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1.0 Introduction 

This report presents a preliminary analysis of the results of simulations of upper confidence 

limits (UCL) for the mean of the lognormal distribution after data sets are filtered through the 

goodness-of-fit (GoF) rules recommended for ProUCL 5.2. The purpose of this is to get an 

approximate characterization of the behavior of various UCLs calculated by ProUCL in data that 

have been identified by the GoF rules as putatively lognormal. The analysis culminates with the 

identification of a simple set of rules for recommending the choice of UCLs in data that the GoF 

rules have identified as tentatively lognormal. 

A UCL for the mean is the upper end of a one-sided confidence interval (CI) for the mean. The 

coverage of a CI is the frequency of the CI covering the true mean, synonymous with the 

confidence level. For a UCL, coverage is the frequency of over-estimating the true mean. 

Although a UCL is defined in terms of a one-sided CI, in environmental practice it is very often 

used as a conservative estimator of the mean concentration of a chemical of concern (CoC), 

which is intended to represent the consequence of “reasonable maximum exposure” to the CoC. 

The word “reasonable” must be emphasized here. The fact that risks based on UCLs are then 

summed in a risk assessment can be exceedingly conservative, but that issue will not be 

addressed here. UCLs for human health risk assessment are usually calculated for a confidence 

level of 95% (significance level of 5%). Estimators with low bias and low variance are desirable. 

In the risk assessment setting, value should be placed on: 

• low expected frequency of underestimating the mean (roughly equal to 100% minus the 

confidence level), 

• small positive bias, 

• small average estimation errors, and 

• small probability of large overestimation. 

UCLs for the mean are also used to assess compliance with environmental standards. Coverage 

is perhaps more important in this setting. However, the consequences of exceeding a regulatory 

standard by a large amount are generally deemed to be severe. This again emphasizes the 

importance of ensuring that UCL estimators do not produce large overestimates or that they do 

so very infrequently. 

2.0 Simulation 

The simulation used in this study generated 10,000 replicate data sets for each lognormal 

distribution used. These distributions have a common mean of 100 and a wide range of 

coefficients of variation (CVs) (25 values from 0.1 to 20) covering behavior from very slightly 

skewed to highly skewed. Since these are all lognormal distributions, the CV determines the 

standard deviation of logs of the values and vice versa. The CV is used as an index parameter for 

the populations simulated in order to easily fit simulations for other distributions (and mixtures) 

into the same framework. 

The sample sizes of the simulated data sets range from 5 to 1,000 with 47 different values. For 

each replicate, a sample of size 1,000 was generated as a parent sample from which samples of 

the various sizes required were selected for computation of summary statistics and UCLs. The 
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UCLs simulated include the Chebyshev 95% UCL, the Chebyshev 90% UCL, the H-UCL, the t-

UCL, the skewed t-UCL, the adjusted Gamma UCL, Hall’s bootstrap UCL, the bootstrap-t UCL 

and the BCa bootstrap UCL. The UCLs had a target coverage level of 95%, except for the 

Chebyshev 90% UCL. The results, which took several days to compute using parallel computing 

with up to 50 CPU cores, give an accurate characterization of the behavior of the UCLs 

calculated. 

The computations were performed in R 4.1.1. The H-UCL was computed using the EnvStats 

library version 2.4.0. 

The GoF selection rules, revised for ProUCL 5.2, are that data sets are treated as lognormal if: 

• they are rejected as normal at level 0.01 by both the Shapiro-Wilks and Anderson-Darling 

goodness-of-fit tests, 

• they are rejected as being from a Gamma distribution at level 0.05 by both the Anderson-

Darling and Kolmogorov-Smirnov goodness-of-fit tests, and 

• they are not rejected as lognormal at level 0.1 by either the Shapiro-Wilks or the 

Anderson-Darling goodness-of-fit test. 

Data filtered according to these criteria were used to develop the performance measures and 

recommendation rules for UCLs for designated lognormal data in ProUCL 5.2. The ultimate 

objective is to model and improve the behavior of ProUCL 5.2, and later versions, when it is 

given approximately lognormal data. 

3.0 UCL Properties 

A CI (including one-sided CIs) for a parameter is defined as a random interval that covers the 

true (unknown) value of the parameter with specified probability (coverage probability or 

confidence coefficient) from the point of view of the procedure generating the random interval 

being applied over and over again to data generated by the same random process. In statistical 

literature, the two most important considerations for CI are coverage and accuracy. There is 

some disagreement about coverage. Most authors (such as Mood, Graybill, Boes, Randles, 

Wolfe, Hollander, C.R. Rao, Davison, and Hinkley) indicate the coverage probability should be 

at least approximately equal to the nominal value (confidence level) for a valid CI. A minority of 

authors (such as Bickel and Doksum) hold that any CI for which the coverage probability equals 

or exceeds the confidence level is valid. All of the authors listed have well-known books, listed 

in this report’s References section, which discuss confidence intervals. 

All of the authors listed above hold that accuracy is a very important consideration. Accuracy is 

a measure of the average closeness of the confidence limits to the true value of the parameter. In 

the case of two-sided confidence, the average length of the CI is universally held to be a good 

measure of accuracy. Generally, CIs are associated with the acceptance region of a statistical 

hypothesis test constructed for the parameter in question. Most powerful tests are associated with 

shortest length two-sided CIs and with most accurate one-sided confidence intervals. A UCL, 𝑈1, 
is said to be more accurate than another UCL, 𝑈2, if both UCLs have the same coverage 

probability, and on average 𝑈1 < 𝑈2. It is often easier to compare the averages of 𝑈1 ⁄ 𝜇 to 𝑈2 ⁄
𝜇, which makes the results across different simulations or theoretical calculations easier to 
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compare. This suggests that estimation errors for UCLs be considered in terms of relative error, 
𝑈

𝜇⁄ − 1. 

As far as Neptune and Company, Inc. (Neptune) is aware, accuracy of CIs has not previously (in 

version 5.1 and earlier) been considered in selecting methodologies for UCL computation in 

ProUCL nor in their recommendation in specific cases. Here are three examples that illustrate the 

importance of considering accuracy as well as coverage: 

1. Suppose that one is attempting to estimate the average height of Americans, and measures 

the height of a few individual Americans. One could construct a UCL that is the observed 

sample average plus one inch. Or one could construct a UCL that is the observed sample 

average plus 10 feet. The first UCL is likely to be somewhat close to the true average, but its 

coverage probability is unknown. The latter UCL will have exceedingly good coverage 

probability (100%, as there are no individuals over the height of 10 feet). However, the latter 

UCL is clearly a ridiculous overestimate. It may be clear that it is an overestimate in this 

example, but were soil concentrations the measured variable instead, it might not be so 

obvious that this was a ridiculous overestimate. 

2. Consider a UCL for mean concentration that is constructed as follows: all data is ignored. 

One instead uses a random number generator so that, 95% of the time, the UCL is chosen to 

be one million parts per million, and, the other 5% of the time, the UCL is chosen to be zero 

parts per million. This UCL guarantees exactly 95% coverage probability. However, when it 

overestimates the mean, it is likely to be a gross overestimation, and when it underestimates 

the mean, it is likely to be a gross underestimation. Few would consider this UCL to be a 

good method, despite its ideal coverage probability. 

3. Suppose there were a UCL method that could construct an estimate that was equal to exactly 

0.9999999 times the true mean every single time. Such a UCL method would have 0% 

coverage probability, and yet would lead to an extremely accurate estimate of the true mean. 

These examples suggest that coverage probability alone is a poor metric by which to judge a 

UCL; accuracy should be considered as well. A slight underestimate is not necessarily worse 

than a gross overestimate; some balance is needed. This would better align ProUCL with the data 

quality objectives (DQO) process, which addresses both false positive and negative error rates. 

When dealing with human health and ecological risks, there is a desire to be conservative, but 

there are limits to this, as extreme conservatism could lead to expending great resources at a site 

that does not require it, and preventing those resources from being utilized to better effect 

elsewhere. Further, since risk calculations are generally calculated as linear effects with respect 

to the mean concentration (represented by the UCL), slight overestimates or underestimates in 

mean concentrations do not have a compounding effect on subsequent risk calculations. 

Furthermore, the consequences of exceeding a regulatory standard are generally deemed to be 

increasingly severe with increasing magnitude of the exceedance. 

The considerations above can be formulated into loss functions, and UCL procedures can be 

selected or ranked based on their risk (that is, their expected or long run average performance 

with respect to the relevant loss functions). The use of loss functions in the face of uncertainty to 

choose actions that minimize risk (expected loss) was developed in a branch of mathematics 

known as Decision Theory. Decision Theory is used extensively in many fields of practice, such 
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as business, economics1, applied mathematics, statistics, computer science, and engineering. 

According to Winkler (1972), writing from the decision theoretic point of view, “[a]n optimal 

interval estimate … minimizes the decision maker’s expected loss.” Lehmann (1986) defines a 

uniformly most accurate lower confidence bound, and analogously a uniformly most accurate 

upper confidence bound (limit), as the estimator that minimizes a specified estimation loss 

function while satisfying the desire coverage. 

Loss and risk functions can be fine-tuned to reflect the requirements of a very specific 

application of a UCL. Conversely, a range of loss and risk functions can be used to show that a 

UCL procedure is robust for a range of applications. This is the approach taken to evaluate UCL 

performance in ProUCL and is the motivation for the loss functions described in the following 

sections. 

3.1 Bounded Loss for UCLs 

Following Casella, Hwang, and Robert (1990), Casella and Hwang (1991), and Casella, Hwang, 

and Robert (1993), bounded linear loss functions for UCLs are the sum of a size function that 

penalizes inaccuracy and the 0-1 loss that penalizes lack of coverage. The average of the 0-1 loss 

over a sample equals 1 minus the empirical coverage, so it is a penalty for lack of coverage. In 

the case of one-sided intervals, specifically UCLs with 0 as a lower bound, the size of the 

interval measured as its length equals the UCL. Therefore, it makes sense to consider an 

alternative size measure that measures the closeness of the UCL to the true mean. An even 

function of the relative difference of the UCL from the true mean works well. The associated risk 

is the average of the loss function over a population or over a large sample, such as one 

generated by simulation. 

One pair of bounded linear loss and risk functions, using absolute relative error in the rational 

size function defined in Casella, Hwang, and Robert (1990, page 10), is given by: 

 

1 In business and economics, one maximizes expected utility, with utility being the negative of loss. 
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𝜇 = true mean
𝑢𝑖 = UCL𝑖,  for 𝑖 = 1, … , 𝑁,  are UCL estimates

𝑞𝑖 = 𝐼(𝑢𝑖 < 𝜇) = {
0, 𝑢𝑖 ≥ 𝜇
1 𝑢𝑖 < 𝜇

𝑣𝑖 = |
𝑢𝑖 − 𝜇

𝜇
| = |

𝑢𝑖

𝜇
− 1|

𝐿𝐵(𝑢𝑖|𝜇, 𝑎) =
𝑣𝑖

𝑎 + 𝑣𝑖
+ 𝑞𝑖

1 − 𝑞‾ = 1 −
1

𝑁
∑ 𝑞𝑖

𝑁

𝑖=1

 is the empirical coverage

𝑈 = (𝑢1, … , 𝑢𝑁)

𝑅𝐵(𝑈|𝜇, 𝑎) =
1

𝑁
∑

𝑣𝑖

𝑎 + 𝑣𝑖

𝑁

𝑖=1

+ 𝑞‾,

 

where 𝐼(𝑢 < 𝜇) is the indicator function that equals 1 if 𝑢 < 𝜇 and 0 otherwise, 𝑞𝑖 is the 0-1 

loss, 𝑣𝑖 is the absolute relative error of the UCL estimate, 𝑞̅ is the average of the 0-1 loss (an 

estimate of the probability that the interval does not cover the true value), 𝐿𝐵(𝑢𝑖|𝜇, 𝑎) is the loss 

incurred by an individual UCL estimate, and 𝑅𝐵(𝑈|𝜇, 𝑎) is the expected loss or the loss averaged 

over a population or a large sample. The use of relative absolute error in the loss makes it 

consistent and easy to compare for different values of the true mean. 

This particular loss function has some interesting and useful theoretical properties when used for 

estimating two-sided intervals, as discussed in several papers, including Casella, Hwang, and 

Robert (1990), Casella and Hwang (1991), and Casella, Hwang, and Robert (1993). It is 

important that the penalty for lack of coverage and the penalty for inaccuracy be approximately 

balanced so that neither dominates the other. When these are not balanced, problems like 

Berger’s paradox can occur (for example, Casella, Hwang, and Robert (1993)). In the bounded 

loss shown above, the loss is 0 when the UCL equals the true mean. The loss increases to 1 +
1

1+𝑎
 as the UCL decreases from the true mean to 0 and increases to the limit of 1 as UCL 

increases. 

However, note that this loss does not penalize over-coverage. Given that many authors regard 

substantial over-coverage as a negative (see Section 3.0), this is a less than desirable feature. An 

alternative would be to have penalties for both under-coverage and over-coverage that are 

appropriate for a given application. This will be explored further in the section on unbounded 

loss (Section 3.2). 

Since for typical applications we want a UCL to be a conservative estimator but not overly so, 

that is, to have both good coverage and good accuracy, it makes sense to penalize underestimates 

of the true mean more than overestimates. This gives weighted bounded linear loss and risk 

functions: 
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𝐿𝑤𝐵(𝑈|𝜇, 𝑎, 𝑏−, 𝑏+) = [𝑏− ⋅ 𝑞𝑖 + 𝑏+ ⋅ (1 − 𝑞𝑖)]
𝑣𝑖

𝑎 + 𝑣𝑖
+ 𝑞𝑖,

𝑅𝑤𝐵(𝑈|𝜇, 𝑎, 𝑏−, 𝑏+) =
1

𝑁
∑ {[𝑏− ⋅ 𝑞𝑖 + 𝑏+ ⋅ (1 − 𝑞𝑖)]

𝑣𝑖

𝑎 + 𝑣𝑖
}

𝑁

𝑖=1

+ 𝑞‾,

 

where 𝑏−,  𝑏+ are low and high bias penalty coefficients. If 𝑏− = 𝑏+ = 1, then this is the same as 

the previous loss function. As the UCL estimate goes to 0 from 𝜇, the loss increases from 0 to 

1 + 𝑏− ∙
1

1+𝑎
, and as the UCL estimate increases from 𝜇, the loss increases from 0 to 𝑏+. Setting 

𝑏+ = 1 + 𝑏− ∙
1

1+𝑎
 makes the losses equal in the cases of maximum underestimation and 

maximum overestimation. This is the balanced case for a mean that cannot be negative. 

Figure 1 illustrates the weighted bounded linear loss function, 𝐿𝐵𝑤, given above with the true 

value 𝜇 = 100, 𝑏− = 1 and various values for 𝑏+ and 𝑎. Plots labelled “balanced” have the 

parameters balanced in the sense given in the previous paragraph. 

 

Figure 1. Weighted linear bounded loss profiles for various parameter values. Values of 𝒃+ 

are chosen as: i) 𝒃+ = 𝒃− = 𝟏, ii) 𝒃+ = 𝟏. 𝟓 matches the maximum loss for under- and 

overestimation when 𝒂 = 𝟏; iii) 𝒃+ = 𝟏. 𝟔𝟕 matches the maximum loss for under- and 

overestimation when 𝒂 = 𝟎. 𝟓, and iv) 𝒃+ = 𝟏. 𝟗𝟏 matches the maximum loss for 

under- and overestimation when 𝒂 = 𝟎. 𝟏. 
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Review of the plots in the first row of Figure 1 leads to some interesting questions. When it 

comes to assessment of risk or determining whether a site meets cleanup criteria, should a UCL 

underestimating a mean by 1% be penalized more than a UCL overestimating the true mean by 

200% or 500% or 1,000%? This will always be the case if 𝑏+ ≤ 1, as in the first row of plots. 

The balanced value of 𝑏+ = 1 + 𝑏− ∙
1

1+𝑎
, seen in the plots labeled “balanced,” ensures that this 

can never happen. 

To further explain the examples from the plots above, when 𝑎 = 0.1, 𝑏− = 1, 𝑏+ = 1.91, a 1% 

underestimate of the mean is penalized approximately the same as an 11% overestimate of the 

mean. When 𝑎 = 0.5, 𝑏− = 1, 𝑏+ = 1.67, a 1% underestimate of the mean is penalized 

approximately the same as a 75% overestimate of the mean. When 𝑎 = 1, 𝑏− = 1, 𝑏+ = 1.5, a 

1% underestimate of the mean is penalized approximately the same as a 200% overestimate of 

the mean. Therefore, minimizing the bounded linear loss with 𝑎 = 1, 𝑏− = 1, 𝑏+ = 1.5, gives a 

much more conservative (larger) UCL than does minimizing the bounded linear loss with 𝑎 =
0.1, 𝑏− = 1, 𝑏+ = 1.91, which gives more accurate estimates. Using 𝑎 = 1, 𝑏− = 1, 𝑏+ = 1.5 is 

a compromise between conservatism and accuracy. In Section 4.0, UCL Plots, these losses are 

designated as “Loss_bnd_c,” “Loss_bnd_a,” and “Loss_bnd_m,” with “c,” “a,” and “m” 

indicating conservative, accurate, and intermediate, respectively. 

3.2 Unbounded Loss for UCLs 

There are many possibilities for unbounded loss functions for confidence intervals, including 

UCLs. One of the general advantages of unbounded loss functions over bounded loss functions is 

that bounded loss functions for estimators which are unbounded (at least for practical purposes) 

are forced to have the left and right sections of the loss function be concave, as may be seen in 

Figure 1 above. On the other hand, unbounded loss functions can be convex. The graphs of 

concave functions bend downward, and those of convex functions bend upward. Convex loss 

functions generally have important properties for estimation procedures, as discussed at length 

by Lehmann (1983) and specifically for interval estimates by Winkler (1972). Lehmann shows 

that, under strictly convex loss functions, there is always an essentially unique estimator that 

achieves minimum risk, and any estimator that does this is a function of the sufficient statistics2 

of the distribution of the data. This is the Rao-Blackwell theorem. This extremely important 

result does not hold for concave loss functions. The Gamma, t-, and H-UCL estimators in 

ProUCL are functions of the sufficient statistics for the Gamma, normal, and lognormal 

distributions, respectively. Many other results concerning convex loss functions in Lehmann 

(1983) are useful but highly technical and will not be discussed further here. 

Although many properties of optimal point estimators do not carry over to interval estimators, 

Winkler (1972) shows that, when a strictly convex loss function is applied to the selection of an 

interval estimator given a specific distribution, there is an optimal interval estimator, which is not 

guaranteed for a concave loss function or a convex loss function that is not strictly convex. 

Absolute error loss is an example of convex loss function that is not strictly convex. While strict 

 

2 The sufficient statistics are functions of the data that for a specific distribution summarize all relevant information 

contained in the sample about the parameters of the distribution. As an example, the sample mean and variance are 

the sufficient statistics for the normal distribution. 
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convexity of the loss function does not guarantee optimality in the general situation of data from 

an unknown distribution, it indicates that using strictly convex loss functions to evaluate 

candidate UCL procedures is a productive approach. 

The unbounded loss functions used here for evaluating UCLs are composed of four parts. The 

first two are penalties for under- and over-coverage. The second two are penalties for inaccuracy 

(the combination of bias and imprecision), on the low side and on the high side. As with bounded 

loss functions, it is important that the coverage and accuracy components of the loss be balanced 

so that both contribute meaningfully. This balance is first provided by choosing component 

losses that are 0 when the UCL equals the true mean and that increase without bound as the UCL 

is further and further from the true value and as the UCL coverage goes to 0 or to 1. Secondly, 

the rates of increase for the negative and positive elements of the component losses can be varied 

to reflect the losses incurred by the respective errors. 

3.2.1 Unbounded Coverage Loss for UCLs 

There are a couple of very reasonable possibilities for the unbounded coverage loss. One is based 

on the log of the odds ratio (LOR) of the expected coverage of the UCL estimator versus the 

desired or target coverage level (95% in our case). The LOR is a very natural scaling to compare 

probabilities (or coverages), and its absolute value is a natural distance metric between 

probabilities. We use the square of the LOR as a loss function: 

𝛾 = desired coverage of UCL

𝑐− > 𝑐+  are low and high coverage penalty coefficients

logit(𝑝) = log (
𝑝

1 − 𝑝
)

LOR(𝑝|𝛾) = log (
𝑝

1 − 𝑝
⋅

1 − 𝛾

𝛾
) = logit(𝑝) − logit(𝛾)

𝐿LOR(𝑞‾|𝛾) = 𝐿𝑂𝑅(𝑞‾|𝛾)2

𝐿wLOR(𝑞‾|𝛾, 𝑐−, 𝑐+) = [𝑐− ⋅ 𝐼(𝑞‾ ≤ 𝛾) + 𝑐+ ⋅ 𝐼(𝑞‾ > 𝛾)] ⋅ 𝐿𝑂𝑅(𝑞‾|𝛾)2

 

Here 𝐿wLOR is the weighted version of the LOR coverage loss function. Both are strictly convex 

loss functions.  

Another natural metric depends on the fact that the distribution of UCL estimators is 

asymptotically normal. This is a result of a number of things coming into play: the use of 

maximum likelihood estimators (MLEs) in computing UCLs, the asymptotic normality of MLEs 

under regularity conditions, UCLs being continuous functions of MLEs, and various 

convergence results (see Serfling (1980)). This is not difficult to show. This fact then suggests 

that coverage probabilities of UCL estimators could usefully be compared to the desired 

coverages in the probit scale, the inverse of the normal probability function: 

𝐿𝛷(𝑞‾, |𝛾) = 3.763 ⋅ [𝛷−1(𝑞‾) − 𝛷−1(𝛾)]2

𝐿𝑤𝛷(𝑞‾|𝛾, 𝑐−, 𝑐+) = 3.763 ⋅ [𝑐− ⋅ 𝐼(𝑞‾ ≤ 𝛾) + 𝑐+ ⋅ 𝐼(𝑞‾ > 𝛾)] ⋅ [𝛷−1(𝑞‾) − 𝛷−1(𝛾)]2 
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where 𝛷−1 is the quantile function of the standard normal distribution, 3.763 is a scaling factor 

to match the LOR and probit losses for coverage of 0.8 versus the target level of 0.95. 𝐿𝑤𝛷 is the 

weighted form of the probit coverage loss. Both are strictly convex loss functions.  

Note that, unlike the bounded (0-1) coverage loss, which can be computed from individual UCL 

estimates, the unbounded coverage loss functions use the average empirical coverage from 

simulation. If the coverage were computed from theoretical calculations or from a large 

simulation, we would consider the loss calculated from the coverage to be an expected loss or 

risk. 

This coverage is converted to a score (logit or probit) for comparison to the desired coverage. 

The target coverage (say 95%) is also converted to a logit (probit). Then we square the difference 

between them. If the target coverage logit (probit) is less than the true coverage logit (probit), 

this is under-coverage, and we weight the squared difference with a weight of 𝑐−. For over-

coverage, the squared difference is weighted by 𝑐+. Generally, we weight under-coverage errors 

more than over-coverage errors but do give positive weight to over-coverage errors. This is 

consistent with the views on CI coverage of most of the authors surveyed (see Section 3.0, UCL 

Properties). 

Also, larger coverage errors (in logit/probit scale) should be weighted much more than relatively 

small coverage errors instead of the weight being proportional to the size of the error. This is 

technically known as having a strictly convex loss function. Using the square of the error makes 

this a strictly convex loss function. Weighting a convex loss according to whether errors are 

under- or over-coverage errors, provided the weights are positive, also results in a convex loss 

function. 

The shapes of the squared LOR and squared difference of probits coverage loss functions are 

shown in Figure 2 and Figure 3. Note that, since the loss is unbounded on both sides of the target 

coverage, 𝛾, the loss must increase very steeply if the 𝑥-axis is scaled in probability. In the plots 

below, in which the x-axis is labelled as probability but scaled as a normal deviate (just as in a 

normal Q-Q plot), the loss function would appear symmetric, except that we are weighting 

under-coverage much more than over-coverage. 
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Figure 2. Weighted logit squared error loss examples for coverage. c- = under-coverage 

penalty coefficient. c+ = over-coverage penalty coefficient. Two different values of c+ 

are shown. 

 
Figure 3. Weighted probit squared error loss examples for coverage. C- = under-coverage 

penalty coefficient. C+ = over-coverage penalty coefficient. Two different values of c+ 

are shown. 
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The weighted squared LOR and weighted probit squared error loss functions are clearly similar 

but not identical. 

3.2.2 Unbounded Accuracy Loss for UCLs 

The penalty for lack of accuracy is relative mean squared error from the true mean value, which 

in these simulations is 100. This allows accounting for both the relative bias and the relative 

variance of the UCL as an estimator. For a UCL, negative deviations should be weighted more 

than positive deviations, since our objective is a conservative estimate of the mean. Larger error 

deviations should be penalized much more than smaller ones. Use of weighted squared error loss, 

as discussed above, minimizes the worst behavior of an estimator by penalizing large errors by 

much more than the magnitude of the error. This seems appropriate, because a major concern 

with UCLs in environmental applications has been the fact that some UCL procedures can 

produce wild overestimates of the mean under certain conditions. Having a very small penalty 

for small overestimates and a very large penalty for large overestimates results from the 

proposed weighted squared error loss and promotes our objective for a UCL that is a 

conservative, but not overly conservative, estimator of the mean. 

𝑞𝑖 = 𝐼(𝑢𝑖 < 𝜇)

𝑣𝑖 = |
𝑢𝑖 − 𝜇

𝜇
| = |

𝑢𝑖

𝜇
− 1|

𝐿wMSE(𝑢𝑖|𝜇, 𝑐−, 𝑐+) = [𝑏−𝑞𝑖 + 𝑏+(1 − 𝑞𝑖)]𝑣𝑖
2

𝑅wMSE(𝑈|𝜇, 𝑐−, 𝑐+) =
1

𝑁
∑[𝑏−𝑞𝑖 + 𝑏+(1 − 𝑞𝑖)]

𝑁

𝑖=1

𝑣𝑖
2
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Figure 4. Weighted mean squared error loss examples for inaccuracy (the combination of 

bias and imprecision). B_ = negative bias penalty coefficient. B+ = positive bias 

penalty coefficient. Three different values of b+ are shown, corresponding to 

conservative, intermediate, and accurate estimates. 

3.2.3 Combined Unbounded Loss 

These components of the loss function, penalties for under- and over-coverage and for under- 

and over-estimation, are added together to create the weighted linear unbounded loss function. 

The formulas are: 

𝐿𝑤𝑈,𝐿𝑂𝑅(𝑈 | 𝜇, 𝛾, 𝑏−, 𝑏+, 𝑐−, 𝑐+) = 𝐿𝑤𝑀𝑆𝐸(𝑈 | 𝜇, 𝑏−, 𝑏+) + 𝐿𝑤𝐿𝑂𝑅(𝑞‾ | 𝛾, 𝑐−, 𝑐+)

𝐿𝑤𝑈,𝛷(𝑈 | 𝜇, 𝛾, 𝑏−, 𝑏+, 𝑐−, 𝑐+) = 𝐿𝑤𝑀𝑆𝐸(𝑈 | 𝜇, 𝑏−, 𝑏+) + 𝐿𝑤𝛷(𝑞‾ | 𝛾, 𝑐−, 𝑐+)
 

4.0 UCL Plots 

The most important UCL estimators (omitting the Gamma approximate UCL, the jackknife 

UCL, and the percentile bootstrap UCL) computed in ProUCL are compared by looking at their 

performance with respect to several measures of performance, including coverage, relative bias 

(bias divided by the true value), variance of relative estimation error, relative Root Mean 

Squared Error (RelRMSE), and various bounded and unbounded loss functions designed to focus 

on different aspects of performance of the UCLs being compared. 

The parameter values for each loss function in the plots below are summarized in Table 1. The 

names of the loss functions briefly indicate their characteristics. As discussed in Section 3.1 
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above, “Loss_bnd_c,” “Loss_bnd_m,” and “Loss_bnd_a” indicate weighted bounded loss with 

parameters chosen to be conservative, intermediate, and accurate, respectively. 

Table 1. Loss function parameters 

Name of Loss 
Type of 

Loss 

Type of 
Coverage 

Loss a 𝒃− 𝒃+ 𝒄− 𝒄+ 

Loss_bnd_c Bounded 0-1 1 1 1.5 1 0.0 

Loss_bnd_m Bounded 0-1 0.5 1 1.67 1 0.0 

Loss_bnd_a Bounded 0-1 0.1 1 1.91 1 0.0 

Loss_LOR_c_RelMSE_c Unbounded LOR - 1 0.2 1 0.1 

Loss_LOR_a_RelMSE_c Unbounded LOR - 1 0.2 1 0.5 

Loss_LOR_c_RelMSE_a Unbounded LOR - 1 1.0 1 0.1 

Loss_LOR_a_RelMSE_a Unbounded LOR - 1 1.0 1 0.5 

Loss_probit_c_RelMSE_c Unbounded Probit - 1 0.2 1 0.1 

Loss_probit_a_RelMSE_c Unbounded Probit - 1 0.2 1 0.5 

Loss_probit_c_RelMSE_a Unbounded Probit - 1 1.0 1 0.1 

Loss_probit_a_RelMSE_a Unbounded Probit - 1 1.0 1 0.5 

 

For the unbounded losses, “Loss_LOR_c_RelMSE_c,” “Loss_LOR_c_RelMSE_a,” 

“Loss_probit_c_RelMSE_c,” and “Loss_probit_c_RelMSE_a” have minimal over-coverage 

penalty because their coverage loss is “conservative.” The strings “LOR” and “probit” in the 

unbounded loss names refer to using either LOR or probit losses for coverage. The loss names 

ending in “c,” like “Loss_LOR_c_RelMSE_c,” indicate minimal loss for overestimation, 

resulting in a more conservative estimate. The loss names ending in “a,” like 

“Loss_LOR_c_RelMSE_a,” indicate symmetric loss for under- and overestimation, resulting in a 

more accurate estimate. 

The comparisons are plotted graphically in Figure 5 through Figure 20 below, and patterns in the 

plots are explored and interpreted. The plots are organized by the log-scale standard deviation 

(log SD) of the individual simulated data sets. Although the data sets are generated based on 

specified values of the population CV (which is equivalent to specifying values of log SD, since 

they are functions of each other) and for various sample sizes, the computed log SDs vary by 

data set. 

Furthermore, the GoF selection rules (Section 2.0) for filtering the generated data also somewhat 

change the distribution of log SD by sample size from what was originally generated. Each plot 

shows the features of the UCL estimators grouped by quartile of sample log SD (Figure 5 
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through Figure 20 in this section) and grouped by decile of the log SD (in Appendix A). The 

plots in Appendix A show more detail of the UCL behavior, since the plots are presented over a 

finer grid of sample log SD ranges. 

Each combination of values of a type of UCL estimate, for a specified sample size and range of 

sample log SD, is represented by a point computed as the average of a very large number of 

simulated UCL values, since 10,000 UCL values were simulated for each type of UCL, sample 

size, and population CV. To make the plots more readable, the curves for each UCL on each plot 

were smoothed using locally estimated scatterplot smoothing (LOESS), a nonparametric 

smoothing spline technique developed for scatterplot smoothing (Fox and Weisberg, 2018). 

Another and more important reason to smooth the points in each curve is that the smoothed 

curves give an improved estimate of the expected value of each UCL loss function (risk of the 

UCL estimator) or of the expected value of the performance measure. 

For each range of sample log SD, four figures are plotted as a set. The first figure in each set 

includes four plots that show the coverage, relative error variance, relative bias, and RelRMSE 

over a dense grid of sample sizes covering a wide range. The RelRMSE can be thought of as an 

accuracy measure that integrates relative bias and relative error variance into a single measure 

that is on the scale of average relative deviations from the true value. The second figure in each 

set is composed of three plots that show the risk of the UCLs with respect to the bounded loss 

function (Section 3.1) with parameters in Table 1; namely, “ Loss_bnd_c,” “Loss_bnd_m,” and 

“Loss_bnd_a.” 

The third figure in each set has four plots that show the risk of the UCLs with respect to the 

unbounded loss function with LOR coverage loss (Section 3.2.1) and relative accuracy loss for 

the parameter values in Table 1. The fourth figure in each set is very similar to the third but 

shows the risk of the UCLs with respect to the unbounded loss function with probit coverage loss 

(Section 3.2.1) and relative accuracy loss for the parameter values in Table 1. 
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Figure 5. UCL summary for Lognormal with log SD in (0.0831,0.859] 

 

Figure 6. UCL Bounded Loss for Lognormal with log SD in (0.0831,0.859] 



Analysis of UCL Simulations at the Lognormal Distribution 

6 Jan 2022 16 

 

Figure 7. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with log SD in 

(0.0831,0.859] 

 

Figure 8. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with log SD 

in (0.0831,0.859] 
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Figure 9. UCL summary for Lognormal with log SD in (0.859,1.37] 

 

Figure 10. UCL Bounded Loss for Lognormal with log SD in (0.859,1.37] 
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Figure 11. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with log SD 

in (0.859,1.37] 

 

Figure 12. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with log SD 

in (0.859,1.37] 
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Figure 13. UCL summary for Lognormal with log SD in (1.37,1.81] 

 

Figure 14. UCL Bounded Loss for Lognormal with log SD in (1.37,1.81] 
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Figure 15. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with log SD 

in (1.37,1.81] 

 

Figure 16. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with log SD 

in (1.37,1.81] 
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Figure 17. UCL summary for Lognormal with log SD in (1.81,5.41] 

 

Figure 18. UCL Bounded Loss for Lognormal with log SD in (1.81,5.41] 
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Figure 19. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with log SD 

in (1.81,5.41] 

 

Figure 20. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with log SD 

in (1.81,5.41] 
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4.1 Discussion of UCL Plots 

As discussed in the preceding sections, the loss functions used were chosen to span a range of 

penalties for coverage error and inaccuracy. The purpose of comparing UCLs against a variety of 

relevant loss functions is to lend robustness to the conclusions of the comparisons. 

Review of the plots above and of those in the Appendix A shows a number of very interesting 

things: 

• The first is that the Chebyshev 90% and 95% UCLs perform quite poorly with respect to 

the accuracy measures relative bias and relative root MSE in the first figure in each set 

(Figures 5, 9, 13, and 17). 

• Secondly, the Chebyshev 90% and 95% UCLs perform quite poorly with respect to the 

relative error variance measure in the first figure in each set (Figures 5, 9, 13, and 17). 

This is due to the fact that both of these multiply the sample standard deviation by 

relatively large factors. 

• Thirdly, with respect to the varieties of bounded loss considered, the Chebyshev 90% and 

95% perform overall the most poorly of any of the UCLs considered over all sample sizes 

and ranges of sample log SD, as seen in the second figure in each set (Figures 6, 10, 14, 

and 18). 

• Fourthly, with respect to the varieties of unbounded loss considered, the Chebyshev 90% 

and 95% perform overall poorly compared to the H-UCL below sample size 250, as seen 

in the third and fourth figures in each set (Figures 7, 8, 11, 12, 15, 16, 19, and 20). In all 

the plots, the H-UCL behaves badly starting somewhere in the range of sample sizes 250 

to 300. This is due to a numerical issue in the code in the EnvStats R library used to 

compute the H-UCL. 

• Except for small sample sizes or very large sample log SD, the H-UCL is by far the 

closest to the target coverage (95%) of all the UCLs considered (Figures 5, 9, 13, and 17). 

• Hall’s bootstrap UCL has by far the lowest coverage and the lowest relative bias 

(although still biased significantly high) of all the UCLs, except in the case of large 

sample log SD combined with large sample size, in which case the Gamma adjusted UCL 

has lower coverage and less relative bias. 

• The risk profiles of UCLs under the unbounded loss functions with LOR and probit 

coverage losses are similar but not identical. 

• For sample sizes 20 and below falling into the largest category of sample log SD (≥ 1.8), 

Hall’s bootstrap UCL has the lowest risk under all of the unbounded loss functions 

considered. 

• The bootstrap-t UCL becomes wild for all sample sizes for sample log SD above 1.3. 

• For both bounded and unbounded losses over the ranges of sample sizes and sample log 

SD considered, the risk performances of the t-UCL and the skewed t-UCL are very 

similar. 
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• For sample sizes of approximately 20–25 and smaller with sample log SD between 

approximately 0.8 and 1.8, the t-UCL has the lowest risk among the unbounded losses 

considered. 

• The behavior of the UCLs appears to be better separated and characterized by the 

unbounded loss functions than by the bounded loss functions. 

These simulated UCLs and summary statistics will be an important source of data moving 

forward to improve the lognormal UCL recommendation rules (that is, for data that has gone 

through the GoF logic described in Section 2.0 and is deemed to be lognormal) for ProUCL 5.2 

and to substantially improve them in ProUCL 6.0. Since the patterns illustrated in the plots above 

are complex, decision rules for UCL recommendations can best be formulated with the help of 

machine learning methods. 

5.0 UCL Recommendation Rules 

ProUCL uses many different UCL methods for estimation, and, for many data sets, uses an 

underlying decision logic to recommend one of the estimated UCLs. This decision logic is based 

in part on the results of GoF tests but in the past has only addressed coverage of a UCL and not 

accuracy. For data sets that are considered approximately lognormal, it is common for ProUCL 

5.1 to recommend a Chebyshev UCL. The objective of this simulation study and analysis is to 

improve these rules for data which ProUCL 5.2 has determined to be approximately lognormal 

based on the revised GoF rules described in Section 2.0. 

5.1 Algorithm for Recommendation Rules 

The new recommendation rules are determined using classification trees estimated using the 

method of Recursive Partitioning (RPart) as implemented in the R library rpart (version 4.1-15). 

The objective is to identify the UCL estimator that minimizes the aggregated risk measures for 

various values of decision variables. The decision variables are the sample size (N) and the log 

SD of the samples in each simulated data set. 

The aggregated risk measures used are derived from the eight unbounded loss functions used in 

the simulation study. The bounded loss functions are useful but not as informative as the 

unbounded loss functions, since the bounded loss functions don’t separate the UCL estimators as 

well. Two types of aggregated risk measures are used. The first computes the average value 

across loss functions for each combination of UCL type, N, and log SD category over all the 

filtered simulated data sets. The second computes the maximum across the loss functions for 

each combination of UCL type, N, and log SD category over all the filtered simulated data sets. 

Since the values of log SD are continuous, in order to match the values up, the values of log SD 

are binned into 100 categories using the min, max, and percentiles of the log SD value in the 

simulated data. The use of several different loss functions, some more conservative (emphasizing 

coverage and allowing more overestimation) and some more accurate (less extreme 

overestimation but not necessarily as good coverage), to derive the aggregated risk measures 

makes the conclusions derived from the study more robust. 
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For each type of aggregated risk and for each combination of values of N and log SD category, 

the UCL estimator with the smallest risk is identified. The selected UCLs are assigned to 

UCLMAL (UCL type with minimum average loss) and UCLMML (UCL type with minimax loss) 

which take a value (UCL name) for each combination of values of N and log SD category. The 

former is the choice of UCL type that would perform best on average for a given value of N and 

sample log SD. The latter is a minimax choice of UCL type for a given value of N and sample 

log SD. 

Since the values of the average loss for each variety of loss function are estimates based on 

simulation, so also are the risk values and the selected UCL types for UCLMAL and UCLMML. The 

assignments of UCLMAL and UCLMML for the combinations of N and log SD do potentially 

contain some errors. Therefore, a statistical classification method must be used to extract the 

signal from the noise and to develop relatively simple recommendation rules that can be easily 

implemented. 

5.2 Risk Profiles 

Figure 21 and Figure 22 below illustrate the features of the aggregated risk measures across 

ranges of the sample log SD and for a range of sample sizes. These two figures effectively 

summarize the eight unbounded loss figures in Section 4.0 and the 20 unbounded loss figures in 

Appendix A. While the average risks are lower than the maximum risk levels, the patterns in 

these plots are very similar. 

Figure 21 shows the average risk profiles for the various UCL estimators averaged across the 

various unbounded loss functions. 
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Figure 21. Average of eight unbounded loss functions for various UCLs by log-scale SD and 

sample size 

Figure 22 shows the maximum risk profiles for the various UCL estimators averaged across the 

various unbounded loss functions. 
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Figure 22. Maximum of eight unbounded loss functions for various UCLs by log-scale SD 

and sample size 

These plots highlight features of the UCLs and suggest that the only real contenders for 

recommendation are the H-UCL in most cases, the t-UCL for small sample sizes combined with 

medium to large sample log SD, and possibly Hall’s bootstrap UCL for small sample size 

combined with very large sample log SD. While the figures above are instructive, we proceed 

next to quantitative modeling in order to create recommendation rules. 

5.3 UCL Recommendation Modeling 

For deciding on the best recommendations for UCLs, the decision tree approach, Recursive 

Partitioning (RPart), is used. This is based on the original algorithm developed by Friedman 

(1977) as a Bayesian nonparametric classifier and as further developed and implemented by 

Therneau and Atkinson (2019) in the rpart R package. RPart is a classification tree algorithm that 

takes data with labels and predictor variables and performs successive binary splits of the data 

based on values of the predictors in order to classify the data into sets that predict the labels as 

accurately as possible. For these models, the prior distribution on UCL types is uniform; that is, 

all of the UCL types are treated equally. Also, the decision trees are built not based on the 

aggregated risks but rather based on the numbers of cases in which a particular UCL type is 

designated UCLMAL or UCLMML as a function of N and sample log SD. The aggregated risk 

numbers are already built into the UCLMAL and UCLMML designations. 

To avoid the numerical problems with computation of the H-UCL for large sample size, the data 

used for computing the RPart trees uses only sample sizes of 250 and less. It is believed that, for 

sample sizes above 250, if the H-UCL is computed accurately, it will still have similar risk 

performance relative to the other UCL types as it does at sample size 250. 
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For estimating recommendation rules based on UCLMAL, it is desirable to use a relatively simple 

rule with no more than one split in N and one in log SD. The tree is therefore pruned until it has 

only two levels. The tree (Figure 23) and associated decision rules for minimizing the average 

risk (Table 2) are shown below. The UCL type shown at each node in the tree is the one most 

likely to minimize the average risk, conditional on the predictor values being in the indicated 

ranges. 

 

Figure 23. Decision tree for minimum average loss, pruned to two levels 

Only the H-UCL and the t-UCL are recommended. The breakpoint in N is 28, and for smaller 

samples the t-UCL is recommended for cases in which the log SD is greater than or equal to 1.5. 

Table 2. Decision rule output for UCL minimum average risk tree 

       ske Gam Che Che H_U t_U Hal boo BCa                               

H_UCL [.06 .25 .22 .01 .39 .03 .00 .03 .01] when N <  28 & log_SD <  1.5 

H_UCL [.03 .08 .03 .00 .73 .02 .01 .07 .03] when N >= 28                 

t_UCL [.04 .19 .00 .00 .01 .61 .15 .00 .00] when N <  28 & log_SD >= 1.5 

The decision tree for minimax risk, when pruned to two levels, gives a very similar result. The 

only difference is that the decision point for sample log SD is 1.3 instead of 1.5. 
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5.4 Tentative Lognormal UCL Recommendations 

It is reasonable to compromise between the minimum average risk rule and the minimax risk 

rule. Therefore, the rule that for 𝑁 ≥ 28 use the H-UCL and that for 𝑁 < 28, sample log SD < 

1.4, use the H-UCL and otherwise the t-UCL can be tentatively recommended. 

It must be strongly pointed out again that these recommendations are for data generated from a 

lognormal distribution and that have passed through the GoF screening procedure described in 

Section 2.0. Passing the GoF screening procedure means that ProUCL 5.2 is treating the data as 

lognormal. Some of the lognormal data, especially that simulated with the smallest CV (0.01), 

was screened out as normal (was not rejected by either test of normality at level 0.1). Some of 

the lognormal data simulated with small to moderate CV was screened out as Gamma (was not 

rejected by either Gamma GoF test at level 0.05). After these two filters, the remaining data was 

accepted as lognormal only if it was not rejected by two tests of lognormality at level 0.1. 

Although this recommendation is for data treated by ProUCL 5.2 as lognormal, it would be 

appropriate to run further simulations with data from other right-skewed distributions, including 

mixture distributions, to confirm these recommendations. It must also be pointed out that the 

effects of detection limit censoring were not modeled in this simulation. It is suspected that data 

sets with a large number of nondetects could create problems for the H-UCL. This should also be 

explored. 

6.0 Conclusion 

The results of this study provide clear and convincing evidence that neither the Chebyshev 95% 

UCL nor the Chebyshev 90% UCL are useful procedures for constructing UCLs for data deemed 

to be lognormal. 

Furthermore, analysis of the lognormal UCL simulation study data using RPart classification 

trees for risk minimization allows formulation of a simple tentative recommendation rule for 

UCLs in data classified as lognormal by ProUCL 5.2. That rule may be simply stated as: 

H-UCL when 𝑁 ≥ 28 or log-scale SD ≤ 1.4, and the t-UCL otherwise. 

It is important that this recommendation for lognormal data be confirmed by simulations with 

other right-skewed distributions and by accounting for the effects of detection limit censoring. 
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Appendix A: Detailed UCL Plots using Deciles of Log SD 

The following plots are the same as in Section 4.0, except that there the UCL summary statistics 

and loss function values are plotted in groups by quartile of the log SD of the data sets from 

which the UCLs were computed. Here the data are grouped for plotting by decile of the log SD 

of the data sets. This gives a more detailed view of the behavior of the UCLs. 
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Figure 24. UCL summary for Lognormal with Std Dev of Logs in (0.0831,0.576] 

 

Figure 25. UCL Bounded Loss for Lognormal with Std Dev of Logs in (0.0831,0.576] 
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Figure 26. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (0.0831,0.576] 

 

Figure 27. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (0.0831,0.576] 



Analysis of UCL Simulations at the Lognormal Distribution 

6 Jan 2022 35 

 

Figure 28. UCL summary for Lognormal with Std Dev of Logs in (0.576,0.773] 

 

Figure 29. UCL Bounded Loss for Lognormal with Std Dev of Logs in (0.576,0.773] 
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Figure 30. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (0.576,0.773] 

 

Figure 31. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (0.576,0.773] 



Analysis of UCL Simulations at the Lognormal Distribution 

6 Jan 2022 37 

 

Figure 32. UCL summary for Lognormal with Std Dev of Logs in (0.773,0.982] 

 

Figure 33. UCL Bounded Loss for Lognormal with Std Dev of Logs in (0.773,0.982] 
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Figure 34. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (0.773,0.982] 

 

Figure 35. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (0.773,0.982] 
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Figure 36. UCL summary for Lognormal with Std Dev of Logs in (0.982,1.17] 

Figure 37. UCL Bounded Loss for Lognormal with Std Dev of Logs in (0.982,1.17] 
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Figure 38. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (0.982,1.17] 

Figure 39. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (0.982,1.17] 
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Figure 40. UCL summary for Lognormal with Std Dev of Logs in (1.17,1.37] 

Figure 41. UCL Bounded Loss for Lognormal with Std Dev of Logs in (1.17,1.37] 



Analysis of UCL Simulations at the Lognormal Distribution 

6 Jan 2022 42 

 

 

Figure 42. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (1.17,1.37] 

Figure 43. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (1.17,1.37] 
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Figure 44. UCL summary for Lognormal with Std Dev of Logs in (1.37,1.57] 

Figure 45. UCL Bounded Loss for Lognormal with Std Dev of Logs in (1.37,1.57] 
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Figure 46. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (1.37,1.57] 

Figure 47. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (1.37,1.57] 
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Figure 48. UCL summary for Lognormal with Std Dev of Logs in (1.57,1.73] 

Figure 49. UCL Bounded Loss for Lognormal with Std Dev of Logs in (1.57,1.73] 
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Figure 50. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (1.57,1.73] 

Figure 51. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (1.57,1.73] 
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Figure 52. UCL summary for Lognormal with Std Dev of Logs in (1.73,1.95] 

Figure 53. UCL Bounded Loss for Lognormal with Std Dev of Logs in (1.73,1.95] 
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Figure 54. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (1.73,1.95] 

Figure 55. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (1.73,1.95] 



Analysis of UCL Simulations at the Lognormal Distribution 

6 Jan 2022 49 

 

 

Figure 56. UCL summary for Lognormal with Std Dev of Logs in (1.95,2.25] 

Figure 57. UCL Bounded Loss for Lognormal with Std Dev of Logs in (1.95,2.25] 
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Figure 58. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (1.95,2.25] 

Figure 59. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (1.95,2.25] 



Analysis of UCL Simulations at the Lognormal Distribution 

6 Jan 2022 51 

 

 

Figure 60. UCL summary for Lognormal with Std Dev of Logs in (2.25,5.41] 

Figure 61. UCL Bounded Loss for Lognormal with Std Dev of Logs in (2.25,5.41] 
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Figure 62. UCL Unbounded Loss with LOR loss for Coverage for Lognormal with Std Dev 

of Logs in (2.25,5.41] 

Figure 63. UCL Unbounded Loss with Probit loss for Coverage for Lognormal with Std 

Dev of Logs in (2.25,5.41]  
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Appendix B: Session Info 

## R version 4.1.2 (2021-11-01) 

## Platform: x86_64-w64-mingw32/x64 (64-bit) 

## Running under: Windows 10 x64 (build 19044) 

##  

## Matrix products: default 

##  

## locale: 

## [1] LC_COLLATE=English_United States.1252  

## [2] LC_CTYPE=English_United States.1252    

## [3] LC_MONETARY=English_United States.1252 

## [4] LC_NUMERIC=C                           

## [5] LC_TIME=English_United States.1252     

##  

## attached base packages: 

## [1] stats     graphics  grDevices utils     datasets  methods   base      

##  

## other attached packages: 

##  [1] rpart.plot_3.1.0   rpart_4.1-15       ftExtra_0.2.0      flextable_0.6.10   

##  [5] captioner_2.2.3    scales_1.1.1       cowplot_1.1.1      reshape_0.8.8      

##  [9] forcats_0.5.1      stringr_1.4.0      dplyr_1.0.7        purrr_0.3.4        

## [13] readr_2.1.1        tidyr_1.1.4        tibble_3.1.6       ggplot2_3.3.5      

## [17] tidyverse_1.3.1    install.load_1.2.3 

##  

## loaded via a namespace (and not attached): 

##  [1] httr_1.4.2        splines_4.1.2     jsonlite_1.7.2    modelr_0.1.8      

##  [5] assertthat_0.2.1  highr_0.9         cellranger_1.1.0  yaml_2.2.1        

##  [9] gdtools_0.2.3     lattice_0.20-45   pillar_1.6.4      backports_1.4.1   

## [13] glue_1.6.0        uuid_1.0-3        digest_0.6.29     checkmate_2.0.0   

## [17] rvest_1.0.2       colorspace_2.0-2  Matrix_1.4-0      htmltools_0.5.2   

## [21] plyr_1.8.6        pkgconfig_2.0.3   broom_0.7.10      haven_2.4.3       

## [25] officer_0.4.1     tzdb_0.2.0        mgcv_1.8-38       generics_0.1.1    

## [29] farver_2.1.0      ellipsis_0.3.2    withr_2.4.3       cli_3.1.0         

## [33] magrittr_2.0.1    crayon_1.4.2      readxl_1.3.1      evaluate_0.14     

## [37] fs_1.5.2          fansi_0.5.0       nlme_3.1-153      xml2_1.3.3        

## [41] tools_4.1.2       data.table_1.14.2 hms_1.1.1         lifecycle_1.0.1   

## [45] munsell_0.5.0     reprex_2.0.1      zip_2.2.0         compiler_4.1.2    

## [49] systemfonts_1.0.3 rlang_0.4.12      grid_4.1.2        rstudioapi_0.13   

## [53] base64enc_0.1-3   labeling_0.4.2    rmarkdown_2.11.3  gtable_0.3.0      

## [57] DBI_1.1.2         R6_2.5.1          lubridate_1.8.0   knitr_1.37        

## [61] fastmap_1.1.0     utf8_1.2.2        fastmatch_1.1-3   stringi_1.7.6     

## [65] Rcpp_1.0.7        vctrs_0.3.8       dbplyr_2.1.1      tidyselect_1.1.1  

## [69] xfun_0.29 

------------------------------------------------------ End of Report ------------------------------------------------------ 
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