

Preliminary Shallow Electrical Resistivity Imaging (ERI) at the Enhanced Aquifer Recharge (EAR) Site

Jon Fields*, Tyler Tandy**, Russell Neill*, Justin Groves*, Randall Ross*, and Doug Beak* Affiliations: *EPA/ORD/CESER/GCRD, **ORAU Sepa Outline

- ERI, what is it?
- Shallow Karst and Epikarst
 - Importance for EAR site
 - ERI findings and impact
- Well Siting
 - Conceptual Site Modeling
 - Confirmation drilling
- What's Next
 - Limitations and Data Gaps
 - Next steps

Photo at EAR site

€PA

Electrical Resistivity Imaging (ERI)

- Geophysical technique which measures the apparent electrical resistivity of the subsurface in order to create a 2D image of these measurements.
- ERI is regularly used for high resolution site characterization of:
 - contaminated sites,
 - groundwater presence,
 - flow and transport, and
 - geologic structures.

ERI signatures and effects

- Electrical resistivity signatures are affected by pore space; specific gravity
 - Water is typically less resistive than rock
 - Air is typically more resistive than rock
- Other signatures
 - Microbes
 - Groundwater chemistry
 - Water

SEPA

Lithology

SEPA Karst or Epikarst?

- What is it?
 - Epikarst (highly fractured bedrock)
 - Karst (dissolved bedrock; sinkholes and caves)
- How do you find it in the subsurface?
 - Poke and hope (less science)
 - Geophysics (more science)

Photo at EAR site

Photo at EAR site

Fractures and conduits

- Preferential flowpaths
- Fracture zones

SEPA

- Higher porosity and permeability
- Relatively linear signatures
- Karst / epikarst
 - Microbial and geochemical influences
 - Large potential for conduits

- Data density
 - 5:1 ratio (Length:Depth)
 - 28 surveys
 - ~2,600 data points / survey
 - >72,000 total data points
- Effort
 - Data collection
 - Processing (ongoing)
 - Interpretation (ongoing)

Post-processed ERI results (example)

SEPA

Fracture signatures

* € PA*

Epikarst signatures

SEPA

\$EPA

Karst signatures

Preliminary interpretations

SEPA

Google Earth Map by Jon Fields

12

SEPA Model calibration

 Doctors don't operate without prior knowledge (scan)

Photo at EAR site

Photo at EAR site

• ERI surveys at the EAR site can indicate potential targets for high flow (drill)

Well siting

- Lithologic logs and geophysical logs complement electrical resistivity imaging (ERI) surveys
- 1D data vs 2D data

Caliper log overlain \rightarrow

Signature depicts potential karst, bedding, or washout in the wellbore in the lower resistivity portion (blue) of the ERI survey

- Installed without prior use of electrical resistivity imaging to site wells: mixed bag of results
- Low-flow and high-flow wells
- Pre-drilling plan can more efficiently place wells

What's next

Limitations

- Time, time, time
- Confirmation drilling required
- One time data collection event

After

Next Steps

- 3D modeling for better understanding
- Transient ERI for rain events
- Target selection and confirmation drilling

