

Differences in the Inactivation of Legionella pneumophila Serogroups Using UV-C LED Technology in Drinking Water

Helen Y Buse

Coauthors: John Hall, Gary Hunter, James Goodrich

International Ultraviolet Association 2021 World Congress

Office of Research and Development Center for Environmental Solutions and Emergency Response Homeland Security Materials Management Division

Acknowledgements

ELECTRIC POWER RESEARCH INSTITUTE

aquisense technologies

Legionellosis – A Public Health and Economic Burden

- Incidence rate up from 0.4 to 3.0 cases per 100,000 people; exposure to potable water responsible for the majority of outbreak cases
- In 2014, LD cases had an estimated healthcare cost of \$402 million (emergency department visits and hospitalizations)

Legionella spp.

60+ species (serogroups)

- L. adelaidensis
- L. anisa
- L. beliardensis
- L. birminghamensis
- L. bozemanae (2)
- L. brunensis
- L. busanensis
- L. cardiaca
- L. cherrii
- L. cincinnatiensis
- L. drancourtii
- L. dresdenensis
- L. drozanskii
- L. dumoffii
- L. erythra (2)
- L. fairfieldensis
- L. fallonii

- L. feeleii (2) L. geestiana
 - L. gormanii
 - L. gratiana
 - L. gresilensis
 - L. hackeliae (2)
 - L. impletisoli
 - L. israelensis
 - L. jamestowniensis
 - L. jordanis
 - L. lansingensis
 - L. londiniensis
 - L. longbeachae (2)
 - L. lytica
 - L. maceachernii
 - L. massiliensis
 - L. micdadei

- L. monrovica
- L. moravica
- L. nagasakiensis
- L. nautarum
- L. norrlandica
- L. oakridgensis
- L. parisiensis
- L. pittsburghensis
- *L. pneumophila* (15)
- L. qinqyii
- L. quateirensis
- L. quinlivanii (2)
- L. rowbothamii
- L. rubrilucens
- L. sainthelensi (2)
- L. santicrucis
 - L. saoudiensis

- L. septentrionalis
- L. shakespearei
- L. spiritensis
- L. steelei
- L. steigerwaltii
- L. saoudiensis
- L. taurinensis
- L. thermalis
- L. tucsonensis
 - L. tunisiensis
- L. wadsworthii
- L. waltersii
- L. worsleiensis
- L. yabuuchiae

Legionella spp.

60+ species (serogroups)

				Dresden panel
L. adelaidensis	L. feeleii (2)	L. monrovica	L. septentrionalis	of mAbs (17),
L. anisa	L. geestiana	L. moravica	L. shakespearei	groups Lp into
L. beliardensis	L. gormanii	L. nagasakiensis	L. spiritensis	sg 1 to 15
L. birminghamensis	L. gratiana	L. nautarum	L. steelei	
L. bozemanae (2)	L. gresilensis	L. norrlandica	L. steigerwaltii	Typing Methods for
L. brunensis	L. hackeliae (2)	L. oakridgensis	L. saoudiensis	Legionella, p. 119-
L. busanensis	L. impletisoli	L. parisiensis	L. taurinensis	148. <i>In</i> C. Buchrieser and H
L. cardiaca	L. israelensis	L. pittsburghensis	L. thermalis	Hilbi (ed.),
L. cherrii	L. jamestowniensis	L. pneumophila (15)	L. tucsonensis	Legionella.
L. cincinnatiensis	L. jordanis	L. qingyii	L. tunisiensis	$a_{\pi}1 > 900/$ alinical
L. drancourtii	L. lansingensis	L. quateirensis	L. wadsworthii	sg1, >80% clinical
L. dresdenensis	L. londiniensis	L. quinlivanii (2)	L. waltersii	isolates
L. drozanskii	L. longbeachae (2)	L. rowbothamii	L. worsleiensis	
L. dumoffii	L. lytica	L. rubrilucens	L. yabuuchiae	
L. erythra (2)	L. maceachernii	L. sainthelensi (2)		
L. fairfieldensis	L. massiliensis	L. santicrucis		
L. fallonii	L. micdadei	L. saoudiensis		

About ¹/₃ of these species associated with human disease

Lipopolysaccharide and Serogroup Relationship

FIGURE 1 | Overview of the L. pneumophila cell envelope.

- LPS: 3 structural domains
 - Lipid A
 - inner and outer core
 - O-antigen

Adapted from Shevchuk et al. 2011 Front Microbiol

Legionella's Niche Within Premise Plumbing

amenable growth temperatures and gradients

low to absent residual

generation of

respirable,

DW-derived aerosols

nutrients (metals, minerals, microbes, etc.)

high surface area to volume ratios

water stagnation

Summary of Previous Legionella UV Studies

- UV low pressure (LP) and medium pressure (MP) studies:
 - LP: *L. gormanii*; *L. longbeachae*; *L. pneumophila* sg1 (clinical, drinking water, other environmental isolates), sg7, sg8
 - MP: L. pneumophila sg1
 - 2-log reduction: 0.9-5 mJ/cm²
 - 4-log reduction: 2.8-9.3 mJ/cm²
- UV light emitting diodes (LED) studies:
 - L. pneumophila sg1 (clinical and drinking water isolates); L. rubrilucens
 - 2-log reduction: 1.1 mJ/cm² (UV-C); 25 J/cm² (405nm violet LED); 4 mJ/cm² (LP)

References for LP/MP studies:

Antopol & Ellner 1979 <u>Appl Environ Microbiol</u> Cervero-Aragó et al. 2014 <u>Water Res</u> Gilpin 1983 <u>2nd Intl Leg Symp</u> Malayeri et al. 2016 <u>IUVA News</u> Miyamoto et al. 2000 <u>Microbios</u> Muraca et al. 1987 <u>Appl Environ Microbiol</u> Oguma et al. 2004 <u>Water Res</u> Wilson et al. 1992 <u>AWWA WQTC</u>

References for LED studies:

Carlson et al. *unpublished* Hessling et al. 2018 <u>Hosp Pract Res</u> Rattanakul & Oguma 2018 <u>Water Res</u> Schmid et al. 2017 <u>GMS Hyg Infect Control</u>

Collimated Beam Method

fluence	255 nm (U)	VT 79.7%)	265nm (U	VT 86.5%)	280nm (U)	VT 91.7%)
(mJ cm ⁻²)	min	sec	min	sec	min	sec
0.5	0	17	0	4	0	2
1	0	34	0	9	0	3
2	1	7	0	18	0	6
5	2	48	0	44	0	15
10	5	36	1	29	0	31
16					0	49
34					1	44

4 L. pneumophila strains:

- sg1 clinical
- sg1 drinking water
- sg4 clinical
- sg6 clinical

Three replicates

Experimental Setup of the UV-C LED POE Device

- 1. Tap water source 4.
- Flow meter 2.

SEP/

Sample port 3.

13

- Pump/injection port
 - 5. Pipe section with static mixer
 - 6. Pre-treatment sample port

- Water disinfection system 7.
- 8. Post-treatment sample port
- Liquid waste collector 9.

Experimental Method

- 4 *L. pneumophila* strains:
- sg1 clinical
- sg1 drinking water
- sg4 clinical
- sg6 clinical

5 runs

in sequence, turned on tap,

Deca unit, pump, release *Legionella* inoculum tube clamp

- wait ~5s, collect 1L at the pre-treatment port (~30s)
- collect 1L at the post-treatment port (~30s)
- engage Legionella tube clamp and turn off pump
- flush influent then effluent port (~200mL ea)
- turn off Deca unit, then tap water

POE Device - Results

Table 1-1: Water quality specifications for optimal disinfection performance					
Parameter	<u>Description</u>	<u>Limits</u>	<u>Unit</u>		
UV-Transmittance* (UV-T)	Measure of how well UV light can travel through a fluid. Defined as the ratio of UV light intensity after passing through a liquid sample to the UV light intensity at the light source.	<u>≥</u> 90	%		
Particulate Size**	Dirt, dust, rust, sediment, and other solid particles	≤10	micron (µm)		
Hardness***	Lime scale	7/120	gpg/ppm (mg/L)		
Iron***	Rust stains	0.3	ppm (mg/L)		

Table. Influent water quality parameters for each experimental run

	Legionella pneumophila strain used			
Parameter (units)	sg1	sg1 DW	sg4	sg6
pH	8.60 ± 0.05	8.70 ± 0.04	9.0 ± 0.09	9.1 ± 0.01
temperature (°C)	9.9 ± 0.1	15.1 ± 0.1	19.9 ± 0.1	17.1 ± 0.1
Hardness (mg/L CaCO ₃)	130 ± 14	130 ± 14	120 ± 0	140 ± 0
Turbidity	0.25 ± 0.10	0.33 ± 0.00	0.64 ± 0.02	0.22 ± 0.00
%UVT 280nm	112.0 ± 0.1	93.4 ± 0.1	93.9 ± 1.3	111.3 ± 0.8
Free Chlorine (mg/L) Total Chlorine (mg/L)	0.93 ± 0.00 1.04 ± 0.00	0.92 ± 0.00 1.04 ± 0.01	0.73 ± 0.00 0.85 ± 0.01	0.92 ± 0.01 1.05 ± 0.03
Ferrous Iron Total Iron	0.00 ± 0.00 0.05 ± 0.00	0.01 ± 0.00 0.04 ± 0.01	$\begin{array}{c} 0.00 \pm 0.00 \\ 0.00 \pm 0.00 \end{array}$	0.00 ± 0.00 0.01 ± 0.00

POE Device - Results

		Influent	Effluent	Log Reduction
0	sg1	5.9 ± 0.05	2.4 ± 0.47	3.5 ± 0.46
	sg1 DW	6.3 ± 0.05	3.0 ± 0.17	3.3 ±0.21
\triangle	sg4	5.5 ± 0.84	1.9 ± 0.81	3.6 ± 0.13
\diamond	sg6	6.1 ± 0.19	1.5 ± 0.95	$4.6\pm\!\!0.91$

Data presented as $log_{10} \pm SD \ CFU \ mL^{-1}$

- sg6 isolate significantly more susceptible to inactivation
- Predicted UV dose at 2-2.5 gpm: ~80-100 mJ/cm²
- Based on collimated beam studies, ~3-4 log reductions occurred ~10-15 mJ/cm²

- Serogroup variations to UV inactivation implications for DW treatment where known environmental strains are linked to clinical cases
- Simulating high contaminant loads, the POE AquiSense Technologies Deca device demonstrated at least 3-log reduction of planktonic *Legionella*
- Further studies needed to:
 - determine synergistic effects of chlorine, monochloramine, etc. and UV inactivation (also considering pH, temperature, other WQ parameters)
 - evaluate inactivation of shed biofilm-associated pathogens (e.g. microbial clumps, other suspended particles)

THANK YOU

Helen Y. Buse buse.helen@epa.gov

L. pneumophila sg I drinking water isolate grown on BCYE agar plates

Disclaimer: This presentation has been subjected to the Agency's review and has been approved for public presentation. The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the Agency. Mention of trade names, commercial products, and/or services does not imply an endorsement or recommendation for use by the U.S. Government or EPA.

Office of Research and Development Center for Environmental Solutions and Emergency Response Homeland Security Materials Management Division