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ABSTRACT
A neural network model was developed which is capable of yielding an approximate 
probability of a water sample from a premise plumbing system containing an amount 
of Legionella pneumophila above the detection limit of 10 MPN per 100 mL. The 
neural network was trained using the TensorFlow machine learning platform using 
physico-chemical water quality parameters. Some samples contained additional 
sample results, such as turbidity and minerals, but these parameters were excluded 
because the dataset did not contain enough samples with these parameters to obtain 
a viable result. The parameters were systematically trained using networks of 
increasing size and complexity before determining the ideal network size for this 
model.

Initial determination of viability of sample size with various parameters was 
performed using a neural network composed of the input layer, two hidden layers of 
32 nodes with ReLU (Rectified Linear Unit) activation layers, and a final dense layer of 
one node. Viable parameters were: Total Chlorine, Free Chlorine, Temperature, pH; 
removed parameters included turbidity and mineral results because the dataset did 
not contain enough samples with these parameters to obtain a model loss and 
accuracy outside of the range of error of a positive results correlation.

BACKGROUND
• State and local government officials issued shelter-in-place recommendations 

(“social distancing”) and recommended the closing or reduced operation of 
buildings to stop the global pandemic caused by novel coronavirus disease 
(COVID-19). During this time, unoccupied and low-occupancy buildings might have 
experienced extended periods of low water demand without proper water 
management plans (i.e., mitigation). Periods of low or no occupancy can be 
challenging for building systems and may increase the risk of water system failures 
and other hazards for occupants.

• Reduced consumption of water can cause stagnant water to accumulate in 
building water systems. Water stagnation can lead to reduced water quality 
including presence of the bacteria Legionella pneumophila. L. pneumophila is a 
Gram-negative bacterium and is the major causative agent of Legionnaires’ 
disease.

• In the United States, reported cases of Legionnaires’ disease have grown by nearly 
nine times since 2000. Legionella grows best in warm and stagnated water or in 
building water systems that do not have enough disinfectant to prevent the 
growth and spread of microbes.

• This research investigated the practicality of water quality parameters-based 
signatures as a screening tool and potential predictor of critical levels of Legionella 
in a building.

• Water quality parameters are relatively inexpensive to measure compared to 
extensive culture laboratory testing for Legionella. We have developed a 
convolutional neural network which can be used to predict if a building’s 
plumbing or area of a distribution system is at increased risk of Legionella (i.e., 
action risk levels).

• A machine learning algorithm was developed by designing a neural network 
utilizing the TensorFlow machine learning platform. The project used data (i.e., 
physico-chemical water quality parameters) collected by the EPA Office of 
Research and Development such as temperature, water usage rate, pH, turbidity, 
disinfectant residual, water source (e.g., taps, pipes, tanks), and detected 
Legionella threshold cycle levels.

• A machine learning algorithm was applied to determine if there is a correlation 
between these water quality parameters and presence of Legionella. 
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METHODS
• 504 samples were used in the development of the model

• 362 for training
• 41 used for validation
• 101 used for test of post training loss and accuracy

• Values were chosen to yield a 90% confidence interval with a 7% margin of error 
for the test set after removal of the validation set

• The optimal network structure for this problem was determined by starting at the 
smallest network size of no hidden layer, then including one hidden layer of one 
node then doubling the nodes of the hidden layer with each size increase

• Training Neural Network
• Median used 10 training iterations with below parameters but 0.01 training rate and a 

patience of 100 epochs 
• Binary cross-entropy
• Adam optimizer with a training rate of 0.001
• Patience of 10 epochs
• Batch size of a full epoch
• 3205 epochs and yielded
• Training accuracy 86.19%
• Training loss 0.2635
• Validation accuracy 87.80%
• Validation loss 0.2726
• Test accuracy 86.14%
• Test loss 0.2832

Fig. 1 - Measure of loss and accuracy of various neural network structures. Direct is a network 
composed of only the input and output layer. The values following along the x-axis are the number 
of nodes in each hidden layer. The layers with two numbers are represented by the first number 
being the first hidden layer following input, followed by the number of nodes in the second hidden 
layer following input.

Fig. 2 - Graphical chart of the four input parameters through normalization, concatenation, a 
densely connect 128 node ReLU activated hidden layer, then to a densely connected 1 node sigmoid 
activated output layer.

Fig 3 – Above Left: loss of training and validation datasets; validation flattens near end of training 
epochs as determined by a patience of 100. Above Right: accuracy of training and validation 
datasets; validation has larger intervals along the y-axis because of the smaller dataset used with 
validation (41 samples) than training (101 samples).

RESULTS
Fig. 4 - Confusion Matrix displaying 
results from Test dataset of samples. 
1 represents a positive detect as a 
probability of 50% or more. 0 
represents a negative detect.

Fig. 5 - Logarithmic graph of model 
performance after training neural 
network with ten training sets start 
at 10% the size of the original 
training dataset and continuing to 
increase in intervals of 10% until 
reaching the size of the full training 
dataset. Trend lines have been 
graphed to project performance of 
the neural network when trained with 
increasing amounts of samples.

Fig. – 6 Comparison of model 
performance after removal of 
individual parameters and combined 
chlorine parameters. “All 
Parameters” is the performance of 
the model without the removal of any 
parameters.

Fig. 7 - Levels of Legionella 
detected vs: Total Chlorine, 
Free Chlorine, Temperature 
Celsius, and pH.

CONCLUSIONS
• Neural Network was able to identify parameters with the highest 

correlation for detection of Legionella
• Used parameters: Total Chlorine, Free Chlorine, Temperature, pH
• Combined parameters were able to predict whether a sample of water 

would have detectable levels of Legionella
• Recall = 0.91
• Precision = 0.88
• Achieved an F1 score of 0.90

Further research will focus on the development of a monitoring system that 
may be used to alert building managers and water system operators of an 
increased risk of Legionella, leading to either testing or mitigation efforts.

Knowing the Legionella risk in a premise water system is useful when 
determining if building flushing is necessary, such as after periods of 
stagnation or where water may be aerosolized. Specific levels of Legionella 
were not able to be determined with the number of samples used in this 
research but may be possible with more sample results. It may be possible to 
use neural network-based machine learning to determine other water quality 
parameters quickly and inexpensively. Timely determination of water quality 
risks is necessary to immediately realize or mitigate potential risks while 
waiting for laboratory results.
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