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Recent Experience Leads to New Thinking-

Characterization

¢ Historical perspective

»

»

»

»

»

»

Soil-EPA superfund has historically focused on high
quality analytical samples collected at discrete soil
locations

Groundwater-APA has historically used monitoring
wells, pump tests, etc. To characterize and monitor
sites

Challenges encountered

Discrete soil sampling designs do not address
matrix variability/heterogeneity-resulting in highly
variable or statistically uncertain decision making
Large scale averages of aquifer materials obscure
primary contaminant transport and mass storage
areas

New thinking

Soil-incremental and composite techniques that
provide large scale averages are better suited to
represent exposure scenarios, control matrix
variability/sample heterogeneity, and make
statistically confident decisions
Groundwater-large scale averages derived from
aquifer materials can be misleading resulting in
poorly performing or applied remedies. HRSC
Techniques provide measurements at scales more
appropriate for remedy design.




Recent Experience Leads to New Thinking-

Remediation
Historical Perspective in Superfund

Superfund Remedy Report

 Lots of pump and treat systems early on

e Restoration often the goal < B ;

* Single concentration goal “throughout aquifer”
 Challenges Encountered

* Insufficient characterization leads to poor placement of
wells/screens

e  Missed sources
Matrix diffusion challenges

 Limited flexibility to use adaptive techniques

* New Thinking

* High quality characterization and a good CSM lead to
improved remedy performance. Cost/benefit.

* Use of Adaptive Management approaches

wEPA




Recent Experience Leads to New Thinking- Remediation

Superfund Remedy Report, |6™ Edition

Figure |3: Selection Trends for Decision Documents with Groundwater Remedies (FY 1982-2017)
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Tools and Strategies

The Triad Approach — Source of Many BMPs

Dynamic Work
Strategies

Systematic
Planning

Real-Time Measurement
Technologies

Synthesizes practitioner experience, successes, and lessons
learned into an institutional framework

wEPA




Tools and Strategies W A

most effective and practical

The Triad Approach — Source of Many BV IR,

objective while making the
optimum use of resources

H k_D

A work strategy that
incorporates the flexibility to
adapt to information
generated by real-time
measurement technologies

A process for building a

consensus vision

for conducting environmental

investigation and remediation

= —

= —

Real-time = within
a timeframe that allows the project team to react to the
information while in the field

Synthesizes practitioner experience, successes, and lessons
learned into an institutional framework
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HRSC- Profound Effect on CSMs
Many Advances in Tools- Just A Few Examples ]
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Evolution of Conceptual Site Models in Superfund

1980°s—1990s

Pathway-Receptor Network Diagrams

* P-RN diagrams NOT C5Ms — too simple to serve all CSM functions
* However, they are a critical COMPONENT of CSMs
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Environmental Cleanup Best Management Practices:
Effective Use of the Project Life Cycle Conceptual Site Model
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Evolution of Conceptual Site Models in Superfund

General . Management VCUP
Environmental CSM Life Cycle Practices CERCLA - Superfund Brownfields Varies by IRP/ERP
Cleanup Steps State
SITE ASSESSMENT &= Preliminary Assessment (PA) Facility(és&ie)ssment Envi Phase | . - Initial Site PA PA PA
. : nvironmental Site aracterization
% Site Inspection (SI) Assessment (ESA) S Sl Sl Sl
Preliminary CSM @ National Priorities List (NPL) P 5 MR Site
= ) : joritization
S No Further Remedial Action I
| Baseline CSM Eenrod (AR} B e
SiTE INVESTIGATION | Characterization Remedial Investigation/ Facility Investigation Phase Il ESA Sl RIFS RI/FS RIFS
ANDEALTERNATIVES C age Feasibility Study (RI/FS) (RFI) Corocireneion NFRAP
VALUATION Removal Actions - Emergency/  Corrective Measures Plan (CAP)
Time Critical/Non-Time-Critical Study (CMS) ‘ .
REMEDY Proposed Plan Statement of Basis Remedial Action Cleanup Selection ROD Proposed Plan Remedy Selection
SELECTION Record of Decision (ROD) (SB). Plan (RAF) ROD
Final Decision
Design CSM and Response to
Remeoy Remedial Design (RD) Corrective Measure Cleanup and Corrective Action RD RD RD
IMPLEMENTATION Remedial Action (RA) — Implemﬁdr;;catlon DRl - Low-impact site RA RA - Interim Time Critical
Remadiationt Interim and Final cleanup and Final Removal Action
Mitigation CSM - Risk-based Remedy in
Stage remediation Place (RIP) RA
- Generic remedies RIP
B b s SOM AT ClEANUP
Post- Operational & Functional Period O&M Property LT™M O&M Shakedown period  Shakedown period
ConsTRUCTION Operation & Maintenance (O&M)  On-site inspections Management LTM Operating Pro;:)erly Long Term
AcTiviTEs Long term monitoring (LTM) and oversight Long-term O&M and Successtully Management
ngir:ﬂRSetn;egy - Sotimizal S Redevelopment 0&M
g PHIMIZEtorT Activities 3 rivate- LTM
Long Term Response Action and Public-led)
(Fund-lead groundwater/surface
T———] B e L waterrestoration)
Site ComPLETION o Construction Complete (CC) Certification of cC rther Actio EE Response
5 Preliminary or Final Close Out Completion Property (NFA) Complete (RC) NFA
v = Report (PCOR/FCOR) Cgrrective Actign Management NFA
=g : : omplete witl
= Site Completion - FCOR ContoETithony
‘Dv Site Deletion Controls
O&M as appropriate
IRP/ERP = Installation Restoration Program/

UST = Underground Storage Tanks
VCUP = Voluntarily Clean Up Programs

Abbreviations:

SPP = Systematic Project Planning

DWS = Dynamic Work Strategies

RTMT = Real Time Measurement Technologies

CERCLA = Comprehensive Environmental Response,
Compensation and Liability Act
RCRA = Resource Conservation and Recovery Act

Environmental Restoration Program
MMRP = Military Munitions Response Program
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History of EPA Superfund Optimization Program

Systematic site review by a team
of independent technical experts,
at any phase of a cleanup
process, to identify opportunities
to improve remedy
protectiveness, effectiveness and
cost efficiency; and to facilitate
progress toward site completion.

Site Identified
Investigation Stage
! ‘ Optimization 2010

Preliminary Assessment

O_. Design Stage

Site Inspection Optimization

M
\\ Remedial Investigation Remediation Stage 2000

O_. Optimization

Feasibility Study

G, 2. !
8 7
e,)'? %'4 Remedial Design L_onq Term
e 'O'Oro O—@ Monitoring Stage 1997
O}éf/ s Remedial Action Construction Optimization
) 8o .

&,
'9/(,6 Remedial Action Operations

O_‘ Site Completion

/'
g >
R Long-Term Monitoring l
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History of EPA Superfund Optimization Program

Systematic site review by a team
of independent technical experts,
at any phase of a cleanup
process, to identify opportunities
to improve remedy
protectiveness, effectiveness and
cost efficiency; and to facilitate
progress toward site completion.

Site Identified
Investigation Stage
! ‘ Optimization 2010

Preliminary Assessment

O_. Design Stage

Initial site Site Inspection Optimization
characterization
Iresponse Remedial Investigation Remediation Stage >

© e 2 Optimization

Sl development et
Feasibility Study

of CAP

v
Cleanup Remedial Design Long Term

selection O—=e Monitoring Stage 1997

Remedial Action Construction Optimization

Corrective O ‘

Action- low Remedial Action Operations

risk closure, O Site Completion
RBCA etc. e .
Long-Term Monitorin l




WwWw.epa.gov/superfund/cleanup/postconstruction/optimize.ntm

www.cluin.org/optimization/

Optimization Review Process Optimization Support in Superfund
Completed Events 1997-2016

*Events/Region

Regional/HQ/Other Request for Optimization

Project Scoping and Kick-off Call

: } 1 10 7 4 21 10%
Document Exchange, Data Review and Evaluation B " - 0 = e
3 18 6 1 25 12%
Site Visit/Stakeholder Interviews 4 11 1 0 12 6%
5 12 4 0 16 8%
Drait Report/Region Review/Comments Response 6 5 11 0 16 8%
7 13 0 19 9%
Final Report/Post on CLU-IN 8 4 1 2 17 8%
9 6 20 1 27 13%
Recommendation Implementation Tracking 10 10 14 ! 25 12%
Total 9 99 10 203 100%
Optimization Characterization Phase Optimization Design/Remedy Phase Optimization Long term O&M Phases
Typical Flndm_gs/ R_ecommendatlons Typical Findings/ Recommendations Typical Findings/ Recommendations
%. I(.:(;\I(V/Idensrcfyéhlgh uncedrtaldnty oned 1. Gapsin CSM 1. CSM needs update
3. Exiting data not ully leveraged 2 Shoricomings in modeling s
: i i i b) Low/ high permeability zones
4. Over-reliance on high cost traditional ! ldpiddretsseg |551:es in design c)  NAPL
= ailads igh cost estimates ) ) )
. 2. Endpoint and metrics for site
ici 5. Remedy effectiveness can
5. Scale of megsurements not sufficient for _ y : complefan need et defiior
heterogeneity be improved by conducting phases 3 e e T v cele
6. End data users not adequately 6. Explanations for uncertainties can management, analysis and reporting
considered become apparent during start-up a)  Tracking/reporting performance
7. Can confirm validity of current site plans b)  Spatial/temporal data
and progress c) Historic data (paper = electronic)
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HRSC for Groundwater-

Challenges, Strategies, and Tools

Challenges

Heterogeneous,
anisotropic conditions

Hydraulic gradient-
3 dimensional, temporal
variation

Advection/Dispersion

Contaminant phase

— NAPL (density, viscosity,
mobility, dissolution)

- Gas
— Solute (dissolved)

— Sorbed

Homogentous, 1s01ropic Homogeneous, Anisolropic

- . e ) .
‘.l :“—I I‘\ - z (‘ZLE_]K‘ 2, 22 L
il = —
, ' L. L.
L L

Heterogeneous, lsotropic Heterogeneous, Anisotropic

Horizontal K Vertical K

Location Correlation Correlation Investigator from Freeze and
Length (m) Length (m} ( Cherry, 1979)
Borden, Ontario 23 0.12 Sudicky (1986) Spatial Directional
Homoge —
Otis, ANGB 29-8 018-038 |Hess etal. (1992) geneous < —— lsotropic
=
Columbus AFB 127 16 Rehfeldt et al. , - .
Heterog r * Ani opic
Aefligan 15-20 0.05 Hess etal. (1992) :
Chalk River, Ontario 15 0.47 Indelman et al. (1999)

rodynamic Dispersion

Hydraulic Gradi
Site 32

+ Natural Gradient Tracer Tests
» Sudicky 1979
» Stanford/Waterloo — 1982 %
» USGS Cape Cod - 1986
» Rivett et al. 1991

Buiding 113
Marine 5. Silt & Clay — 40 ft

B.‘\ﬂmna" “ R
Clayey Marine Silt — 44 ft

+ Dispersion is scale
(time/distance) dependent .

Scaleffesl) o

T = . zo _
: AW ¢ Transverse horizontal \
N ower Sand 351 T BE‘)E:‘:;on o o i dISpersmn is weak | |
¢ Transverse vertical dispersion L ol R
is even weaker )
¥ (m)

+ Longitudinal dispersion is I
significant Stanford-Waterloo Natural Gradient Tracer Test

Layout, Water Resources Research, 1982

Ml creosote

M coal tar
Chlorinated solvent

I Mvixed DNAPL

Capillary Barrier
x

DNAFL Pool Helght (m)




Structure and Pore Fluids Intact

Sampling Scale and AVEraging g, |
How “Well”’ Do You Know Your Site

in sand microbed

Monitoring wells yield a
depth integrated flow
weighted average

186- - 186
[ |
i v . ba, b 1184
= |'| A A
-.j o A
2 182 A " A 1182
Z i [ | [ | a : .%ii l A
2 1801s ;. s 1180
> =
‘N L |
178- . 1178
.
176- S 1176
1 |
1 10 100 1,00 10,000 100,000 10° 10° 10"

PCE (ug/L) Hydraulic Conductivity (cm/sec)




Mass Flux Distribution- And The Rise of In-Situ Remedies

Figure 11: Selection Trends for Groundwater Remedies (FY 1986-2011) Guilbeault et al., 2005
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Spatial Variability In Flux...... But Also Temporal

Early Stage

Late Stage

B—E—-—H

Plumes SEDﬁJREETmERmK =1,000s 1008 108 1s
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Transect/Vertical Profiling Case Study: Secondary

Groundwater Plume Characterization, Pease AFB, NH

¢ VOC and POL release site

B' ¢ VOCs potentially affecting two
. B bedrock supply wells
A » Concern over DNAPL in bedrock

¢ Prior monitoring well investigation
did not accurately characterize the
plume

» Defined as “short plume”
¢ 5 Modified Waterloo Profiler

transects performed normal to
plume axis

» A-A" =Downgradient of source
» B-B" =Through source area

D.
= 10>TCE>1 » C'C’/D' D’/E‘E —
q o % 100>TCD>10 .
" Ee o 1000> TCE>100 Downgradient plume
» PROFILING LOCATION de“neation




Transect/Vertical Profiling Case Study: Secondary

Groundwater Plume Characterization, Pease AFB, NH

VERTICAL EXAGERATION = 2:1

A A B 8
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Plume Anatomy Characterization & Remediation:

Vertical Profiling vs. Monitoring Well

C VERTICAL EXAGGERATION = 2:1 C
SOUTH NORTH
B0y E C A __._E--—-g !
= 70 APPROXIMATE WATERTABLE | .
[¥¥]
& 7 o
= 601 ' z
E 50 - é
=
o 404 <
E 30 §
- 1 AN AN T CAR AN CANE N ‘\- v‘ x‘\. x‘i EANGY .
v e IHFERRED BEDRO’CK
104 L 10
. 0 =10
o 50 100 150 200 250 300 350 400 450' 500 550 600 650'
KEY
TCEMTOX TCETOX TCETOX TCETOX TCETOX
=10% and <20% =20% and <30% =30% and <40% =40% and <50% =50%

| Prior Investigation Monitoring Well | Stone Profile | Stone Monitoring Well
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To Infinity and Beyond

Expansion of HRSC Tools and Strategies

* Groundwater
* Transects
e \Vertical profiling
* Direct push and direct sensing tools
* Flux based approaches

* Site investigation through system optimization and remedy completion

* Incremental and composite designs
* Depth discrete intervals
* Field based analytical methods

* Risk based decision making controlling heterogeneity, particle size effects

e Site investigation through system optimization and remedy completion
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