762174 1.593432 1.418705 1.263841 1.1 1.048 1.018 1.002 0.999 0.997 0.999 
16 1.763292 1.596448 1.422813 1.273189 1.112 1.047 1.019 1.007 1.004 1 0.999 
17 1.763403 1.599618 1.425118 1.273734 1.11 1.053 1.023 1.008 1.004 1.003 1 
18 1.763822 1.599735 1.435826 1.274053 1.116 1.054 1.027 1.015 1.006 1.005 1.003 
19 1.764890 1.603396 1.441772 1.278280 1.115 1.059 1.026 1.013 1.01 1.006 1.008 
20 1.765012 1.604198 1.443435 1.279990 1.118 1.056 1.031 1.016 1.012 1.005 1.009 
21 1.765021 1.604737 1.446116 1.281092 1.126 1.057 1.031 1.017 1.013 1.013 1.008 
22 1.765611 1.605233 1.448791 1.284002 1.119 1.062 1.036 1.023 1.014 1.011 1.013 
23 1.765703 1.609641 1.449964 1.288792 1.125 1.059 1.034 1.017 1.02 1.012 1.013 
24 1.766530 1.609644 1.451442 1.289696 1.126 1.065 1.035 1.02 1.015 1.012 1.013 
25 1.766655 1.609908 1.451659 1.290311 1.127 1.064 1.038 1.021 1.017 1.014 1.013 
30 1.771265 1.617605 1.462230 1.295794 1.133 1.072 1.044 1.023 1.023 1.019 1.018 
35 1.772614 1.620179 1.465890 1.296988 1.136 1.072 1.045 1.027 1.025 1.021 1.018 
40 1.772920 1.622877 1.468763 1.304213 1.138 1.076 1.046 1.03 1.027 1.023 1.022 
45 1.774318 1.624156 1.469148 1.308833 1.141 1.074 1.048 1.036 1.03 1.026 1.024 
50 1.775401 1.630356 1.471192 1.311004 1.142 1.079 1.053 1.034 1.029 1.028 1.025 
60 1.777021 1.630972 1.474981 1.312242 1.144 1.079 1.054 1.032 1.032 1.029 1.03 
70 1.780583 1.634413 1.477148 1.313856 1.145 1.079 1.055 1.038 1.031 1.031 1.028 
80 1.782174 1.636678 1.481082 1.315184 1.15 1.085 1.055 1.036 1.033 1.032 1.029 
90 1.786462 1.637946 1.483922 1.316508 1.149 1.086 1.056 1.038 1.034 1.031 1.033 
100 1.788600 1.639307 1.484231 1.318003 1.149 1.085 1.054 1.042 1.035 1.033 1.032 
200 1.789565 1.640278 1.486139 1.318714 1.156 1.089 1.059 1.041 1.031 1.032 1.033 
300 1.791785 1.640656 1.489654 1.322935 1.154 1.09 1.058 1.043 1.038 1.033 1.031 
400 1.796178 1.641470 1.491079 1.323876 1.158 1.093 1.057 1.043 1.039 1.035 1.034 
500 1.799037 1.642244 1.491158 1.328415 1.155 1.089 1.057 1.047 1.04 1.034 1.034 
1000 1.810595 1.642639 1.492652 1.328852 1.157 1.092 1.06 1.043 1.035 1.036 1.031 
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Table A-6. Critical Values for K-S Test Statistic for Significance Level = 0.01 

n\k 0.025 0.050 0.10 0.2 0.50 1.0 2.0 5.0 10.0 20.0 50.0 

5 0.495311 0.482274 0.467859 0.449435 0.431 0.421 0.414 0.41 0.41 0.408 0.408 
6 0.464286 0.454103 0.441814 0.423777 0.402 0.391 0.385 0.382 0.381 0.38 0.38 
7 0.437809 0.426463 0.411589 0.398890 0.38 0.369 0.362 0.36 0.358 0.357 0.357 
8 0.412467 0.404538 0.392838 0.379962 0.36 0.349 0.344 0.34 0.339 0.339 0.338 
9 0.390183 0.383671 0.375103 0.361937 0.343 0.333 0.327 0.323 0.323 0.322 0.322 
10 0.373002 0.368362 0.358647 0.348328 0.328 0.318 0.312 0.309 0.308 0.308 0.307 
15 0.310445 0.307559 0.300791 0.289751 0.274 0.266 0.261 0.258 0.257 0.257 0.256 
16 0.302682 0.298348 0.290148 0.280643 0.266 0.258 0.253 0.251 0.25 0.249 0.249 
17 0.294519 0.289320 0.283394 0.274722 0.259 0.251 0.246 0.244 0.243 0.242 0.242 
18 0.285220 0.280990 0.276126 0.265561 0.252 0.245 0.24 0.237 0.236 0.236 0.236 
19 0.277810 0.275460 0.269173 0.260992 0.246 0.238 0.234 0.232 0.231 0.23 0.23 
20 0.271994 0.268927 0.261936 0.253878 0.24 0.233 0.228 0.226 0.225 0.225 0.225 
21 0.266096 0.262728 0.256686 0.247915 0.235 0.228 0.223 0.221 0.22 0.22 0.219 
22 0.260430 0.256537 0.251727 0.242711 0.23 0.223 0.219 0.216 0.216 0.215 0.215 
23 0.254210 0.252405 0.245607 0.236271 0.225 0.218 0.215 0.212 0.211 0.211 0.21 
24 0.249574 0.246722 0.240947 0.233143 0.221 0.214 0.21 0.208 0.207 0.207 0.206 
25 0.246298 0.242298 0.236164 0.228867 0.216 0.21 0.206 0.204 0.203 0.203 0.203 
30 0.220685 0.222267 0.217254 0.209442 0.199 0.193 0.189 0.187 0.186 0.186 0.185 
35 0.208407 0.206958 0.202296 0.194716 0.185 0.179 0.176 0.174 0.173 0.173 0.172 
40 0.196230 0.193613 0.188617 0.182935 0.173 0.168 0.165 0.163 0.162 0.162 0.162 
45 0.185995 0.183011 0.179728 0.173141 0.164 0.158 0.156 0.154 0.154 0.153 0.153 
50 0.176191 0.173662 0.170513 0.163792 0.156 0.151 0.148 0.146 0.146 0.146 0.145 
60 0.161519 0.158802 0.155658 0.150458 0.143 0.138 0.136 0.134 0.134 0.133 0.133 
70 0.149283 0.148241 0.144542 0.139590 0.132 0.128 0.126 0.124 0.124 0.124 0.124 
80 0.139831 0.138103 0.135441 0.131479 0.124 0.12 0.118 0.117 0.116 0.116 0.116 
90 0.132254 0.130746 0.127231 0.123253 0.117 0.114 0.111 0.11 0.11 0.109 0.11 
100 0.126224 0.123308 0.121414 0.117441 0.111 0.108 0.106 0.105 0.104 0.104 0.104 
200 0.085150 0.088338 0.086339 0.083391 0.079 0.077 0.075 0.074 0.074 0.074 0.074 
300 0.073232 0.072401 0.071096 0.068521 0.065 0.063 0.062 0.061 0.061 0.061 0.06 
400 0.063283 0.062708 0.061239 0.059235 0.056 0.054 0.053 0.053 0.053 0.053 0.053 
500 0.056181 0.056147 0.054822 0.053042 0.05 0.049 0.048 0.047 0.047 0.047 0.047 
1000 0.040020 0.039807 0.038938 0.036987 0.036 0.035 0.034 0.034 0.033 0.033 0.033 
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APPENDIX B  
 

Large  Sample Size Requirements  to use the  Central Limit 
Theorem  on Skewed Data Sets  to Compute an Upper Confidence  

Limit of  the Population  Mean  
As mentioned earlier, the main objective of the ProUCL software funded by the USEPA is to compute 
accurate and defensible decision statistics to help the decision makers in making reliable decisions which 
are cost-effective, and protective of human health and the environment. ProUCL software is based upon 
the philosophy that rigorous statistical methods can be used to compute the correct estimates of the 
population parameters (e.g., site mean, background percentiles) and decision making statistics including 
the upper confidence limit (UCL) of the population mean, the upper tolerance limit (UTL), and the upper 
prediction limit (UPL) to help decision makers and project teams in making decisions. The use and 
applicability of a statistical method (e.g., Student's t-UCL, CLT-UCL, adjusted gamma-UCL, Chebyshev 
UCL, bootstrap-t UCL) depend upon data size, data skewness, and data distribution. ProUCL computes 
decision statistics using several parametric and nonparametric methods covering a wide-range of data 
variability, skewness, and sample size. A couple of UCL computation methods described in the statistical 
text books (e.g., Hogg and Craig, 1995) based upon the Student's t-statistic and the Central Limit Theorem 
(CLT) alone cannot address all scenarios and situations commonly occurring in the various environmental 
studies. 

Moreover, the properties of the CLT and Student's t-statistic are unknown when NDs with varying DLs are 
present in a data set - a common occurrence in data sets originating from environmental applications. The 
use of a parametric lognormal distribution on a lognormally distributed data set tends to yield unstable 
impractically large UCLs values, especially when the standard deviation (sd) of the log-transformed data is 
greater than 1.0 and the data set is of small size such as less than 30-50 (Hardin and Gilbert 1993; Singh, 
Singh, and Engelhardt, 1997). Many environmental data sets can be modeled by a gamma as well as a 
lognormal distribution. Generally, the use of a gamma distribution on gamma distributed data sets yields 
UCL values of practical merit (Singh, Singh, and Iaci 2002). Therefore, the use of gamma distribution-
based decision statistics such as UCLs, upper prediction limits (UPLs), and UTLs should not be dismissed 
just because it is easier to use a lognormal model. The advantages of computing the gamma distribution-
based decision statistics have been discussed in Chapters 2 through 5 of this technical guidance document. 

Since many environmental decisions are made based upon a 95% UCL (UCL95) of the population mean, 
it is important to compute UCLs and other decision making statistics of practical merit. In an effort to 
compute correct and appropriate UCLs of the population mean and other decision making statistics, in 
addition to computing the Student's t statistic and the CLT based decision statistics (e.g., UCLs, UPLs), 
significant effort has been made to incorporate rigorous statistical methods based UCLs in ProUCL 
software covering a wide-range of data skewness and sample sizes (Singh, Singh, and Engelhardt 1997; 
Singh, Singh, and Iaci 2002). It is anticipated that the availability of the statistical limits in the ProUCL 
covering a wide range of environmental data sets will help decision makers in making more informative 
and defensible decisions at Superfund and RCRA sites. 
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It is noted that even for skewed data sets, practitioners tend to use the CLT or Student's t-statistic based 
UCLs of the mean for samples of sizes 25-30 (large sample rule-of-thumb to use CLT). However, this rule-
of-thumb does not apply to moderately skewed to highly skewed data sets, specifically when σ (sd of the 
log-transformed data) starts exceeding 1. It should be noted that the large sample requirement depends upon 
the skewness of the data distribution under consideration. The large sample requirement for the sample 
mean to follow an approximate normal distribution increases with skewness. It is noted that for skewed 
data sets, even samples of size greater 100 may not be large enough for the sample mean to follow an 
approximate normal distribution (Figures B-1 through B-7 below) and the UCLs based upon the CLT and 
Student's t statistics fail to provide the desired 95% coverage of the population mean for samples of sizes 
as large as 100 as can be seen in Figures B-1 through B-7. 

Noting that the Student's t-UCL and the CLT-UCL fail to provide the specified coverage of the population 
mean of skewed distributions, several researchers, including Chen (1995), Johnson (1978), Kleijnen, 
Kloppenburg, and Meeuwsen (1986), and Sutton (1993), proposed adjustments for data skewness in the 
Student's t statistic and the CLT. They suggested the use of a modified-t-statistic and skewness adjusted 
CLT for positively skewed distributions (for details see Chapter 2 of this Technical Guide). From statistical 
theory, the CLT yields UCL results slightly smaller than the Student's t-UCL and the adjusted CLT, and 
the Student's t-statistic yield UCLs smaller than the modified t-UCLs (details in Chapter 2 of this 
document). Therefore, only the modified t-UCL has been incorporated in the simulation results described 
in the following. Specifically, if a UCL95 based upon the modified t-statistic fails to provide the specified 
coverage to the population mean, then the other three UCL methods, Student's t-UCL, CLT-UCL, and the 
adjusted CLT-UCL, will also fail to provide the specified coverage of the population mean. The simulation 
graphs summarized in this appendix suggest that the skewness adjusted UCLs such as the Johnson’s 
modified-t UCL (and therefore Student's t-UCL and CLT-UCL) do not provide the specified coverage to 
the population mean even for mildly to moderately skewed (σ in [0.5, 1.0]) data sets. The coverage of the 
population mean provided by these UCLs becomes worse (much smaller than the specified coverage) for 
highly skewed data sets. 

The graphical displays, shown in Figures B-1 through B-7, cover mildly, moderately, and highly skewed 
data sets. Specifically, Figures B-1 through B-7 compare the UCL95 of the mean based upon parametric 
and nonparametric bootstrap methods and also UCLs computed using the modified-t UCL for mildly 
skewed (G(5,50), LN(5,0.05)); moderately skewed (G(2,50), LN(5,1)); and highly skewed (G(0.5, 50), 
G(1,50), and LN(5,1.5)) data distributions. From the simulation results presented in Figures B-1 through 
B-7, it is noted that for skewed distributions, as expected the UCLs based on the modified t-statistic (and 
therefore UCLs based upon the CLT and the Student's t-statistic) fail to provide the desired 95% coverage 
of the population mean of gamma distributions: G(0.5,50), G(1,50), G(2,50); and of lognormal 
distributions: LN(5,0.5), LN(5,1), LN(5,1.5) for samples of sizes as large as 100; and the large sample size 
requirement increases as the skewness increases. 

The use of the CLT -UCL and Student's t-UCL underestimate the population mean/ EPC for most skewed 
data sets. 
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Figure B-1. Graphs of Coverage Probabilities by 95% UCLs of the mean of G (k=0.50, ϴ=50) 

Figure B-2. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=1.00, ϴ=50) 
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Figure B-3. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=2.00, ϴ=50) 

Figure B4. Graphs of Coverage Probabilities by 95% UCLs of Mean of G(k=5.00, ϴ=50) 
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Figure B-5. Graphs of Coverage Probabilities by UCLs of Mean of LN(µ=5, σ=0.5) 

Figure B-6. Graphs of Coverage Probabilities by UCLs of Mean of LN(µ=5, σ=1.0) 
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 APPENDIX C  
 

UCL Recommendation Decision Logic   
 

 

      

 
 

 

   

     

    

     

      

    

 

 

    

Gamma Decision Logic 
with NDs, page 4 

Sec Lognonnal Dec ision Logic 
with NDs, page S 

y., 

No Recommeodat100 

KMt 

Sec Gamma Decision Log.-ic 
without NDs, page 2 

Yes 

Sec Lognormal Decis ion Logic 
without NDs, page l 

No Recommeodat1on 

No 

Student'! t 

Decision Logic Flowcharts 

Table C-1. Skewness as a Function of σ (or its MLE, sy = σ̂ ), sd of log(X) 

Standard Deviation of 
Skewness 

Logged Data 

σ < 0.5 Symmetric to mild skewness 

0.5 ≤ σ < 1.0 Mild skewness to moderate skewness 

1.0 ≤ σ < 1.5 Moderate skewness to high skewness 

1.5 ≤ σ < 2.0 High skewness 

2.0 ≤ σ < 3.0 Very high skewness 

σ ≥ 3.0 Extremely high skewness 

Figure C-1. General Decision Logic Framework, with and without NDs. 
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Recommendation 

Adjusted Gamma 
UCL 

NA 

<0.5 

No Recommendation 

Approximate Gamma 
UCL 

No 

Yes 

No Recommendation 

For highly skewed data sets with a CV exceeding 1.0, it is suggested that the user pre-process the data. It is very likely 
that the data include outliers and/or come from multiple populations. The population partitioning methods may be 
used to identify mixture populations present in the data set. 

Figure C-2. Recommendations for UCLs of Data Following a Gamma Distribution, without NDs. 
*k_hat is the MLE estimate of the shape parameter of the gamma distribution. 
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No 

HUCL 

No 

KM AdJwtcd Gamma 
or GROS AdJustcd 

Gamma UCL 

> 

Yes 

< 1.5 

At least 1.5 

H UCL 

Figure C-3. Recommendations for UCLs of Data Following a Lognormal Distribution, without NDs. 
* H Flag is “yes” if n < 3 or n > 1001, or if any of the values in the data are NA, negative, or 0. Otherwise “no”. 

Figure C-4. Recommendations for UCLs of Data Following a Gamma Distribution, with NDs. 

*k_star is the bias-corrected MLE estimate of the shape parameter of the gamma distribution, calculated 
using detects only. 

**In case the bootstrap-t or Hall’s bootstrap methods yield erratic, inflated, and unstable UCL values, the 
UCL of the mean should be computed using an adjusted gamma UCL. 
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At least 75 At least 1.5 

IQ,t t or KM BCA 

KMH UCL 

Figure C-5. Recommendations for UCLs of Data Following a Lognormal Distribution, with NDs. 

Notes: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most 
appropriate 95% UCL. These suggestions are based upon the results of the simulation studies summarized 
in Singh, Singh, and Iaci (2002), Flagg et al (2017), Section 2.5.1.5, and Appendix D to this Technical 
Guide. For additional insight, the user may want to consult a statistician. 

Optional Decision Logic Flowcharts for Lognormal Distributions without NDs 

The recommendations in Figure C-3, Recommendations for UCLs of Data Following a Lognormal 
Distribution, without NDs, are based on the analysis presented in Appendix D to the Technical Guide. This 
is based on a machine learning algorithm (recursive partitioning, RPart) applied to a very large number of 
simulation results. One RPart tree was based on minimizing the average loss (risk) across the loss functions 
used. The other was based on minimizing the maximum loss (minimax risk) across loss functions. 

The resulting decision trees were trimmed to control the complexity of the resulting decision rules to one 
decision point in sample size, N, and one decision point in sample log-scale standard deviation (log_SD). 
The decision trees can be expanded by reducing the penalty for complexity. This was done to add one 
additional decision level to each of the decision trees. The resulting expanded decision trees, in limited 
circumstances, also included recommending Hall’s bootstrap and the Chebyshev 90% UCL. These decision 
trees are not used for ProUCL’s UCL recommendations but are presented below to be used at the discretion 
of practitioners.    

Minimum Average Risk Recommendations 

The expanded minimum average risk RPart tree is presented in Figure C-6, below. Note that at each decision 
node in the plot, the left branch is taken when the node criterion is true, and the right branch is taken when 
it is false. The recommendation rules are summarized in Table C-2, below. 
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log_SD < 2.1 
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12% 

Halls UCL 

118 1192 
6% 

Figure C-6. Expanded minimum average risk recommendations for UCLs of Data Following a 
Lognormal Distribution, without NDs. 

Table C-2. Expanded minimum average risk recommendations for UCLs of Data Following a 
Lognormal Distribution, without NDs. 

Sample Size Log standard deviation Recommended UCL 
< 28 < 0.64 Chebyshev 90% UCL 
< 28 0.64 to 1.38 H-UCL 
< 28 1.38 to 2.06 t-UCL 
< 28 ≥ 2.06 Halls_UCL 
≥ 28 any H-UCL 
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Minimax Risk Recommendations 

The expanded minimax risk RPart tree is presented in Figure C-7, below. Note that at each decision node 
in the plot, the left branch is taken when the node criterion is true, and the right branch is taken when it is 
false. The recommendation rules are summarized in Table C-3, below. 

Figure C-7. Expanded minimax risk recommendations for UCLs of Data Following a Lognormal 
Distribution, without NDs. 

Table C-2. Expanded minimax risk recommendations for UCLs of Data Following a Lognormal 
Distribution, without NDs. 

Sample Size Log standard deviation Recommended UCL 
< 28 < 1.2 H-UCL 
< 28 1.2 to 2.0 t-UCL 
< 28 ≥ 2.0 Halls_UCL 
≥ 28 any H-UCL 
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APPENDIX D  
 

Analysis of UCL Simulations at the Lognormal Distribution  

Separate document 
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