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A B S T R A C T

Multiple US agencies use acute oral toxicity data in a variety of regulatory contexts. One of the ad-hoc groups
that the US Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) estab-
lished to implement the ICCVAM Strategic Roadmap was the Acute Toxicity Workgroup (ATWG) to support the
development, acceptance, and actualisation of new approach methodologies (NAMs). One of the ATWG charges
was to evaluate in vitro and in silico methods for predicting rat acute systemic toxicity. Collaboratively, the NTP
Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) and the US
Environmental Protection Agency (US EPA) collected a large body of rat oral acute toxicity data (~16,713
studies for 11,992 substances) to serve as a reference set to evaluate the performance and coverage of new and
existing models as well as build understanding of the inherent variability of the animal data. Here, we focus on
evaluating in silico models for predicting the Lethal Dose (LD50) as implemented within two expert systems,
TIMES and TEST. The performance and coverage were evaluated against the reference dataset. The performance
of both models were similar, but TEST was able to make predictions for more chemicals than TIMES. The subset
of the data with multiple (> 3) LD50 values was used to evaluate the variability in data and served as a
benchmark to compare model performance. Enrichment analysis was conducted using ToxPrint chemical fin-
gerprints to identify the types of chemicals where predictions lay outside the upper 95% confidence interval.
Overall, TEST and TIMES models performed similarly but had different chemical features associated with low
accuracy predictions, reaffirming that these models are complementary and both worth evaluation when seeking
to predict rat LD50 values.

1. Introduction

Acute oral toxicity testing is conducted to determine the immediate
health effects of an orally administered chemical substance and is ex-
pressed in terms of the lethal dose that kills 50% (LD50) of the animals
tested [1]. Acute oral toxicity data are used by US agencies in a variety
of regulatory contexts including hazard classification and labelling of
pesticide products, determining acceptable human exposure limits and
personal protective equipment needed for handling, or determining
counter measures that should be employed in the event of toxic ex-
posures [1–3]. Acute oral toxicity data may also be used to establish
doses administered during repeat dose toxicity studies, identify target
organs for toxicity, and assess the hazard of accidental ingestions of
chemical contaminants in food [1]. To date, there are no in vitro tests
accepted by regulatory agencies as stand-alone replacements for acute

oral animal tests [1,4]. Several US government agencies participate in
the Interagency Coordinating Committee on the Validation of Alter-
native Methods (ICCVAM), which established an ad-hoc workgroup, the
Acute Toxicity Work Group (ATWG), to develop an implementation
plan for identifying, evaluating, and applying new approach meth-
odologies that may serve as replacements for in vivo acute systemic
toxicity studies. Two key elements of this implementation plan are: 1)
acquiring and curating a high-quality reference dataset of acute oral
toxicity data; and 2) identifying, developing, and evaluating non-an-
imal alternative approaches. Here, we sought to evaluate selected ex-
isting legacy expert systems for the prediction of acute oral systemic
toxicity (i.e. LD50), to complement a global project that had been in-
itiated to develop new in silico models [5]. A number of models have
been developed in the past that facilitate predictions of acute oral
toxicity, notable software tools where these models have been
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implemented include the TopKat model first developed by Enslein et al
[6], HazardExpert [7], ACD/Percepta [8], CASE Ultra [9] and the
OECD Toolbox [10]. Further, there are many models that have been
developed using a plethora of different machine learning approaches –
from linear regressions [11] to random forests [12], support vector
machines [12] and k-nearest neighbours [13]. Deep learning ap-
proaches have also been used [14]. In this study, two existing models
were accessible: the Toxicity Estimated Software (TEST), a statistical
expert system which uses a variety of Quantitative Structure Activity
Relationship (QSAR) models [15], and the commercial hybrid expert
system, Tissue Metabolism Simulator (TIMES), which comprises a col-
lection of chemical/mechanistic category based Structure-Activity Re-
lationships (SARs) underpinned by QSARs [16]. The performance of
both models was assessed using the reference dataset that had been
assembled under the auspices of the ATWG.
The TIMES expert system contains an acute oral toxicity model that

was based on a training set of rodent (predominantly rat) LD50 values
for 1814 chemicals. The TIMES approach relies on a baseline model for
substances that are neutral organics. Substances possessing features
that can exert toxicity beyond that predicted by the baseline toxicity
QSAR are assigned into one of 73 toxicological categories underpinned
by a specific QSAR. These QSARs are, in some cases, associated with an
established molecular initiating event within an Adverse Outcome
Pathway (AOP)-like construct (since published in [16]). TIMES has a
self-reported coefficient of determination (R2) of 0.85 with a Mean
Squared Error (MSE) of 0.15 for the training set of 1814 chemicals (as
noted in the summary model description within the TIMES software
itself, no further information was provided as far as whether this was a
cross validation result).
The TEST expert system relies on a range of different QSAR

methods, some local based (e.g. nearest neighbour) and some global
based from which a consensus prediction is derived and reported as an
overall outcome. For acute oral toxicity, 3 methods are used, hier-
archical clustering, FDA, method and nearest neighbour from which the
consensus prediction is derived. To create the training set for TEST, oral
rat LD50 values were obtained by downloading records from the
ChemIDplus database [15]. A total of 13,548 records were obtained
using the following search criteria – test: LD50, species: rat, route: oral.
Substances were subsequently filtered to remove inorganics, organo-
metallics, and mixtures such that the final oral rat LD50 set comprised
7413 chemicals and the endpoint modelled was the -log10 (LD50 mol/
kg). TEST model developers determined it was not possible to develop a
single model or group contribution model to fit the entire training set,
therefore, three models were developed. The first TEST model used
hierarchical clustering and the second used the FDA method and the
third, a nearest neighbours approach, a consensus was then used to
derive an overall prediction. The reported performance characteristics
for the TEST consensus model for the external test set were R2: 0.626,
Root Mean Standard Error (RMSE): 0.594 and Mean Absolute Error
(MAE): 0.431 (as reported in the User Manual: see https://www.epa.
gov/chemical-research/users-guide-test-version-42-toxicity-estimation-
software-tool-program-estimate; [15]). In this evaluation, only predic-
tions with a consensus value were used in the assessment of perfor-
mance.
The current study sought to compare the predictions from TEST and

TIMES (that were not part of their respective training sets) through
using the reference set compiled under the auspices of the ICCVAM
ATWG. Using such a large experimental reference dataset enabled a
broader evaluation of the prediction models, informing on domain of
applicability restrictions in a way never previously explored.

2. Methods

2.1. Acute toxicity dataset

The rat acute oral systemic toxicity dataset assembled by the

ICCVAM ATWG served as the reference LD50 values against which the
predictions from the two models were compared. This dataset is com-
prised of 21,200 LD50 values (15,688 unique substances), including
both point estimate (14,745) and limit test (6,455) values. These data
were collated from a variety of publicly available databases and re-
sources, including from OECD’s eChemPortal, JRC’s Acutetoxbase, and
ChemIDplus ([5]; https://ntp.niehs.nih.gov/go/tox-models).
Subsequently, the original dataset was processed to: 1) identify and

remove duplicate study values, due to the same study being present in
multiple sources; 2) amend obvious transcriptions errors, e.g. an LD50
limit test given as “20005000 mg/kg”; and 3) retrieve structure in-
formation primarily from the US EPA’s CompTox Chemicals Dashboard
(https://comptox.epa.gov, [17,18]) and other public resources. More
information regarding these processing steps can be found in https://
ntp.niehs.nig.gov/iccvam/at-models-2018/ppt/4-karmaus.pdf. To-
gether, this process reduced the number of LD50 values to 16,209 as-
sociated with 11,992 unique substances.
Finally, for chemicals with multiple point estimates (at least 3), a

representative LD50 value (called the processed LD50 throughout the
remainder of this manuscript) was identified by calculating the median
of the lowest quartile. This involved removing “extreme” point estimate
values outside the Tukey fence (i.e. exceeding 1.5 * interquartile range)
and, subsequently, deriving the median of the recalculated lower 25th
percentile of the remaining values. Therefore, the final processed acute
toxicity dataset (herein termed the processed reference dataset) con-
sisted of 11,992 unique substances with an acute toxicity outcome,
8979 of these had a computed processed LD50.

2.2. Chemical structure data

The structures retrieved as part of the ICCVAM ATWG effort yielded
information for 11,992 substances, by integrating information from
multiple sources. Therefore, to ensure the chemical structures were
consistent and of a high quality, only those substances with QSAR-ready
simplified molecular-input line entry (SMILES) in the EPA’s Distributed
Structure-Searchable Toxicity (DSSTox) database [17,18] were re-
tained. Furthermore, using the QSAR-ready SMILES offered the addi-
tional advantage of having SMILES strings that were already desalted
and neutralised; thereby, facilitating the profiling of the compounds
through the two expert systems. To retrieve this information, a batch
search of the EPA CompTox Chemicals Dashboard (www.comptox.epa.
gov/dashboard) was performed utilising the Chemical Abstract Services
(CAS) registration numbers (www.cas.org) as inputs. In addition to the
QSAR-ready SMILES, DSSTox substance identifiers (DTXSID), chemical
names, regular SMILES strings, and average mass information for each
substance were also extracted. This reduced the number of chemicals
that were carried forward for analysis to 10,886. Subsequently, the
QSAR-ready SMILES were read into MarvinView (v18.28, ChemAxon
Ltd.) and saved as a structure data (SD) file (.sdf).
Finally, the ChemoTyper software (https://chemotyper.org/) was

used to create a 729-bit binary molecular fingerprint for each chemical
in the processed dataset using the ToxPrint chemotype feature set
(v2.0_r711) (see section 2.5) to facilitate the enrichment analysis.

2.3. Profiling substances through prediction software

2.3.1. Toxicity estimation software tool (TEST)
To facilitate computational processing of the TEST (v4.2.1) predic-

tions, the input SD file was split into multiple SD files using a
“SDFBreaker” Python script. The split was arbitrarily set at 250 che-
micals per SD file as a pragmatic size to use for processing. For each
batch of chemicals, the oral rat LD50 was selected as the endpoint of
interest and the TEST consensus method was chosen to run the pre-
dictions. The output file ‘all methods’ was downloaded which contained
the predictions from the different QSAR methods, as well as the con-
sensus prediction expressed in units of −log10(mol/kg). The consensus
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method estimates the LD50 value by calculating an average of the
predicted toxicity from the aforementioned QSAR methods. More in-
formation about each of these approaches can be found in the TEST user
guide (https://epa.gov/sites/production/files/2016-05/documents/
600r16058.pdf). In instances where only one of the three QSAR
methods can make a prediction, that prediction is deemed to be un-
reliable by TEST and, thus, a consensus prediction cannot be made. The
results from each batch of 250 chemicals were saved in a separate text
file to be concatenated later.

2.3.2. Tissue Metabolism Simulator (TIMES)
The “SDFBreaker” python script was also used to split the original

SD file into batches containing 1000 chemicals to be used to make
predictions in TIMES. NB: Past experience found that 1000 chemicals as
a batch limit did not cause any memory issues during processing. For
each SD file that was run through TIMES (v2.28.1.6), the SD file was
first converted into ODB (OpenOffice database) format, selecting CAS,
DTXSID, and chemical name as synonyms. Default settings for both the
2-D conversion mode for converting the chemical structure and for the
physicochemical properties (logKOW and water solubility) were used.
Once the chemicals had been imported, the acute oral toxicity (v10)
model was loaded and used to profile each chemical. The predictions
derived from each batch were exported as separate tsv files to be con-
catenated later.

2.4. Assessing performance of software predictions

2.4.1. Calculation of residuals
To facilitate the performance assessment, only predictions for che-

micals that were not part of the underlying training sets were con-
sidered from the 2 expert systems. This involved the following steps;
first chemicals from the processed reference dataset (11,992 chemicals)
were gathered and DSSTox structures were identified. Next, chemicals
were dropped if either the TEST or TIMES dataset was unable to derive
a LD50 prediction. For TEST, this was because no consensus model
prediction could be derived. For TIMES, this was because a substance
was not captured by any of the predefined toxicological categories.
Chemicals that formed part of the training sets for each model were also
dropped. Both datasets were then merged with the processed reference
dataset, removing any chemicals for which a processed LD50 value was
unavailable. The resulting dataset comprised a known (experimental)
LD50 value (the processed LD50 value) and associated predictions from
TEST or TIMES that did not form part of the training sets. Fig. 1 re-
presents the workflow for creation of the datasets.
The output for predictions generated by the TEST and TIMES

models were not reported in the same units. TEST returned predictions
in −log10(mol/kg) format using the ‘all methods batch export’,
whereas TIMES predictions were reported in units of mg/kg. The
compiled experimental rat oral acute systemic toxicity values were also
reported in units of mg/kg. Consequently, all known and predicted
LD50 values were converted into their -log molar equivalents (termed
pLD50) using Eq. (1).

=pLD log LD mg kg MW g mol50 ( 50( / )/ ( / )/1000)10 (1)

where LD50 is the oral LD50 of the chemical (in mg/kg) and MW is the
average mass of the chemical (in g/mol).
Residuals were then calculated for each chemical with a pLD50

prediction by subtracting the predicted pLD50 from the experimental
processed pLD50, using Eq. (2).

=Residual ExpLD PredLD50 50i i i (2)

2.4.2. Calculating confidence intervals of experimental LD50 values
To benchmark the performance of the predicted LD50s compared

with the experimental values, it was important to understand the in-
herent variability of the experimental animal data, i.e. how

reproducible an LD50 value was for a given substance. Here, the ori-
ginal rat acute oral toxicity dataset (comprising 21,200 LD50 values for
15,688 substances) was filtered to create two subsets: 1) retaining all
chemicals with three or more LD50 values (termed the complete
subset), and 2) retaining only those chemicals with three or more LD50
values and average mass information (termed the ‘average mass
subset’). For the average mass subset, Eq. (1) was used to convert the
experimental data from mass units (i.e. mg/kg) to −log molar units
(i.e. −log10(mol/kg)).
To compare the variability of the average mass subset relative to the

complete subset, an overall standard deviation was calculated (in
log10(mg/kg)). The standard deviations across all chemicals in the
subset were then bootstrapped using 10,000 replicates with replace-
ment. The mean of the bootstrapped standard deviations were used to
derive a 95% confidence interval (CI). Fig. 2 outlines the workflow for
the variability assessment.

2.4.3. Assessment of the model predictions
The performance of the predictions generated by the TEST and

TIMES models were evaluated in a number of different ways. The first
involved comparing the chemical-specific residuals to the upper 95% CI
value of the mean of the bootstrapped standard deviations by the total
number of chemicals and their percentage. Additionally, the goodness
of fit measures between the predicted and experimental LD50s were
calculated, namely: the median absolute error (MAE), the root mean
squared error (RMSE), and the coefficient of determination (R2). The
Pearson correlation coefficient for each set of pairwise complete ob-
servations were also computed to compare how correlated the predic-
tions were to the experimental values and each other. These metrics
were calculated both for the total number of chemicals with a predic-
tion from the TEST or TIMES (not part of the respective training set), as
well as the chemicals with a prediction from both TEST and TIMES (i.e.
the overlapping chemicals).

2.5. Investigation of chemical space

Chemotype enrichment analysis was conducted to investigate if
there were areas of chemical space where each model was best or poor
at making predictions. Readers are directed to [19] for a more com-
prehensive explanation of the chemotype enrichment analysis workflow
used in this study. Briefly, chemotype enrichment analysis identifies
sub-structural features (i.e. amongst the 729 ToxPrint chemotypes) that
are over-represented with respect to a given endpoint. Here, the
“endpoint” in question is whether the model prediction for a chemical
was beyond the 95% confidence interval of the variability of the ex-
perimental data as calculated in Section 2.4.2.
The chemotype enrichment analysis was performed separately for

the TEST and TIMES models. To conduct this analysis, the ChemoTyper
software (https://chemotyper.org/) was used to generate a 729-bit
binary molecular fingerprint for all chemicals with a QSAR-ready
SMILES string based on the publicly available ToxPrint feature set
(https://toxprint.org). Next, a new bit was appended to the ToxPrint
fingerprints that accounted for whether or not the software prediction
was within the variability of the experimental data using the upper 95%
CI as a threshold, indicated by 1 or 0. For each model, chemicals whose
predictions were outside of the 95% confidence interval of experi-
mental variability were indicated by a value of 1, whilst chemicals
whose predictions were within the 95% confidence interval of experi-
mental variability were indicated by a value of 0. The odds ratio (OR)
and associated p-value metrics were calculated to identify the ToxPrints
that were more highly enriched for the predictions outside of the con-
fidence interval of the experimental variability compared to the pre-
dictions within the experimental variability. For a ToxPrint to be con-
sidered enriched, it required 3 or more true positives (TP) (i.e.
prediction outside confidence interval and presence of the ToxPrint), an
OR of ≥2.5, and a p-value of ≤0.05. As a final step the probabilities of
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the presence of a ToxPrint outside of the confidence interval (TP/
TP + FP, otherwise known as the precision) was computed for both
models and a ratio taken in order to derive a confidence metric. This
confidence metric was intended to provide a quantitative measure of
the relative confidence of which of the 2 models was preferable for use
based on the set of their respective ToxPrints. A handful of illustrative
examples are provided to demonstrate this potential approach.

2.6. Data analysis software and code

Data processing was conducted using the Anaconda distribution of
Python 3.8 (Anaconda.org) and associated libraries – scikit-learn,
pandas, numpy, visualisation tools: matplotlib and seaborn and the
statistical library scipy within a Jupyter lab environment. Python
Jupyter Notebooks and datasets are available at github.com/g-
patlewicz/acute and on the EPA FTP website (ftp://newftp.epa.gov/
COMPTOX/CCTE_Publication_Data/CCED_Publication_Data/
PatlewiczGrace/CompTox-acutetox/).

3. Results and discussion

3.1. Overall results

QSAR-ready SMILES and average mass, were available in the EPA
CompTox Chemicals Dashboard for 10,886 of the 11,992 substances in
the processed reference dataset. However, not all of the chemicals with
QSAR-ready SMILES could be processed through the two models: TEST
was able to process 10,760 chemicals, whereas TIMES was able to
process 10,371 chemicals, due to constraints in the clustering/profiling
approaches within both models. TEST was able to make a LD50 pre-
diction for the vast majority of chemicals that it was able to process
(93.1% or 10,022 chemicals); TIMES, meanwhile, was only able to
make a prediction for less than a quarter of the chemicals it was able to
process (23.8% or 2,458 chemicals) (Table 1). After removal of che-
micals that were part of the TEST training set, the number of chemicals
with a LD50 prediction was reduced to 3,927 (36.5% of the processed
reference dataset chemicals). Removal of chemicals with LD50 predic-
tions that made up the training set for the TIMES software resulted in
863 chemicals (8.3% of the processed chemicals) being retained.
Combining the chemicals with predictions that did not make up the

Fig. 1. Workflow for creating the TEST and TIMES datasets.
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training set of the model with chemicals from the processed reference
dataset with an experimental LD50 value resulted in a final dataset of
1,621 chemicals with a TEST prediction and 503 chemicals with a
TIMES prediction. Therefore, purely based on counts, TEST was able to
make predictions for more chemicals than TIMES. It is important to
note that the low numbers are not indicative of the applicability of the
models but rather the large overlap between the identity of the training
set chemicals and that of the processed reference dataset.

3.2. Investigation of variability of experimental data

In order to have a relative benchmark to compare the performance
of the predictions obtained from the TEST and TIMES models, it was
important to gain an understanding of the inherent variability existing
in the experimental animal data using replicate study data per che-
mical. This involved taking the original rat oral acute systemic toxicity
dataset of 21,200 LD50 values (15,688 unique substances) and merging
it with average mass information (10,886 chemicals with 14,964 LD50
values). Next the dataset was filtered to retain only those substances
with three or more LD50 values (this included both limit and point
estimate values). After applying these filtering criteria, a total of 4,198
LD50 values, covering 919 unique substances, were retained.
Approximately 90% of the substances were associated with between 3
and 5 LD50 values, with one chemical (peracetic acid) having 57 un-
ique LD50 values.
The standard deviation of the LD50 values for the average mass

subset of chemicals was also compared to the set of chemicals with
three or more LD50 values where average mass information was not
necessarily available. The standard deviation (in log10(mg/kg)) was
0.828 for the complete subset of chemicals with three or more LD50
values, whereas it was 0.842 for the average mass subset. Based on the
apparent lack of difference, the assumption made was that the average
mass subset was sufficiently representative of the ‘complete subset’.

Accordingly, the standard deviation of the average mass subset was
then bootstrapped using 10,000 replicates and the mean and 95%
confidence interval (CI) of the resulting bootstrapped distribution was
derived. The mean of the bootstrapped standard deviation distribution
was 0.218 −log10(mol/kg). The 95% confidence interval of the mean
of the bootstrapped standard deviation was 0.189–0.249 −log10(mol/
kg). The upper 95% confidence value (0.249) was then used throughout
the remainder of the study to provide a margin around the experimental
data to account for the inherent variability (Fig. 3).

3.3. Comparison of model predictions to experimental values

To gain an initial understanding of how accurate the predictions
from each model were, the chemical-specific residual was compared to
the upper 95% confidence value in both the positive and negative di-
rections. Table 2 provides the count and percentage of chemicals with a
residual value that was: 1) greater than 0.249 log units, i.e. the model
underestimated the in vivo LD50 beyond the experimental variability; 2)
within ± 0.249 log units, i.e. the model estimated the in vivo LD50
within the experimental variability, and; 3) below−0.249 log units, i.e.
the model overestimated the in vivo LD50 beyond the experimental
variability.

Fig. 2. Workflow to create the dataset for the CI threshold.

Table 1
Counts of chemicals with QSAR Ready SMILES run through TEST and TIMES.

TEST TIMES

Total chemicals amenable to processing for prediction 10,760 10,371
Chemicals with LD50 prediction (not in training set) 3927 863

Fig. 3. Histogram of the bootstrapped standard deviations.
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The predictions for both models are similarly split between being
within the 95% confidence interval of experimental variability or out-
side of the threshold.
Substances that were particularly poorly predicted for TEST in-

cluded Emetine dihydrochloride (DTXSID7020558; CASRN 314-42-7)
that had a 5 log unit difference: experimental LD50 0.012 mg/kg
(pLD50 7.66) cf. TEST predicted 2204 mg/kg (pLD50 2.4). Substances
that were particularly poorly predicted for TIMES included
Echothiophate (DTXSID1022976; CASRN 513-10-0), whose experi-
mental LD50 was 0.174 mg/kg but whose TIMES prediction was
889 mg/kg (experimental pLD50 of 6.34 vs predicted value of 3.35), as
well as Butane-1,4-diyl bis(2-methylprop-2-enoate) (DTXSID4044870;
CASRN 2081–81-7): experimental LD50 10.07 mg/kg (pLD50 4.35) cf.
TIMES 8410 mg/kg (pLD50 1.42).
Another way to investigate the two models was to generate scat-

terplots comparing the experimental pLD50s against the predicted
pLD50s for TEST and TIMES (Figs. 4a and 4b, respectively).
From these figures, there is a large cluster of chemicals with an

experimental pLD50 between 1 and 4 [−log10(mol/kg)] and a pre-
dicted pLD50 between 1.5 and 3.5 –log10(mol/kg). Additionally, these
figures also highlight the differences in how predictions are derived
between the 2 models. The TEST predictions (Fig. 4a), are reasonably
randomly distributed around the line of zero variance (dashed red line)

with no discernible pattern. This is likely to be expected given that the
predictions made by TEST utilised in this study are the consensus pre-
dictions from up to three separate QSAR models.
On the other hand, the TIMES predictions (Fig. 4b) appear to be a

combination of randomly distributed points and some discernible pat-
terns, i.e. vertical lines. Again, this is a product of how TIMES makes
predictions; whereby, a chemical is first assigned to a toxicological
category and the associated QSAR is used to make an LD50 prediction.
These toxicological categories fall into one of three types of toxicity: 1)
basic toxicity (also called narcosis), where a chemical affects basic cell
functions, e.g. non-reactive interaction with cell membranes; 2) excess
invariable toxicity, where a chemical interacts with a specific cellular
structure/process and has a constant toxicity that is independent of
physicochemical properties, and; 3) excess bioavailability dependent
toxicity, where a chemical interacts with a specific cellular structure/
process and the level of toxicity exhibited is determined by certain
physicochemical properties.
Whilst individual linear regression models were derived for the

categories comprising excess bioavailability dependent toxicity (ex-
plaining the randomly distributed points), none of the models for either
basic toxicity or excess invariable toxicity contain an explanatory
variable. As such, all chemicals assigned to the same toxicological ca-
tegory within one of these two toxicity types are predicted to have the
same pLD50 (± confidence) in −log10(mol/kg). For example, che-
micals assigned to the isocyanate excess invariable toxicity category
will be predicted to have an pLD50 of 1.82 (± 0.15) −log10(mol/kg).
It appears this is the reason for the linear patterns throughout Fig. 2b,
which are best exemplified by chemicals with higher predicted LD50s:
here, three vertical lines can be easily distinguished.
Upon further investigation, each line represents a different excess

invariable TIMES toxicity category (trifluoromethylbenzimidazoles,
organophosphate excess toxicity, and trifluoromethyl tetra-
halobenzimidazoles) with all chemicals assigned to the same category
being predicted to have the same LD50 by TIMES models. However, the

Table 2
Counts and percentage of chemicals with residual values relative to the 95% CI
threshold.

TEST TIMES

Above 95% CI threshold 555 (34.2%) 171 (33.9%)
Within the 95% CI threshold 588 (36.3%) 191 (37.9%)
Below the 95% CI threshold 476 (29.4%) 141 (28.0%)

Note: values represent the number of chemicals followed by the percent of total
predictions in parentheses.

Fig. 4a. Scatterplot relating TEST predictions vs. actual experimental pLD50 values.
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experimental values can vary by up to 2 log units across the chemicals
associated with these categories, thus, producing the vertical lines.
Assigning all chemicals in the same toxicological category, the same
LD50 is a limitation of the TIMES model and should be kept in con-
sideration when a chemical is classified as exhibiting either basic or
excess invariable toxicity.
Furthermore, the residuals of chemicals with an over-prediction of

pLD50 relative to the representative experimental value have a ten-
dency to be smaller than the residuals of chemicals with an under-
prediction of pLD50 relative to the representative experimental value
for both models. This can, perhaps, be best observed in Figs. 5a and 5b;
whereby, chemicals with a predicted pLD50 that overestimates the
experimental pLD50 (i.e. a negative residual), generally, have smaller
residuals than the underestimated predictions (i.e. a positive residual).
This is especially true for those chemicals with a prediction below ap-
proximately 3.5 –log10(mol/kg). This appears to be more pronounced
for the TEST predictions than the TIMES predictions; although, this may
partially be due to TEST making more predictions than TIMES. After
further examination of the residuals, predictions made by both models
are heteroscedastic (Figs. 5a and 5b), i.e. the variance in the residuals
increases for chemicals predicted to be of either very high or low
toxicity. Again, this was more readily apparent for the TEST predic-
tions; however, this may also be due to the limited number of chemicals
TEST predicted with very high toxicity (i.e. above 4.5/5 −log10(mol/
kg)).
There were 58 chemicals with a TIMES prediction above 4

−log10(mol/kg), 16 (27.5%) of which were within the 95% confidence
interval of the in vivo variability and 29 (50%) chemicals were below
the CI: hence, more conservative in their LD50 estimates. TEST does
comparatively worse above this threshold, with 3 of the 20 chemicals
(15%) having a prediction within the 95% confidence interval of the in
vivo variability but 10 (50%) chemicals being below the CI threshold.
Therefore, even though each chemical assigned to one of these cate-
gories by TIMES is predicted to have the same LD50, the prediction

itself is more likely to be close to, or more conservative than, the ex-
perimental value.
To further assess the performance of TEST and TIMES predictions,

four performance metrics were computed using all predictions gener-
ated by each model, respectively: the root mean square error (RMSE),
the mean absolute error (MAE), the coefficient of determination (R2),
and the Pearson correlation coefficient. As can be seen in Table 3, the
RMSE and MAE for all TEST predictions (0.642 and 0.469 −log10(mol/
kg), respectively) are comparable to the RMSE and MAE for all TIMES
predictions (0.62 and 0.447 −log10(mol/kg), respectively).
Whilst the RMSE and MAE are similar between the two software, the

R2 values are not, with the TIMES predictions having a much larger R2

(0.54) and, therefore, fitting the experimental data much better than
the TEST predictions (0.296).
This is also borne out when comparing the correlation coefficients of

the two software (Fig. 6); whereby, the predictions from both software
are positively correlated with the experimental pLD50 values, but the
predictions from TIMES have a higher correlation (0.75) than do the
TEST predictions (0.57). The higher R2 and correlation coefficients
observed for the TIMES predictions are likely being driven by the
predictions made for the higher potency chemicals, e.g. pLD50 values
predicted above 4 (−log10(mol/kg)), such as chemicals assigned to the
trifluoromethylbenzimidazole, organophosphate excess toxicity, or tri-
fluoromethyl tetrahalobenzimidazole categories.

3.4. Comparison of chemicals with predictions in both TEST and TIMES

After investigating the performance of each software across all
chemicals for which a prediction could be made, the chemical list was
filtered to include only those chemicals with a LD50 prediction in both
the TEST and TIMES models (i.e. the overlap set). Upon applying this
additional filtering criteria, a total of 274 chemicals were retained;
thus, enabling a comparison of the performance of the two models for
the set of chemicals.

Fig. 4b. Scatterplot relating TIMES predictions vs. actual experimental pLD50 values.
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Fig. 5a. Residuals plot for TEST model predictions.

Fig. 5b. Residual plot for the TIMES model predictions.
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For each model, the overall count and percentage of overlapping
chemicals show a similar split to the complete subsets of chemicals,
with the majority of chemicals having a residual that is within the 95%
confidence interval of the in vivo variability (Table 4). TEST, has a
slightly greater percentage of chemicals present within this category
(40.5%) than does TIMES (38.32%); however, both models have a
marginal improvement for the overlap subset compared to the complete
subset of chemicals with a prediction.
A similar trend is observed when the RMSE and MAE values are

compared as both of these metrics stay relatively consistent, with only
marginal changes occurring between the complete and overlapping
subsets (Table 5). Much larger changes are observed between the
TIMES complete and overlap subsets in terms of the R2 and correlation
coefficients (Fig. 7). The R2 for the TIMES predictions of the over-
lapping subset (0.255) is almost half that of the complete subset (0.54)
and the correlation coefficient decreases by approximately 0.20 points
from 0.75 to 0.56.

The decrease in these metrics brings them more in-line with the
corresponding metric for the TEST predictions, which remain consistent
between the complete and overlap subsets. The differences in the R2

and correlation coefficients between the two subsets for the TIMES
predictions is likely due to 52 of the 58 higher potency chemicals not
being present in the overlap subset, including all of the chemicals in the
trifluoromethylbenzimidazole, organophosphate excess toxicity, and
trifluoromethyl tetrahalobenzimidazole categories.

3.5. Chemotypes associated with predictions outside confidence intervals

To identify chemical features that may contribute to less accurate
predictions of rat oral acute LD50, odds ratios were computed to
identify ToxPrints that were more highly enriched in the chemicals
having predictions outside of the 95% CI. Only a handful of ToxPrints
were enriched with different ToxPrints identified between the models,
i.e. the sorts of chemicals that were likely to give rise to less accurate
predictions with residuals outside the threshold of variability were
different for TEST vs. TIMES (Table 6). The 95% confidence intervals of
the odds ratios are shown too to highlight the uncertainties associated
with the odds ratios themselves. Some enriched ToxPrints e.g. ring:-
hetero_[6_6]_O_benzopyrone_(1_4-) are far more uncertain with a much
wider confidence interval than others. Due to the hierarchical nature of
the ToxPrints themselves, some substances drove the enrichment of
multiple ToxPrints e.g. bond:S(=O)N_sulfonylamide and bond:S(=O)
N_sulfonamide (Table 7 highlights specific substances). In other cir-
cumstances, multiple ToxPrints may be enriched because there is
somewhat of an overlap in the structural fragment(s) the ToxPrints code
for. For example, of the substances with a TEST prediction outside the
95% CI that contain the ring:hetero_[6_6]_O_benzopyrone_(1_4-) Tox-
Print, all but 5 also contain the bond:CC(=O)C_ketone_alkene_cyclic_2-
en-1-one ToxPrint. In these instances, it may be difficult to ascertain
exactly which of the ToxPrints is driving the enrichment. However,
there are an additional 10 substances containing the bond:C-
C(=O)C_ketone_alkene_cyclic_2-en-1-one ToxPrint with a prediction
outside the CI that do not also contain the ring:hetero_[6_6]_O_benzo-
pyrone_(1_4-) ToxPrint. Therefore, it appears that in this study, che-
micals containing one or other of these ToxPrints may be more likely to
be poorly predicted. Furthermore, some ToxPrints are always present in
chemicals with predictions outside the CI. For example, bond:CO-
C_ether_alkenyl and bond:COH_alcohol_allyl identified for TIMES had
an odds ratio of “Inf” meaning that none of the chemicals (Table 8)
containing those ToxPrints had a prediction that was within the 95% CI.
There were no ToxPrints in common between those enriched for pre-
sence in low accuracy predictions from TEST vs. TIMES, further high-
lighting the difference in the training sets and thus applicability

Table 3
Performance metrics for the TEST (1619 substances) and TIMES (503
substances) models for the respective entire datasets.

TEST TIMES

RMSE 0.642 0.62
R2 0.296 0.54
MAE 0.469 0.447

Fig. 6. Correlation coefficients for TEST and TIMES relative to experimental
pLD50 values.

Table 4
Counts and percentage of chemicals with residual values relative to the 95% CI
threshold for the overlap set.

TEST TIMES

Above 95% CI threshold 87 (31.8%) 99 (36.1%)
Within the 95% CI threshold 111 (40.5%) 105 (38.3%)
Below the 95% CI threshold 76 (27.7%) 70 (25.5%)

Note: values represent chemical counts followed by percentage of the overlap
set in parentheses.

Table 5
Performance metrics for the TEST and TIMES models for the overlap
dataset.

TEST TIMES

RMSE 0.643 0.65
R2 0.27 0.255
MAE 0.457 0.457

Fig. 7. Correlation coefficients for TEST, TIMES relative to experimental pLD50
values for the overlap set.
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domains for the models.
Table 9 showcases a handful of examples where the probability of a

ToxPrint being present for substances that fell outside of the confidence
interval was computed for both models and the ratio taken. This was
intended to provide an indication of which model was preferable to use
for a given substance depending on the ToxPrints it contained. As an

example, the set of 32 ToxPrints for DTXSID20182958 [CASRn 28782-
19-6] Flavoxate succinate was identified. The product of the prob-
abilities for each model (equating the probability of all 32 ToxPrints
being present) was computed. For TEST, this equated to 1.72E-32 and
for TIMES, 1.219E-34. The ratio of these two probabilities was defined
as the confidence metric which is calculated to be 141.15, suggesting

Table 6
Enriched ToxPrints for TEST and TIMES predictions outside of the threshold of variability.

OR p-value TxP TP Upper_95%CI Lower_95%CI

TEST 2.57 0.03 bond:CC(=O)C_ketone_alkene_cyclic_2-en-1-one 31.00 1.13 5.88
4.25 0.01 bond:S(=O)N_sulfonamide 22.00 1.27 14.27
4.38 0.00 bond:S~N_generic 30.00 1.53 12.48
5.04 0.00 bond:S(=O)N_sulfonylamide 26.00 1.52 16.74
12.20 0.00 ring:hetero_[6_6]_O_benzopyrone_(1_4-) 21.00 1.64 90.97

TIMES 3.28 0.01 bond:quatN_alkyl_acyclic 30 1.34 8.04
3.52 0.00 bond:quatN_generic 32 1.44 8.59
4.06 0.02 bond:quatN_trimethyl_alkyl_acyclic 19 1.86 13.92
6.94 0.04 group:ligand_path_5-7_bidentate 11 0.89 54.22
inf 0.02 bond:COC_ether_alkenyl 9 – –
inf 0.03 bond:COH_alcohol_allyl 8 – –

OR = Odds Ratio, TxP = ToxPrint fingerprint, TP = Number of True Positives, Upper(Lower) 95% CI = Upper(Lower) 95% Confidence interval of the Odds Ratio

Table 7
TEST substances that contain bond:S(=O)N_sulfonamide or bond:S(=O)N_sulfonylamide.

DTXSID Name known_LD50_mgkg TEST_LD50_mgkg TEST

DTXSID6049016 Sematilide monohydrochloride 3200 494.2045107 Below_CI
DTXSID1045615 Fasudil hydrochloride 335 1275.406699 Above_CI
DTXSID2046628 Tamsulosin hydrochloride 650 2230.132833 Above_CI
DTXSID6032645 Sulfentrazone 2855 476.3354627 Below_CI
DTXSID30179415 4-Hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxylic acid ethylester 1,1-dioxide 4800 1294.930841 Below_CI
DTXSID5067182 Benzenesulfonamide, 4-amino-2,5-dichloro-N,N-dimethyl- 4087 1380.315129 Below_CI
DTXSID50187653 Sudoxicam 136 68.88211304 Below_CI
DTXSID2057601 Glymidine sodium 2850 6764.686158 Above_CI
DTXSID5021170 Piroxicam 216 1779.454857 Above_CI
DTXSID7048611 1-[2-({[5-Diethylamino)-2-{[4-(dimethylsulfamoyl)phenyl]diazenyl}phenyl]sulfonyl}amino)ethyl]

pyridinium chloride
5125 1186.556007 Below_CI

DTXSID1068487 Hexanoic acid, 6-[methyl(phenylsulfonyl)amino]- 3040 1680.324255 Below_CI
DTXSID0068496 Benzenesulfonamide, 4-amino-5-methoxy-N,2-dimethyl- 91.5 1871.786113 Above_CI
DTXSID2068507 Benzenesulfonamide, 4-amino-2,5-dimethoxy-N-methyl- 815 1703.841315 Above_CI
DTXSID8045486 Tenoxicam 79 23.34030147 Below_CI
DTXSID00976211 N-[4-(N,N-Diethylalanyl)phenyl]methanesulfonamide–hydrogen chloride (1/1) 2347 943.7637084 Below_CI
DTXSID6046133 Lornoxicam 5.73 47.89840658 Above_CI
DTXSID7026499 4,4′-Oxybis(benzenesulfohydrazide) 2300 1082.320497 Below_CI
DTXSID5021251 Saccharin 14,200 1670.621456 Below_CI
DTXSID8023470 Phthalylsulfathiazole 2001 327.9202151 Below_CI
DTXSID9034868 Prosulfuron 986 4005.047907 Above_CI
DTXSID8021278 Sotalol hydrochloride 3450 1046.418523 Below_CI
DTXSID20877236 N-(4-chlorobenzene-1-sulfonyl)-N'-cyclohexylcarbamimidic acid 1525 4176.237348 Above_CI

Table 8
TIMES substances with ToxPrints with an odds ratio of ‘inf’

DTXSID Name known_LD50_mgkg TIMES_LD50_mgkg TIMES

DTXSID20182958 Flavoxate succinate 1445 482 Below_CI
DTXSID1047784 Flavoxate hydrochloride 1040 482 Below_CI
DTXSID20958998 8-[(Dimethylamino)methyl]-7-methoxy-2,3-dimethyl-4H-1-benzopyran-4-one–hydrogen chloride (1/

1)
7.8 321 Above_CI

DTXSID3047847 Nalorphine hydrochloride 1150 349 Below_CI
DTXSID2022830 Clavulanic acid 7936 3460 Below_CI
DTXSID20207074 4H-1-Benzopyran-8-carboxylic acid, 3-methyl-4-oxo-2-phenyl-, sodium salt 1655 345 Below_CI
DTXSID90208992 Phosphoric acid, bis(2-methylpropyl) 1,6-dihydro-5-methoxy-1-methyl-6-oxo-4-pyridazinyl ester 36 6.52 Below_CI
DTXSID60210067 Clavulanate potassium 7936 3460 Below_CI
DTXSID30223048 4H-1-Benzopyran-6-carboxylic acid, 3-isopropoxy-2-(p-methoxyphenyl)-4-oxo-, sodium salt 1480 5120 Above_CI
DTXSID2040363 Diniconazole 474 898 Above_CI
DTXSID3035002 Uniconazole-P 430 804 Above_CI
DTXSID2034548 Diniconazole-M 474 898 Above_CI
DTXSID7032505 Uniconazole 1790 804 Below_CI
DTXSID2040363 Diniconazole 474 898 Above_CI
DTXSID30235540 Terflavoxate hydrochloride 1977 516 Below_CI
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that TEST is the preferred model to use in this case.

4. Conclusions

Acute oral systemic toxicity is an endpoint that is required for a
number of different regulatory contexts. Here a large body of rat acute
oral toxicity data was utilised to evaluate the performance of LD50
models within two expert systems: TEST and TIMES. To benchmark the
performance of the models, predictions were only considered for che-
micals that were not part of the training sets for each model, respec-
tively. The relative performance was compared to a 95% CI threshold
established by bootstrapping the standard deviation across experi-
mental data for chemicals with at least three LD50 values. Given the
upper 95% CI was rather small, many of the predictions derived lay
outside of this threshold range. Past evaluations of variability are lim-
ited to the variability study conducted by Hoffman et al. [20] as part of
the EU AcuteTox project which reported a median log transformed
standard deviation of ~0.2 for rat and mouse acute oral toxicity studies
and appears similar to the mean of the bootstrapped replicates of
standard deviations found here, 0.218 though in units of −log10(mol/
kg).
TEST was able to make predictions for more chemicals relative to

TIMES and the performance characteristics in terms of the RMSE and
MAE values were similar between the two models, (TEST: RMSE 0.642,
MAE 0.469; TIMES RMSE 0.62, MAE 0.447). The coefficient of de-
termination of TIMES was much higher (0.54) than that for TEST
(0.296), but this value decreased (0.27–2.55) when the assessment was
limited to chemicals for which both models generated predictions.
ToxPrints that were enriched were identified for chemicals that fell
outside the upper 95% CI for both TEST and TIMES. These enriched
ToxPrints were different for the 2 models indicating that the least ro-
bust predictions for the TIMES and TEST models, in terms of the highest
residual values, were for different types of chemicals, highlighting
differences in the models’ strengths likely due to different training sets
and ultimately different domains of applicability. A confidence metric
was proposed as a means to aid selection of models for substances
outside of this 95% CI on the basis of ToxPrints. Further it is worth
noting, that the evaluation was impacted by the extent to which the
training set of the 2 models overlapped with the reference set, limiting
the number of chemicals for which the performance assessment could
be undertaken. This was particularly evident for the TEST model which
had a large overlap between its training set and the reference set. TEST
and TIMES were developed in very different ways with comparable
performance for chemicals for which both models generated predic-
tions, and a slightly better performance from TIMES when considering
their performance separately. This highlights the benefits of combining
models together to leverage their respective strengths.
The evaluation was informative in terms of highlighting the po-

tential that structure-based models have in predicting acute oral toxi-
city. The release of the dataset compiled has prompted many sub-
sequent models to be developed, examples of newer studies include newTa
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Performance metrics for selected models.

Model R2 RMSE MSE Approach

TIMES [16] 0.85 0.15 Expert system
TIMES (in this

study)
0.54 0.62 Expert system

TEST [15] 0.626 0.594 Consenus model of 3 local
approaches

TEST (in this
study)

0.296 0.642 Consenus model of 3 local
approaches

Alberga [21] 0.737 0.408 k-NN
Gadaleta [22] 0.59–0.651 0.541–0.585 Various
CATMOS 0.65 0.49 Consensus
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k-nn approaches by Alberga et al. [21], various SAR and QSAR ap-
proaches by Gadaleta et al. [22] as well as read-across approaches such
as Helman et al. [23] and those incorporating mechanistic information
from in vitro high throughput screening assays by Russo et al. [24], This
analysis also reinforces the benefits of developing a large collaborative
modelling project that takes advantage of all the data collected to de-
velop new refined models, such as those captured in the ongoing work
in developing the CATMOS suite that exploited the relative strengths
and limitations of the different models derived as part of the global
international modelling project (see https://ntp.niehs.nih.gov/
whatwestudy/niceatm/3rs-meetings/past-meetings/tox-models-2018/
index.html) and https://github.com/NIEHS/OPERA/releases which
contains the CATMOS models themselves. As noted in Table 10, the
availability of this dataset has resulted in an improvement in the per-
formance of acute oral toxicity LD50 models.
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