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APCRA prospective case study has 3 major phases and aims to bridge new

approach methods (NAMs) to the need for any additional data in an
international context

In silico and in vitro NAMs for
toxicodynamics and
toxicokinetics

Development of a NAM-
5-day rodent studies using enhanced 90-day study?
transcriptomics in liver/kidney
~200 substances

# of substances tbhd
~20 substances
Goal: Point of departure (POD)

Goal: Confirmation of POD from
=it emel fe e i Goal: Greater certainty in POD 5-day stu<_j|es.and/or hazard
hazard profile, if needed

* Building confidence in the connections between NAMs and traditional toxicology studies
* Inform needs for data-poor substances in an international context
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Several key retrospective learnings for 448 data-

rich chemicals included:

* A protective point of departure (POD) based
on in vitro new approach methods (NAMs)
could be derived for most chemicals

*  PODNAM informed bioactivity:exposure ratios
for prioritization

*  PODNAM was useful as a comparator to
threshold of toxicological concern (POD;+()

Can we build a broad NAM-informed framework that is protective and
predictive of /n vivo effects, with more biological information?

Thesis statement: we can use
toxicodynamic and
toxicokinetic NAMs to inform
selection of “data-poor”
chemicals for additional
screening in models such as a
5-day assay.
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Evaluation of 5-day In Vivo Rat Liver and Kidney With
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Several key learnings for 18 data-rich chemicals

included:

* Alower bound POD based on high-throughput
transcriptomic data in the liver and kidney
were largely within a factor of 5 for the lowest
in vivo histopathological PODs from 90d and
2yr repeat dose studies in rodents

*  This 5-day paradigm could inform estimates of
chemical exposure that produce minimal
bioactivity

U5, Department of Health and Human Services




In sificoand in vitroNAMs are combined prospectively to identify
chemicals with putative hazard and BER based prioritization

Figure 1. Mapping the approach.

~m

Refine assay battery and
include assays with broad
biological coverage

Refine IVIVE approach
Experiment to understand
which data may be most
informative of POD;,_gitional
Include indicators of putative
hazard and related interests
(hazard flags)

Include updated exposure
predictions for BER

In silico NAMs 1. How do the in silico ,
Target tissue
+ TTC PODs compare to the PODs (HIPPTox)
* GenRA-POD in vitro PODs?
Llongt,;, Kidney
N —
Toxicodynamic NAMs Endocrine Liver
+ HTPP
« HTTI Development Lung
r 2. How health 3. CanTD and TK
* Targeted assays T NAMS b bined t
p{o ective is this s be r:crm m.e 0 Hazard Flags Neuro Potency
S refined Tier 1 NAM better align with
Toxicokinetic NAMs battery? known in vivo PODs? Immune Variability
+  Half-life prediction
«  JVIVE
+  Disposition model Driven by high
e e exposure?
fiatios Driven by low POD,,,,,?
Exposure NAMs
+  ExpoCast SEEM3
Low BER, data poor, PODy,, and POD, ,
- POD, 0, >> POD POD << POD
hazards of interest agreement NAM:-informed safety NAM trad Nam trad

5 potentially overlapping groups
that the NAM data can inform for
selection of chemicals for
additional screening
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Einformed the workflow

Figure 2. Combining the toxicodynamic and toxicokinetic NAMs.

Data generation

POD 4¢psg selection

In silico ‘\\

Tier 0: POD and

Human physiology
PBTK model preferred over 3

compartment steady state, if available

hazard models /
(r HIPPToxX HIPPToOX HIPPToX In vitro, "\
HepG2 BEAS-2B HK-2 target organ
(iiver) (lung) (kidney) predictions
In vitro,
broad
profiling Tier 1a: HTPP
in vitro,
/ U-2 08§ / HepaRG TempO-5eq
MCF7
L\ Tier 1b: HTTr _/J

(|
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ToxCast ToxCast
ER AR
model maodel

Tier 2:

Targeted
screens

Confidence building

Priority for additional study

More detail on the data generated and how it

50" quantile
SEEM3
IVIVE using
exposure BERs
HTTK ..
predictions
Hazard
POD: zgitignal flags
Data Biology informed? Hazard Potency
Flag? used?
CERAPP, COMPARA, ToxCast ER/AR Informing an ER/AR hazard flag Yes No
models
HIPPFTox: Hep(G2, BEAS-2B, HK-2 Informing target organ predictions Yes Yes
HTPP:U-205 Broad coverage; May inform molecular targets in the future Mo Yes
HTTr: U-2 05, HepaRG, MCFT Broad coverage; May inform molecular targets in the future Mo Yes
Attagene (ATG) Multiplexed pathway profiling platform (nudear receptors and stressresponse) Mo Yes
BioMAP (BSK) Complex primary cell and co-culture models of inflammation, fibross, tissue Yes Yes
remodeling, and immune functicn
NovaScreen (NVS) Suite ofcellfres binding and biochemical assays Mo Yes
Microelectrode array (MEA) Indication of acute effects on neuronal cells and ther electrical function Yes Yes
Stemina (STM) Stem-cellbased screening with metabolomic indicator of developm ental toxicity Yes Yes




o EPA In vitrobioactivity screening data were generated for ~200 chemicals, including
A\ Y 4 96 “data-rich” chemicals and 104 relatively “data-poor” substances

* Large data collection exercise was undertaken with EPA, ASTAR, and JRC using chemicals identified from the ToxCast
chemical library that were “data-poor” and/or were of regulatory interest |

* Overlap with APCRA retrospective project allows for evaluation of results

* In vitro potency generally spanned 3 orders of logl0 magnitude, with
most potencies in the 1-100 micromolar range.

* Some technologies defined the minimum potency more frequently.
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in vitro data

Hepatic clearance from suspended hepatocytes

Plasma protein binding

Venous Blood

Generic
toxicokinetic
models

Inhaled Gas

Lung Tissue Qg
»| Lung Blood <t —

Kidney Tissue

Qqpr )
<+ Kidney Blood =]

Gut Lumen

Gut Blood |«

poojg [eany

Liver Tissue
't
<4 Tiver Blood

Rest of Body

Body Blood |-
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IVIVE approach based on R library ‘httk’

Preference to PBTK model over 3
compartment steady state model

Preference to in vitro HTTK data
over in silico HTTK predictions

Predictive modeling of available
estimates of a lower bound in vivo
POD using AEDs from 3
compartment steady state or PBTK
modeling failed to show unique
improvement



n Using 156/195 chemicals with POD and POD
\,.,’EPA AED50

traditional SuggESt

approaches for selecting a benchmark POD ¢,

(A) Minimum AED50s by assay (B) The median from the set of minimum

technology fail to suggest that a
single technology can accurately
predict estimates of POD
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HIPPTox data from BEAS2B, HepG2, and
HK2 cells are designed to yield estimates
of tissue adversity and tend to be higher
than other in vitro technologies

AED50s by assay technology performs
fairly well in predicting estimates of
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AED50, mg/kg/day
A multi-linear regression model performs
slightly better than the median. Other
machine learning models failed to reduce
the RMSE below 1.1 log,,-mg/kg/day.

(C) Predicting estimates of POD,,_4itional
with TD and TK NAMs resulted in RMSE
that approach 1 to 1.2 log,,-mg/kg/day

C
Min AED50 Model Med AED50 Model MLR AED50 Model
RMSE 1.182 1.147 1.098
R-squared 0.164 0.213 0.279

If no other data were available, a possible
adjustment factor to ensure conservatism
for using POD,¢pso could be ~ 1 log, -

mg/kg/day
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Retrospective paper (Fig 7)

How does the overall level of conservatism of POD compare to
the retrospective case study?

Preliminary prospective analysis for the 157/200
chemicals with POD,__,
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It seems we’ve eliminated the ultra-conservative POD,,,, values and somewhat improved the median comparison of
PODyam. 50 to POD, noting that this is not the matched-chemical analysis (different chemicals in the left and right figures).



< EPA

PO I:)AEDSO
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min AEDS0
med AEDS0
TTC
PODtrad

Density
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log10-POD values, mg/kg/day

TTC values were based on Cramer classes, including a specific class for
organophosphates and carbamates.

No TTC values for genotoxic carcinogens were used.

Building confidence: In silico PODc,; and in vitro

A POD ¢pso based on the median of minimum
AED50s by assay technology is an empirical
and less conservative estimate of POD than
TTC that overlaps with the distribution of
IDODtraditionaI

Min AED50 is more conservative/overlapping
with TTC

TTC may appear more conservative because
safety/uncertainty factors are built into the
approach



o How well does POD recapitulate the order of
‘,’EPA 50D AED50

tradltlonal

1504

PODeqaepso < 10 61%

1004
POD, . aepso < 100 85%

. PODtrad < 1 mg/kg/day
PODtrad = 1 mg/kg/day

Chemicals

POD, .. 4nepso < 1000 99%

85% of chemicals with a low POD,,giional
would be identified as “low” using a 10X
adjustment factor on the POD . 4aepso

o —
—_=
I

PODtrad  min AED50 med AEDS50 model AEDS0




We use median BER as an indicator for triaging in screening, but we can also
examine the assays (and biology) driving minimum potency values.

Ethenylsilanetriyl triacetate -
Nitrapyrin 4

Bis(2-ethylhexy!) nonanedioate 1
Dibutyl adipate

Octinoxate

2-Phenylethyl phenylacetate -
Tetrapropyl orthosilicate
2,6-Dimethyl-2-heptanol
Saccharin -

2-Phenoxyethano 4
Trimethoxyphenylsilane -

2 ,6-Di-tert-butyl-4-[[dimethylaminomethyljphenol -

Methy! dodecanoate -
Ethenylitriethoxy)silane -
Hexanoic acid -
N,M-Disalicylidene-1 2-diaminopropane -
4-Morpholinecarboxaldehyde -
2,6-Dimethylphenal 4
Triethoxymethylsilane -
Butylphthalyl butylglycolate -
Benzyl propanoate -
Oclabenzone 4
Eugenol
Coumarin
3-(Dimethylphosphono)-MN-methylolpropionamide -
1,4-Butanediol 5
C.l.Disperse Yellow 42 -
Prop-2-en-1-yl 3-cyclohexylpropanoate -
Vanillin isobutyrate -
Hexyl salicylate -
Neopentyl glycol dibenzoate -
2-Phenylethyl 2-methylpropancate -
2-Ethylhexyl glycidyl ether -
2 2-Dimethylpropane-1,3-diol 1
Ethyl 2-methylpentanoate -
MNonanal -
Bis(2-ethylhexyl) phosphate -
p-Methylacetophenone -
Methylparaben -
alpha-lsomethylionone -
Diethylenetriamine -
Linalool 4

2-Ethylhexyl salicylate -

B 5ths-ile POD & MEAAEDS0 W HTTr MCF7 AEDSO & HTPP U20S AEDS0 ASTAR HEKZ293 .
Valugs @ ATGAEDS0 & NVSAEDS0 @& HTTrU20S AEDS0 . ASTARBEASZB AED50

A BSKAEDS0 <> STMAEDS0 4 HTTrHepaRG AED50 ASTAR HepG2 AEDS0D




o EPA We use median BER as an indicator for triaging in screening, but we can
A\ Y 4 also examine the assays (and biology) driving minimum potency values.

Ethenylsilanetriyl triacetate - |
Nitrapyrin 1
Bis(2-ethylhexyl) nonanedicale 1
Dibutyl adipate 1 B
Octinoxate -
2-Phenylethyl phenylacetate -
Tetrapropyl orthosilicate -
PODyam < 1 mg/kg/day may have 25 Dimaihy 2 hopanc
NAM Saccharin -
2-Phenaxyethanol 4

some importance In prioritization 26D trtbuyl4-{dmet e oPhenyisiane |
Methyl dodecanoarle -
Ethenyl(triethoxy)silane -

Hexanoic acid -
N,M-Disalicylidene-1,2-diaminopropane -

a = 4-Morpholinecarboxaldehyde 4
e Recall that using the median e Bmonyipnens) .
Triethoxymethylsilane -
Butylphthalyl butylglycolate -

AED50 to predict the in vivo Sth Benzyl propanoate -

Oclabenzone 4

. Eugenol

C it

pe rce ntl Ie PO Dtrad|t|ona| a p pea red 3—[DimethylphosphonoJ—N-methylolpmpiooninrﬁ:;g-
14-Butanediol -

C.1.0i Yellow 42 -

re a SO n a b I e Prop-2-en-1-yl 3—c1,rclolﬁgiﬁsmsa?$ate b

Hexyl salicylate -

Neopentyl glycol dibenzoate 4
2-Phenylethyl 2-methylpropanoate -
2-Ethylhexyl glycidyl ether |
2.2-Dimethylpropane-1,3-diol -

* 49/195 substances have a BER< 6 Elhy 2 melnyperianoai
Bis(2-ethylhexyl) phosphate -
p-Methylacetophenone -
alpha-lsomethylionone -
Diethylenetriamine =

Linalool -

2-Butyloctan-1-ol |

EPTCH

Tetrabromophenolphthalein ethyl ester - ]
3-Hydroxyfluorene -

p-¥ylenol blue -

9-Phenanthrol 4

Bentazone -

2. 4-Dinifrophenol 4

Dichlobenil 4

PharmaGSID_48505 - [ ]
4.4"-{9H-Fluorene-9 9-diyl)diphenol - ®

H P H asic Blue 7 - L 4
Red italic indicates APCRA Beste e 7 P S T /B S A
retrospective chemical

Values MW 5Sth-ile POD  ® Median AEDS0 SEEM3 MED SEEM U85
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Possible flags to identify priority chemicals for further

information

Endocrine flags

In silico In vitro

ToxCast ER
ToxCast
COMPARA < AR model

Immunosuppression flag

Serum half-life flag

In vitro

BioMAP
* Markers of |, T-cell
proliferation

* Decreased IgG and B-
cell proliferation
* Selective cytotoxicity
to PBMCs

In silico/in vitro

Median PODy <1
mg/kg/day

In vitro

Median

AED50 < 1
mg/kg/day?

Developmental flag

In silico In vitro

STM,
selective

Acute neuroactive flag

In vitro

Acute MEA
bioactive
concentration

= minimum
bioactive
concentration

Technologies with min
PODyam

Large variance in
PODyam

In vitro

Are certain
Minimum target tissues
indicated as
more sensitive
from HIPPTox?

AED50 from all
technologies?

In silico/In vitro

Standard
deviation> 1

log10-
mg/kg/day?




< EPA

NAM-based target
organ hazard flags

36 substances are in the “data poor” group
(prospective case study only) and have log10-
BER < 6 (shown to the right).

Bioactivity in models of organ-based toxicity
can be used as hazard flags.

These hazard flags can be reviewed by

potency.

|
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e il
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DTXSID2041200
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DTXSID4038924
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DTXSID5037731
DTXSIDS038888
DTXSID2040700
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DTXSIDB027036
© DIXSID8044755
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DTXSID9040215
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DTXSID9044374
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Hazard flags for endocrine
and developmental toxicity

e 36 substances are in the “data poor” group
(prospective case study only) and have log10-
BER < 6 (shown to the right).

e Bioactivity in in silico (0.5) and in vitro (1)
NAMSs can be used to indicate putative
endocrine and/or developmental hazard.

* DEV =STM positive

 DEV-S =STM positive that is selective

e DEV-TEST = TEST model prediction > 0.7

* T1/2 = half-life predicted to be > 90 days (8
substances in the case study)

MEA

ATG

ATG

NVS

BSK

BSK

MEA

MEA

BSK

MEA

MEA _
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BSK

STM
NVS
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S
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MFIJEDA P

MEA
httr u20s _pod.sig
BSK

MEA

ATG

NVS

MEA _
httr u20s _pod.sig
BSK

BSK
BSK
BSK
BSK
BSK
BSK
NVS

In silicofln vitro

1

0.5

0




Will these be useful general decision cases for
understanding chemical behavior in Tier 17

Low BER, data poor, hazards of interest

POD,, and POD,,,,agreement

tra

NAM-informed safety

PODy\ >> POD;, 4

PODy s << POD;, 4

<12 substances after refined searches

48 substances (out of 157 with POD,,,,)
have a difference within + 0.5 log10-
mg/kg/day; 82 within + 1 log10-
mg/kg/day

29 substances have a PODy,,,> 300
mg/kg/day; 15/29 have a BER > 7; most
of these have limited flags

7 substances with log10-POD ratio > 2
(> 100-fold different)

17 substances with log10-POD ratio < -2
(> 100-fold different)




In sificoand in vitroNAMs are combined prospectively to identify
chemicals with putative hazard and BER based prioritization

Figure 1. Mapping the approach.
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Refine assay battery and
include assays with broad
biological coverage

Refine IVIVE approach
Experiment to understand
which data may be most
informative of POD;,_gitional
Include indicators of putative
hazard and related interests
(hazard flags)

Include updated exposure
predictions for BER

In silico NAMs 1. How do the in silico ,
Target tissue
+ TTC PODs compare to the PODs (HIPPTox)
* GenRA-POD in vitro PODs?
Llongt,;, Kidney
N —
Toxicodynamic NAMs Endocrine Liver
+ HTPP
« HTTI Development Lung
r 2. How health 3. CanTD and TK
* Targeted assays T NAMS b bined t
p{o ective is this s be r:crm m.e 0 Hazard Flags Neuro Potency
S refined Tier 1 NAM better align with
Toxicokinetic NAMs battery? known in vivo PODs? Immune Variability
+  Half-life prediction
«  JVIVE
+  Disposition model Driven by high
e e exposure?
fiatios Driven by low POD,,,,,?
Exposure NAMs
+  ExpoCast SEEM3
Low BER, data poor, PODy,, and POD, ,
- POD, 0, >> POD POD << POD
hazards of interest agreement NAM:-informed safety NAM trad Nam trad

5 potentially overlapping groups
that the NAM data can inform for
selection of chemicals for
additional screening



APCRA

Thank you tp the entire prospective case study wEPA
crew, especially:
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