

(PFOA: $C_8HF_{15}O_2$)

Surface-active behavior of Select Per- and Polyfluoroalkyl Substances (PFAS) and their Mixtures

Jingjing Chen, Aderonke Adegbule, Junqi Huang, and Michael C. Brooks

Hydrogen

Unique properties:

"Permanent chemicals"

- Strong C-F bond → Thermal + chemical stability
- Low surface energy and weak intermolecular interaction → Hydrophobic and lipophobic surfactant properties

Strong acidity

Hydrophilic Hydrophobic and lipophobic Water-loving Water and oil repellent

Widely present in the environment:

 PFASs with highest concentrations and detection frequencies in the subsurface environment

 The key to understanding the environmental fate and transport of PFAS is their surface-active behavior

Hydrophilic Hydrophobic and lipophobic Water-loving Water and oil repellent

Gaps:

Questions:

Surface-active behavior:

Short-chain vs long-chain PFAS

 Different functional groups (COO⁻ vs SO₃⁻)

 Individual compounds vs Mixture What are the surfaceactive characteristics of shorter-chain PFAS and mixed PFAS?

PFAS detection:

- High cost (money and energy)
- High technology (require experts)
- Long time
- Complex pretreatments

Are there screening-level tools that may simplify PFAS contaminant characterization?

Selected PFAS:

PFASs	-[CF ₂] _n - chain length, # of C	CAS Number	Functional groups
PFOA	n = 8, C8	335-67-1	COO-
PFOS-K	n = 8, C8	2795-39-3	SO ₃ -
PFHxA	n = 6, C6	307-24-4	COO-
PFHxS-K	n = 6, C6	3871-99-6	SO ₃ -
PFBA	n = 4, C4	375-22-4	COO-
PFBS	n = 4, C4	375-73-5	SO ₃ -
GenX	n = 4, C6 (branched)	13252-13-6	COO-
PFDA ²	n = 10, C10	335-76-2	COO-

²Secondary priority.

PFAS Mixtures

Different functional groups, but the same carbon chain length

- PFOA & PFOS-K
- PFHxS-K & PFHxA
- PFBS & GenX
- PFBA & PFBS

Different carbon chain length, but the same functional groups

- •PFOA & PFBA
- •PFOA & PFHxA
- •PFOA & GenX
- •PFOA & PFBA & PFHxA
- •PFOA & PFBA & PFHxA & GenX
- •PFOS-K & PFHxS-K
- •PFOS-K & PFBS
- •PFOS-K & PFHxS-K & PFBS

Two compounds with the highest and lowest measured surface tension

•PFOS-K & PFBA

All seven PFAS contaminants

Measurements:

Surface tension

Optical tensiometer, KRUSS-DSA25

pH

• Specific conductance

pH/Conductivity Meter, ORION-STAR A215

Micelle suspended in water (above micelle concentration[cmc])

- A sharp decline with increasing concentration.
- Micelle formation in PFHxA and GenX.
- Longer chain < shorter chain; SO₃⁻ < COO⁻
- Lowest → PFDA; highest → PFBA
- Highest & Lowest → close to lowest

Same C chain length, different functional groups:

- Measurements of mixtures intermediate to individual compounds
- PFBA & PFBS → close to lower individual one

Same functional groups, different C chain length:

- Longest chain (PFOA and PFOS-K) dominates in mixtures
- Binary mixtures: Longest chain are more dominant in mixtures with shortest chain (PFOA + PFBA < PFOA + PFHxA, PFOS-K + PFBS < PFOS-K + PFHxS-K)

Szyszkowski equation:

$$\gamma = \gamma_0 \left[1 - A \ln \left(1 + \frac{c}{B} \right) \right]$$

- γ is surface tension [MT⁻², mN/m],
- γ_0 is the solute-free surface tension [MT⁻², mN/m)],
- C is concentration [ML⁻³, mg/L],
- A and B are model parameters

Coefficient of variation of A: ~30%

Results: pH

- Highest: PFOS-K and PFHxS-K
- Lowest: PFBA and PFBS
- A sharp decline with increasing concentration

Results: Specific conductance

All have same pattern: exponentially increasing as concentration increased

13

Screening level tools

- Decreased surface tension
- Decreased pH
- Increased specific conductance

Gives a clue for potential PFAS source zone?

Conclusions:

- Three stages in surface tension characteristics as a function of concentration: consistent in low concentration, sharply decrease, consistent due to micelle formation.
- C chain and functional group effects: Longer chain < shorter chain; SO₃⁻ < COO⁻
- PFAS with longest chain dominates the surface tension behavior.
- PFAS solutions showing low surface tension, low pH, and high specific conductance may indicate a high concentration PFAS source zone.

