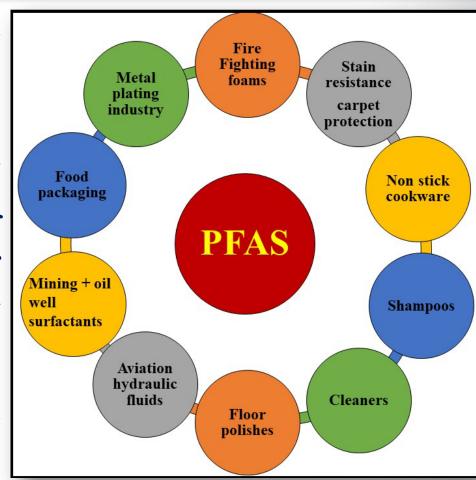
# Treatment of PFOA using an innovative technology of UV-vis/ Zn<sub>x</sub>Cu<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>/oxalic acid

#### Sanny Verma<sup>1,2</sup>, Binyam Mezgebe<sup>1,2</sup>, E. Sahle-Demessie<sup>1</sup>, Mallikarjuna N. Nadagouda<sup>1</sup>

<sup>1</sup>U.S. EPA, Office of Research and Development Center for Environmental Solution and Emergency Response <sup>2</sup>Oak Ridge Institute for Science and Education



# **Set EPA**

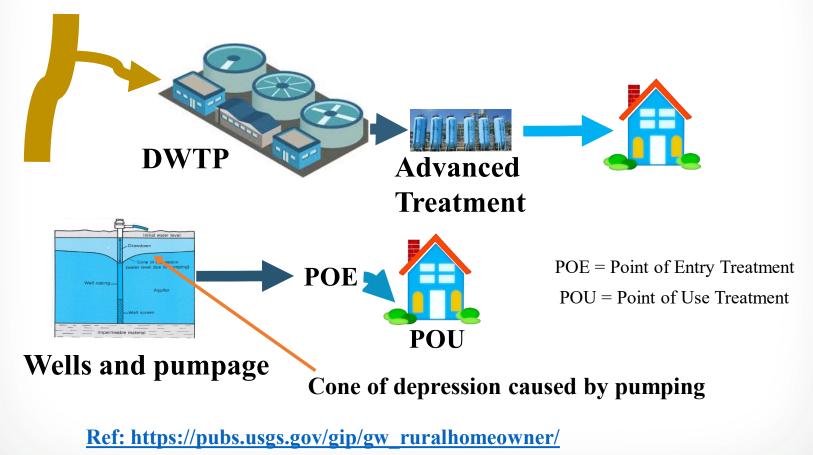

### Outline

- PFAS Background
- PFAS Treatment Technologies
  - > Ex-Situ
  - In-Situ
- Chemical/advanced photochemical oxidation processes
- Our approach: An innovative technology of UV-vis/  $Zn_xCu_{1-x}Fe_2O_4$ /oxalic acid for PFOA treatment has been performed. The efficiency of the UV-radiation-induced degradation and defluorination of PFOA in aqueous solution has been explored.
- Results and Conclusions

## **Set EPA**

### **PFAS Background**

- ➢PFAS are a group of human-made chemicals that are resistant to heat, water, and oil.
- ➢Widely used since the 1950s in household and industrial products such as carpeting, waterproof clothing, upholstery, food paper wrappings, fire-fighting foams, and metal plating.
- ≻U.S. EPA has issued a PFAS Action Plan to document steps that the agency is taking on PFAS




Ref: https://www.epa.gov/sites/production/files/2020-01/documents/pfas\_action\_plan\_feb2020.pdf

### **Mitigation Needs**

#### Treat the drinking water to cut off the exposure route

**SEPA** 



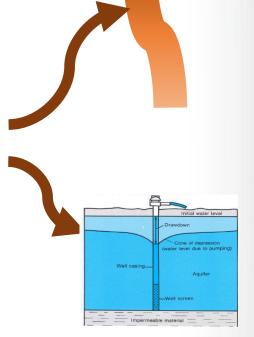
U.S. Environmental Protection Agency

## **Set EPA**

### **Mitigation Needs**

#### Manage the sources




Primary and Secondary Manufacturing



Consumer products use/disposal



Wastewater plants





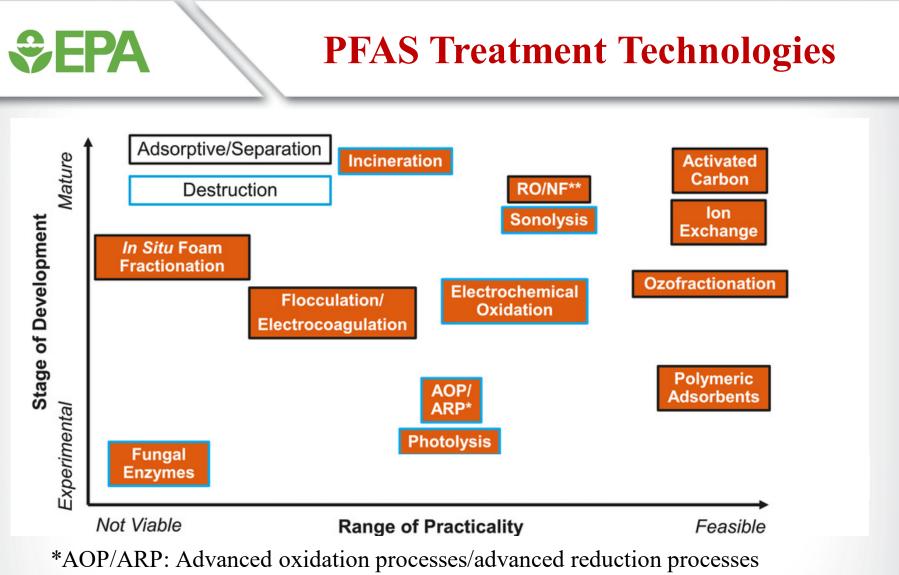
Industrial processes



Landfills



Firefighters


#### Ref: https://pubs.usgs.gov/gip/gw\_ruralhomeowner/

### Fate and Transport Considerations: Overview of PFAS Exposure Pathways

### **Stack Emissions Human Exposure** Industry **Consumer Products** Environment Water Infrastructure (Air, Soil, Water) Fire Fighting Fo

**SEPA**

Ref: 1. H.-M. Shin *et al.* Environmental science & technology, 2011, 45, 1435-1442
2. E. M. Sunderland *et al.* Journal of exposure science & environmental epidemiology 2019, 29, 131-147



\*\*RO/NF: reverse osmosis/nanofiltration

Ref: I. Ross et al. Remediation 2018, 28, 101-126

## *<b>⇔EPA*

### **Drinking Water Treatment for PFAS**

#### **Ineffective Treatments**

Conventional Treatment Low Pressure Membranes Biological Treatment (including slow sand filtration) Disinfection Oxidation Advanced oxidation

#### **Effective Treatments**

Anion Exchange Resin (IEX) High Pressure Membranes Powdered Activated Carbon (PAC) Granular Activated Carbon (GAC) Extended Run Time

Designed for PFAS Removal

#### **Percent Removal**

90 to 99 93 to 99 10 to 97

0 to 26 > 89 to > 98

#### PAC Dose to Achieve

50% Removal 16 mg/l 90% Removal >50 mg/L Dudley et al., 2015

#### - Effective

- Effective
- Effective for only select applications
- Ineffective
- Effective



### **Ex-Situ PFAS Water Treatment Technologies**

| Compound  | M.W.<br>(g/mol) | Aeration | Coagulation<br>Dissolved Air<br>Floatation | Coagulation<br>Flocculation<br>Sedimentation<br>Filtration | Conventional<br>Oxidation<br>(MnO₄, O₃, ClO₂, CLM,<br>UV-AOP) | Anion<br>Exchange | Granular<br>Activated<br>Carbon | Nano<br>Filtration | Reverse<br>Osmosis |
|-----------|-----------------|----------|--------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|-------------------|---------------------------------|--------------------|--------------------|
| PFBA      | 214             | assumed  | assumed                                    |                                                            |                                                               |                   |                                 |                    |                    |
| PFPeA     | 264             |          |                                            |                                                            |                                                               |                   |                                 |                    |                    |
| PFHxA     | 314             |          |                                            |                                                            |                                                               |                   |                                 |                    |                    |
| PFHpA     | 364             |          |                                            |                                                            |                                                               |                   |                                 |                    |                    |
| PFOA      | 414             |          |                                            |                                                            |                                                               |                   |                                 |                    |                    |
| PFNA      | 464             |          |                                            |                                                            |                                                               | assumed           | assumed                         |                    |                    |
| PFDA      | 514             |          |                                            |                                                            |                                                               | assumed           | assumed                         |                    |                    |
| PFBS      | 300             |          |                                            |                                                            |                                                               |                   |                                 |                    |                    |
| PFHxS     | 400             |          |                                            |                                                            |                                                               |                   |                                 |                    |                    |
| PFOS      | 500             |          |                                            |                                                            |                                                               |                   |                                 |                    |                    |
| FOSA      | 499             |          |                                            |                                                            |                                                               |                   | assumed                         |                    | assumed            |
| N-MeFOSAA | 571             | assumed  |                                            |                                                            |                                                               | assumed           | assumed                         | assumed            |                    |
| N-EtFOSAA | 585             |          |                                            |                                                            |                                                               | assumed           | assumed                         | assumed            |                    |

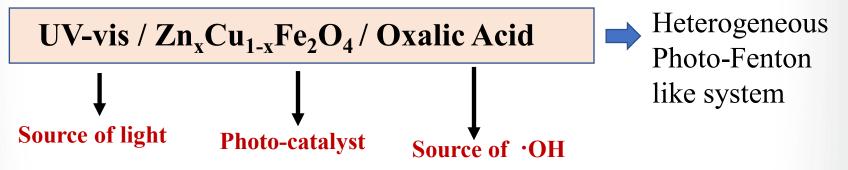
< 10% removal unknown

> 90% removal > 10%, < 90% removal Source: Dickenson and Higgins, 2016.

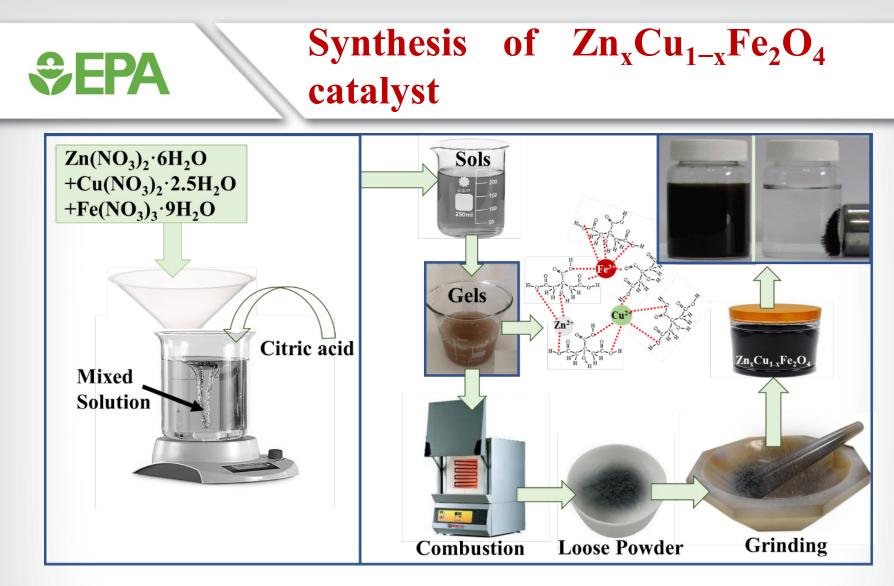
 $\rightarrow$  Low molecular weight PFAS are more challenging for treatment

**Ref: Dickenson, E. and C. Higgins. 2016. Treatment Mitigation Strategies for Poly- and Perfluorinated Chemicals. Project 4322. Denver, Colo.: Water Research Foundation** 

U.S. Environmental Protection Agency


# **Set EPA**

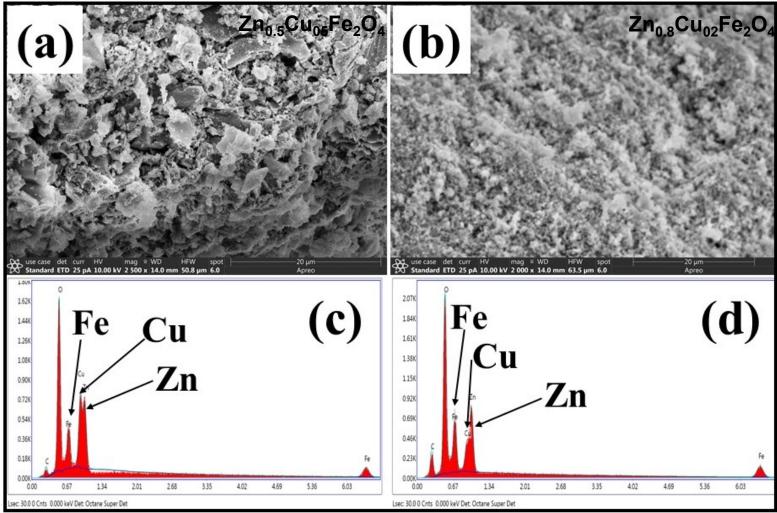
### **Our Approach**


- □ Magnetically separable heterogenous photocatalyst  $Zn_xCu_{1-x}Fe_2O_4$  (x =0.2, 0.4, 0.5, 0.6 and 0.8) has been synthesized.
- □ Electrochemical reduction of PFOA has been performed.
- An innovative technology of UV-vis/ Zn<sub>x</sub>Cu<sub>1-x</sub>Fe<sub>2</sub>O<sub>4</sub>/oxalic acid has been performed for PFOA treatment. Additionally, the efficiency of the UV-radiation-induced degradation and defluorination of PFOA in aqueous solution has been explored.
- □ The degradation of by-products has been measured to assess the removal and transformation of PFOA.
- □ Based on LC-TOF analysis, the plausible photo-mineralization mechanism of PFOA has been proposed.

# SepaNew Catalytic Approach: UV-vis /<br/> $Zn_xCu_{1-x}Fe_2O_4$ / Oxalic Acid

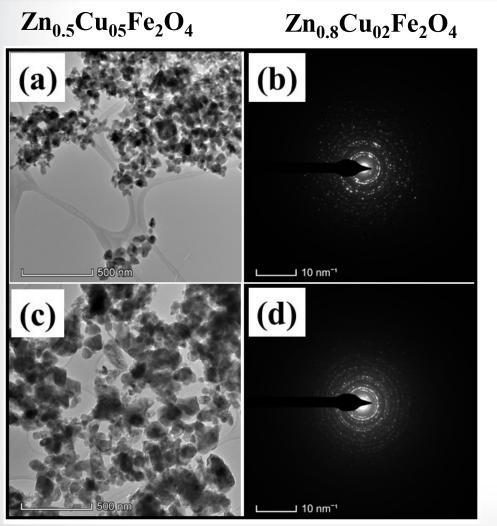
- Oxidation can transform PFOA and PFOS to less toxic products, mainly fluoride ions, carbon dioxide and shorter chain perfluorocarboxylic acids (PFCAs).
- Chemical oxidation has the potential to destroy PFOS and PFOA in situ rather than transferring contamination to another waste stream or area.




The combination of  $Zn_xCu_{1-x}Fe_2O_4$  and oxalic acid behaves as a heterogeneous photo-Fenton like system generating of OH<sup>•</sup> radicals without an addition of  $H_2O_2$  under UV light irradiation.



**Ref:** Nadagouda *et al.* "Treatment and Removal of PFOA Using an Innovative Technology of UV-vis/Zn<sub>x</sub>Cu<sub>1-</sub> <sub>x</sub>Fe<sub>2</sub>O<sub>4</sub>/Oxalic Acid: A Sustainable Approach to Effectuate •OH" ES&T preparation

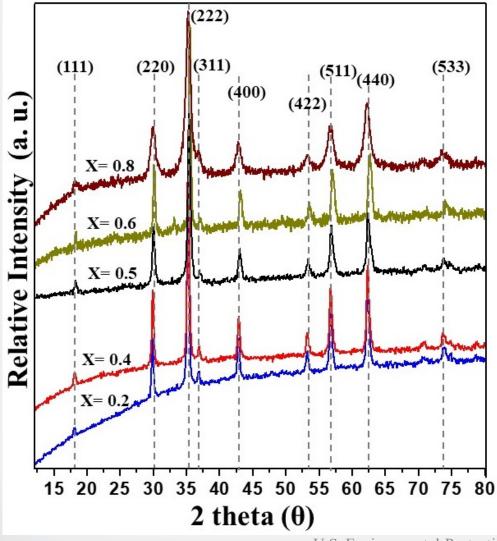

# **\bigcircEPA** Characterization of $Zn_xCu_{1-x}Fe_2O_4$

#### **SEM and Energy Dispersive X-ray Spectroscopy**



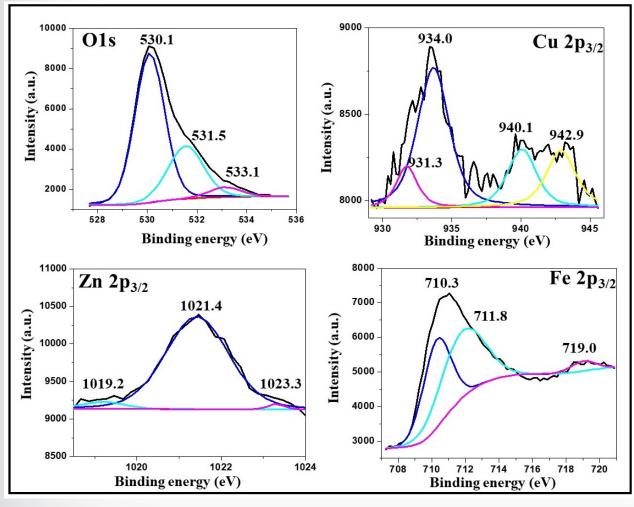
U.S. Environmental Protection Agency

# High resolution transition electron micrograph




**€PA**

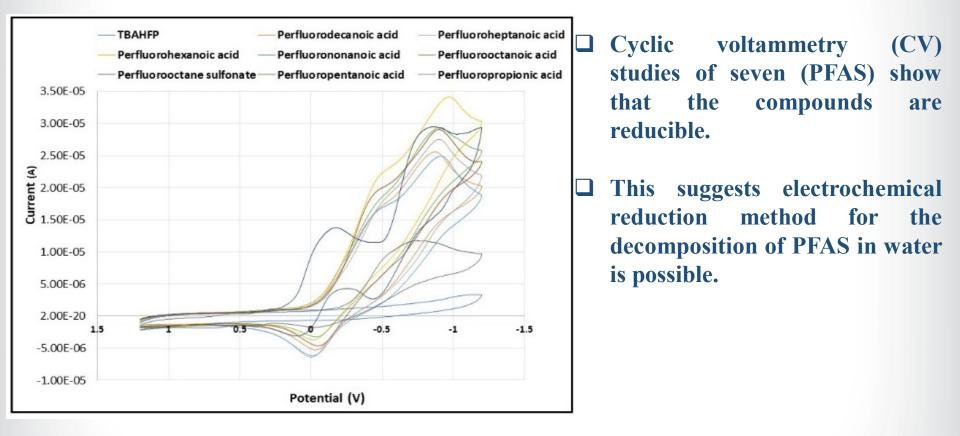
Particle size ~20 nm. Selected area diffraction (SAED) images (b) and (d) confirm the crystallinity of the materials. **SEPA**


# X-Ray Diffraction

**Phase identification and crystallinity** 

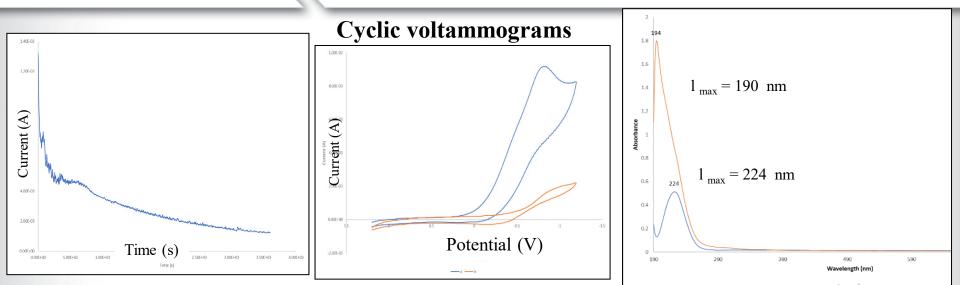


The observed peaks at 18.34°, 30.20°, 35.53°, 36.93°, 43.05°, 53.53°, 56.90°, 62.23°, and 73.89° are, respectively, representing the (111), (220), (222), (311), (400), (422), (511), (440), and (533) Bragg reflection as compared with the spinel copper zinc ferrite ( $Cu_{0.5}Zn_{0.5}Fe_2O_4$ , JCPDS#01-077-0012).


### X-ray photoelectron spectroscopy Zn<sub>0.5</sub>Cu<sub>05</sub>Fe<sub>2</sub>O<sub>4</sub> Catalyst



EPA


Elemental composition of catalyst surfaces and the chemical state of surface atoms

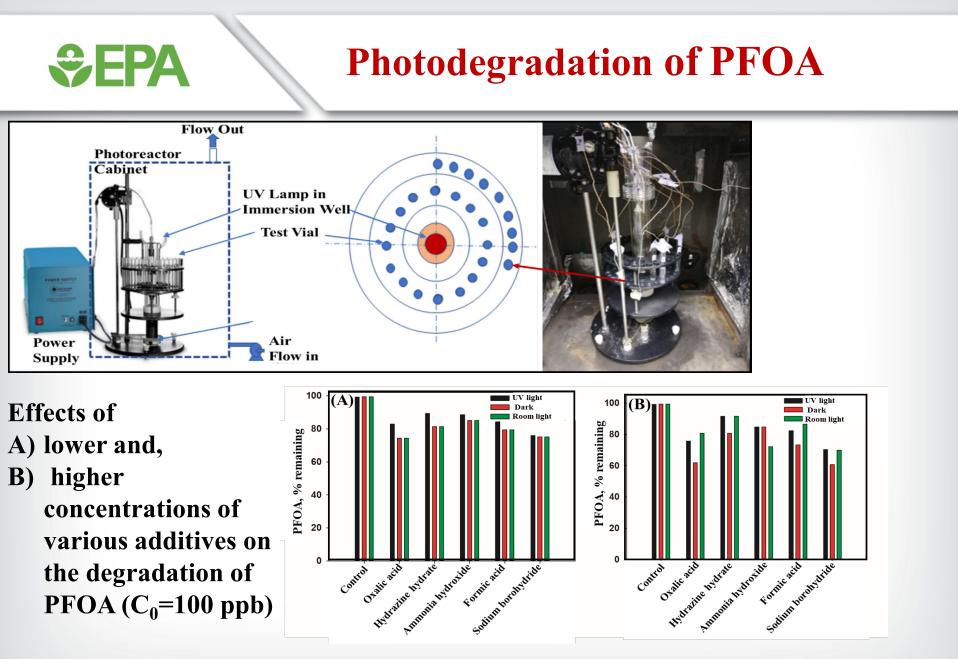
### **Electrochemical Reduction**



**SEPA**

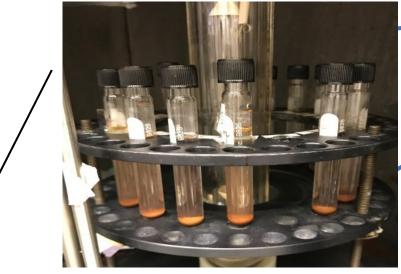
### **Exhaustive electrolysis study of PFOA**




Chronoamperometric response for 25 mL of the 5.0 mM PFOA in 0.1 M TBAHFP-CH<sub>3</sub>CN using a platinum gauze electrode. Potential applied vs. Ag/AgCl, KCl(satd.).

**SEPA** 

CV of 5.0 mM perfluorooctanoic acid at a platinum electrode in 0.1M TBAHFP-CH<sub>3</sub>CN 100 mV/s scan rate (a) before exhaustive electrolysis and (b) after exhaustive electrolysis.


UV-Vis spectrum of PFOA (a) before exhaustive electrolysis, and (b) After exhaustive electrolysis

Shift in l <sub>max</sub> Indicates the formation of a new product



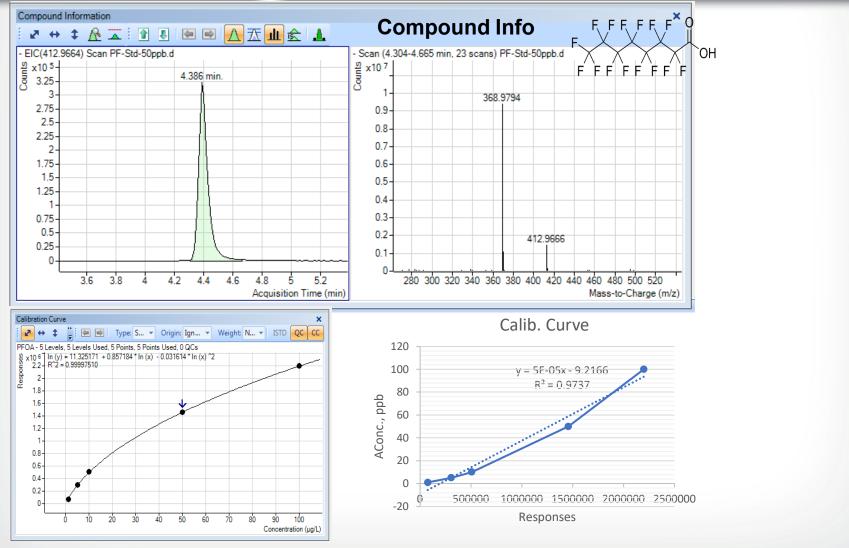
### **Photo-Catalytic degradation PFOA**

Zn<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> catalyst (50 mg) +PFOA (6 mL) and oxalic acid (0.1 M, 1 mL)



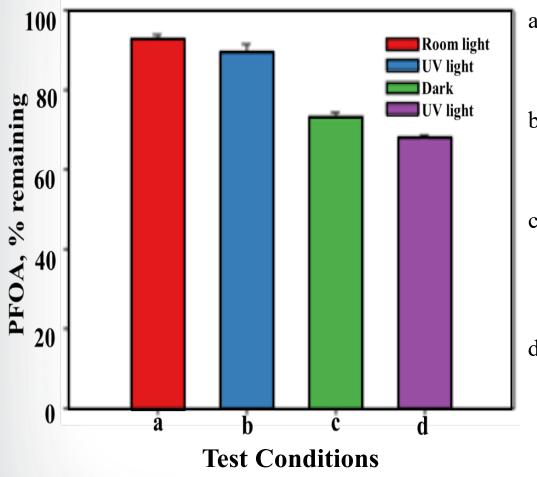
Water cooled UV reactor

#### • Rotating platform @ 15 RPM


• PFOA concentration: 100 ppm, 10 ppm and 100 ppb

EPA

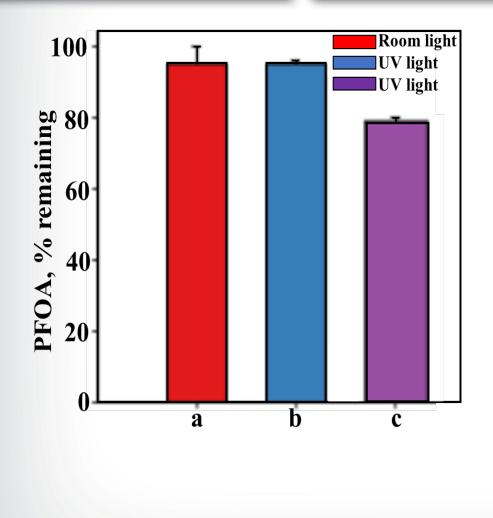
- Mixtures were shaken for 10 min before placed in the reactor.
- Sample tubes were taken at given time intervals of 2, 4 and 6 hours and filtered through 0.45 µm Polyvinylidene difluoride (PVDF) filter with polypropylene syringe housing
- All experiments were conducted in triplicate at room temperature.
- All samples are analyzed by LC-Q-TOF (Agilent 6540 UHD Accurate-Mass Q-TOF LC/MS)


## 

### **LC-QTOF** analysis of PFOA



**U.S. Environmental Protection Agency** 


### Photodegradation of PFOA (C<sub>o</sub>=100ppm, 6 ml, pH= 2.03)

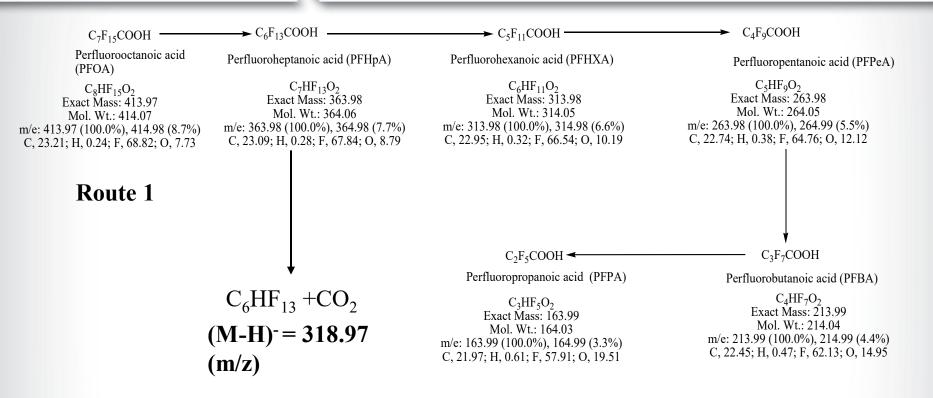


**SEPA** 

- a) Without catalyst: 6.0 ml
   PFOA (C<sub>o</sub>=100 ppm) in room light;
- b) Without catalyst: 6.0 ml
   PFOA (C<sub>o</sub>=100 ppm) in UV light;
- c) With catalyst: 6.0 ml PFOA  $(C_0=100 \text{ ppm}) + 8.3 \text{ g L}^{-1}$   $Zn_{0.5}Cu_{0.5}Fe_2O_4 + 0.1 \text{ M}$ Oxalic acid (1 ml) in dark;
- d) With catalyst: 6.0 ml PFOA  $(C_0=100 \text{ ppm}) + 8.3 \text{ g L}^{-1}$   $Zn_{0.5}Cu_{0.5}Fe_2O_4 + 0.1 \text{ M}$ Oxalic acid (1 ml) in UV light

# Photodegradation of PFOA at different test conditions




**SEPA** 

$$C_{o} = 10 \text{ ppm}$$
  
V = 6 ml,  
pH = 2.03

- a) Without catalyst: 6.0 ml PFOA ( $C_o=10$  ppm) in room light;
- b) Without catalyst: 6.0 ml PFOA (C<sub>o</sub>=10 ppm) in UV light
- c) With catalyst: 6.0 ml PFOA ( $C_o=10 \text{ ppm}$ ) + 8.3 g L<sup>-1</sup> Zn<sub>0.5</sub>Cu<sub>0.5</sub>Fe<sub>2</sub>O<sub>4</sub> + 0.1 M Oxalic acid (1 ml) in UV light

# **SEPA**

### **Possible intermediate products for the mineralization of PFOA**



We observed one by-product  $C_6HF_{13}$  ((M-H)<sup>-</sup> = 318.97 (m/z)) during Q-TOF analysis.

Ref: 1. Scientific Reports volume 4, Article number: 7418 (2014) 2. Journal of Hazardous Materials 2018, 344, 950-957

### Possible intermediate products for the mineralization of PFOA

#### **Route 2** Reductive defluorination of perfluorooctanoic acid

C<sub>7</sub>F<sub>15</sub>COOH -

EPA

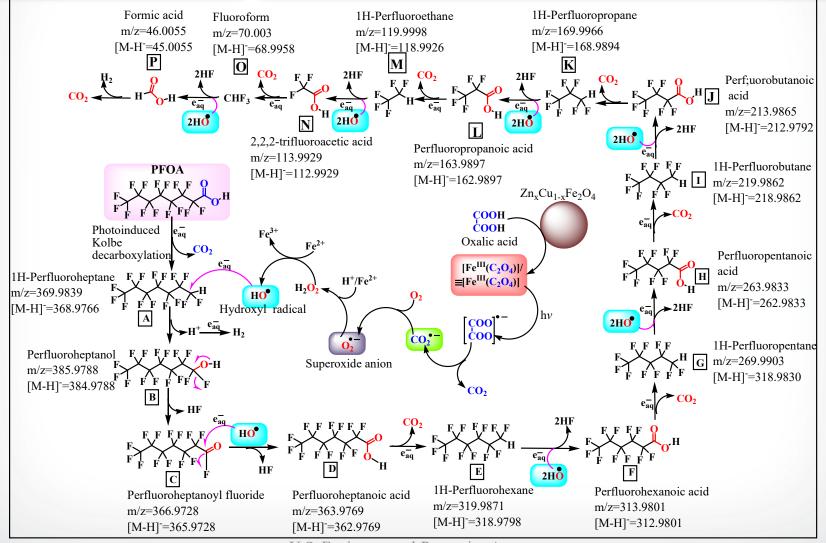
C<sub>7</sub>F<sub>14</sub>COOH + F<sup>-</sup>

PFOA

C<sub>8</sub>HF<sub>15</sub>O<sub>2</sub> Exact Mass: 413.97 Mol. Wt.: 414.07 m/e: 413.97 (100.0%), 414.98 (8.7%) C, 23.21; H, 0.24; F, 68.82; O, 7.73 C<sub>8</sub>HF<sub>14</sub>O<sub>2</sub> Exact Mass: 394.98 Mol. Wt.: 395.07 m/e: 394.98 (100.0%), 395.98 (8.7%) C, 24.32; H, 0.26; F, 67.32; O, 8.10

> Ref: Journal of Hazardous Materials 2017, 340, 336-343

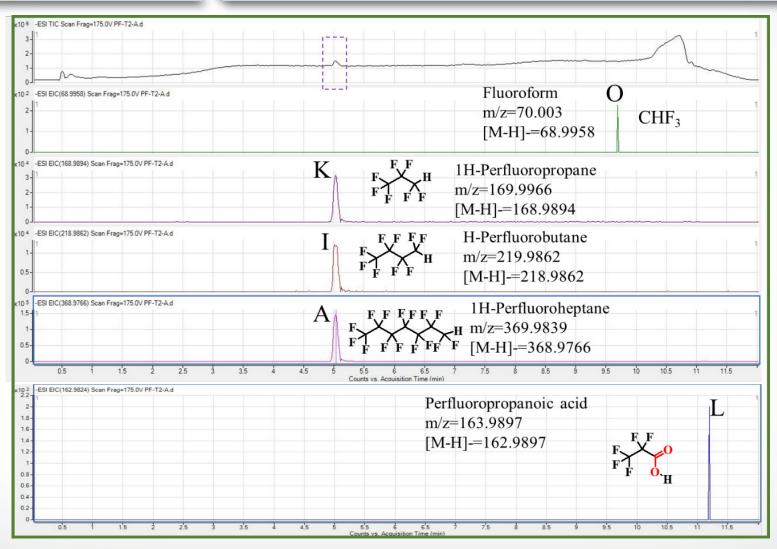
C<sub>7</sub>F<sub>14</sub>HCOOH


C<sub>8</sub>H<sub>2</sub>F<sub>14</sub>O<sub>2</sub> Exact Mass: 395.98 Mol. Wt.: 396.08 m/e: 395.98 (100.0%), 396.99 (8.8%) C, 24.26; H, 0.51; F, 67.15; O, 8.08

#### Route 3 Other Plausible intermediate products: Reduction of –COOH group by H<sub>2</sub>

| from oxal                             | IC ACID Aldehyde                                                                                                                                           | alcohol                                                                                                                                                                  | alkane                                                                                                                                                     |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C <sub>7</sub> F <sub>15</sub> COOH — | → C <sub>7</sub> F <sub>15</sub> CHO                                                                                                                       | $\sim$ C <sub>7</sub> F <sub>15</sub> CH <sub>2</sub> OH                                                                                                                 | $\sim$ C <sub>7</sub> F <sub>15</sub> CH <sub>3</sub>                                                                                                      |
| Perfluorooctanoic acid<br>(PFOA)      | C <sub>8</sub> HF <sub>15</sub> O<br>Exact Mass: 397.98<br>Mol. Wt.: 398.07<br>m/e: 397.98 (100.0%), 398.98 (8.7%)<br>C, 24.14; H, 0.25; F, 71.59; O, 4.02 | C <sub>8</sub> H <sub>3</sub> F <sub>15</sub> O<br>Exact Mass: 399.99<br>Mol. Wt.: 400.08<br>m/e: 399.99 (100.0%), 401.00 (8.7%)<br>C, 24.02; H, 0.76; F, 71.23; O, 4.00 | C <sub>8</sub> H <sub>3</sub> F <sub>15</sub><br>Exact Mass: 384<br>Mol. Wt.: 384.09<br>m/e: 384.00 (100.0%), 385.00 (8.7%)<br>C, 25.02; H, 0.79; F, 74.20 |

U.S. Environmental Protection Agency


# Plausible pathway for oxidative decomposition and defluorination of PFOA



⇒ FP∆

# **SEPA**

# Analysis of PFAS by-products using LC-QTOF analysis (Extracted ion chromatogram)



U.S. Environmental Protection Agency

# 

### Conclusions

UV-light with  $Zn_xCu_{1-x}Fe_2O_4$  and oxalic acid have shown to reduce PFOA significantly.

- Preliminary tests of cyclic voltammetry (CV) show electrochemical reduction of PFOA. This will be utilized to create an electrochemical method for the decomposition of PFAS in water.
- Additional analysis is necessary to evaluate performance in the presence of multiple PFAS, as well as that a combination of approaches may be necessary

#### **Future research/next step**

The ultimate goal is to develop an innovative technology for the complete mineralization of PFAS at a reduced cost.

# **\$EPA**

### Disclaimer

The U.S. Environmental Protection Agency, through its Office of Research and Development, funded and managed or partially funded and collaborated in the research described herein. It has been subjected to the Agency's administrative review and has been approved for external publication. Any opinions expressed in this paper are those of the author(s) and do not necessarily reflect the views of the Agency. Therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.



# Thank you