In Vitro to In Vivo Extrapolation
Incorporating Toxicokinetics

Katie Paul Friedman, PhD, Center for Computational Toxicology and Exposure, Office of Research and
Development, US Environmental Protection Agency, Research Triangle Park, NC, (U.S.)

Marc Beal, PhD, Health Canada, Ottawa (CA)

Presentation to EMGS, September 24, 2021

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the
U.S. EPA or Health Canada. Mention of trade names is not a recommendation or endorsement.



High-throughput toxicokinetic (HTTK) approaches enable in vitro to in vivo
extrapolation (IVIVE) of dose for thousands of chemicals

in vitro toxicokinetic data
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Some high-level assumptions commonly
employed to-date:

(1) bioactive nominal in vitro assay
concentration ~ jn vivo plasma
concentration that would correspond to a
similar effect;

(2) external exposures (in mg/kg/day units)
that may have resulted in that plasma
concentration can be constructed using
estimates of species-specific physiology
and Phase | and Phase Il enzyme-driven
hepatic clearance; and,

h ttk (3) Often, we expect that plasma
concentration can be approximated by

steady-state kinetics (unless we have
enough information to use PBTK).
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Many works have applied HTTK to prioritization and
assessment case studies over the last decade
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The big question: " See the forest for the trees

Can in vitro bioactivity be used to derive
a conservative point-of-departure (POD)
for prioritization and screening level risk
assessment?



Case study workflow
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Is log10-POD ratio > O for most chemicals?
Can we learn from log10-POD ratio < 0?

Is BER useful for prioritization?

Are there addressable weaknesses? © MO, LRI,
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The log10-POD ratio distribution shows PODy,, is generally
conservative and adjustable
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The bioactivity:exposure ratio (BER) provides a way of
prioritizing substances for further review
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BER,; , 95" percentile did not prioritize an unreasonable number of substances.
The BER selected reflects the level of conservatism and uncertainty considered within a screening assessment.
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Case study learnings and limitations

An approach to using in vitro bioactivity data as a POD appears to be a
conservative estimate ~ 90% of the time for 448 chemicals.

POD v €stimates appear conservative with a margin of ~100-fold.
PODy\ May provide a refinement of thresholds of toxicological concern.

When combined with high-throughput exposure estimates, this approach
provides a reasonable basis for risk-based prioritization and screening level
risk assessments.

Specific types of chemicals may be currently outside the domain of
applicability due to assay limitations, e.g., organophosphate insecticides:
how do we identify these in the future?

This is the largest retrospective look at this to-date; but what if new
chemicals perform differently?

-
B e fhe

I KNOW:THERE IS A'FOREST IN THERE SOMEWHERE...

Additional research to include expanded and improved high-throughput
toxicokinetics and in vitro disposition kinetics may help improve PODy,
estimates.

10



Chemicals Concluded Toxic Under CEPA More Likely

to have Low BERs

* Health Canada conducted follow-up study to
support development of guidance Science

Approach Document

e Results show that POD
POD

Bioactivity
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* All non-genotoxic compounds considered toxic
to human health (red arrows) or ecotoxic (blue

arrows) had a BER < ~100

* One toxic chemical (Quinoline), considered as a
potential genotoxin, was identified as low

lower than

for 38 out of 41 chemicals

priority using this approach (star)

e There are only five assays in ToxCast that

measure DNA damage or stalled replication and

these have low sensitivity

* Thus, a parallel approach that builds on these
experiences but uses genotoxicity assays is

needed
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Complementary Approach that Includes Genetic Toxicology Data is Needed

GeneTox21 Analysis Tool
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Bioactivity
Exposure
Ratios Help
to Identity
Chemicals
with the
Highest
Potential for
Concern
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Conclusions and Future Directions

* Reverse dosimetry is a powerful tool for deriving NAM-based PODs for different chemical screening and assessment
applications

* IVIVE supports in vitro testing strategy for deriving conservative PODs

Protective trend first demonstrated with bioactivity data from ToxCast
Trend consistent with genotoxicity NAM endpoints

Opportunity to explore other models to enhance the approach for chemicals where the PODs were not
conservative

* Decision trees that include thresholds of toxicological concern or other in silico alerts
* Higher tier PBTK models
* Mass balance modeling to account for in vitro disposition

* Refinement of assumptions on a chemical basis in IVIVE, e.g. bioavailability, renal transport, restrictive
clearance

 IVIVE/Genetox approach could support chemical safety evaluation without the use of animals

Rapid screening and priority setting
Guidance documents

* Need to build confidence using a broad chemical space

Genetic toxicology case study limited to well-established genotoxicants
Prospective case studies needed to evaluate emerging chemicals of concern

Ongoing work to compare PODy,, to existing PODs as well as to values obtained through other PBTK approaches
will provide important benchmarks on HTTK approaches to increase the acceptance of PODy,,,and BERs.
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