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Executive Summary 

To supplement or replace the existing toxicity tests used to support pesticide registration, EPA’s OPP is 
actively engaged in numerous activities with respect to reducing laboratory animal use and implementing 
new approach methodologies (NAMs). NAM is a broad term referring to any non-animal technology, 
methodology, approach, or combination thereof that can be used to provide information on chemical 
hazard and risk assessment. As NAMs can provide human relevant information that may be challenging 
to test in whole animals, EPA’s OPP is also interested in using NAMs to reduce the reliance on default 
assumptions for risk assessment. In line with this, several years ago, the Office of Pesticide Programs 
(OPP) began collaborative work with the Office of Research and Development (ORD), academia, and 
industry to use the organophosphate pesticides (OPs) as a case study for the development of NAMs to 
inform extrapolation/uncertainty and safety factors in lieu of reliance on default factors. Two approaches 
related to these efforts are presented. 
 
The first approach presents work completed by ORD towards developing a battery of NAMs for fit-for-
purpose evaluation of developmental neurotoxicity (DNT), using OPs as a case study. This includes a 
microelectrode array network formation assay (MEA NFA) and high-content imaging (HCI) assays of 
neural cells to understand key processes relevant to neurodevelopment. These assays were found to be 
robust and reproducible for fit-for-purpose application to identify putative DNT-related bioactivity, with 
reasonable assay performance controls established. The testing results for 27 OPs found differential 
activity in the MEA NFA and HCI assay suite indicating a difference in DNT potential across individual 
chemicals.  
 
Common to all OPs is the ability to inhibit the AChE enzyme, which prevents the breakdown 
of acetylcholine leading to neurotoxicity. AChE inhibition is the basis of current OP human health risk 
assessments. In order to compare the relative sensitivity of the MEA NFA and HCI assay results to doses 
that inhibit AChE in laboratory animals, in vitro to in vivo extrapolation (IVIVE) approaches using high-
throughput toxicokinetic (HTTK) models were utilized to approximate NAM-derived administered 
equivalent doses (AEDs). These comparisons demonstrated that NAM-derived AEDs were greater than or 
in some cases approximated doses that inhibit AChE; however, additional information is still needed for 
to make conclusions regarding the relative sensitivity of individual chemicals.  
 
The IVIVE approach used for these comparisons is driven by the chemical-specific data that are available. 
Due to the lack of rat clearance data for many of the OPs tested, the use of human data in the rat model 
was evaluated. Predictions were not found to be uniformly higher or lower when using human rather than 
rat data. Therefore, for chemicals that are lacking rat clearance data and have AEDs approximating the 
BMD/BMDL values, it is unknown whether the predictions are over- or underestimates. Pending the 
recommendations from the SAP and the overall weight of evidence evaluation of DNT potential based on 
the currently available data, the OPP may determine that rat in vitro clearance data for particular OPs are 
needed to better characterize these comparisons and OPP may reach out to registrants in the future to 
generate these data. 
 
The MEA NFA and HCI assay suite evaluates the majority of the critical processes of neurodevelopment, 
including neural network formation and function, cell proliferation, apoptosis, neurite outgrowth, and 
synaptogenesis, and represents a significant advancement toward developing a NAM battery for fit-for-
purpose DNT evaluation. Additional assays are currently under development by researchers funded by the 
European Food Safety Authority (EFSA) that evaluate processes not covered by the MEA NFA and HCI 
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assays, such as migration and differentiation. The relative contribution of these assays for a fit-for-
purpose NAM battery will be considered once data are available. Additionally, any OP data from these 
assays may be considered in the future in combination with the results of the MEA NFA and HCI assays 
as part of an overall weight of evidence evaluation of the DNT potential for individual OPs.  Given the 
gaps in rat clearance data and additional DNT NAMs under development, EPA cannot make any 
conclusions about the impact of these approaches on the OP human health risk assessments at this time. 
 
The second approach presents in vitro data generated by academia on behalf of pesticide registrants to 
calculate pharmacodynamic data derived extrapolation factors (DDEFs) for 16 OPs in accordance with 
the EPA’s 2014 guidance on DDEFs. EPA is soliciting comment from the SAP on the study design and 
methods utilized to generate the in vitro data, statistical analyses employed to calculate DDEFs, and 
analyses performed for a small subset of OPs to evaluate contributions of experimental and intrinsic 
variability.  For both interspecies and intraspecies DDEFs, there were no statistical issues identified for 9 
chemicals. EPA’s preliminary proposal is to use the DDEFs calculated for these 9 chemicals (bensulide 
oxon, chlorethoxyfos, DDVP, ethoprop, fenamiphos, methamidophos, phorate oxon sulfoxide, phosmet 
oxon, and terbufos oxon sulfone) in lieu of the default pharmacodynamic uncertainty factors, pending 
review by the SAP.  For the remaining chemicals, SAP recommendations regarding warning statements 
and model fit issues will be considered before determining the potential use of the calculated DDEFs.  
Ultimately, the selection and application of DDEFs for each chemical is a policy decision that will be 
made by EPA.     
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1.0 Introduction 

In 2007, the National Research Council’s report on Toxicity Testing in 21st Century: A Vision and a 
Strategy was published which encouraged a new paradigm in testing that reduces the reliance on using 
laboratory animals while moving towards in vitro and in silico predictive approaches that are more 
efficient and human relevant. EPA’s Office of Pesticide Programs (OPP) has developed a strategic vision 
for implementing the 2007 NRC report on Toxicity Testing in the 21st Century. This strategic vision has 
multiple components involving a combination of computational and predictive modeling approaches, in 
vitro techniques, and limited, targeted in vivo testing. To supplement or replace the existing toxicity tests 
used to support pesticide registration, EPA’s OPP is actively engaged in numerous activities with respect 
to reducing laboratory animal use and implementing in vitro and computational approaches. Development 
and implementation of non-animal testing has been supported by the EPA, with the EPA Administrator 
signing a directive in 2019 that prioritizes efforts to reduce animal testing and a goal to reduce requests 
for and funding of mammalian studies by 30% by 2025. As new approach methodologies (NAMs) can 
provide human relevant information that may be challenging to test in whole animals, EPA’s OPP is also 
interested in using NAMs to reduce the reliance on default assumptions for risk assessment, including the 
application of 10X default uncertainty factors each for interspecies and intraspecies extrapolations.  
 
In line with this, several years ago, OPP began collaborative work with EPA’s Office of Research and 
Development (ORD), academia, and industry to use the organophosphate pesticides (OPs), as a case 
study, for the development of NAMs for purposes of using NAM data to inform extrapolation/uncertainty 
and safety factors in lieu of reliance on default factors. This research is at a point where external peer 
review and public comment would be useful to specifically inform human health risk assessment for the 
OP class of insecticides and also as part of confidence building activities needed to implement NAMs in 
human health risk assessment more broadly. If appropriate, EPA’s OPP may use such NAM information 
as part of a weight of evidence evaluation for the 10X Food Quality Protection Act (FQPA) Safety Factor. 
Additionally, in vitro acetylcholinesterase (AChE) inhibition data has been generated for OP compounds. 
The OPP is considering the potential use of these data to develop interspecies and/or intraspecies data-
derived extrapolation factors (DDEFs) in accordance with EPA’s 2014 Guidance for Applying 
Quantitative Data to Develop DDEFs for Interspecies and Intraspecies Extrapolation1.  

1.1 Regulatory Context  

Pesticides are regulated in the United States under both the Federal Insecticide, Fungicide, and 
Rodenticide Act (FIFRA) and the Federal Food, Drug and Cosmetics Act (FFDCA), which were both 
amended in 1996 by the Food Quality Protection Act. Under FIFRA, EPA reviews each registered 
pesticide at least every 15 years to determine whether it continues to meet the standard for registration. 
The current 15-year cycle for Registration Review of OPs is due for completion by October 1, 2022. OPs 
are a class of insecticides with numerous uses including application in agriculture on many crops and by 
public health organizations for mosquito control. Twenty-two OPs are undergoing Registration Review. 
Under the FQPA, EPA must consider aggregate risk from exposure to a pesticide from multiple sources 
(food, water, residential and other non-occupational sources) and consider cumulative exposure to 
pesticides that have common mechanisms of toxicity. In addition, as part of FQPA, EPA must consider 
potential for susceptibility of children to pesticides. 
  

 
1 https://www.epa.gov/risk/guidance-applying-quantitative-data-develop-data-derived-extrapolation-factors-
interspecies-and 
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Common to all OPs is the ability to inhibit the AChE enzyme, which prevents the breakdown 
of acetylcholine leading to neurotoxicity. EPA conducts human health risk assessments for each 
individual OP in aggregate assessments in addition to the class of OPs in the cumulative risk assessment. 
OPP has historically used 10% AChE inhibition in red blood cells (RBCs) or brain as the biological 
response for human health risk assessment. In the early 2000s, scientific evidence from epidemiology, 
laboratory animals, and mechanistic studies began to emerge that OPs, particularly chlorpyrifos, may 
adversely affect brain development. Developmental neurotoxicity (DNT) studies are used to evaluate the 
developing nervous system and are conditionally required under the 40 CFR Part 158 toxicology data 
requirements for pesticides2. EPA issued data call-ins for in vivo DNT studies for OPs; however, none of 
the 18 submitted DNT studies for OPs were found to be more sensitive than AChE inhibition and were 
not used to derive points of departure (PODs) for human health risk assessment. OPP has spent more than 
10 years evaluating the scientific evidence regarding the potential impact of OP exposure on 
neurodevelopment, including convening multiple Scientific Advisory Panel (SAP) meetings (2008, 2012, 
2016). The SAP reports have provided numerous recommendations for additional research and sometimes 
conflicting advice for how EPA should consider (or not consider) the epidemiology data in conducting 
EPA's Registration Review for human health risk assessments. The Agency is not soliciting comment on 
the epidemiological and animal behavior studies as part of this SAP. The OPs are being presented as a 
case study for the development of a battery of NAMs to evaluate DNT for inclusion in an overall weight 
of evidence evaluation.    

1.2 Scope of the Draft Issue Paper  

This draft document includes two major sections: 
 
Section 2 begins with a description of the in vivo DNT guideline, its attributes, and uncertainties followed 
by a summary of experiments and statistical analyses of work done by ORD to develop a battery of 
NAMs for evaluating DNT. Available results for 27 OPs will be presented. This work also involves in 
vitro to in vivo extrapolation (IVIVE) to estimate NAM-derived administered equivalent doses (AEDs), 
which are compared with rat benchmark dose (BMD) and associated lower confidence bound (BMDL) 
values estimated from AChE inhibition data used in EPA’s risk assessments. This Issue Paper does not 
propose any chemical-specific or class-based FQPA Safety Factor. Moreover, EPA is not soliciting 
comment on the magnitude of the FQPA Safety Factor, as this is a policy decision that encompasses 
information beyond the scope of the NAM evaluation (e.g., completeness of exposure and toxicology 
data). EPA is soliciting comment from the SAP on the use of in vitro assays developed by ORD for 
evaluating neurodevelopmental endpoints and the ability of the currently available battery of assays to 
cover critical processes in neurodevelopment. Additionally, EPA is soliciting comment on the process 
taken to compare AEDs to BMD/BMDL values based on AChE inhibition in order to compare their 
relative sensitivity. 
 
Section 3 provides background on the EPA’s 2014 guidance on the development of DDEFs and describes 
experiments conducted for the purposes of developing interspecies and intraspecies pharmacodynamic 
DDEFs. The experiments were performed by academia on behalf of pesticide registrants and evaluated in 
vitro AChE inhibition constants in rats and humans for 17 OPs, with inhibition constants generated for 16 
of the 17 OPs. This section summarizes these experiments, associated statistical analyses, and provides 
EPA’s interpretation and recommendations for their appropriate use. EPA is soliciting comment from the 
SAP on the study design and methods utilized to generate the in vitro data, statistical analyses employed 

 
2 https://www.ecfr.gov/cgi-bin/text-idx?tpl=/ecfrbrowse/Title40/40cfr158_main_02.tpl 
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to calculate DDEFs, and analyses performed for a small subset of OPs to evaluate contributions of 
experimental and intrinsic variability. 

2.0   Fit-for-purpose alternatives to the in vivo DNT study  
 

2.1 Background & History on the DNT 
 
Exposure to xenobiotics during critical stages of development may result in altered neural development 
leading to potential lifelong ramifications (Barone et al., 2000; Bondy and Campbell, 2005; Rodier, 
1995). Consequently, regulatory authorities throughout the world have promulgated testing guidelines for 
DNT (OECD, 2007; USEPA, 1998a). DNT refers to any adverse effect of exposure to a toxic substance 
on the normal development of nervous system structures and/or functions (USEPA, 1998b). The basic 
purpose of DNT guideline testing is to act as an assessment and screen for the potential of chemicals to 
cause adverse neurodevelopmental outcomes. This is achieved through a series of evaluations that 
measure the functional and/or structural integrity of the developing nervous system. Tests for evidence of 
neurobehavioral deficits in laboratory animals include auditory startle habituation, motor activity, 
functional observational battery (FOB), learning and memory, and clinical observations. In addition, 
neuropathologic examinations including simple morphometrics analyses are also part of the DNT study.  
 
To be most useful, studies should have sufficient sensitivity and specificity to reliably detect effects of 
chemicals at human relevant doses while, to the extent possible, reducing false positives or negatives. As 
is the case with any testing approach designed to assess complex biological processes, the DNT guideline 
study has strengths and limitations that must be taken into consideration when evaluating a substance’s 
ability to elicit neurodevelopmental effects. One of the strengths of the DNT guideline study is that it 
evaluates multiple functional domains. However, the reliable detection, measurement, and interpretation 
of treatment-related DNT effects depends on appropriate study design and conduct that adequately 
controls for confounding factors such as variability (e.g., due to dosing regimen, age at treatment and 
assessment, or inherent measure variability), impact of systemic maternal and/or offspring toxicity, 
experimental procedures, environmental conditions, etc. Hence, a weight of evidence approach is critical 
to the assessment of a substance’s DNT potential.3 Moreover, the DNT guideline infers DNT effects on 
the basis of apical endpoints with little or no information on the underlying biological processes 
responsible for the observed phenotype. In general, the interpretation of the DNT guideline study is 
hampered by a number of limitations including high variability, low precision, and being resource 
intensive (from a financial, labor and animal use perspective). For instance, it is not uncommon for 
coefficients of variation to be comparable or at times even higher than the mean values for a number of 
endpoints (e.g, motor activity and auditory startle). Another challenge in data interpretation is the issue of 
isolated findings where a change in one endpoint is not substantiated by other endpoints. For example, a 
small magnitude change in a morphometric measurement in a single brain region that is not accompanied 
by behavioral changes presents the challenge of deciding whether the change will eventually lead to an 
adverse health outcome particularly when considering neuroplasticity.  Finally, an additional challenge to 
the interpretation of DNT data is the issue of correlating behavioral and/or neuropathological effects in 
the animal model to the myriad of complex neurological deficits seen in the human population ranging 
from subtle learning disabilities to neural tube defects.  
 

 
3 NAFTA TWG Developmental Neurotoxicity Guidance Document (2016). 
https://www.epa.gov/sites/production/files/2017-
02/documents/developmental_neurotoxicity_study_internal_guidance_document_final_0.pdf 
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It is within these challenges associated with the DNT guideline that the advantages of NAMs become 
evident. Integrating in vitro and computational information with any available in vivo data as part of an 
overall weight of evidence evaluation can address some of the limitations encountered in the standard 
testing paradigm (e.g. high variability, low throughput, high cost, or confounding factors) and help 
elucidate some of the uncertainties these limitations introduce into the assessments, including human 
relevance, mechanistic underpinning of biological processes leading to apical effects, and impact of 
confounding factor such as maternal systemic toxicity.4 Incorporating a battery of NAMs to the 
evaluation of DNT would also aid in the data interpretation by providing multiple lines of evidence that 
may help elucidate the biological processes underpinning the apical endpoints affected in the guideline 
studies. 
 
Since the 1998 adoption of the US EPA’s DNT test guideline, OPP has received approximately 100 DNT 
guideline studies. Notably, only 24 of these studies have been used to establish PODs in risk assessments. 
Of these 24 studies, nine were selected on the basis of changes in brain morphology (neuropathology 
and/or morphometrics) and five on the basis of behavioral changes; the remaining studies were selected 
on the basis of non-neurotoxicity endpoints (e.g., pup weight decrements). For known neurotoxicant 
chemical classes such as the OPs, N-methyl carbamates (NMCs), and pyrethroids, EPA has 32 DNT 
guideline studies, but none have provided the most sensitive endpoint for human health risk assessment. 
As a result, EPA has shifted its testing focus from the DNT guideline study to more targeted testing based 
on commonly accepted modes of action (MOA). In the case of the OPs and NMCs, AChE inhibition was 
selected as the critical endpoint and the focus of special testing on lifestage susceptibility, including the 
use of comparative cholinesterase assays (CCA). For pyrethroids, in vitro studies and physiologically 
based pharmacokinetic (PBPK) modeling based on the known MOA, which involves interaction with 
voltage-gated sodium channels leading to neurotoxicity, have been used to evaluate lifestage 
susceptibility for this class of chemicals5. For chemicals toxic to the thyroid system, the Agency’s testing 
strategy has shifted from the DNT to the Comparative Thyroid Assay (CTA) again using a MOA-driven 
approach6. Hence, while the Agency has already begun implementing alternative approaches to test for 
lifestage susceptibility, the inclusion of NAMs that take advantage of newer technologies is the logical 
next step in the Agency’s efforts to implement more human relevant and efficient approaches. 

2.2 Background & History of the OPs 

OP pesticides are a group of closely related insecticides that affect the functioning of the nervous system. 
Following the passage of the FQPA, OPs were among the Agency’s first priority groups of pesticides to 
be reviewed. In 1999, EPA determined that the OPs form a common mechanism group based on their 
shared ability to bind to and phosphorylate AChE in both the central (brain) and peripheral nervous 
systems (USEPA, 1999) (USEPA, 1999). Some OPs must be metabolized (activated) to an oxon 
metabolite, which is the active AChE inhibiting moiety. Inhibition of AChE leads to accumulation of 
acetylcholine and ultimately to neurotoxicity (see Figure 1). AChE inhibition is consistently observed in 
the OP toxicology databases in multiple species, durations, lifestages, and routes.  
 

 
4 Report of the Workshop on a Framework for the Development and Use of Integrated Approaches to Testing and 
Assessment. 2015. OECD Series on Testing and Assessment No. 215 
5 https://www.epa.gov/ingredients-used-pesticide-products/2019-evaluation-fqpa-safety-factor-pyrethroids 
6 https://www.epa.gov/sites/production/files/2015-06/documents/thyroid_guidance_assay.pdf 
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Figure 1. AOP for OPs. 

 
OPs also exhibit a phenomenon known as steady-state AChE inhibition. After repeated dosing at the same 
dose level, the degree of inhibition comes into equilibrium with the production of new, uninhibited 
enzyme. At this point, the amount of AChE inhibition at a given dose remains consistent across duration. 
In general, AChE inhibition from OP exposure reaches steady-state within 2-3 weeks, but this can vary 
among OPs. As such, risk assessments currently evaluate acute and steady-state exposures from registered 
uses of OPs.  
 
In more recent years, a series of FIFRA SAP meetings have been held for chlorpyrifos regarding the use 
of epidemiological data to inform the chlorpyrifos human health risk assessment, as well as its relevance 
to other OPs. The Agency has used and continues to use inhibition of AChE as the POD for OP human 
health risk assessment. This science policy is based on decades of work which shows that AChE 
inhibition is the initial event in the pathway to acute cholinergic neurotoxicity. The use of AChE 
inhibition data for deriving PODs was supported by the FIFRA SAP in 2008a and 20127 for the OP 
pesticide, chlorpyrifos, as the most robust source of dose-response data for extrapolating risk. A PBPK-
pharmacodynamic (PD or PBPK-PD) model has also been developed for chlorpyrifos and its oxon and 
reviewed by the FIFRA SAP8. This model has been used as the underlying structure for developing 
PBPK-PD models for other OP chemicals, such as dimethoate and malathion. Newer lines of research on 
OPs in the areas of potential adverse outcome pathways (AOPs), in vivo animal studies, and notably 
epidemiological studies in mothers and children, have raised some uncertainty about the Agency’s risk 
assessment approach with regard to the potential for neurodevelopmental effects in fetuses and children. 
At this time, a MOAs/AOPs have not been established for neurodevelopmental outcomes. The growing 
body of literature does demonstrate, however, that OPs are biologically active on a number of processes 
that have the potential to affect the developing brain. Moreover, there is a large body of in vivo laboratory 
studies, including DNT studies, which show long-term behavioral effects from early life exposure, albeit 
at doses which cause AChE inhibition with limited exceptions (Carr et al., 2017; Carr et al., 2014). 
Interpretation of these data has been challenging particularly in cases where conflicting results were 
observed across studies. The SAP reports have provided numerous recommendations for additional 
research and sometimes conflicting advice for how EPA should consider (or not consider) the 
epidemiology data in conducting human health risk assessments for OPs. Given the large amount of data 
available for OPs and widespread acceptance of the neurotoxic MOA for OPs based on AChE inhibition, 
the OPs were identified as a group of chemicals that could be utilized as a case study for the development 
of a battery of NAMs to evaluate DNT. Data from these in vitro assays can be considered as part of an 
overall weight of evidence to determine the DNT potential for individual OPs. If appropriate, this 
information could also be used to inform the FQPA Safety Factor in the future. Additionally, the well-
established MOA provides an opportunity to utilize in vitro data for deriving DDEFs for OPs reducing the 
Agency’s reliance on default uncertainty factors for risk assessment. Overall, these approaches are 
consistent with the Agency’s efforts to reduce laboratory animal use and provide opportunities to utilize 
human relevant data to inform human health risk assessments.   

 
72008 SAP: https://www.epa.gov/sap/fifra-scientific-advisory-panel-historical-meetings 
 2012 SAP: https://www.regulations.gov/docket?D=EPA-HQ-OPP-2012-0040 
8 https://www.regulations.gov/docket?D=EPA-HQ-OPP-2012-0040 

Target  
Tissue 
Dose 

Phosphorylation 
of the active site 

of AChE 
Neurotoxicity 

Accumulation 
of 

acetylcholine 
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2.3 New approach methodologies (NAMs) for DNT 
 

Researchers within the Office of Research and Development (ORD) have been developing new NAMs for 
DNT for over a decade as part of an international effort to increase the number of chemicals for which 
DNT-relevant information can be obtained in a screening mode. This international effort recognized 
limitations of the in vivo guideline studies, and through a series of meetings with scientists, regulators and 
stakeholders (Bal-Price et al., 2018a; Crofton et al., 2011; Fritsche et al., 2018; Lein et al., 2007), ORD 
developed a strategy to devise NAMs that address some of these issues. This strategy focuses on 
development of in vitro assays that assess processes critical to development of the nervous system, and 
has resulted in a battery of in vitro tests, many of which are now believed to be capable of providing data 
that would be useful for public health applications (Bal-Price et al., 2018a; Bal-Price et al., 2018b). This 
battery of tests includes assays that evaluate chemical effects on critical neurodevelopmental processes 
including proliferation of neuroprogenitor cells, differentiation of neuroprogenitors into glial and neuronal 
subtypes, apoptosis, migration of neurons and oligodendrocytes, neurite outgrowth, synaptogenesis and 
neural network formation. Currently, assays developed by ORD using two primary technology platforms 
from these ongoing efforts are ready for review regarding their relevance to DNT screening and 
evaluation: microelectrode arrays (MEAs) with neuronal cell types to understand neuronal network 
formation, and high-content imaging assays of neural cells to understand key processes relevant to 
neurodevelopment.  

These DNT-NAMs are multidimensional assay technologies, with multiple assay endpoints, and are 
amenable to analysis with the ToxCast Data Pipeline (Filer et al., 2017) for standardizing the 
concentration response analysis of heterogeneous in vitro bioactivity screening data. Briefly, as these 
assay technologies are described in detail below, the total data set for the MEA evaluation of neuronal 
network formation assay includes 36 assay endpoints that indicate general neuronal activity, bursting, and 
connectivity. The data set for the high content imaging of neural cells encompasses 5 related assays: cell 
proliferation with a human neural progenitor cell line; apoptosis and viability assessment using a human 
neural progenitor cell line; neurite outgrowth initiation with a human neuronal lineage cell line; primary 
rat cortical cell neurite outgrowth initiation; primary rat cortical cell neurite maturation and 
synaptogenesis. From these 5 related assays, 21 assay endpoints can be analyzed. Thus, in total, the ORD 
DNT-NAM battery currently available in the ToxCast database (see Supplemental File 1 that contains all 
source data and R software) is comprised of 57 assay endpoints in human and rat neural cells that evaluate 
proliferation, apoptosis, neurite outgrowth and maturation, synaptogenesis, and neural network formation. 
Each of these assays incorporate measures of viability.  

These DNT-NAMs have been developed for use in DNT screening and prioritization, but data should be 
interpreted with the following considerations in mind: 1) these assays may not include all of the processes 
and targets necessary for full evaluation of DNT (Sachana et al., 2019) (see Section 2.3.2); 2) the battery 
of assays considered here do not address disruption of thyroid hormone levels, which can also have 
adverse neurodevelopmental outcomes; and, 3) a consideration for assay development was the availability 
of scalable and economic human cell models, with rat models being utilized when human models were 
not available or feasible. ORD has a separate, specific effort aimed at developing in vitro methods to 
assess chemical effects on the thyroid axis that may relate to DNT. The DNT-NAM assays currently 
available represent a significant milestone in the rapid generation of data to inform understanding of 
putative DNT-related bioactivity. The utility of these DNT-NAM assays for identifying the potential for 
chemicals to affect DNT, as part of a broader high-throughput screening (HTS) screening effort, is 
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evident in that assays that recapitulate neurodevelopmental function and processes fill a previous gap in 
the biological space covered by programs including ToxCast/Tox21 (Paul Friedman et al., 2019; Shafer et 
al., 2019; Harrill et al., 2018). The DNT-NAMs may also have further fit-for-purpose utility in identifying 
putative DNT activity within a chemical safety assessment context. 

In this Issue Paper, data from these DNT-NAMs are leveraged in a case study for application to chemical 
safety assessment. The bioactivity data from these DNT-NAMs are used with an IVIVE approach to 
indicate a threshold bioactivity concentration that may have relevance to DNT evaluation, specifically 
using a single class of substances: OPs. For this case study with OPs, there are specific bounds on the 
context of use of the DNT-NAM data. For instance, the registration of OPs has required in vivo testing in 
animal models, and as such these OP chemicals have been evaluated in these models for thyroid-related 
toxicity in adult animals, as well as acute and developmental neurotoxicity (see Sections 2.1 and 2.2). 
Further, within the regulatory context for OPs, AChE inhibition data are currently used as the basis for 
endpoints used for human health risk assessment, and additional data has been and/or can be generated. 
The specific problem formulation for DNT-NAM data is to evaluate if these HTS data can, at this time, 
provide additional information regarding the potential for DNT from OP exposure, and if the doses 
predicted for this putative DNT-related bioactivity differ from the doses currently associated with AChE 
inhibition in vivo. 

The subsequent sections (Sections 2.3.1-2.3.6) will discuss the following: 

• Section 2.3.1 provides a brief overview of the DNT-NAMs and how they function.  
• Section 2.3.2 describes how these DNT-NAMs have been developed within an international 

scientific community, with plans for further research to understand the utility of existing and 
developing DNT-NAMs for evaluating DNT potential.  

• Section 2.3.3 provides the specific DNT-NAM assay methodology employed to screen the OPs in 
these assays 

• Section 2.3.4. describes assay reproducibility and performance for the DNT-NAMs as a means of 
indicating their reliability and robustness.  

• Section 2.3.5 presents the DNT-NAM results for 27 OP chemicals.  
• Section 2.3.6 describes an example implementation of IVIVE of AEDs that relate to bioactivity in 

the DNT-NAMs and comparisons of these AEDs to BMD values from studies of inhibition of 
AChE in rats are provided.  

 
2.3.1 Overview of the DNT-NAMs 
 
2.3.1.1  Microelectrode arrays 
 
Neuronal cell communication proceeds through chemical and electrical signaling. MEAs can be used to 
understand the effects of in vitro chemical exposure on the normal electrical functions of neuronal cells 
that have traditionally been measured via neurophysiological assessment (Atchison, 1988; Gramowski-
Voss et al., 2015; Johnstone et al., 2010; Robinette et al., 2011; Shafer, 2019). Many different adverse 
outcome pathways may lead to a disruption of the electrical excitability pattern of neuronal cells, and as 
such, a HTS approach to identifying putative disruption of neuronal action potentials regardless of the 
specific molecular initiating event (MIE) has been developed (Johnstone et al., 2010). Primary cortical 
cell cultures grown on multi-well MEAs can demonstrate the electrical functions of neuronal cell 
networks, and this can be measured via recording the action potentials of these cells. Spontaneous 
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electrical spikes and groups of spikes (i.e., bursts) are associated with the action potentials of cortical cells 
grown in a network on MEAs. The rates of electrical activity (e.g., mean firing rate, burst rate), specific 
pattern of electrical activity (e.g., bursting activity), and the synchronization of these electrical activities 
across a network, known as network connectivity, can all be measured in HTS to identify responses 
resultant to in vitro chemical exposure. Disruptions in electrical activity, either via increased excitation or 
suppression of electrical activity, as indicated by effects on multiple parameters measured in MEAs, may 
indicate neurotoxicity potential from perturbation of one or more MIEs. For instance, though anti-
convulsant drugs are associated with slightly different MIEs, they appear to generally reduce bursting 
activity and network connectivity measures (Johnstone et al., 2010; Schroeder et al., 2008). By contrast, 
convulsant drugs often increase general firing activity, burst rate and/or duration and increase network 
connectivity measures (Bradley et al., 2018; Bradley and Strock, 2019; Kreir et al., 2018). 
 
In addition to the use of MEAs to evaluate acute effects on the electrical function of neural cells, MEAs 
have demonstrated utility for evaluation of cortical neural network formation, a process critical for 
neurodevelopment. The effects of in vitro chemical exposure in a MEA network formation assay (MEA 
NFA) can be evaluated via measurement of parameters that indicate general activity (mean firing rate, 
burst rate, etc.); parameters that indicate bursting activity (burst duration, interburst interval, number of 
spikes in bursts, etc.) and parameters that describe the connectivity of the network (network spikes, 
correlation coefficient, normalized mutual information (Ball et al., 2017)). While some descriptors are 
directly measured (mean firing rate, burst rate, number of network spikes) other descriptors (inter spike 
interval, interburst interval, etc.) are derived from these directly measured descriptors (Brown et al., 2016; 
Cotterill et al., 2016) (Table 1). Table 1 provides a reference on the measures available from the MEA 
NFA, including the type of activity evaluated, the name of the assay endpoint, the assay component and 
endpoint identifiers from the ToxCast Pipeline (Filer et al., 2017)(tcpl, used for analysis), and a 
description of what is being measured. The MEA network formation assay (MEA-NFA) within EPA 
ORD has been used to screen >205 unique substances to date (Brown et al., 2016; Frank et al., 2017; 
Shafer et al., 2019), along with parallel cytotoxicity assays, to increase the number of chemicals for which 
some information relevant to putative DNT effects is available.  
 
In the MEA-NFA, primary rat cortical neurons grown on arrays of microelectrodes demonstrate 
increasing neural activity over 12 days in culture; this activity begins with random, uncoordinated 
sporadic firing of individual neurons and progresses to synchronous network bursts by day 12 in culture 
(Cotterill et al., 2016). This progressive increase in complexity of neural activity is a result of neurite 
outgrowth, synaptogenesis, and development of functional network activity, suggesting that the MEA-
NFA assay (Cotterill et al., 2016; Frank et al., 2017; Robinette et al., 2011) recapitulates critical aspects 
of neurodevelopment. This is further supported by the fact that the spiking, bursting and coordinated 
network activity measured by the MEA-NFA are conserved across mammalian species- from rodents to 
primates (Mochizuki et al., 2016) and both in vitro and in vivo (Khazipov and Luhmann, 2006). Small 
networks of interconnected neurons are critical to nervous system function. These networks often exhibit 
synchronous and oscillatory behavior (Salinas and Sejnowski, 2001; Uhlhaas et al., 2009; Uhlhaas and 
Singer, 2006) and their function is disrupted in pathological disease states, including schizophrenia, 
epilepsy, autism and neurodegenerative diseases (Uhlhaas and Singer, 2006). The formation of functional 
neural networks requires a number of cell types and processes, including neurite outgrowth, 
synaptogenesis, maturation of glia, excitatory and inhibitory neuron signaling, neurotransmitter recycling, 
and maintenance of cellular polarity and electrochemical gradients (Frank et al., 2017). Confirmatory 
imaging of MEA-NFA assay cultures at day 12 in culture has previously demonstrated the presence of 
excitatory and inhibitory neurons, astrocytes, and some microglia (Frank et al., 2017), suggesting that 
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beyond measurement of assay parameters of neural network function, the components needed for 
appropriate function are indeed present.  

Similar deployments of MEA technology to measure cortical and hippocampal neural network formation 
and function (Bisio et al., 2014; Charlesworth et al., 2015; Chiappalone et al., 2006; de Groot et al., 2014; 
Frega et al., 2017; Kondo et al., 2017; Lenk et al., 2016) further support the established use of this assay 
technology for evaluating effects on the ontogeny of neural function, as recently reviewed (Shafer, 2019). 
Indeed, MEA assays using rat primary cortical cells in already formed neural networks and an acute 
chemical exposure has been proposed as a reliable screening assay for neurotoxicity and seizure-inducing 
compounds during drug discovery (Bradley et al., 2018; Bradley and Strock, 2019). Neural networks 
grown on MEAs have been used to determine the acute activity of a large number of different types and 
classes of compounds, including agrochemicals (Alloisio et al., 2015) (Baskar and Murthy, 2018; Meyer 
et al., 2008; Mohana Krishnan and Prakhya, 2016; Shafer et al., 2008), mixtures of pyrethroids (Johnstone 
et al., 2010; Scelfo et al., 2012), nanoparticles (Gramowski-Voss et al., 2015; Strickland et al., 2018), 
tricresyl phosphate (Duarte et al., 2017), illicit drugs (Hondebrink et al., 2016), glufosinate (Lantz et al., 
2014), antiepileptic drugs (Colombi et al., 2013), excitotoxicants (Frega et al., 2012), components of 
harmful algae (Alloisio et al., 2016), neuroactive toxins (Kasteel and Westerink, 2017; Pancrazio et al., 
2014) and metals (Dingemans et al., 2016; Huang et al., 2016). The widespread deployment of this 
technology to evaluate a broad variety of compounds and disruptions of nervous system function support 
the concept that neural networks grown on MEAs provide useful, biologically-relevant information about 
interactions of chemicals with the nervous system.



Table 1. Network activity parameters obtained from MEA NFA recordings 
The recordings from MEA NFA can be categorized into 3 activity types: general, bursting, and network connectivity. Further delineation of the 
measurement type (empirical = Emp or derived = Der), the parameter and its tcpl assay component name (in italics), the level of the measurement 
(electrode or well), the assay component identification (ACID) and a description are provided. Two assay endpoint identifiers are provided 
(AEIDs), where the odd numbered AEID is for endpoint analyzed in the “up” direction and the even numbered AEID is for the endpoint analyzed 
in the “down” direction. For features computed by electrode, such as burst rate, one well level value per well was obtained by taking the average 
across electrodes within a well. 

Activity 
Type 

Type Parameter Level ACID AEIDs Description 

General 
Activity 
 
 
 

Emp Mean Firing Rate, 
NHEERL_MEA_dev_firing_rate_mean 

Electrode 2471 2494,2495 The mean firing rate on each electrode was calculated, with the 
well level value equal to the mean across all active electrodes 

Emp Burst Rate,  
NHEERL_MEA_dev_burst_rate 

Electrode 2472 2496,2497 The number of bursts per minute. Max-interval method used with 
parameters: ISI to start =0.1s, ISI to end =0.25s, min IBI =0.8, 
min duration =0.05s, min no. spikes = 5 

Emp Number of Active Electrodes, 
NHEERL_MEA_dev_active_electrodes
_number 

Electrode 2473 2498,2499 Number of electrodes firing at or above 5 spikes per minute. 

Emp Number of Actively Bursting 
Electrodes, 
NHEERL_MEA_dev_bursting_electrod
es_number 

Electrode 2474 2500,2501 Number of electrodes with burst rates of above 0.5 bursts per 
minute 

Bursting 
Activity 

Der Interspike Interval (ISI) within a burst, 
NHEERL_MEA_dev_per_burst_inters
pike_interval 

Electrode 2475 2502,2503 Time interval between spikes within a burst (ms) 

Emp Percentage of Spikes in Burst, 
NHEERL_MEA_dev_per_burst_spike_
percent 

Electrode 2476 2504,2505 The number of spikes within a burst over total spike count x 100 

Der Mean Burst Duration, 
NHEERL_MEA_dev_burst_duration_
mean 

Electrode 2477 2506,2507 Mean duration of a burst (ms) 

Der Mean interburst interval, 
NHEERL_MEA_dev_interburst_ 
interval_mean 

Electrode 2478 2508,2509 Mean time interval between bursts (sec) 
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Network 
Connectivity 
 
 
 
 
 
 
 
 

Emp Number of Network Spikes, 
NHEERL_MEA_dev_network_spike_ 
number 

Well 2479 2510,2511 Number of spikes in network spikes 

Der Network Spike Peak, 
NHEERL_MEA_dev_network_spike_ 
peak 

Well 2480 2512,2513 The number of electrodes active at peak of network spike  

Der Network Spike Duration, 
NHEERL_MEA_dev_spike_duration_
mean 

Well 2481 2514,2515 The average duration (ms) of a network spike 

Der SD of Network Spike Duration, 
NHEERL_MEA_dev_network_spike_ 
duration_std 

Well 2482 2516,2517 Standard deviation of network spike duration 

Der ISI in Network Spike, 
NHEERL_MEA_dev_per_network_ 
spike_interspike_interval_mean 

Well 2483 2518,2519 Mean inter-spike interval for spikes in network spikes 

Der Mean number of Spikes in Network 
Spikes, 
NHEERL_MEA_dev_per_network_ 
spike_spike_ number_mean 

Well 2484 2520,2521 Number of spikes in network spike 

Emp % Spikes in Network Spike, 
NHEERL_MEA_dev_per_network_ 
spike_spike_ percent 

Well 2485 2522,2523 Ratio of spikes in network spikes over total spikes x 100 

Emp Mean Correlation, 
NHEERL_MEA_dev_correlation_ 
coefficient_mean 

Well 2486 2524,2525 The average of all pairwise correlation between all electrodes 

Emp Normalized Mutual Information, 
NHEERL_MEA_dev_mutual_ 
information_norm 

Well 2487 2526,2527 Normalized mutual Information between all electrodes in the 
well. 



2.3.1.2  High content imaging (HCI) for cellular events 
 
The HCI cellular event assays presented herein have been used previously to model critical processes of 
nervous system development including neuroprogenitor proliferation, apoptosis, neurite outgrowth and 
synaptogenesis. These processes, when affected by chemical treatment (Baumann et al., 2016; Culbreth et 
al., 2012; Harrill et al., 2015; Harrill et al., 2018; Krug et al., 2013; Mundy et al., 2015) may contribute to 
DNT-relevant outcomes such as cognitive impairments and/or learning disabilities, autism spectrum 
disorder, attention deficit hyperactivity disorder, though the specific neurodevelopmental mechanisms for 
these DNT outcomes is the subject of ongoing research efforts. Other deployments of HCI include 
screening small molecule libraries for effects on neurogenesis (Wu and Li, 2018), neuroplasticity and 
CNS disorders relevant for pharmaceutical development (Cheng et al., 2017), as well as other general 
drug development applications (including drug target optimization and preclinical safety screening) 
involving the CNS and its development (Gorshkov et al., 2018; Kepiro et al., 2018; Sharma et al., 2012). 
These uses support a broader acceptance of HCI technology for identifying and characterizing chemical 
perturbation of neural cell biology. Further, orthogonal assays have been developed in central and 
peripheral nerve models (Delp et al., 2018; Nyffeler et al., 2017), as well as 3-dimensional neural models 
known as neurospheres (Baumann et al., 2016) for the assessment of chemical effects on 
neurodevelopment. 
 
The HCI cellular event assays described in this Issue Paper, as a multi-dimensional set, have been used to 
distinguish perturbation of the processes of neuroprogenitor proliferation, neurite outgrowth, and 
synaptogenesis from cytotoxicity (Table 2). Table 2 provides an overview of the relevant process 
addressed, HCI assay names, assay component and endpoint identifiers from tcpl (used for analysis), and 
what is measured in each assay. Apoptosis and cytotoxicity are also relevant to DNT if neural cell death 
occurs in vivo during critical periods of nervous system development and at concentrations that would 
indicate this apoptotic or cytotoxic event might occur at lower concentrations than some overt toxicity. As 
several critical processes of in vivo neurodevelopment are encompassed by these phenotypic screens, they 
serve as a broad approach to detect chemical perturbations of a variety of neurodevelopmental processes 
in vitro. Due to the temporal and biological complexity of nervous system development involving the 
interplay of many different cell types, it is generally accepted that no single in vitro screening assay can 
recapitulate all the critical processes of neurodevelopment or affirmatively identify all chemicals that may 
produce DNT. Therefore, the need to use an assay battery approach for in vitro DNT screening is evident 
(Bal-Price et al., 2018). Some chemicals may affect only a single neurodevelopmental process as an 
indicator of DNT activity. For instance, a chemical may affect in vitro synaptogenesis and fail to affect 
cellular events that occur earlier in neural network development such as neural progenitor cell 
proliferation or neurite outgrowth (Harrill et al., 2018). If either one of the latter two assay types were the 
only assay used for DNT hazard screening, then the DNT potential of the chemical in question would not 
have been detected. Conversely, some chemicals may disrupt early processes of nervous system 
development such as neural progenitor proliferation. In vivo this type of effect would also indirectly 
impact processes such as neurite outgrowth and synapse formation that are temporally downstream of the 
initial process. In vitro, the biological activity of this type of chemical would not be detected if using a 
single assay that models a late event in neurodevelopment.



Table 2. HCI Cellular Event Assay Suite. 
The activity type, cell type/species, technology, assay name from tcpl, endpoint names from tcpl, and a description of the measures are provided. 
The assay component ID (ACID) and assay endpoint ID (AEID) are also provided; these assays were only analyzed in the “down” direction. 

Neurodevelopmental 
Process 

Assay Name  
(Cell Type) 

ACID AEID Endpoint Name Description 

Neural Progenitor Cell 
Proliferation 

MUNDY_HCI_ 
hNP1_Pro 

 
(human hNP1 

neuroprogenitors) 

2711 2795 
MeanAvgInten_loss 

Intensity of BrdU labeling in the nucleus of each cell, averaged 
across all cells in a well. A decrease as compared to control is 
indicative of decreased cell proliferation. 

2709 2796 

ResponderAvgInten_loss 
Percentage of cells with intensity of BrdU labeling > 3X 
background. A decrease as compared to control is indicative of 
decreased cell proliferation 

2710 2797 
ObjectCount_loss The number of nuclei per well. A decrease as compared to control is 

indicative of cytotoxicity. 

Neural Progenitor 
Apoptosis / Viability 

MUNDY_HCI_ 
hNP1 

 
(human hNP1 

neuroprogenitors) 

2691 2793 

Casp3_7_gain a 

Intensity of luminescent signal produced by caspase 3/7 cleavage of 
a detection reagent. The signal produced is proportional to the 
number of apoptotic cells. An increase as compared to control is 
indicative of increased apoptosis. 

2700 2794 
CellTiter_loss a 

Intensity of luminescent signal produced by detection of cellular 
ATP. The signal produced is proportional to the number of viable 
cells. A decrease as compared to control is indicative of cytotoxicity. 

Neurite outgrowth 
(NOG) initiation b 

 
MUNDY_HCI_ 

hN2_NOG 
 

(human hN2 neural 
cells) 

 

2695 2789 
BPCount_loss 

Morphology of αIII-tubulin labeled neurons as measured using 
automated microscopy. Measurements of neurite length 
(Neurite_Length), the number of neurites (NeuriteCount) and the 
number of neurite branch points (BPCount) per cell are calculated 
for each assay well. Decreases in any of these measures are 
associated with inhibition of neurite outgrowth. 
 
The number of neurons per well (NeuronCount) is also measured. 
Decreases in the number of neurons per well as compared to control 
is indicative of cytotoxicity. 

2694 2790 
NeuriteCount_loss 

2693 2791 
Neurite_Length_loss 

2692 2792 
NeuronCount_loss 

 
MUNDY_HCI_ 
Cortical_NOG 

 
(1° rat cortical 

cultures) 

2699 2777 BPCount_loss 

2698 2778 
NeuriteCount_loss 

2697 2779 
Neurite_Length_loss 
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Neurodevelopmental 
Process 

Assay Name  
(Cell Type) 

ACID AEID Endpoint Name Description 

 2696 2780 NeuronCount_loss 

Neurite Maturation and 
Synaptogenesis b 

MUNDY_HCI_ 
Cortical_Synap& 

Neur_Mature 
 

(1° rat cortical 
cultures) 

2707 2781 BPCount_loss Morphology of MAP2 c and synapsin labeled neurons as measured 
using automated microscopy. Measurements of neurite length 
(NeuriteLength), the number of neurites (NeuriteCount) and the 
number of neurite branch points (BPCount) per cell are calculated 
for each assay well. Decreases in any of these measures are 
associated with inhibition of neurite maturation. 
 
In addition, the number of pre-synaptic puncta in the cell body 
compartment (CellBodySpotCount) and the neurite compartment 
(NeuriteSpotCountPerNeuron) are counted in each assay well. The 
number of cell body and neurite-associated puncta are combined to 
calculate the total number of synapses (SynapseCount). The number 
of neurite-associated puncta are also quantified per unit length of 
neurite measured (NeuriteSpotCountPerNeuriteLength). Decreases 
in any of these features are associated with inhibition of 
synaptogenesis. 
 
The number of neurons per well (NeuronCount) is also measured. 
Decreases in the number of neurons per well as compared to control 
is indicative of cytotoxicity. 

2702 2782 NeuriteCount_loss 

2706 2783 NeuriteLength_loss 

2705 2784 CellBodySpotCount_loss 

2704 2785 NeuriteSpotCountPerNeur
on_loss 

2703 2786 NeuriteSpotCountPerNeuri
teLength_loss 

2701 2787 SynapseCount_loss 

2708 2788 NeuronCount_loss 
a These endpoints are measured using a luminescent plate reader. All other endpoints for all other assays are measured using high-content imaging (HCI). b The rat cortical neurite 
outgrowth and rat cortical neurite maturation and synaptogenesis assays, respectively, are performed in the same in vitro cell model. However, the timing and duration of 
chemical exposures differs across the respective assays in order to different phases of in vitro neuronal development. c MAP2 is a cytoskeletal protein that localizes specifically to 
dendrites: i.e., specialized neurites that receive incoming signals from other neurons in an integrated neuronal network. In primary rat cortical cultures, dendrites develop slower 
than axons and measurement of dendritic morphology is an indicator of neurite maturation. 



2.3.2 DNT-NAM development as an integrated process 
 

The objective of a DNT-NAM battery is to identify putative DNT-related bioactivity from a set of cellular 
processes, and optimally a DNT-NAM battery would include assays that recapitulate as many of these 
processes involved in nervous system development and function as practicable, as extensively reviewed 
previously (Bal-Price et al., 2018b; Fritsche et al., 2018; Sachana et al., 2019). In Figure 2, adapted from 
Aschner et al. 2016, the main processes relevant for DNT are illustrated as a network. In the two DNT-
NAM assay technologies described herein, some but not all, of these processes are recapitulated to 
observe chemical-mediated effects. 
 
International efforts to build such a DNT-NAM battery are ongoing with participation of US EPA ORD 
contributors. As a result of the October 2016 meeting in Brussels, Belgium, EFSA funded a project to 
evaluate a battery of in vitro DNT assays. ORD investigators have developed a collaboration with the 
investigators funded by EFSA. Together, assays developed by ORD and the EFSA-funded researchers 
comprise a series of assays that form a battery which covers critical processes in neurodevelopment 
(Figure 2). The combined effort will evaluate these assays with a test set of ~120 compounds, with results 
anticipated in 2020-2021. The list of tested compounds was developed in collaboration with the US EPA-
ORD, and many, but not all, of the compounds were supplied by EPA’s ToxCast program. To maximize 
resources, assay specific lists of compounds to test were developed, as some compounds had already been 
tested in some assays. In developing the overall (120 compound) list, compounds with a variety of 
different characteristics were selected, including those with: 1) evidence of possible in vivo DNT hazard 
based on papers from Mundy et al. (2015) and Aschner et al. (2017); 2) Guideline DNT Studies (OECD 
TG 426 and/or EPA 870.6300); 3) putative negative DNT compounds; 4) compounds of interest for 
developing case-studies for Integrated Approaches to Testing and Assessment (IATAs) for DNT (see 
OECD DNT Expert Group below); and, 5) other compounds for which some in vitro data existed in 
DNT-NAMs. When available, these data will be analyzed using the ToxCast Data Pipeline (tcpl). 
Following the availability of data from all of the assays, the value added by each assay and assay endpoint 
for identification of positive and negative reference chemicals will be evaluated, likely using several 
different approaches in the 2020-2023 timeframe. The proposed assays for this DNT-NAM battery, 
developed by international consortium, are presented in Table 3 with references and in Figure 2 as a 
network diagram. 

Additionally, in March 2019, the Organisation for Economic Cooperation and Development (OECD) 
charged an expert group with development of a guidance document for the use of DNT-NAMs for 
Integrated Approaches to Testing and Assessment (IATAs) for DNT. Development of this guidance 
document will be informed by a series of IATA case studies intended to illustrate the capabilities of DNT-
NAMs.  

Another model of DNT has been proposed as complementary to DNT-NAMs: assessment of behavioral 
effects of chemical exposure during nervous system development in zebrafish embryos/larvae (de Esch et 
al., 2012; Nishimura et al., 2015; Peterson et al., 2008), based on the conservation of neurodevelopmental 
and functional processes across species (Guo, 2009; Kokel et al., 2010). The zebrafish model also 
compliments the in vitro testing systems by having the advantage of assaying for behavioral changes in an 
intact, integrated model that is capable of hepatic metabolism (de Souza Anselmo et al., 2018; Goldstone 
et al., 2010), possesses a thyroid axis that influences brain development, and has a complete genome that 
is easily modulated. As part of the OECD DNT expert group efforts, a consortium of eight laboratories 
(including ORD) is working on a case study to develop and define a unified experimental protocol for 
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behavioral analysis using a zebrafish model of neurodevelopment. This unified protocol will include a 
developmental exposure followed by locomotor activity assessment in a light and a dark photoperiod. 
With experimental results anticipated in Fall 2020, a unified data analysis protocol (Filer et al., 2017; Reif 
et al., 2016; Zhang et al., 2017) will have to be developed for efficient, reproducible interpretation of 
these studies, followed by evaluation of their utility for DNT evaluation. Again, it is likely this work will 
proceed initially using a variety of approaches over the course of 2020-2023. For this Issue Paper, a 
zebrafish behavioral model is not yet mature enough for incorporation into the DNT-NAMs considered at 
this time. 

 

Table 3. DNT-NAMs for the network of activities relevant for neurodevelopment. 
This table was adapted and expanded based on Sachana et al. (2019). Refer to Figure 2 for additional 
illustration of the DNT-NAM battery being developed by international collaborators. 

Biological Process Assays Data available in this 
Issue Paper 

References 

Proliferation hNP1 Yes (Harrill et al., 2018)  
NPC1 No (Barenys et al., 2017; 

Baumann et al., 2016)  
Apoptosis hNP1 Yes (Druwe et al., 2015; Harrill 

et al., 2018)  
Migration NPC2 No (Barenys et al., 2017; 

Baumann et al., 2016) 
Neuron differentiation UKN2 No (Nyffeler et al., 2017) 

NPC3 No (Barenys et al., 2017; 
Baumann et al., 2016) 
 

Oligodendrocyte 
differentiation and 
maturation 

NPC5/6 No (Barenys et al., 2017; 
Baumann et al., 2016) 

Synaptogenesis 1° rat cortical neuron 
synaptogenesis 

Yes (Harrill et al., 2018; Harrill 
et al., 2011b) 

Neurite outgrowth 1° rat cortical neuron or 
hN2 

Yes (Harrill et al., 2018; Harrill 
et al., 2010; Harrill et al., 
2011a) 

Neuronal network 
formation 

1° rat cortical neuron  Yes  (Brown et al., 2016; Frank 
et al., 2017; Shafer et al., 
2019) 

human IPSC-derived 
neural networks 

No Unpublished Method  
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Figure 2. Integrated network of DNT processes and coverage by relevant DNT-NAMs. 
DNT-relevant processes including proliferation, differentiation, neurite outgrowth, synaptogenesis, migration, neural network formation and 
function, and apoptosis, are all related. Blue bolded and underlined text (hNP1, hN2, 1° rat cortical, MEA-NFA) indicate DNT-NAM technologies 
described in this Issue Paper and with currently available data as analyzed using the ToxCast Data pipeline. Green bolded and underlined text (for 
iCell neurons in neurite growth assays) indicate a cell-assay combination that has been evaluated by EPA, but without data available for this Issue 
Paper. DNT processes annotated with assay abbreviations in red text indicate DNT-NAMs that have been preliminarily developed but that do not 
have available screening data for evaluation (NPC1-5, UKN2, UKN4, UKN5, hiPSC-NFA). Cell line abbreviations are decoded as follows: hNP1 
= human neural progenitor cell line; hN2 = human neuronal cell line; 1° rat cortical = primary rat cortical neurons; NPC1-4 = human primary 
neuroprogenitor cells (Lonza) in neurosphere cultures; NPC5 = human glial cells in neurosphere cultures; UKN2 = human neural crest from h9 
embryonic stem cells; UKN4 = Lund human mesencephalic human embryonic neuronal precursor (LUHMES) cells; UKN5 = human peripheral 
nervous system cells (immature dorsal root ganglion) cells from h9 embryonic cells. Figure adapted from Aschner et al. (2016). 
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2.3.3 DNT-NAM experimental methodology for OPs 
 
The experimental methodologies described in the following sections pertain to data collected using OP 
insecticides and summarized in this Issue Paper. While the data on the OP insecticides presented here 
have not been published to date, data presented here on other chemicals have been made publicly 
available, embedded within larger datasets, through the peer-reviewed literature. All of the data for assay 
controls and OP insecticides discussed in this Issue Paper are provided as Supplemental Files. 

Chemical procurement. The OP insecticides were procured for both the MEA NFA and HCI cellular 
event assays simultaneously. Aliquots of each OP or OP metabolite, solubilized in dimethyl sulfoxide 
(DMSO), were supplied with a target concentrations of 20 or 100 mM in 50 µL aliquots in sealed, round-
bottom 96-well plates by Evotec (Princeton, NJ) as part of the ToxCast Chemical Inventory (Richard et 
al., 2016). These plates were wrapped in parafilm and stored at 20°C until use.  
 
2.3.3.1  MEA NFA experiments 
Tissue culture and cell source. The MEA NFA experiments summarized in this work used primary 
cultures of rat cortical neurons. These primary cultures of cortical neurons were prepared as described in 
Brown et al. (2016). Briefly, frontal cortex from postnatal 0–1 day Long-Evans rat pups were removed 
and dissociated, then plated in 25 µL droplets containing 150,000 cells into each well of 48-well MEA 
plates (M-768-KAP-48; Axion Biosystems, Atlanta, GA). Cells were allowed to attach to the substrate for 
2 hr after which 500 µL of media was added that contained the appropriate concentration of test material 
or solvent. Complete media changes were done on day in vitro (DIV) 5 and 9, and chemical was refreshed 
along with the media. For the vast majority of chemicals, test concentrations ranged from 0.03 µM to 100 
µM in half-log increments, with the lower concentration bound reflective of practical limitations (e.g., the 
number of wells on the plate), laboratory resources (e.g., the cost and time of running additional 
concentrations) and the typical concentration range within which activity is observed, and the upper 
concentration reflective of DMSO limitations in the assay and a desire to test within a relevant 
concentration range.  
 
Electrophysiological assessment of network activity. Assessment of electrical activity using MEAs was 
conducted as described in Shafer et al. (2019), Frank et al. (2017), and Brown et al. (2016). Briefly, 
spontaneous electrical activity of primary rat cortical cells was recorded using the Axion Biosystems 
Maestro 768-channel amplifier, Middle-man data acquisition interface, and Axion Integrated Studio 
(AxIS) software v1.9 or later (Axion Biosystems, Atlanta, GA). Spontaneous activity was measured using 
a gain of 1200x and a sampling frequency of 12.5 kHz. The signal was passed through a Butterworth 
band-pass filter (0.1–5000Hz) In AxIS and on-line spike detection (threshold = 8 x root mean square 
(rms) noise) was done with the AxIS adaptive spike detector. All recordings were conducted at 37°C. 
Activity was recorded for a period of 15 min on DIV 5, 7, 9, and 12 to monitor the development of 
network activity. Recordings were always made prior to media changes to avoid potential impacts of 
physical perturbations on network activity. Each biological replicate was comprised of cells from several 
animals. Each biological replicate screened for a given chemical consisted of triplicate technical replicates 
(the entire concentration range at 1 well/concentration tested across 3 separate plates from the same 
culture [n=3/concentration, where n is in reference to technical replicates]).  
 
Cell viability measurements. After recording on DIV 12, cell viability was assessed using lactate 
dehydrogenase (LDH) and alamar blue (AB) assays (Promega, Madison, WI) as described in (Brown et 
al., 2016; Frank et al., 2017; Shafer et al., 2019). 
 
Data analysis. Analysis of the development of spontaneous electrical activity was conducted as described 
in Shafer et al. (2019) and Frank et al. (2017) using the R programming language (R Core Team, 2016) 
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for statistical computing and the ToxCast Data Pipeline (tcpl), with some revisions as described herein. 
Briefly, 17 different parameters (referred to as assay components in tcpl, see Table 1) describing spiking, 
bursting, and coordinated network activity were determined by analysis of each recording on each DIV. 
In area under the curve (AUC) determination, curve-fitting and EC50 determinations were conducted as 
described in the original published manuscripts (Brown et al., 2016; Frank et al., 2017; Shafer et al., 
2019). For the analyses presented herein, trapezoidal AUC (R trapz() function) was used to integrate 
responses across time and concentration; these AUC values were then supplied as multi-concentration 
level 0 (mc0) data to tcpl (version 2.0.2). For the cytotoxicity assays, the raw viability assay responses 
were supplied to tcpl. Then, tcpl was used to normalize data by assay component, and generate 
concentration-response curves and make hit-calls for each assay endpoint. Analysis and curve-fitting in 
the up and down directions was performed for the neuronal network formation components, resulting in 
34 assay endpoints for neuronal network formation (17 x 2) and 2 assay endpoints for cell viability 
assessment (LDH and AB) for an overall total of 36 assay endpoints. The tcpl methods applied for the 
MEA-NFA technology are listed in Table 4. Cutoffs were set based on three times the baseline median 
absolute deviation (BMAD), where BMAD is an approximation of baseline noise using the vehicle 
control wells and the two lowest concentrations of test chemical wells on each plate. The BMAD values 
for assay endpoints in the MEA NFA ranged from 6.9 to 26.4%, resulting in cutoff values of 21 to 79% 
change. 
 
2.3.3.2  HCI assay experiments 
Screening design. Each chemical was tested across the complete concentration range with well replicates 
(n=3, where n is in reference to technical replicates) performed within the same experiment across 
multiple plates (Malo et al., 2006). Some chemicals were tested twice in the rat cortical models for a total 
of n=6 well replicates. Assay-positive control chemicals for proliferation (aphidicolin, 10 μM), apoptosis 
(staurosporine, 1 μM), neurite outgrowth (Rac 1 inhibitor (i.e., NSC 23766 trihydrochloride), 10 μM; 
lithium chloride, 30 mM or bisindolylmaleimide I, 3 µM) or synaptogenesis (sodium orthovanadate, 10 
μM or bisindolylmaleimide I, 3 µM) were included on each plate (n = 3 wells / plate) to verify assay 
performance. After dilution of chemical stocks into media, the final concentration of DMSO or water 
vehicle in each assay was 0.1%, which had no effect on any cellular endpoint compared with media 
controls (data not shown). 
 
hNP1 Proliferation Assay. The assay for hNP1 proliferation was performed as developed previously 
(Harrill et al., 2018; Mundy et al., 2010). Briefly, cells were seeded in clear 96-well plates pre-coated 
with poly-L-ornithine and laminin at a density of 10,000 cells/well. Two hours after plating, cells were 
exposed to chemicals and returned to the incubator. Twenty hours after chemical treatment, 
bromodeoxyuridine (BrdU: Millipore) was added directly to the media in each well to a final 
concentration of 50 µM and the cells incubated for a further 4 hours. Cells were then fixed with 4% 
paraformaldehyde for 15 min at room temperature, followed by permeabilization and blocking steps. 
Dividing cells that incorporated BrdU were labeled using secondary antibodies (Harrill et al., 2018). 
Hoechst 33342 dye (3 µg/ml) was included in the last step to label all nuclei. Quantitative fluorescence 
imaging was performed with Cellomics ArrayScan VTI HCS system (ThermoFisher Scientific) using a 
10x objective. Fluorescence images were obtained in two channels: channel 1 was used to image Hoechst-
labeled nuclei and channel 2 was used to image nuclei exhibiting BrdU labeling. Cells with BrdU labeling 
intensity >3-fold background were categorized as responders. The number of responders divided by the 
total number of nuclei in a well was used to calculate percent responders. Images were analyzed using the 
Cellomics Target Activation Bioapplication (v4). A sufficient number of images were analyzed from each 
well to count at least 300 cells. Cell viability was based on number of cells per field. 

hNP1 Apoptosis Assay. Apoptosis in hNP1 cells was assessed as described previously (Druwe et al., 
2015; Harrill et al., 2018). Briefly, cells were seeded in white opaque 96-well plates pre-coated with poly-
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L-ornithine and laminin at a density of 10,000 cells/well. Two hours after plating, cells were exposed to 
chemicals and returned to the incubator for 24 hr. Apoptosis was measured based on detection of 
activated caspase-3/7 using the Caspase-Glo 3/7 assay kit (Promega). Cell viability was also determined 
in sister plates using the CellTiter-Glo luminescent assay (Promega) which measures the amount of ATP 
present in each well. Cells were seeded in white opaque 96-well plates pre-coated with poly-L-ornithine 
and laminin, allowed to adhere for 2 hr, and then exposed to chemicals for a 24 hr period before 
conducting the CellTiter-Glo assay per Promega directions and as described previously (Druwe et al., 
2015; Harrill et al., 2018).  

hN2 and Rat Cortical Neurite Outgrowth Assays. Initiation and the early phase of neurite outgrowth was 
measured as described in (Harrill et al., 2011a). Briefly, rat primary cortical neurons or human hN2 
neurons were seeded in clear 96-well plates pre-coated with poly-L-lysine (rat primary cortical neurons) 
or poly-L-lysine and laminin (human hN2 neurons) at a density of 10,000 cells/well. Two hours after 
plating, cells were exposed to chemicals and returned to the incubator. Forty-eight hours after chemical 
treatment, cells were fixed with warm (37o C) 4% paraformaldehyde containing 1.5 µg/ml Hoechst 33342 
for 20 min followed by permeabilization and blocking steps. Cell bodies and neurites (i.e., axons and 
dendrites) expressing the cytoskeletal protein αIII-tubulin were labeled using primary and secondary 
antibodies as described previously (Harrill et al., 2018). The Cellomics ArrayScan VTi HCS system was 
used for automated image acquisition and analysis of neurite outgrowth. Images were acquired using a 
20x objective in two channels: channel 1 was used to image Hoechst-labeled nuclei; channel 2 was used 
to image cell bodies and neurites. Images were analyzed using the Cellomics Neuronal Profiling 
BioApplication (v4) to measure neurite morphology in each cell model (human and rat). Parameters for 
analysis of neurite outgrowth were described previously (Harrill et al., 2011a). In each well, multiple 
images were acquired until at least 300 neurons were counted. Four morphological features were 
quantified: 1) total neurite length per neuron; 2) number of neurites per neuron; 3) number of neurite 
branch points per neuron; and 4) number of cells (neurons) per field. Neurites were defined as processes > 
10 µm in length. The number of cells per field was used as an indicator of cell viability at the time of 
fixation. Well-level population averages were used as the statistical unit of measure. 

Rat Cortical Synaptogenesis Assay. Maturation of dendrites and formation of synapses was measured as 
described (Harrill et al., 2011b). Briefly, rat primary cortical neurons were seeded in clear 96-well plates 
pre-coated with poly-L-lysine at a density of 10,000 cells/well. At 5 DIV half of the media in each well 
was replaced with fresh media containing cytosine arabinoside for at a final concentration of 1 µM. On 
DIV 7, a complete media replacement was performed with fresh media (no cytosine arabinoside) 
followed by chemical exposure. Cells were then cultured for 5 days with no further media exchange. On 
DIV 12, cells were fixed with warm (37o C) 4% paraformaldehyde containing 1.5 µg/ml Hoechst 33342 
for 20 min followed by permeabilization and blocking steps. Cell bodies and dendrites expressing 
microtubule-associated protein 2 (MAP2) and presynaptic terminals containing synapsin I protein were 
labeled using primary and secondary antibodies as previously described (Harrill et al., 2018). The 
Cellomics ArrayScan VTi HCS system was used for automated image acquisition and analysis of dendrite 
growth and synapse number. Images were acquired using a 20x objective in three channels: channel 1 was 
used to image Hoechst-labeled nuclei; channel 2 was used to image cell bodies and dendrites; channel 3 
was used to image presynaptic puncta. Images were analyzed using the Cellomics Neuronal Profiling 
BioApplication (v4). Parameters for analysis of the cell nucleus, cell body, dendrite and synaptophysin 
puncta identification and selection, as well as cell body masking and dendrite tracing parameters were 
described previously (Harrill et al., 2011b). In each well, multiple images were acquired until at least 300 
neurons were counted. Seven morphological features were quantified: 1) total neurite length per neuron; 
2) number of neurites per neuron; 3) number of neurite branch points per neuron; 4) the number of cell 
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body-associated presynaptic puncta; 5) the number of neurite-associated presynaptic puncta; 6) total 
number of synaptic puncta per neuron; 7) number of synaptic puncta per unit neurite length; and 7) 
number of cells (i.e., neurons) per field. Well-level population averages were used as the statistical unit of 
measure. 

Data analysis. For all HCI assays, complete concentration-response data were generated within a 96-well 
plate using one well per concentration, and experiments repeated across three culture plates (n=3). 
Concentration-response data were analyzed and curve-fit using R software for statistical computing and 
the tcpl package (version 2.0.2) (Filer et al., 2017). The raw values from the HCI assays were used as mc0 
data for tcpl. All of the tcpl methods applied to the HCI assays are detailed in Table 4. All data were 
normalized on a plate-by-plate basis to the median of the vehicle control wells and two lowest 
concentrations of test chemical wells. The cutoff for a positive response or hit-call was set as the greater 
of 30% or 3 times the BMAD, where BMAD is an approximation of baseline noise using the vehicle 
control wells and the two lowest concentrations of test chemical wells. BMAD ranged from 1.5 to 14.9%, 
and thus the cutoffs for a positive response in each assay endpoint ranged from 30 to 44.7%.  
 
Table 4. ToxCast Data Pipeline for MEA-NFA and HCI assays. 

ToxCast Data 
Pipeline Level MEA-NFA: Methods Applied HCI assays: Methods Applied 

mc0: pre-
processed data 
input 

Data are pre-processed to obtain AUC values 
by assay component 

Data are raw input 

mc1: mapping 
to well and 
column indexes 

Auto 

mc2: 
transformation 

No transformation  

mc3: 
normalization 

Baseline value (bval) was calculated as the 
median value for the vehicle control wells 
(DMSO) on a by-plate basis; No positive 
control value was used in normalization 
(pval=0); the response was calculated as 
percent of DMSO vehicle control. The 
response was multiplied by -1 for the “up” 
endpoints such that all endpoints are curve-fit 
in the positive direction. 

Baseline value (bval) was calculated as the median value 
for the vehicle control wells (DMSO) on a by-plate 
basis; No positive control value was used in 
normalization (pval=0); the response was calculated as 
percent of DMSO vehicle control.  

mc4: BMAD 
calculation type 
for curve-fitting 

An approximation of noise around the 
baseline signal, the baseline median absolute 
deviation, was calculated based on the vehicle 
control wells and the 2 lowest concentrations 
of the test wells on each plate. 

An approximation of noise around the baseline signal, 
the baseline median absolute deviation, was calculated 
based on the vehicle control wells and the 2 lowest 
concentrations of the test wells on each plate. 

mc5: Hitcall and 
potency 
determination 

The cutoff for a positive response in each 
assay endpoint was set as 3*BMAD. 

The cutoff for a positive response was the greater of 
30% or 3*BMAD. 

mc6: caution 
flags on fitting  

Flags for single point hit at maximum concentration (6), flags for single point hit not at the maximum 
concentration screened (7), inactives with multiple median responses above baseline (8), noisy curves 
relative to the assay (10), actives with borderline efficacy (11), inactives with borderline efficacy (12), 
low concentration gain-loss curve-fits (15), possibly overfitting (16), hitcalls with less than 50% efficacy 
(17) were assigned to all; additionally cell viability assays were assigned “viability gain-loss fit” (19) 
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2.3.4  DNT-NAM experimental validation using assay positive controls 
 
The MEA NFA and HCI assays have been previously published, but the reproducibility of the assays, as 
demonstrated by variability in the vehicle-control wells assayed in each assay component, has not been 
reported previously. In this section, the reproducibility of the assays, and the performance of assay 
controls as probe substrates known to disrupt key neurodevelopmental processes in vitro, are discussed. 
Although both the MEA NFA and HCI assays are comprised by multiple individual assay components 
(data before direction-dependent analysis) and assay endpoints (data after direction-dependent analysis), it 
should be noted that the MEA NFA and HCI assay components/endpoints are considered collectively; the 
components/endpoints encompassed by the MEA NFA or HCI assays are being applied as a group to 
understand putative in vitro DNT-related hazard. 
  
2.3.4.1 Assay reproducibility 

 
2.3.4.1.1 Assay reproducibility based on DMSO vehicle control wells 
Several quantitative indicators of assay reproducibility were calculated to understand the performance of 
MEA NFA and HCI assays. First, the reproducibility of the vehicle control (i.e., DMSO) treated wells 
was evaluated using the median, the median absolute deviation (MAD), and coefficient of variation (CV) 
to understand the dispersion of the distribution of raw results for DMSO-treated wells in the MEA NFA 
(Table 5) and HCI assays (Table 6). For the MEA NFA, the average CV was 16% across all 18 assay 
components, with a range of 6.57-25.2%. For the HCI assays, the average CV was 8.74% across all 21 
assay components, with a range of 3.66-16.6%. The CV of the vehicle control wells in these assays are 
generally less than 20% and suggest that these assays are reproducible. The variability in baseline is 
accounted for in determination of assay endpoint positives, i.e., chemical-induced changes considered 
positive must be separated from any estimate of the baseline response. For determination of positive assay 
endpoint hit-calls, in the MEA NFA a cutoff was set at activity three times the BMAD of the responses 
from the vehicle control and two lowest test concentrations on the plate (Table 5); these cutoff values then 
ranged from 21 to 79% changes. For the HCI assays, the minimum of a 30% change or three times the 
BMAD was used as a cutoff for a positive hit-call, resulting in cutoff values that ranged from 30 to 44.7% 
changes (Table 6).  

 

Table 5. Assay reproducibility using DMSO vehicle control wells for the MEA NFA 
The median, median absolute deviation (MAD), and coefficient of variation (CV, in units of %) were 
calculated for the pre-processed area-under-the-curve values (ToxCast multi-concentration level 0) from 
the DMSO-treated wells of each assay component. For the MEA NFA, an area-under-the-curve was used 
to compress the effects observed over time at each concentration.  

ACID Assay component name Median MAD CV 
2471 NHEERL_MEA_dev_firing_rate_mean 10.84 2.12 20.5 
2472 NHEERL_MEA_dev_burst_rate 20.04 3.48 18.8 
2473 NHEERL_MEA_dev_active_electrodes_number 98.12 6.3 7.63 
2474 NHEERL_MEA_dev_bursting_electrodes_number 78.88 7.41 9.20 
2475 NHEERL_MEA_dev_per_burst_interspike_interval 0.3 0.07 25.2 
2476 NHEERL_MEA_dev_per_burst_spike_percent 457.46 38.17 9.57 
2477 NHEERL_MEA_dev_burst_duration_mean 4.18 0.81 23.1 



 

27 
 

ACID Assay component name Median MAD CV 
2478 NHEERL_MEA_dev_interburst_interval_mean 207.8 48.58 22.8 
2479 NHEERL_MEA_dev_network_spike_number 343.88 55.23 21.3 
2480 NHEERL_MEA_dev_network_spike_peak 79.02 5.68 7.31 
2481 NHEERL_MEA_dev_spike_duration_mean 1.38 0.17 13.1 
2482 NHEERL_MEA_dev_network_spike_duration_std 0.49 0.09 22.1 
2483 NHEERL_MEA_dev_per_network_spike_interspike_interval_mean 199.07 53.52 24.0 
2484 NHEERL_MEA_dev_per_network_spike_spike_number_mean 324.38 48.42 15.1 
2485 NHEERL_MEA_dev_per_network_spike_spike_percent 85.13 12.34 17.0 
2486 NHEERL_MEA_dev_correlation_coefficient_mean 1.53 0.22 14.8 
2487 NHEERL_MEA_dev_mutual_information_norm 0.05 0.01 19.6 
2488 NHEERL_MEA_dev_LDH 1.05 0.07 7.66 
2489 NHEERL_MEA_dev_AB 23014.9 1505.58 6.57 

 

Table 6. Assay reproducibility using DMSO vehicle control wells for the HCI assays 
The median, median absolute deviation (MAD), and coefficient of variation (CV, in units of %) were 
calculated for the raw values (ToxCast multi-concentration level 0) from the DMSO-treated wells of each 
assay component. Gray rows indicate assay components that are indicative of cytotoxicity. 

ACID Assay component name Median MAD CV 
2711 MUNDY_HCI_hNP1_Pro_MeanAvgInten 87.7 11.5 12.7 
2710 MUNDY_HCI_hNP1_Pro_ResponderAvgInten 33.7 4.16 11.9 
2709 MUNDY_HCI_hNP1_Pro_ObjectCount 92.9 8.45 8.51 
2691 MUNDY_HCI_hNP1_Casp3_7 65300 2230 3.8 
2700 MUNDY_HCI_hNP1_CellTiter 714000 18200 1.96 

2695 MUNDY_HCI_hN2_NOG_BPCount 0.56 0.0741 13.5 
2694 MUNDY_HCI_hN2_NOG_NeuriteCount 1.66 0.0593 3.63 
2693 MUNDY_HCI_hN2_NOG_NeuriteLength 75.2 4.76 7.15 
2692 MUNDY_HCI_hN2_NOG_NeuronCount 23.4 3.56 13.5 
2699 MUNDY_HCI_Cortical_NOG_BPCount 3.47 0.282 8.36 
2698 MUNDY_HCI_Cortical_NOG_NeuriteCount 2.95 0.0445 1.76 

2697 MUNDY_HCI_Cortical_NOG_NeuriteLength 128 10.5 8.42 
2696 MUNDY_HCI_Cortical_NOG_NeuronCount 26.3 1.81 7.6 
2707 MUNDY_HCI_Cortical_Synap&Neur_Matur_BPCount 10.3 0.778 7.39 
2706 MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuriteCount 4.88 0.17 3.66 
2705 MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuriteLength 396 28.5 9.41 
2702 MUNDY_HCI_Cortical_Synap&Neur_Matur_CellBodySpotCount 14.1 1.69 13.9 

2703 MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuriteSpotCountPerNeuron 64.2 12.3 16.2 
2708 MUNDY_HCI_Cortical_Synap&Neur_Matur_SynapseCount 77.7 16.6 16.6 
2704 MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuriteSpotCount PerNeuriteLength 0.18 0.0148 8.24 
2701 MUNDY_HCI_Cortical_Synap&Neur_Matur_NeuronCount 23.4 1.24 5.41 
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2.3.4.1.2 Assay reproducibility based on repeated test chemical screening 
 
Additionally, in the MEA NFA assays, 21 test chemicals were screened across more than one 
experimental block using more than one sample of the chemical. Eight of these compounds were OP 
chemicals. This provides a means of understanding hit-call and potency reproducibility for test chemicals. 
No chemicals had been screened more than once in the HCI assays for this analysis. 
 
For the MEA NFA repeated test chemical screening, the results of the 21 test chemicals can be parsed 
into three response groups: 10/21 had repeated strong positive (both replicates with >3 assay endpoints 
consistently positive) or negative (all replicates with 0 assay endpoints positive) responses, 5/21 had 
equivocal responses (1 replicate with between 1 and ≤3 assay endpoints positive and one replicate with no 
assay endpoints positive), and 6/21 had mixed (1 replicate with positive and 1 replicate equivocal or 
negative) responses. Thus, from a qualitative perspective, the replicability of overall chemical hit-call was 
71% (15/21). In terms of quantitative concordance, for the 9 of the 10 chemicals with repeated positive 
responses, the average standard deviation in log10-AC50 values (in micromolar units) was less than 0.5 
log10-micromolar, except for 2,2’,4,4’-tetrabromodiphenyl ether, where there was more uncertainty in the 
potency values (average standard deviation across all AEIDs for this chemical was 1.71 log10-
micromolar). Complete details on all 21 compounds can be found in Supplemental Appendix B, while 
information on the OP chemicals can be found in Section 2.3.5. There are several potential reasons why 
different samples of the same chemical have yielded mixed results, including sample stability, culture 
preparations, temporal differences and personnel changes.  
 
2.3.4.2 Assay performance with assay controls 

Assay performance for the MEA NFA and HCI assays was evaluated with assay controls known to cause 
effects on neural network formation and function, or HCI endpoints that inhibit neurodevelopmental 
processes (e.g., synaptogenesis, neurite outgrowth) in vitro (Table 7).  

The performance of assay controls is visually summarized in Figures 3 and 4, with more data provided for 
the MEA NFA in Table 8 and for the HCI assays in Table 9. The approaches between the MEA NFA and 
HCI assays varied slightly, as the MEA NFA included training compounds in the screening set, but did 
not use on-plate controls due to throughput limitations, whereas on-plate controls were used for the HCI 
assays but not in a full concentration-response (thus curve-fitting could not be used to approximate AC50 
values). In the MEA NFA, the positive control substances (loperamide hydrochloride, 
bisindolylmaleimide I, L-domoic acid, mevastatin, and sodium orthovanadate) work to inhibit (decrease) 
neuronal network formation. In the HCI assays, similarly, the positive controls (aphidocholin, lithium 
chloride, bisindolylmaleimide I, sodium orthovanadate, NSC 23766 trihydrochloride, and staurosporine) 
all work to inhibit key critical neurodevelopmental processes (i.e., neurite outgrowth, synaptogenesis, 
proliferation) in specific cell types, save staurosporine, which reduces cell viability via apoptosis 
(Supplemental Appendix A).  
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Table 7. Assay performance controls 
The DSSTox unique identifier (DTXSID), chemical name, assay activity anticipated, use of the control in 
the MEA-NFA or HCI Assays, and notes on the assay performance controls are provided in Table 8. 

DTXSID Chemical name Assay activity MEA 
NFA 

HCI 
Assays  Notes 

DTXSID2020006 Acetaminophen Negative control 
(McConnell et al., 2012) 

Yes No  

DTXSID00880006 

4-(4-Chlorophenyl)-4-
hydroxy-N,N-
dimethyl-alpha,alpha-
diphenylpiperidine-1-
butyramide 
monohydrochloride 
[also known as 
Loperamide 
hydrochloride] 

No evidence of DNT in 
vivo, cytotoxic and 
modulates ion transport 
(Einarson et al., 2000; 
Gong et al., 2012). Mode 
of action is agonist of the 
µ-opoid receptor 
(Vandenbossche et al., 
2010) 

Yes No In vivo, loperamide hydrochloride does not 
reach effective concentrations in the CNS 
due to rapid removal via p-glycoprotein 
transporters (Upton, 2007)(Upton, 2007). 

DTXSID20274180 L-Domoic acid 

Inhibited network activity 
and bicuculline response 
in cortical networks 
following in vitro 
developmental exposure 
(Hogberg et al., 2011) 

Yes No Domoic acid is an agonist for glutamate 
receptors, most specifically with the AMPA 
receptor (Hampson and Manalo, 1998). 

DTXSID4040684 Mevastatin Inhibits synaptogenesis in 
vitro (Harrill et al., 2011a) 

Yes No  

DTXSID50157932 Bisindolylmaleimide I 

Inhibits neurite outgrowth, 
synaptogenesis and 
ontogeny of network 
activity (Robinette et al., 
2011) 

Yes Yes Protein kinase C and GSK3 inhibitor (Hers 
et al., 1999; Toullec et al., 1991). Selective 
inhibition of in vitro neurite outgrowth and 
synaptogenesis below the threshold for 
cytotoxicity (Harrill et al., 2011a; Robinette 
et al., 2011). 

DTXSID2037269 Sodium orthovanadate 
Inhibits neurite outgrowth 
and synaptogenesis in 
vitro (Harrill et al., 2011b) 

Yes Yes Broad spectrum phosphatase inhibitor 
(Gordon, 1991; Pugazhenthi et al., 1996). 
Selective inhibition of neurite outgrowth and 
synaptogenesis below the threshold for 
cytotoxicity (Harrill et al., 2013; Harrill et 
al., 2011b). 

DTXSID90328386 NSC 23766 
trihydrochloride 

Affects primary rat neurite 
outgrowth (Harrill et al., 
2018) 

No Yes Rac1 inhibitor (Gao et al., 2004). Selective 
inhibition of neurite outgrowth below the 
threshold for cytotoxicity (Druwe et al., 
2016). 

DTXSID2025509 Lithium chloride Affects human (hN2) 
neurite outgrowth (Harrill 
et al., 2018) 

No Yes GSK3b inhibitor (Kirshenboim et al., 2004; 
O'Brien et al., 2011; Ryves and Harwood, 
2001; Stambolic et al., 1996). Selective 
inhibition of neurite outgrowth below the 
threshold for cytotoxicity (Harrill et al., 
2011a) 

DTXSID5036711 Aphidicolin Affects proliferation 
(Harrill et al., 2018) 

No Yes DNA polymerase inhibitor (Cheng and 
Kuchta, 1993; Goulian et al., 1990; Kota et 
al., 2012; Krokan et al., 1981; Wright et al., 
2006). Prototypical inhibitor of cell 
proliferation (Kohno et al., 2006; Mundy et 
al., 2010; Rolls et al., 2007; Walton et al., 
2006). 

DTXSID6041131 Staurosporine Induces apoptosis (Harrill 
et al., 2018) 

No Yes Broad spectrum kinase inhibitor (Karaman et 
al., 2008; Ruegg and Burgess, 1989). 
Prototypical inducer of apoptosis in many 
different cell models (Bertrand et al., 1994; 
Druwe et al., 2015; Feng and Kaplowitz, 
2002). 
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The approach to understanding assay performance with control chemicals seeks to evaluate the robustness 
of the assay performance controls; i.e., for chemicals with known in vitro activities (as detailed in Table 7 
and Supplemental Appendix A) relevant to neurodevelopment. In a quantitative approach, several 
measures of how well a signal can be reliably distinguished from noise were quantified. A robust Z’ 
factor was calculated (Zhang et al., 1999; Paul Friedman et al., 2016) for each assay endpoint. A Z’ of 
0.5-1.0 indicates an assay with sufficiently high signal-to-background distinction and an inter-sample 
variability low enough to consistently distinguish positive and negative test chemicals. Though this 
measure is commonly used to evaluate high-throughput assay quality, its interpretation herein should be 
qualified by the following: (1) Z’ is largely influenced by the effect size of the positive control, and so for 
assay endpoints lacking high efficacy controls, the Z’ will be diminished; (2) none of these assay 
endpoints are typically used individually as these assay endpoints are used collectively to understand the 
in vitro behavior of chemicals on neurodevelopmental processes or neuronal network formation. Thus, the 
Z’ can be informative in understanding which assay endpoints have very efficacious, reproducible 
controls that result in large effect sizes. The strictly standardized mean difference (SSMD) (Bray and 
Carpenter, 2017) is another metric often used in high-throughput bioactivity screening quality control to 
distinguish positive hits from negative hits on the basis of effect size. Larger SSMD absolute values tend 
to correspond to larger Z’ values. Signal-to-noise (SN) is another metric that indicates the positive control 
response from the baseline response, considering variability in that baseline. Again, for particular assay 
controls, the Z’ for the assay endpoint will be largely influenced by the effect size and its variability. 

For the MEA NFA, a heatmap summarizes the performance of assay controls (Figure 3) based on the 
AC50 potency values for each assay performance control across the suite of assay endpoints. 
Acetaminophen appears to be an optimal negative control, with no positive hit-calls in any assay 
endpoint. All of the other assay performance controls decrease general activity, bursting activity, and 
network connectivity measures, rather than increasing any of these activity types. The five chemicals used 
as assay positive controls (loperamide hydrochloride, bisindolylmaleimide I, L-domoic acid, mevastatin, 
and sodium orthovanadate) appear to affect all of the activity types in the MEA NFA, which may be due 
to the selection of these assay controls based on their ability to affect neurite outgrowth and 
synaptogenesis in vitro (Supplemental Appendix A). Evaluating assay performance controls 
quantitatively across all assay endpoints in the MEA NFA revealed that median Z’ for all the assay 
performance controls ranged from 0.55 to 0.8, suggesting that these controls demonstrate reproducible, 
robust results in the MEA NFA. Effect size as indicated by SSMD and the SN tracked with the Z’ values: 
larger effect sizes and SN ratios corresponded to higher Z’ values, in particular demonstrating that 
bisindolylmaleimide I and L-domoic acid were generally the most efficacious and reproducible controls 
in the MEA NFA.  
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Figure 3. Heatmap of MEA NFA assay performance control results.  
Activity (AC50 values) for the assay training set compounds. Each compound appears as a separate row, 
with separate columns for each assay parameter (listed along the bottom). Data are shown for each 
parameter in both the “up” and “down” directions. The type of activity measure is denoted by the 
different colors (black=general activity, blue=cytotoxicity, red=bursting, green=connectivity). 
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For the HCI assays, a review of how assay performance controls affect assay endpoint results is visually 
summarized in Figure 4 based on assay endpoint hit-call, as these assay controls were not screened in 
multi-concentration response, but rather as on-plate assay controls at a particular concentration. As not all 
assay controls were used in all assay endpoints/activity types, assay controls that were not screened in 
particular assay endpoints appear gray in the heatmap. Additional quantitative data to support Figure 4 is 
available in Table 9. Starting with the assay endpoints for apoptosis/viability, staurosporine appears to act 
as an optimal positive control, with robust Z’ values >0.75 for both assay endpoints and large effect sizes, 
as indicated by SSMD, that can be well distinguished from the assay endpoint baselines as indicated by 
SN ratio. For the proliferation assay component endpoints, aphidicolin produced effects but with very 
small effect sizes as indicated by SSMD and more variability as indicated by low SN and Z’, making 
aphidicolin a less optimal probe substrate but one that clearly affected hNP1 proliferation. For neurite 
outgrowth in hN2 cells, lithium chloride robustly affected the number of branch points and neurites, with 
smaller and less reproducible effect sizes for neurite length. In contrast, for the rat cortical neurite 
outgrowth assays, lithium chloride most robustly affects neurite length. Two other assay controls were 
used for the rat cortical neurite outgrowth assays: bisindolylmaleide I and a Rac GTPase inhibitor, NSC 
23766 trihydrochloride (with bisindolylmaleide I only used to evaluate neurite length and count). 
Bisindolylmaleide I produced moderate effects on neurite length (in the absence of cytotoxic effects on 
neurite count), and NSC 23766 very robustly affected branch point and neurite count as well as neurite 
length, with Z’ all ≤ 0.5 and large SSMD values. For the assay endpoints relevant to neurite maturation 
and synaptogenesis, bisindolylmaleide I and sodium orthovanadate were used. Bisindolylmaleide I 
demonstrated moderate effects sizes for branch point, neurite, and synapse count as well as neurite length, 
with concomitantly moderate Z’ scores in the 0.3 range, suggesting bisindolylmaleide I is a reasonable 
control despite limitations on its efficacy at this non-cytotoxic concentration. In general, sodium 
orthovanadate performed poorly as a control: it demonstrated small effect sizes with more variability, and 
consequently demonstrated very low Z’ values. Overall, the qualitative and quantitative results suggest 
the following: (1) for activity types including apoptosis/viability, hN2 neurite outgrowth, and rat primary 
cortical neurite outgrowth, optimal positive controls with high efficacy and highly reproducible responses 
have been identified and used to verify assay performance; (2) for activity related to cortical 
synaptogenesis/neurite maturation, moderate positive controls have been identified for some of the 
endpoints measured; and, (3) for activity related to hNP1 proliferation, the assay positive control 
produced effects but of low magnitude, resulting in less robust Z’ values.  
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Figure 4. Heatmap of HCI assay performance control results. 
The hit-calls [0=negative (yellow), 1 = positive (teal)] are illustrated for the on-plate assay controls for the 
HCI assay suite. Assay controls varied across the assay endpoints; controls not screened for a particular 
assay endpoint are annotated as hit-call=2 (gray). The median response of the assay control was used to 
derive a median hit-call (median response > COFF, median hit-call = 1) that is used in this figure. The 
activity type is annotated in the bar across the top of the heatmap (black = neurite outgrowth (NOG) 
initiation, rat; red = synaptogenesis/maturation in rat cells; green = neurite outgrowth (NOG) initiation in 
hN2 cells; dark blue = apoptosis and viability in hNP1 cells; and, light blue = proliferation in hNP1 cells). 
No clustering was performed due to the differences in the controls screened between assay endpoints. 
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Table 8. Assessment of assay performance controls for the MEA NFA. 
The assay activity anticipated (Brown et al., 2016), the number of positive MEA NFA endpoints (out of 
36 possible), and the minimum, median and maximum AC50 values (in micromolar, µM) are provided. 
Additionally, the median Z’, median SSMD, and the median SN are provided for each assay control 
across the 17 MEA NFA assay endpoints that indicate decreased activity and the two parallel cytotoxicity 
assay endpoints. The range of the Z’, SSMD, and SN for all assay endpoints is provided in parentheses. 
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DTXSID2020006 Acetaminophen 0 NA NA NA NA NA NA 

DTXSID00880006 

4-(4-Chlorophenyl)-4-
hydroxy-N,N-dimethyl-
alpha,alpha-
diphenylpiperidine-1-
butyramide 
monohydrochloride 
[also known as 
Loperamide 
hydrochloride] 

19 0.11 0.77 4.31 
0.55 

(0.29-
0.89) 

7 
(4-28) 

6.68 
(4.23-
27.91) 

DTXSID50157932 Bisindolylmaleimide I 19 0.01 4.12 8.38 
0.8 

(0.33-
0.94) 

15 
(4-48) 

15.17 
(4.47-
47.88) 

DTXSID20274180 L-Domoic acid 20 0.02 1.08 3.56 
0.78 

(0.26-
0.94) 

14 
(4-48) 

13.56 
(4.04-
47.88) 

DTXSID4040684 Mevastatin 18 0.06 0.92 94.87 
0.61 

(-0.17-
0.86) 

8 
(3-21) 

7.74 
(2.57-
21.44) 

DTXSID2037269 Sodium orthovanadate 14 1.98 15.04 81.26 0.74 
(0.08-0.9) 

12 
(-10-32) 

11.53 (-
9.64-

31.55) 
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Table 9. Assessment of assay performance controls for the HCI assays. 
Assay endpoint ID (AEID), assay endpoint name (AENM), cutoff response for a positive hit-call (COFF), median response of the assay performance control 
chemical (MED.RESP), median hit-call for that assay performance control chemical in the AEID (MED.RESP > COFF, MED.HITC = 1), the assay performance 
control chemical name (CHEM), the DTXSID, micromolar concentration (CONC.UM), Z’, strictly standardized mean difference (SSMD), and signal-to-noise 
ratio (SN) are reported. Some AEID used different assay performance controls; as such, the Z’, SSMD, and SN are presented as the median across all plates for 
an AEID-CHEM combination. Gray rows with italicized text indicate assay endpoints that if positive indicate cytotoxicity; assay performance controls were 
intended to be negative for these assay endpoints (i.e., there was an attempt to screen assay performance control at concentrations below cytotoxicity). 
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y 2793 MUNDY_HCI_hNP1_Casp3_7_gain 30 199.41 1 Staurosporine DTXSID6041131 1 0.8 19 54.59 

2794 MUNDY_HCI_hNP1_CellTiter_loss 30 70.3 1 Staurosporine DTXSID6041131 10 0.75 18 19.69 

Pr
ol

ife
ra

tio
n 2795 MUNDY_HCI_hNP1_Pro_MeanAvgInten_loss 31.03 47.12 1 Aphidicolin DTXSID5036711 10 0 3 2.99 

2796 MUNDY_HCI_hNP1_Pro_ObjectCount_loss 30 20.83 0 Aphidicolin DTXSID5036711 10 0 1 1.57 

2797 MUNDY_HCI_hNP1_Pro_ResponderAvgInten_ loss 34.29 87.14 1 Aphidicolin DTXSID5036711 10 0.1 4 4.77 

N
O

G
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N
2 

2789 MUNDY_HCI_hN2_NOG_BPCount_loss 37.7 79.34 1 Lithium 
chloride 

DTXSID2025509 1000
0 

0 3 3.62 

2790 MUNDY_HCI_hN2_NOG_NeuriteCount_loss 30 43.53 1 Lithium 
chloride 

DTXSID2025509 1000
0 

0.38 8 10.45 

2791 MUNDY_HCI_hN2_NOG_NeuriteLength_loss 30 62.56 1 Lithium 
chloride 

DTXSID2025509 1000
0 

0.58 9 13.25 

2792 MUNDY_HCI_hN2_NOG_NeuronCount_loss 32.45 44.25 1 Lithium 
chloride 

DTXSID2025509 1000
0 

0 2 3.63 
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2779 MUNDY_HCI_Cortical_NOG_NeuriteLength_loss 30 42.66 1 Bisindolylmalei
mide I 

DTXSID50157932 3 0.31 4 4.76 

2780 MUNDY_HCI_Cortical_NOG_NeuronCount_loss 30 18.52 0 Bisindolylmalei
mide I 

DTXSID50157932 3 0 0 -0.1 

2777 MUNDY_HCI_Cortical_NOG_BPCount_loss 30 48.39 1 Lithium 
chloride 

DTXSID2025509 3 0.06 3 9.07 

2778 MUNDY_HCI_Cortical_NOG_NeuriteCount_loss 30 24.66 0 Lithium 
chloride 

DTXSID2025509 3 0 3 3.58 

2779 MUNDY_HCI_Cortical_NOG_NeuriteLength_loss 30 42.66 1 Lithium 
chloride 

DTXSID2025509 3 0.3 5 6.98 
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2780 MUNDY_HCI_Cortical_NOG_NeuronCount_loss 30 18.52 0 Lithium 
chloride 

DTXSID2025509 3 0 2 2.5 

2777 MUNDY_HCI_Cortical_NOG_BPCount_loss 30 48.39 1 NSC 23766 
trihydrochloride 

DTXSID90328386 3 0.5 8 9.96 

2778 MUNDY_HCI_Cortical_NOG_NeuriteCount_loss 30 24.66 0 NSC 23766 
trihydrochloride 

DTXSID90328386 3 0.71 14 46.88 

2779 MUNDY_HCI_Cortical_NOG_NeuriteLength_loss 30 42.66 1 NSC 23766 
trihydrochloride 

DTXSID90328386 3 0.53 8 11.73 

2780 MUNDY_HCI_Cortical_NOG_NeuronCount_loss 30 18.52 0 NSC 23766 
trihydrochloride 

DTXSID90328386 3 0 1 2.57 
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2782 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
CellBodySpotCount_loss 

44.68 -25.1 0 Bisindolylmalei
mide I 

DTXSID50157932 3 0 -1 -1.41 

2784 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuriteLength_loss 

30 68.81 1 Bisindolylmalei
mide I 

DTXSID50157932 3 0.3 5 4.91 

2785 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuriteSpotCountPerNeuriteLength_loss 

30 0.16 0 Bisindolylmalei
mide I 

DTXSID50157932 3 0 0 -0.01 

2786 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuriteSpotCountPerNeuron_loss 

36.58 68.21 1 Bisindolylmalei
mide I 

DTXSID50157932 3 0.29 5 6.31 

2787 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuronCount_loss 

30 -16.98 0 Bisindolylmalei
mide I 

DTXSID50157932 3 0 -2 -2.88 

2788 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
SynapseCount_loss 

31.17 62.52 1 Bisindolylmalei
mide I 

DTXSID50157932 3 0.34 5 5.99 

2781 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
BPCount_loss 

30 45.56 1 Sodium 
orthovanadate 

DTXSID2037269 10 0 3 5.14 

2782 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
CellBodySpotCount_loss 

44.68 -25.1 0 Sodium 
orthovanadate 

DTXSID2037269 3 0 0 0.62 

2783 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuriteCount_loss 

30 9.09 0 Sodium 
orthovanadate 

DTXSID2037269 10 0 2 2.87 

2784 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuriteLength_loss 

30 68.81 1 Sodium 
orthovanadate 

DTXSID2037269 3 0 3 5.77 

2785 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuriteSpotCountPerNeuriteLength_loss 

30 0.16 0 Sodium 
orthovanadate 

DTXSID2037269 3 0 1 0.67 

2786 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuriteSpotCountPerNeuron_loss 

36.58 68.21 1 Sodium 
orthovanadate 

DTXSID2037269 3 0 2 1.95 

2787 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
NeuronCount_loss 

30 -16.98 0 Sodium 
orthovanadate 

DTXSID2037269 3 0 1 1.99 

2788 MUNDY_HCI_Cortical_Synap&Neur_Matur_ 
SynapseCount_loss 

31.17 62.52 1 Sodium 
orthovanadate 

DTXSID2037269 3 0 1 1.28 



 

37 
 

2.3.5 DNT-NAM experimental results for OPs  
In this section, the approach along with results and discussion for OPs in the MEA NFA and HCI assays 
are presented. 

2.3.5.1 Approach to experimental result analysis 
2.3.5.1.1 Dataset 
 
The dataset used here was derived from experiments and data analysis as described in Section 2.3.3. 
Additionally, the dataset was filtered to remove curve-fit information for less reproducible curve-fits, 
namely curve-fitting information was not used if the curve-fit was associated with 3 or more caution flags 
(from level 6 of multi-concentration data analysis using tcpl) and/or a fit category of 36 or 45 (from level 
5 of multi-concentration data analysis using tcpl) that would indicate that the calculated AC50 was less 
than the concentration range screened. For these less reproducible curve-fits, the hit-call was changed to 
negative (0) and the AC50 value was set to NA. 

2.3.5.1.2 Heatmap visualizations 
The specific OP chemical sample and its activity in the MEA NFA and HCI assays are illustrated in 
Figures 5 and 6, respectively. The OP substance results are presented using the log10-AC50 (µM) values 
used in the main heatmap images, with columns indicating assay endpoint names and rows indicating OP 
substance name and sample id (spid). Darker blue corresponds to lower log10-AC50 values, and a value 
of 6 (represented by yellow) has been assigned for substances with a negative hit-call for the assay 
endpoint. The column assay endpoint names are abbreviated by removing the “NHEERL_MEA_dev_” or 
“MUNDY_HCI_” from the beginning and trimming to 50 characters for ease of reading. The activity type 
for each assay endpoint is also annotated for the columns. For row annotations, OP substances that have 
an oxon structural moiety have been annotated by row (gray). Hierarchical clustering was performed 
using Ward.D2 methodology. In these visualizations, any trends for OP chemicals in terms of the assay 
endpoints affected, the potency with which assay endpoints were affected, and the impact of the oxon 
structural moiety and/or performance of parent/metabolite pairs can be examined. 

2.3.5.1.3 Potency, selectivity, and a metric of relative activity 
The effects of OP chemical samples across both the MEA NFA and HCI assay technologies were 
considered in more detail via examination of the potency ranges, presence of any assay endpoint effects at 
concentrations lower than cytotoxicity (referred to as selectivity), and a metric (referred to as the scaled 
AUC sum) to consider the relative potency and efficacy across the set of 27 OP substances are presented 
in Tables 12 and 13 for the MEA NFA and HCI assays, respectively.  

Potency. For the MEA NFA and HCI assays, OP chemical potency was indicated by the minimum and 
median AC50 values for any positive assay endpoints in the assay technology. This potency range 
indicates at the highest level the concentration range that OP chemicals would be anticipated to be 
positive in the DNT-NAM battery in this Issue Paper. 

Selectivity. For the MEA NFA assays, a selectivity score was calculated for the entire assay technology 
using the minimum cytotoxicity potency value (minimum of log10-AC50 (µM) from LDH and AB assay 
endpoints) minus the minimum potency value (log10-AC50 (µM)) for all positive assay endpoints. 
Selectivity scores of > 0.3 likely indicate some selective activity of the OP chemical in the assay, i.e., the 
lowest concentration-related effects on general activity, bursting activity, and/or network connectivity 
occurred at lower concentrations than cytotoxicity. If there were no positive assay endpoints, no 
selectivity score could be calculated. If the cytotoxicity assay endpoints were negative, a selectivity score 
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was inferred using the maximum log10-concentration of the OP chemical screened minus the minimum 
potency value (log10-AC50 (µM)) for all positive assay endpoints. 

For the HCI, separate selectivity values were calculated for: neurite outgrowth (NOG) with hN2 cells; 
NOG with rat primary cortical cells; neurite maturation with rat primary cortical cells; synaptogenesis 
with rat primary cortical cells; and, proliferation with hNP1 cells. For NOG, neurite maturation, and 
synaptogenesis assay endpoints, the cytotoxicity potency used to calculate selectivity was taken from the 
assay endpoints that evaluated “neuron count.” For the proliferation assays in hNP1 cells, the potency 
value in the hNP1_Pro_ObjectCount_loss assay was used as the cytotoxicity potency. Then, the minimum 
log10-AC50 value for assay endpoints for each of these activity types was subtracted from the 
corresponding cytotoxicity log10-AC50 value for a selectivity score. Just like the MEA NFA, selectivity 
scores of > 0.3 likely indicate some selective activity of the OP chemical in the HCI assay subset. If the 
appropriate cytotoxicity assay endpoint was negative, the selectivity score was inferred using the 
maximum log10-concentration of the OP chemical screened minus the minimum potency value (log10-
AC50 (µM)). Selectivity could not be calculated for the apoptosis/cell viability assays in hNP1. 

Scaled area under the curve (AUC) sum. The objective of the scaled AUC sum was to provide a metric 
that could be used to consider the relative in vitro bioactivity, including both potency and efficacy, of the 
27 OP chemicals in this set. No other reference chemicals have been used to derive this relative 
comparison. First, the area under the curve (AUC) for each positive assay endpoint in the MEA NFA and 
the HCI assays was calculated using the curve-fitting information from tcpl. A scaled AUC sum was 
calculated for each OP sample for (1) the MEA NFA assay technology and (2) the HCI assay technology 
via the following equation (Eq. 1): 

𝐸𝐸𝐸𝐸 1. :     𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐴𝐴𝐴𝐴𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁𝑁𝑁𝑀𝑀,𝐻𝐻𝐻𝐻𝐻𝐻 =
𝑠𝑠𝑙𝑙𝑙𝑙2(∑𝐴𝐴𝐴𝐴𝐴𝐴)

95𝑡𝑡ℎ 𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑡𝑡𝑝𝑝𝑠𝑠𝑠𝑠(𝑠𝑠𝑙𝑙𝑙𝑙2(∑𝐴𝐴𝐴𝐴𝐴𝐴))
 

The scaled AUC sum for each assay technology (MEA NFA or HCI) is scaled only to the other OP 
samples in this dataset for that assay technology; the 95th percentile AUC sum value from the OP dataset 
for the assay technology (MEA NFA or HCI) was used to scale the values so that they would fall roughly 
from 0 to 1. 
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2.3.5.2 Heatmap visualizations of potency results for OPs 
 

Figure 5. Heatmap of MEA NFA experimental results for OPs. 
The OP substance results are presented using the log10-AC50 (µM) values used in the main heatmap 
image, with columns indicating assay endpoint names and rows indicating OP substance name and 
sample id (spid), resulting in 35 rows for 27 unique substances. Darker blue corresponds to lower log10-
AC50 values, and a value of 6 (represented by yellow) has been assigned for substances with a negative 
hit-call for the assay endpoint. The activity type (cytotoxicity = blue, general activity = black, bursting = 
red, network connectivity = green) for each assay endpoint is also annotated for the columns. For row 
annotations, OP substances that have an oxon structural moiety have been annotated by row (gray). 

For the MEA NFA, OPs generally decreased assay endpoint responses, much like the known assay 
performance controls. Very few OP chemicals elicited any increased activity, and the disparate 
observations of increased activity (never more than 2 assay endpoints demonstrated increased activity for 
a substance) suggest that OP chemicals active in the MEA NFA generally act to decrease network 
formation and function. However, there was no indication that OP samples affected general activity, 
bursting activity, network connectivity, or cytotoxicity assay endpoints with any differential pattern. This 
is analogous to the observations of the assay performance controls. In terms of potency, nearly all of the 
log10-AC50 values for OP samples ranged from approximately 0 to 2 (1 to 100 µM) in the MEA NFA, 
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with the exception of one sample of methamidophos and one sample of chlorpyrifos oxon which 
demonstrated some log10-AC50 values less than 0 (in the 0.1-1 µM range). Approximately three groups 
are apparent from hierarchical clustering of the data:  

• OP samples for which <3 assay endpoints were positive (malaoxon, acephate, diazoxon, 
dicrotophos, fosthiazate, dichlorvos, profenofos, omethoate);  

• OP chemicals with two separate samples with discordant patterns (chlorpyrifos oxon, diazinon, 
methamidophos); and,  

• the largest group, OP samples for which general activity, bursting, and network connectivity were 
all decreased (bensulide, chlorethoxyfos, chlorpyrifos, coumaphos, dimethoate, ethoprop, 
malathion, naled, phorate, phosmet, pirimphos-methyl, tebupirimfos, terbufos, tribufos, 
trichlorfon, z-tetrachlorvinphos). 

In previous work with the MEA for acute studies, it has been suggested that “true positive” responses may 
only occur for samples that elicit effects for 3 or more assay endpoints (Kosnik et al., 2020), though a 
statistical analysis of the possible Type I error rate across the assay suite has not been performed to date 
for the acute MEA or the MEA NFA. Tentatively, the samples with less than 3 assay endpoints positive 
may be considered equivocal, whereas samples with 0 assay endpoints positive may be considered 
negative.  

For the three OP chemicals that have samples with discordant patterns of response, it is not possible to 
explain fully the results and re-screening would be required for a definitive result. However, eight OP 
chemicals were tested with two separate samples, and overall these chemicals reflected the hit-call 
concordance of the MEA NFA of approximately 80% between replicate samples (Supplemental Appendix 
B). For four of eight chemicals with replicate samples, results were concordant, with >3 assay endpoints 
being altered for chlorpyrifos, dimethoate, malathion and trichlorfon, resulting in concordant positive 
results. One sample of acephate was negative in all assay endpoints, and one sample of acephate was 
positive for only two assay endpoints, indicating that this chemical was possibly in the equivocal 
category. In contrast, results with replicate samples of chlorpyrifos oxon, diazinon and, to a lesser extent, 
methamidophos, were discordant. Many factors may have affected these results, including the 
experiments being performed in different years by different laboratory technicians, but one hypothesis is 
that sample stability in DMSO may have contributed to some of the discordant results for the OPs. 
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Table 10. OP chemicals screened in at least two screening blocks in the MEA NFA. 
The DTXSID, chemical, sample, number of positive assay endpoints ((+) AEIDs), the minimum log10-
AC50 (µM), the mean log10-AC50 (µM), the standard deviation of the log10-AC50 values for both 
samples of the chemical across all assay endpoints, and the response group are presented. Response group 
indicates the activity as equivocal (0-2 assay endpoint positive for each sample); positive (3 or more 
positive assay endpoints for each sample); and, mixed (discordant results between samples). 

DTXSID Chemical Sample (+) 
AEIDs 

Min 
log10-
AC50 

Mean 
log10-
AC50 

SD 
(log10-
AC50), 
average 

Response 
group 

DTXSID8023846 Acephate EPAPLT0167A01 2 -0.042 0.968 NA Equivocal 
 DTXSID8023846 Acephate TT0000177A04 0 NA NA NA 

DTXSID4020458 Chlorpyrifos EX000384 19 0.197 1.13 0.151 Positive 
DTXSID4020458 Chlorpyrifos TT0000177E02 18 1.1 1.22 0.151 
DTXSID1038666 Chlorpyrifos oxon EX000378 16 -0.84 0.596 NA Mixed 
DTXSID1038666 Chlorpyrifos oxon TT0000177G02 0 NA NA NA 
DTXSID9020407 Diazinon EPAPLT0170D06 2 1.08 1.23 NA Mixed 

 DTXSID9020407 Diazinon TT0000177H01 17 1.51 1.72 NA 
DTXSID7020479 Dimethoate EPAPLT0167G06 15 1.06 1.27 0.3 Positive 
DTXSID7020479 Dimethoate TT0000177H02 18 1.56 1.7 0.3 
DTXSID4020791 Malathion EPAPLT0167G08 18 -0.0954 0.798 0.254 Positive 
DTXSID4020791 Malathion TT0000177D02 19 0.864 1.16 0.254 
DTXSID6024177 Methamidophos EPAPLT0167A08 5 -0.999 0.664 NA Mixed 

 DTXSID6024177 Methamidophos TT0000177B02 0 NA NA NA 
DTXSID0021389 Trichlorfon EPAPLT0170D03 12 0.281 0.85 0.443 Positive 
DTXSID0021389 Trichlorfon TT0000177F01 18 0.548 1.56 0.443 

 

Further information on sample stability is indicated here: 

• Differential activity was observed between two different samples of chlorpyrifos-oxon; one 
sample (TT0000177G02) demonstrated no effects, whereas the other sample (EX000378) 
demonstrated suppression of general activity, bursting, and network connectivity. For 
chlorpyrifos oxon, quality control data on the particular sample used in screening was not 
available whereas purity issues of separately sourced Tox21 samples were detected both at the 
time of shipment (75-90% purity) and after 4 months of storage at room temperature (<50% 
purity) (https://tripod.nih.gov/tox21/samples/Tox21_301063). Thus, the inactive chlorpyrifos 
oxon sample may be inactive due to sample degradation, but additional quality control test of the 
chemical sample or additional screening with a new analytically verified chlorpyrifos oxon 
sample would likely be needed to resolve the activities. For the work herein, the active 
chlorpyrifos oxon sample bioactivity data have been used for derivation of AEDs in Section 
2.3.6. 

• One sample of diazinon (EPAPLT0170D06) altered only three assay endpoints, whereas the other 
sample (TT0000177H01) decreases numerous endpoints related to general activity, bursting and 
connectivity. Analysis of related samples of diazinon suggest that diazinon in some samples may 
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degrade over time, with high purity confirmed at sample shipment but with purity < 50% at 4 
months of storage at room temperature (https://tripod.nih.gov/tox21/samples/Tox21_300730).  

• One sample of methamidophos (TT0000177B02) was without activity towards any endpoint, 
whereas the other sample (EPAPLT0167A08) decreased a subset of 5 endpoints. Quality control 
data on related and unrelated samples of methamidophos indicate stability in DMSO solution 
over time. The positive responses from one sample (EPAPLT0167A08) of methamidophos 
appear to be the result of relatively borderline efficacy. 

Considering the heatmap of the MEA NFA results, it is unclear if the oxon structural moiety drives 
differential activity due to the small number of chemicals included in this dataset. Most of the 27 OP 
chemicals in this dataset contained the oxon structural moiety (19/27, as indicated by the gray row 
annotation in Figure 3), and these oxon-containing OP chemicals distribute between the main clusters 
(positive, equivocal, and negative). Of the non-oxon OP chemicals (bensulide, coumaphos, diazinon, 
dimethoate, malathion, phorate, phosmet, and terbufos), all except for one sample of diazinon appear in 
the positive cluster. Considering the bioactivity of parent/metabolite pairs may explain some of the 
differential activity observed: (1) malathion was positive and its metabolite malaoxon was negative; (2) 
diazinon demonstrated discordant activity across samples (one positive and one equivocal) and its 
metabolite diazoxon was equivocal; (3) dimethoate was positive and its metabolite omethoate was 
equivocal; and, (4) chlorpyrifos was positive and its metabolite chlorpyrifos oxon demonstrated 
discordant activity (positive and negative) across samples.  

In terms of potency, the log10-AC50 ranges across the active OP samples ranged from approximately 0 to 
2 (1 to 100 µM), with the exception of dichlorvos and terbufos, which demonstrated some log10-AC50 
values less than 0 (in the 0.01-1 µM range) in one of the apoptosis-related assay endpoints. In contrast to 
the MEA NFA, the assays in the HCI technology demonstrated some differential activity across activity 
types represented by different assay subsets. For the HCI assays, approximately four groups are apparent 
from hierarchical clustering of the data:  

• Cluster 1: OP samples with no effects or disparate patterns of response in one to three assay 
endpoints (no effects with acephate, diazoxon, dicrotophos, fosthiazate, malaoxon, profenofos, or 
tebupirimifos, and disparate effects with diazinon, dichlorvos, ethoprop, omethoate, and 
methamidophos);  

• Cluster 2: OP samples with effects on five or more assay endpoints, with chlorpyrifos oxon and 
phosmet affecting NOG initiation in rat cortical cells and dimethoate, phorate, and trichlorfon 
appearing to affect synaptogenesis/neurite maturation in rat cortical cells;  

• Cluster 3: OP samples with effects on all HCI assay activity types except for NOG initiation in 
hN2 cells (chlorethoxyfos, naled, terbufos, tribufos); and, 

• Cluster 4: OP samples with more widespread effects across activity types, with chlorpyrifos, 
coumaphos, malathion, and pirimiphos-methyl affecting all activity types (rat and hN2 NOG; 
synaptogenesis and neurite maturation in rat; proliferation, apoptosis and viability in hNP1 cells). 
Bensulide affected all activity types without affecting synaptogenesis and neurite maturation, and 
Z-tetrachlorvinphos affected all activity types but with more limited effects on synaptogenesis 
and neurite maturation. 
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Figure 6. Heatmap of HCI assay results for OPs. 
The OP substance results are presented using the log10-AC50 (µM) values used in the main heatmap 
image, with columns indicating assay endpoint names and rows indicating OP substance name and 
sample id (spid), resulting in 27 rows for 27 unique substances (no repeated substances). Darker blue 
corresponds to lower log10-AC50 values, and a value of 6 (represented by yellow) has been assigned for 
substances with a negative hit-call for the assay endpoint. The activity type (NOG initiation, rat = black; 
synaptogenesis/maturation, rat = red; NOG initiation, hN2 = green; apoptosis/viability, hNP1 = dark blue; 
proliferation, hNP1 = light blue) for each assay endpoint is also annotated for the columns. For row 
annotations, OP substances that have an oxon structural moiety have been annotated by row (gray). The 
apparent clusters are numbered for further discussion below. 

 

All of the OPs in the first cluster (no effects or effects in one to three assay endpoints) were oxon-
containing OP chemicals, though oxons distributed throughout all of the clusters. The OP chemicals that 
do not contain an oxon structural moiety were distributed among the three more active clusters. 
Considering parent-metabolite pairs, as with the MEA NFA results, generally indicate that the parent OP 
chemical was more active than the oxon metabolite: (1) diazinon demonstrated disparate effects whereas 
its metabolite diazoxon was negative; (2) malathion demonstrated widespread effects on all activity types 
whereas its metabolite malaoxon was negative; (3) dimethoate affected synaptogenesis/neurite maturation 
but omethoate affected only one assay endpoint related to rat NOG; and, (4) chlorpyrifos demonstrated 

1 

2 

3 
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widespread effects across all activity types whereas chlorpyrifos oxon affected rat NOG initiation only. 
Though there are only 4 parent-metabolite pairs, the trend of more limited DNT-NAM activity for 
metabolites in parent-metabolites pairs appears consistent. 

Overall, the range of log10-AC50 values for active assay endpoints was similar for the MEA NFA and the 
HCI assays (0-2 log10-µM). Further, negative and equivocal results in MEA NFA (0-2 assay endpoints 
positive) generally corresponded to Cluster 1 for the HCI assays (0-3 assay endpoints positive). There is 
only 1 OP chemical (ethoprop) that was positive in MEA NFA and in the HCI cluster 1, indicating that 
negatives tend to be consistent between MEA NFA and HCI assays. Acephate, diazoxon, dichlorvos, 
dicrotophos, malaoxon, omethoate, and profenofos demonstrated limited to no activity in the MEA NFA 
and the HCI assays (Table 11). Considering all chemicals in HCI activity clusters 2, 3, and 4, only 1 OP 
chemical (methamidophos) was not positive in the MEA NFA, indicating that if activity is observed in the 
HCI assays, it is likely that the OP chemical will also be active in the MEA NFA.  

 
Table 11. Comparison of heatmap clustering. 
The cluster for the MEA NFA (negative = Neg; equivocal (0-2 assay endpoints positive) = Equiv; 
positive (3 or more assay endpoints positive) = Pos) is indicated alongside the HCI assay cluster (1 = 
limited to no activity; 2 = activity in 5 or more assay endpoints; 3 = activity in all assay? types except 
NOG initiation in hN2 cells; 4 = widespread activity). 

DTXSID Chemical MEA NFA HCI 
Neg Equiv Pos 1 2 3 4 

DTXSID8023846 Acephate X X  X    
DTXSID9032329 Bensulide   X    X 
DTXSID2032344 Chlorethoxyfos   X   X  
DTXSID4020458 Chlorpyrifos   X,X    X 
DTXSID1038666 Chlorpyrifos oxon X  X  X   
DTXSID2020347 Coumaphos   X    X 
DTXSID9020407 Diazinon  X X  X   
DTXSID5037523 Diazoxon  X  X    
DTXSID5020449 Dichlorvos  X  X    
DTXSID9023914 Dicrotophos  X  X    
DTXSID7020479 Dimethoate   X  X   
DTXSID4032611 Ethoprop   X X    
DTXSID0034930 Fosthiazate  X  X    
DTXSID9020790 Malaoxon X   X    
DTXSID4020791 Malathion   X    X 
DTXSID6024177 Methamidophos X X   X   
DTXSID1024209 Naled   X   X  
DTXSID4037580 Omethoate  X  X    
DTXSID4032459 Phorate   X  X   
DTXSID5024261 Phosmet   X  X   
DTXSID0024266 Pirimiphos-methyl   X    X 
DTXSID3032464 Profenofos  X  X    
DTXSID1032482 Tebupirimfos   X X    
DTXSID2022254 Terbufos   X   X  
DTXSID1024174 Tribufos   X   X  
DTXSID0021389 Trichlorfon   X  X   
DTXSID1032648 Z-Tetrachlorvinphos   X    X 
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2.3.5.3  Further consideration of potency, selectivity, and relative bioactivity 
It is currently unknown whether cytotoxicity in neural cell types is itself relevant to putative DNT-related 
activity, or if this cytotoxicity can be considered off-target activity. Thus, for the purposes of comparing 
potency in the DNT-NAM assays to BMDs from in vivo studies (Section 2.3.6), hits in the cytotoxicity 
and apoptosis assays have been included. However, it is of interest to understand if effects on neural 
network formation and function in the MEA NFA, or effects on NOG initiation, synaptogenesis and 
neurite maturation, and/or proliferation occur at concentrations lower than the concentrations that appear 
to affect apoptosis and/or cell viability. A comparison of the DNT-NAM minimum potency to the 
potency values observed in the broader ToxCast/Tox21 screening program, and the cytotoxicity burst 
threshold potency, is provided in Supplemental Appendix C. 

Selectivity results for the MEA NFA were mixed across the set of OP substances examined. Bensulide, 
chlorethoxyfos, diazoxon, dimethoate, malathion, methamidophos, and naled appeared to demonstrate 
some selectivity (selectivity score > 0.3). Acephate, chlorpyrifos and chlorpyrifos oxon, and 
methamidophos appeared to demonstrate selectivity depending on the chemical sample screened in the 
MEA NFA. Some OP substances demonstrated activity in HCI assays that appears selective (selectivity > 
0.3), but this observation was dependent on activity type/assay subset. Several chemicals (coumaphos, 
malathion, naled, phorate, pirimphos-methyl, and tribufos) appeared to demonstrate selectivity in the 
synaptogenesis and neurite maturation assay endpoints with rat primary cortical neurons. Bensulide and 
methamidophos were the only chemicals that appeared to demonstrate selectivity for hN2 NOG. 
Chlorethoxyfos, chlorpyrifos oxon, naled, and tribufos appeared to demonstrate some selectivity for the 
hNP1 proliferation assays. Selectivity varied considerably by chemical and by the particular assay/activity 
type. 

The scaled AUC sum was calculated to indicate the relative in vitro bioactivity of the OP chemicals in 
this dataset by compressing potency and efficacy into a single value by OP chemical. The scaled AUC 
sum results suggest that several OPs act with similar magnitude of effect in the MEA NFA (scaled AUC 
sum > 0.9). Scaled AUC sums < 0.8 appeared to capture OP substances with smaller magnitudes of effect 
in the MEA NFA (acephate, diazoxon, dichlorvos, dicrotophos, fosthiazate, methamidophos, omethoate, 
profenofos, Z-Tetrachlorvinphos). Indeed, these substances with scaled AUC sum values < 0.8 in the 
MEA NFA tended to reflect the OP chemicals with equivocal responses. Scaled AUC sum values in the 
HCI assays of < 0.8 appeared to generally indicate substances that were less active in the HCI assays 
overall, whereas scaled AUC sum > 0.8 generally indicated the more active substances (e.g., more assay 
endpoints positive) in the HCI assays. In future applications, a scaled AUC sum or similar representation 
of relative in vitro bioactivity could be used to indicate chemicals with effects similar or dissimilar to 
known DNT reference chemicals, as potency comparisons alone may not reveal differences in efficacy.
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Table 12. OP potency, selectivity, and magnitude of effect in the MEA NFA. 
The sample id (spid), DTXSID, chemical, hit-call sum (number of positive assay endpoints in the MEA NFA out of 36 total), minimum log10-
AC50 (µM) for all positive assay endpoints in the MEA NFA, the minimum cytotoxicity log10-AC50 (µM) from the MEA NFA LDH and AB 
assay endpoints, the selectivity score (cytotox – min AC50, in log10-µM), the minimum MEA NFA AC50 value in µM units, the median MEA 
NFA AC50 value in µM units, and the scaled AUC sum for the positive MEA NFA assay endpoints are all provided. When selectivity > 0.3, this 
indicates that MEA NFA activity was disrupted at concentrations lower than concentrations associated with cytotoxicity. 
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EPAPLT0167A01 DTXSID8023846 Acephate 2 -0.04 1.48 1.52 0.91 9.28 0.73 
TT0000177A04 DTXSID8023846 Acephate 0 NA 2.00 NA NA NA NA 
TT0000177A03 DTXSID9032329 Bensulide 20 1.07 1.53 0.47 11.69 31.35 0.96 
TT0000177G03 DTXSID2032344 Chlorethoxyfos 18 1.14 1.49 0.35 13.78 40.1 0.91 
EX000384 DTXSID4020458 Chlorpyrifos 19 0.20 1.20 1 1.57 14.38 0.92 
TT0000177E02 DTXSID4020458 Chlorpyrifos 18 1.10 1.14 0.04 12.68 17.84 0.99 
EX000378 DTXSID1038666 Chlorpyrifos oxon 16 -0.84 -0.50 0.34 0.14 7.66 0.99 
TT0000177G02 DTXSID1038666 Chlorpyrifos oxon 0 NA 2.00 NA NA NA NA 
TT0000177A02 DTXSID2020347 Coumaphos 18 1.39 1.67 0.28 24.61 45.72 0.91 
EPAPLT0170D06 DTXSID9020407 Diazinon 2 1.08 1.48 0.4 12.07 17.05 0.54 
TT0000177H01 DTXSID9020407 Diazinon 17 1.51 1.55 0.03 32.68 52.06 0.87 
TT0000177G01 DTXSID5037523 Diazoxon 1 -0.06 2.00 2.06 0.88 0.88 0.5 
TT0000177C01 DTXSID5020449 Dichlorvos 1 0.67 0.67 0 4.63 4.63 0.42 
TT0000177H03 DTXSID9023914 Dicrotophos 1 1.96 1.96 0 91.72 91.72 0.11 
EPAPLT0167G06 DTXSID7020479 Dimethoate 15 1.06 1.42 0.36 11.54 20.02 0.8 
TT0000177H02 DTXSID7020479 Dimethoate 18 1.56 1.60 0.04 35.94 50.49 0.88 
TT0000177D01 DTXSID4032611 Ethoprop 16 1.08 1.13 0.05 11.89 26.57 0.95 
TT0000177B04 DTXSID0034930 Fosthiazate 1 1.76 1.76 0 57.05 57.05 0.39 
TT0000177B03 DTXSID9020790 Malaoxon 0 NA 2.00 NA NA NA NA 
EPAPLT0167G08 DTXSID4020791 Malathion 18 -0.10 1.40 1.49 0.8 8.01 0.99 
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TT0000177D02 DTXSID4020791 Malathion 19 0.86 1.30 0.44 7.31 12.5 1 
EPAPLT0167A08 DTXSID6024177 Methamidophos 5 -1.00 1.46 2.46 0.1 25.11 0.77 
TT0000177B02 DTXSID6024177 Methamidophos 0 NA 2.00 NA NA NA NA 
TT0000177E03 DTXSID1024209 Naled 19 0.49 0.82 0.34 3.06 7.5 1.05 
TT0000177C04 DTXSID4037580 Omethoate 3 1.81 1.93 0.11 65.31 84.61 0.53 
TT0000177F02 DTXSID4032459 Phorate 18 1.50 1.54 0.04 31.57 64.11 0.84 
TT0000177C03 DTXSID5024261 Phosmet 19 0.90 1.50 0.6 8.01 33.59 0.94 

TT0000177D03 DTXSID0024266 Pirimiphos-
methyl 19 1.34 1.46 0.12 21.75 32.3 0.92 

TT0000177A01 DTXSID3032464 Profenofos 2 0.15 0.15 0 1.41 2.88 0.6 
TT0000177C02 DTXSID1032482 Tebupirimfos 19 1.64 1.81 0.17 44.07 81.17 0.8 
TT0000177E01 DTXSID2022254 Terbufos 19 1.10 1.18 0.08 12.73 18.88 0.99 
TT0000177F03 DTXSID1024174 Tribufos 18 1.44 1.44 0 27.32 34.16 0.91 
EPAPLT0170D03 DTXSID0021389 Trichlorfon 12 0.28 0.28 0 1.91 10.13 0.91 
TT0000177F01 DTXSID0021389 Trichlorfon 18 0.55 0.55 0 3.53 42.9 0.94 

TT0000177B01 DTXSID1032648 Z-
Tetrachlorvinphos 12 1.74 1.74 0 55.5 92.05 0.67 
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Table 13. OP potency, selectivity, and magnitude of effect in the HCI assays. 
The sample id (spid), DTXSID, chemical, hit-call sum (number of positive assay endpoints in the HCI assays out of 21 total), the selectivity score 
(cytotox – min AC50, in log10-µM) for hN2 NOG, rat NOG, rat neurite maturation in the synaptogenesis assay, rat synaptogenesis, and hNP1 
proliferation, the minimum HCI AC50 value in µM units, the median HCI AC50 value in µM units, and the scaled AUC sum for the positive HCI 
assay endpoints are all provided. When selectivity > 0.3, this indicates that HCI activity was disrupted at concentrations lower than concentrations 
associated with cytotoxicity. 
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EX000384 DTXSID4020458 Chlorpyrifos 19 -0.12 0.1 0.07 0.12 0.08 18.26 29.97 1 

TT0000177B01 DTXSID1032648 Z-
Tetrachlorvinphos 10 0.16 0.5 NA NA 0 3.85 18.18 1 

TT0000177E03 DTXSID1024209 Naled 12 NA 0.02 0.48 0.7 1.07 8.42 29.79 0.95 
TT0000177A03 DTXSID9032329 Bensulide 15 0.34 0.04 -0.03 -0.14 0 11.57 60.26 0.92 
TT0000177A02 DTXSID2020347 Coumaphos 15 0 0.08 0.41 0.5 0.16 21.75 38.76 0.91 
EPAPLT0167G08 DTXSID4020791 Malathion 16 -0.02 0.09 0.29 0.32 0 32.57 40.13 0.9 

TT0000177D03 DTXSID0024266 Pirimiphos-
methyl 18 -0.05 0.04 0.85 0.93 0 33.88 84.46 0.87 

TT0000177E01 DTXSID2022254 Terbufos 12 NA -0.02 -1.31 -1.3 0 0.01 83.52 0.87 
TT0000177F03 DTXSID1024174 Tribufos 14 NA -0.01 0.43 0.45 0.5 31.53 39.49 0.86 
EPAPLT0170D03 DTXSID0021389 Trichlorfon 8 NA NA -0.15 -0.01 0.24 14.81 53.08 0.85 
TT0000177G03 DTXSID2032344 Chlorethoxyfos 13 NA 0.04 0.06 0.11 0.41 38.59 65.52 0.84 
EX000378 DTXSID1038666 Chlorpyrifos oxon 5 -0.09 NA NA NA 0.32 28.79 43.29 0.79 
EPAPLT0167G06 DTXSID7020479 Dimethoate 7 NA NA 0.23 0.1 0 35.37 51.33 0.79 
TT0000177C03 DTXSID5024261 Phosmet 5 -0.03 NA NA NA 0 29.12 32.98 0.79 
TT0000177C01 DTXSID5020449 Dichlorvos 2 NA NA NA NA 0 0.11 0.84 0.7 
TT0000177F02 DTXSID4032459 Phorate 5 NA NA 0.25 0.46 NA 34.69 35.14 0.7 
EPAPLT0170D06 DTXSID9020407 Diazinon 3 NA NA 0.23 0.2 0 53.38 58.97 0.67 
TT0000177D01 DTXSID4032611 Ethoprop 1 NA NA NA NA NA 3.84 3.84 0.67 
TT0000177C04 DTXSID4037580 Omethoate 1 NA NA NA NA NA 118.19 118.19 0.43 
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EPAPLT0167A08 DTXSID6024177 Methamidophos 1 0.35 NA NA NA NA 44.42 44.42 0.42 
EPAPLT0167A01 DTXSID8023846 Acephate 0 NA NA NA NA NA NA NA NA 
TT0000177G01 DTXSID5037523 Diazoxon 0 NA NA NA NA NA NA NA NA 
TT0000177H03 DTXSID9023914 Dicrotophos 0 NA NA NA NA NA NA NA NA 
TT0000177B04 DTXSID0034930 Fosthiazate 0 NA NA NA NA NA NA NA NA 
TT0000177B03 DTXSID9020790 Malaoxon 0 NA NA NA NA NA NA NA NA 
TT0000177A01 DTXSID3032464 Profenofos 0 NA NA NA NA NA NA NA NA 
TT0000177C02 DTXSID1032482 Tebupirimfos 0 NA NA NA NA NA NA NA NA 

 

 

 

 

 

 

 

 

 

 

 



2.3.6 DNT-NAM administered equivalent doses versus rat benchmark doses 
 

The objective of this section is to demonstrate the comparison between the results of transforming the in 
vitro bioactive concentrations (µM, that is, µmol/L) from the current DNT-NAM battery into AEDs in 
units of mg/kg/day and BMD and BMDL values also in units of mg/kg/day from in vivo studies of AChE 
inhibition in rats. This is a proof-of-concept application of the DNT-NAM data to a targeted question 
within a regulatory context for a set of OPs. The purpose of this proof-of-concept is to evaluate whether 
currently available DNT-NAM data suggest possible bioactivity of OPs at similar, higher, or lower doses 
to those observed in in vivo AChE studies. It is important to note that the DNT-NAM battery may or may 
not include AChE inhibition as a MIE, as the AChE expression has not been specifically evaluated in the 
MEA NFA or HCI key event assays. However, these DNT-NAMs do evaluate neural network formation 
and functional processes critical to neurodevelopment that could be disrupted by neuroactive xenobiotics. 
As such, the DNT-NAM battery may provide relevant information on DNT potential, and combined with 
IVIVE approaches, may provide information for determining at what predicted doses putative DNT 
effects would occur. 

In the sections below, the IVIVE approach is briefly summarized for using high-throughput toxicokinetic 
(HTTK) data and models to compute AEDs based on the DNT-NAMs. As the general HTTK approach 
has been previously published (Bell et al., 2018; Pearce et al., 2017a; Pearce et al., 2017b; Rotroff et al., 
2010; Wambaugh et al., 2018; Wambaugh et al., 2015; Wetmore, 2015; Wetmore et al., 2012) and 
reviewed by FIFRA SAP in July 2014 (Jenkins, 2014), only the methodological details pertinent to this 
Issue Paper analysis are presented. More details, including the data and models available in HTTK for the 
OPs in this proof-of-concept, are available in Supplemental Appendix D. 

2.3.6.1 General assumptions for the IVIVE approach 
The reverse dosimetry component of IVIVE in case study relies on a few high-level assumptions:  

(1) that a bioactive nominal in vitro assay concentration approximates an in vivo plasma 
concentration that would correspond to a similar effect; 

(2) that in vivo plasma concentration can be approximated based on steady-state kinetics; and, 
(3) that a toxicokinetic model to estimate the external exposures (in mg/kg/day units) that may 

have resulted in that plasma concentration can be constructed using estimates of species-
specific physiology and Phase I and Phase II enzyme-driven hepatic clearance. 

Additionally, there was another uncertainty introduced specific to this work: in the absence of hepatic 
clearance values from rat hepatocytes, rat liver microsomes, or rat liver Phase I enzymes, would the use of 
human hepatocyte-derived hepatic clearance values be a reasonable substitute? Thus, the impact of using 
human-derived HTTK information as a data-gap filling technique when rat-derived HTTK information 
was unavailable was evaluated in the context of HTTK modeling, with the details of this analysis 
provided in Supplemental Appendix D. Resultant to this work, in addition to comparing rat-derived 
AED50 values to BMD10 and BMDL10 values from rat studies, we also compared AED values from the 
“humanized-rat” or the huRat, which used human HTTK data in a model parameterized with rat 
physiology, to BMD10 and BMDL10 values from rat studies. 

2.3.6.2 HTTK approach selected 
For this proof-of-concept, many HTTK model and data choices could have been selected; among these 
choices, the simplest HTTK model requiring the least amount of data was selected: the 3-compartment 
steady state model (3compss), which enables calculation of the dose that would cause an in vivo plasma 
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concentration equivalent to the bioactive in vitro AC50 if hepatic intrinsic clearance (Clint, in units of 
µL/min/106 hepatocytes) data are available. This model was selected so that in future cases, the same 
approach could be taken with the least amount of data available, with the possibility of utilizing the 
HTTK physiologically-based toxicokinetic (PBTK) modeling if both Clint and fraction unbound in 
plasma (Fup)9 were available. LogP and pKa, used in estimation of tissue partitioning coefficients 
required for PBTK modeling, can be predicted and so are unlikely to be the limiting factor in model 
selection. Beyond the options for IVIVE using an HTTK approach, it is possible that other PBPK models 
could also be actualized to generate plasma concentration predictions, e.g., steady state plasma 
concentration (Css), when available. 

Most HTTK models, including the 3compss model used here, share several simplifying technical 
assumptions: 

(1) 100% bioavailability (all of an oral dose is received by the liver through the portal vein); 
(2) No extrahepatic metabolism; the liver is the only source of chemical clearance from the body by 

metabolism;  
(3) Hepatic metabolism is first order (proportional to concentration) and does not saturate; 
(4) Renal clearance is proportional to Fup and glomerular filtration rate (i.e., no active transport); 

and, 
(5) No biliary excretion or enterohepatic recirculation occurs. 

 
With these assumptions, HTTK models have demonstrated reasonable accuracy in predicting relevant TK 
endpoints, for example plasma concentrations over time (AUC) (R2 = 0.62) and maximum plasma 
concentrations (Cmax) (R2 = 0.48) (Wambaugh et al., 2018). 

AED values in mg/kg/day units were calculated using the following equation (Eq. 2): 

𝐸𝐸𝐸𝐸. 2:    𝐴𝐴𝐸𝐸𝐴𝐴50  �

𝑠𝑠𝑙𝑙
𝑘𝑘𝑙𝑙
𝑠𝑠𝑠𝑠𝑑𝑑

� = 𝐴𝐴𝐴𝐴50 (µ𝑀𝑀) ∗  
1𝑠𝑠𝑙𝑙𝑘𝑘𝑙𝑙 /𝑠𝑠𝑠𝑠𝑑𝑑

𝐴𝐴𝑠𝑠𝑠𝑠50
 

Where the Css values for the median individual based on Monte Carlo simulation of species-specific 
physiological parameters (Css50) (Pearce et al. 2017) were generated using the 3compss model. Values for 
Css50 were generated in a species-specific manner to result in 3 different kinds of AED50 values: using rat 
physiology and empirical rat Clint data where available (Rat, Css50-AED), rat physiology and empirical 
human Clint data where available (huRat, Css50-AED), and then human physiology with empirical human 
Clint data (Human, Css50-AED). The huRat was used as an additional comparison because human HTTK 
data, specifically human Clint data for use in the 3 compss model, were available for more of the OPs in 
this proof-of-concept than the number for which rat Clint data were available. The use of human HTTK 
data for Clint and Fup in the prediction of Cmax and plasma concentrations over time (area under the 
curve, AUC) as a data gap-filling technique when rat HTTK data were not available is supported by 
preliminary results of evaluating the overall impact of using rat or human HTTK data in a PBTK model 
for 151 substances that have both rat and human HTTK data (Supplemental Appendix D, Table 2 and 
Figure 3). This analysis in Supplemental Appendix D suggests that plasma Cmax values obtained from 
the rat PBTK model, using either rat or human HTTK data for Fup and Clint, result in values that are 
similar (generally within ± 0.5 log10-µM). The plasma AUC values that result from using rat or human 

 
9 For the 3 compss model, Fup is used, if available, for estimation of the blood::plasma ratio. If Fup is not available, 
the 3 compartment steady state model estimates the blood::plasma ratio using the average Fup across the entire 
dataset within the HTTK R package. 
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HTTK data in a rat PBTK model generally were within ± 1 log10-µM. This comparison does not suggest 
that a standard conversion factor is necessary when using human HTTK data for Fup and Clint as a 
substitute for rat Fup and Clint HTTK data, as the plasma predictions are not uniformly higher or lower 
when using human rather than rat HTTK in the rat PBTK model. 

The availability of HTTK data for the 27 OP substances is provided in Supplemental Appendix D, Table 
4. Reliable empirical measurements of human (and rat) Clint for chlorethoxyfos, naled, and Z-
tetrachlorvinphos were not possible due to chemical instability and degradation in plasma and hepatocyte 
media (pH 7.4) within 4-7 hrs of solubilization (unpublished, Wetmore 2020). Due to the instability of 
these specific OP chemicals in solution, these OP chemicals were excluded from further IVIVE 
comparison in this Issue Paper. 

2.3.6.3 AED to BMD/BMDL comparison 
All of the DNT-NAM AC50 (µM) potency data from the MEA NFA and HCI assays were included for 
use in these comparisons (after filtering for less reproducible curve-fits as indicated in Section 2.3.5.1). 
However, to enable species-specific comparisons, the data from the DNT-NAM battery were parsed 
according to the species from which the cell type used in the assay originated. The MEA NFA contains 36 
assay endpoints (17 assay components associated with neuronal network formation and function, 
analyzed in up and down directions to yield 34 assay endpoints, plus two assay endpoints for cytotoxicity) 
that were all assayed using rat primary cortical neurons as described in Section 2.3.3.1. The HCI assays 
are comprised of 21 assay endpoints that encompass 5 related assays: cell proliferation with a human 
neural progenitor cell line (hNP1, 3 assay endpoints); apoptosis and viability assessment using a human 
neural progenitor cell line (hNP1, 2 assay endpoints); neurite outgrowth initiation with a human neuronal 
lineage cell line (hN2, 4 assay endpoints); primary rat cortical cell neurite outgrowth initiation (rat 
cortical cell, 4 assay endpoints); and, primary rat cortical cell neurite maturation and synaptogenesis (rat 
cortical cells, 8 assay endpoints).  

Thus, 9 of 57 total assay endpoints in the DNT-NAM battery that evaluate neural cell proliferation, 
apoptosis and viability, and neurite outgrowth initiation were evaluated using human-derived cells. These 
data were used in a “human” comparison, whereby in vitro potency values from human-derived cells, 
human-derived HTTK data and a human-parameterized 3compss model, and BMD10/BMDL10 values 
from rat divided by an uncertainty factor of 10 (default interspecies uncertainty factor applied in risk 
assessments to account for extrapolation from laboratory animals to humans) were compared. Only 17 OP 
chemicals had positive values in the human assays, and of these 14 had sufficient HTTK data and 
modeling to calculate human AED50 values with the 3 compss model. 

Forty-eight of the 57 total assay endpoints in the DNT-NAM battery that evaluate neuronal network 
formation and function, neurite outgrowth initiation, and neurite maturation and synaptogenesis were 
evaluated using rat primary cortical cells. These data were used in rat and huRat comparisons, whereby in 
vitro potency values from primary rat cells, combined with rat-derived or human derived Clint data and a 
rat-parameterized 3 compss model, and BMD10/BMDL10 values from rat were compared. Three OP 
chemicals (chlorethoxyfos, naled, Z-tetrachlorvinphos) were excluded from the IVIVE comparisons due 
to chemical instability in the matrices used for HTTK assays (unpublished, Wetmore 2020). Malaoxon 
was completely negative in all assay endpoints. Thus, 23/27 OP chemicals have enough data and 
modeling available to derive huRat AED50 values. Only 9 OP chemicals had enough data and modeling 
available to derive rat AED50 values.  

Each AC50 value from positive assay endpoints was transformed into an AED50 value using the IVIVE 
approach described in section 2.3.6.2. The number of positive assay endpoints by species, the minimum 
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and median AC50 values by species, are summarized by OP chemical in Table 14. Boxplots of the AED50 
values versus the BMD10/BMDL10 values, by species, are illustrated in Figure 7. Substances with zero 
positive human (+ human) assay endpoints in Table 14 will not have any AEDs computed or displayed 
for the human comparisons in Figure 7 (acephate, diazoxon, dicrotophos, ethoprop, fosthiazate, 
omethoate, phorate, profenofos, tebupirimfos). As stated above, malaoxon was completely negative in the 
DNT-NAM battery and as such is also excluded from the AED comparisons visualized in Figure 7. In 
order to indicate the influence of measures of cell viability, selectivity was calculated for each AC50 
value used to calculate an AED, per the logic described in Section 2.3.5.1. Briefly, selectivity required a 
0.3 log10-micromolar separation from the parallel cell viability AC50 value, and selectivity could not be 
calculated (shown as NA) for the apoptosis and cell viability assays conducted in the HCI assays using 
hNP1 cells. 
 
Table 14. DNT-NAM data availability for AED50 computation. 
The OP chemical, DTXSID, number of positive assay endpoints for rat and human ((+) rat, (+) human), 
and the minimum (min) and median (med) AC50 values (µM) available for IVIVE are listed. In the case 
where replicate samples of a chemical were available, the data have been combined to the level of 
chemical. Three substances, chlorethoxyfos, naled, and Z-tetrachlorvinphos are italicized because AEDs 
could not be computed due to lack of reliable HTTK data measurements. A fourth substance, malaoxon, 
is italicized because there were no positive assay endpoint data available for comparison. 

Chemical DTXSID (+) 
rat 

Min rat 
AC50 
(µM) 

Med rat 
AC50 (µM) 

(+) 
human 

Min human 
AC50 (µM) 

Med human 
AC50 (µM) 

Acephate DTXSID8023846 2 0.91 47.89 0 NA NA 
Bensulide DTXSID9032329 28 11.69 39.31 7 11.57 25.15 
Chlorethoxyfos DTXSID2032344 28 13.78 48.61 3 38.59 43.1 
Chlorpyrifos DTXSID4020458 47 1.57 18.22 9 18.26 28.38 
Chlorpyrifos oxon DTXSID1038666 16 0.14 7.81 5 28.79 43.29 

Coumaphos DTXSID2020347 24 24.61 45.73 9 21.75 38.76 
Diazinon DTXSID9020407 21 12.07 52.06 1 53.38 53.38 
Diazoxon DTXSID5037523 1 0.88 0.88 0 NA NA 
Dichlorvos DTXSID5020449 1 4.63 4.63 2 0.11 3.39 
Dicrotophos DTXSID9023914 1 91.72 91.72 0 NA NA 
Dimethoate DTXSID7020479 39 11.54 39.26 1 70.17 70.17 

Ethoprop DTXSID4032611 17 3.84 25.58 0 NA NA 
Fosthiazate DTXSID0034930 1 57.05 57.05 0 NA NA 
Malathion DTXSID4020791 46 0.8 12.25 7 33.19 39.15 
Malaoxon DTXSID9020790 0 NA NA 0 NA NA 
Methamidophos DTXSID6024177 5 0.1 25.11 1 44.42 44.42 
Naled DTXSID1024209 27 3.06 7.97 4 8.42 15.88 

Omethoate DTXSID4037580 4 65.31 88.15 0 NA NA 
Phorate DTXSID4032459 23 31.57 62.86 0 NA NA 
Phosmet DTXSID5024261 19 8.01 33.59 5 29.12 32.98 
Pirimiphos-methyl DTXSID0024266 28 21.75 39.39 9 33.88 43.54 
Profenofos DTXSID3032464 2 1.41 3.63 0 NA NA 
Tebupirimfos DTXSID1032482 19 44.07 81.17 0 NA NA 
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Chemical DTXSID (+) 
rat 

Min rat 
AC50 
(µM) 

Med rat 
AC50 (µM) 

(+) 
human 

Min human 
AC50 (µM) 

Med human 
AC50 (µM) 

Terbufos DTXSID2022254 28 4.09 19.04 3 0.01 35.68 
Tribufos DTXSID1024174 28 27.32 36.9 4 31.53 35.24 
Trichlorfon DTXSID0021389 35 1.91 32.39 3 14.81 57.05 

Z-
Tetrachlorvinphos 

DTXSID1032648 15 31.52 91.4 7 3.85 6.73 

 

Figure 7. Comparison of AED and BMD values by OP substance 
Each row contains two panels for human (left) and rat (right) IVIVE comparisons. Boxplots define the 
range of calculated human AED50 values for human assays and rat/huRat AED50 values for rat assays. 
BMD10 (solid orange) and BMDL10 (dashed purple) are indicated for rat by horizontal lines. These 
values are divided by an uncertainty factor of 10 to derive huBMD10 (solid red) and huBMDL10 (dashed 
blue) values represented by horizontal lines in the human comparison panels. The individual AED50 
values are superimposed over the boxplots (black points), with potential selectivity indicated as not 
selective (open circle), selective (closed triangle), and could not be calculated, or NA (closed square).
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Some of the rat and huRat AED50 values approached the in vivo rat BMD10 and BMDL10 thresholds 
identified using in vivo rat studies of AChE. The lower rat or huRat AED50 values for acephate, bensulide, 
chlorpyrifos, chlorpyrifos oxon, diazinon, dimethoate, malathion, methamidophos, and phorate ranged 
within 1 log10 order of magnitude of the BMD10 and BMDL10 values. For all of these aforementioned 
substances, at least a subset of the AED50 values that range within 1 log 10 order of magnitude of the 
BMD10 and BMDL10 values are from selective bioactivity. The lower quartile of huRat AED50 values 
for dimethoate and methamidophos appear similar to the BMD10 and BMDL10 values, and these AED50 
values appear to have included selective assay endpoints. The huRat AED50 value for dichlorvos (only 
one positive rat assay endpoint) overlaps with the BMDL10 value, and it was not based on selective 
bioactivity in the DNT-NAM battery.  

The human IVIVE comparison was more constrained because fewer OP chemicals had positive responses 
in this smaller subset of the DNT-NAM assay set. Acephate, diazoxon, dicrotophos, ethoprop, fosthiazate, 
omethoate, phorate, profenofos, and tebupirimfos had positive rat assay data but lacked positive responses 
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in the human cell-based assays. For bensulide, chlorpyrifos, chlorpyrifos oxon, coumaphos, diazinon, 
dichlorvos, dimethoate, malathion, methamidophos, phosmet, pirimiphos-methyl, terbufos, tribufos, and 
trichlorfon, the human AED50 values can be compared to BMD10/10 and BMDL10/10 values. With the 
exceptions of dichlorvos and terbufos, the full range of human AED50 values are at least 2 log10 orders of 
magnitude higher than the BMD10/10 and BMDL10/10 values. For dichlorvos, only two AED50 values 
are available for comparison, and these values are centered around the BMD10/10 and BMDL10/10 
values. Neither of these AED50 values appear selective because the bioactivity was observed in assay 
endpoints relevant to cell viability. Similarly, for terbufos, only 3 human AED50 values are available for 
comparison, and the lowest one of these values approaches the BMD10/10 value. This lowest AED50 
value for terbufos does not appear selective because it is derived from a cell viability related assay 
endpoint (object count in the HCI hNP1 proliferation assay endpoint). The other rat and human AED50 
values for terbufos appear to range approximately from 3 to 100 mg/kg/day. 

The human AED50 values and huRat AED50 values were typically similar; both of these sets of values use 
the human HTTK data to inform human and rat models, respectively. Deviation between the human and 
huRat AED50 values appears to be impacted by the smaller dataset available for human AED50 derivation. 
Chemical-dependent differences between the rat and huRat AED50 values are apparent when both are 
available; though for some chemicals (chlorpyrifos oxon, ethoprop, malathion, omethoate) the values are 
very similar, for other chemicals (bensulide, chlorpyrifos, diazinon, diazoxon, dimethoate) there may be 
as much as 1 log10 order of magnitude separation between the median AED50 values. There is no uniform 
direction to these differences, but these differences are expected and consistent with the impact of using 
human or rat HTTK data to inform a rat physiology-based model (Supplemental Appendix D). 

Overall, these comparisons suggest that the doses required to achieve plasma concentrations (in the 
median individual in the general population) that demonstrate in vitro bioactivity relevant to DNT are 
higher than and in some cases approaching the doses that have been associated with significant changes in 
AChE activity in rats. 

In addition to the HTTK model, the PBPK-PD models for dimethoate/omethoate and malathion were also 
used to estimate AEDs, assuming AC50 value from positive assay endpoints to be equivalent to steady 
state concentration in plasma. A PBPK-PD model was also available for malaoxon, but an AED cannot be 
estimated for malaoxon because all activity types examined in this Issue Paper were negative for 
malaoxon. The purpose of this exercise was to demonstrate the use of two different types of kinetic 
models in a tiered IVIVE approach, and to examine how AEDs differ when using different models. The 
simplest HTTK model only requires hepatic Clint to simulate steady state blood concentration, which has 
not been compared with data available for dimethoate, omethoate, and malathion. The customized PBPK-
PD models require significant amount of time and resources to develop, but these models have been 
evaluated using chemical-specific blood and tissue concentration data. The dimethoate/omethoate and 
malathion models were developed based on the structure of a PBPK-PD model for chlorpyrifos, which 
had been reviewed by several SAPs (e.g., 2012, 201610). Unfortunately, the chlorpyrifos model was 
written in a software (acslX) that was no longer available, so it cannot be used for estimating AEDs for 
chlorpyrifos and chlorpyrifos-oxon. The models for dimethoate/omethoate and malathion will be publicly 
available in the near future, and the review of these models is outside the scope of the current review. 
Since customized PBPK-PD models were only available for dimethoate, malathion, and their oxons, it is 
not possible to comment on particular comparisons or trends between the PBPK- and HTTK-derived 
AEDs for all OPs. Due to the amount of time and computing resource needed to compute the PBPK-
derived AEDs, only the minimum, median, and maximum AC50 values from the DNT-NAMs were used 

 
10 https://www.epa.gov/sap/fifra-scientific-advisory-panel-meetings 
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as surrogates for steady state plasma AUC and brain AUC values. The plasma-based PBPK-AED values 
for the minimum, median, and maximum AC50 values were: 150, 380, 680 mg/kg/day (dimethoate); 510, 
1080, 2390 mg/kg/day (malathion); and, 490, 660, 880 mg/kg/day (omethoate). Similarly, the brain-based 
PBPK-AED values for the minimum, median, and maximum AC50 values were: 120, 300, 530 
mg/kg/day (dimethoate); 515, 810, 1500 mg/kg/day (malathion); and, 540, 730, 980 mg/kg/day 
(omethoate). . For dimethoate and omethoate, the PBPK-AED values using plasma and brain AUC were 
more than two orders of magnitude greater than the HTTK-derived AEDs (Figure 8). For malathion, the 
PBPK-derived AED values were similar to the range of HTTK-derived AED50 values for rat. In addition 
to predicting chemical disposition over time, these PBPK-PD models were also used to predict AChE 
inhibition in RBCs and in brain at steady state plasma concentrations equivalent to DNT-NAM AC50 
values. For dimethoate and omethoate, both RBC and brain AChE was almost completely inhibited (> 
99.9% for omethoate, >99% for dimethoate). For malathion, RBC AChE was at least 95% inhibited, and 
brain AChE was 35%-75% inhibited. For the three OPs examined, the HTTK-derived AEDs are more 
conservative estimates of the dose required to achieve blood concentrations approaching the bioactive 
AC50s from DNT-NAMs. Though the HTTK model employed and the PBPK-PD models all assumed 
100% bioavailability, the HTTK model accounts for hepatic Clint whereas PBPK-PD models incorporate 
additional metabolism sites in plasma, brain, and kidneys.   

 

Figure 8. Comparison of PBPK-PD model-derived AEDs with HTTK-derived AEDs. 
For dimethoate, malathion, and omethoate, more complex PBPK-PD models were used to predict AED 
values (mg/kg/day) using the minimum, median, and maximum DNT-NAM AC50 values only from 
assays that employed primary rat cortical neurons. In the PBPK-PD model, these AC50 concentrations 
(µM) were assumed to reflect plasma or brain AUC values, resulting in two PBPK-PD AED predictions, 
respectively (Rat, PBPK-AED-plasma, rat cells [yellow]; Rat, PBPK-AED-brain, rat cells [purple]). 
These were compared to the HTTK-derived AEDs for rat and huRat (also presented and described above 
in Figure 7). Boxplots define the median and range of calculated PBPK-PD AED values for rat assays and 
the rat/huRat AED50 values for rat assays. BMD10 (solid orange) and BMDL10 (dashed purple) are 
indicated for rat by horizontal lines. For the HTTK-derived AED50 values, the individual AED50 values 
are superimposed over the boxplots (black points), with potential selectivity indicated as not selective 
(open circle), selective (closed triangle), and could not be calculated, or NA (closed square). 
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2.3.7 Future research directions to increase utility of DNT-NAMs 
 
As discussed in Section 2.1, EPA has shifted its testing focus from the in vivo DNT guideline study to 
more targeted testing due to several challenges associated with the study and its limited impact on human 
health risk assessments for pesticides. The development of a DNT-NAM battery for assessing potential 
DNT-related effects provides an opportunity to overcome some of the challenges with the in vivo DNT 
guideline study by evaluating underlying critical processes of neurodevelopment and incorporating 
human relevant information. Although the DNT-NAM battery presented in this Issue Paper covers many 
of the processes critical to neurodevelopment, the results from additional assays that provide information 
on other processes (migration, neuronal differentiation, and oligodendrocyte differentiation and 
maturation), or provide orthogonal/confirmatory information on processes currently covered 
(proliferation, neurite outgrowth), will be evaluated for their utility as they become available. As detailed 
in Section 2.3.2, on-going work suggests that more assays may be useful to evaluate processes not 
evaluated in the MEA-NFA or HCI assays, including neuronal migration (Barenys et al., 2017; Baumann 
et al., 2016; Nyffeler et al., 2017), some aspects of differentiation of neuronal subtypes (Barenys et al., 
2017; Baumann et al., 2016); and, oligodendrocyte differentiation and maturation (Barenys et al., 2017; 
Baumann et al., 2016). At this time, it is unknown as to whether the additional orthogonal assays for 
proliferation, apoptosis, migration, neuron differentiation, oligodendrocyte differentiation and maturation, 
neurite outgrowth, synaptogenesis, or network formation (Sachana et al., 2019) are needed to improve 
prediction of DNT potential for OPs or other chemicals. Further research using more chemicals may be 
useful in characterizing the potential value of additional data above and beyond the DNT-NAM battery 
presented here. In Charge Question 3, the Agency is soliciting comment from the SAP to consider 
whether any additional processes, beyond those covered by the MEA NFA, HCI, and additional assays 
being developed via international efforts, should be considered with regard to the development of an 
internationally recognized DNT-NAM battery.  
 
The DNT-NAM battery presented in this Issue Paper reflects the use of MEA NFA and HCI in an integrated 
way. Additional work to understand the combined value of the MEA-NFA and HCI cellular event assays, 
taken together, for an in vitro DNT activity reference chemical list (Aschner et al., 2017; Crofton et al., 
2011; Mundy et al., 2015) may be informative in the future in terms of identifying strengths, weaknesses, 
and limitations for these assay technologies in identifying putative DNT effects in vitro. However, an 
uncertainty in this type of analysis for a DNT-NAM battery, as well as the in vivo DNT guideline study, is 
that there are so few chemicals for which human evidence of DNT is well-accepted (Grandjean and 
Landrigan, 2006; Grandjean and Landrigan, 2014). Evaluation of drugs with known neural activity could 
be used to demonstrate what assay parameters may be needed or not needed for future bioactivity screening 
efforts to identify in vitro DNT activity (as a research activity). 
 
The impact of the cell types chosen for the MEA NFA and HCI assays is not yet fully characterized, and 
additional research may be needed to better understand differences between cell types in the MEA NFA 
and HCI assays. Primary rat cortical neurons were used in the MEA NFA and a subset of the HCI assays 
evaluating neuronal maturation and synaptogenesis due to a lack of network-forming (i.e., synaptically-
competent) human cell models at the time these assays were developed. An advantage of using primary 
rat cortical cells is that the results can be compared to existing in vivo rodent models of DNT. It is 
unknown how the use of primary rat cortical neurons and human cell lines (hN2 and hNP1) in the HCI 
assays and rat cortical neurons in MEA NFA may produce different responses than iPSC-derived human 
neurons (Tukker et al., 2020). As the field of stem cell research advances and iPSC-derived human 
neurons become more affordable for research and screening purposes, human cell models may replace 
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rodent cells for the MEA NFA and other HCI assays. Though the specific pattern of effects in the MEA 
NFA, or the HCI assays, may differ by cell type used, the approach applied to this case study considers 
any effect to estimate a threshold for bioactivity in these DNT-NAMs. For the case study presented 
herein, any perturbation in the MEA NFA and HCI assay endpoint data using primary rat cortical cells 
were compared to rat BMD/BMDL values, and hN2 and hNP1 derived data from the HCI were compared 
to BMD/BMDL values divided by 10, regardless of the specific pattern of effects on biological processes.  
 
A common limitation in applying in vitro bioactivity screening data has been the use of models that do 
not have the same metabolism as the in vivo scenario (DeGroot et al., 2018). The metabolic capacity of 
these DNT-NAMs is not well understood; however, in the case study presented herein, important 
metabolites (i.e., oxon metabolites) were known and tested as separate chemical samples for several OPs 
(e.g., omethoate, malaoxon, chlorpyrifos oxon); however, oxons were not tested for all the OPs that 
require activation (e.g., phosmet, bensulide, phorate). Brain tissue does express cytochrome P450 
enzymes, and typically different isozymes than those expressed in the liver. The DNT-NAMs used here 
have not been thoroughly examined for expression of Phase I or II enzymes. While some limited 
metabolism of substances is possible, the extent to which this occurs, and the substances that are possible 
substrates, cannot be predicted at this time. In the future, important metabolites could be predicted and 
screened as separate samples in the DNT-NAMs as needed like oxons in the OP case study, or more 
complex retrofitting of the assays with metabolism could be considered (DeGroot et al., 2018). 

2.3.8 Summary and conclusions on the DNT-NAMs 
 
In Sections 2.3.1 to 2.3.4, extensive evidence and published references are provided to indicate that the 
MEA NFA and HCI assays allow for measurement of disruption of neural network formation and 
function as well as key cellular events for DNT. Assay reference chemicals (Section 2.3.4 and 
Supplemental Appendix A) known to perturb these processes in vitro provide reproducible responses in 
these assays on both a quantitative and qualitative basis, increasing confidence that these assays provide a 
reliable signal of bioactivity possibly relevant to DNT. In the MEA NFA, the positive control substances 
(loperamide hydrochloride, bisindolylmaleimide I, L-domoic acid, mevastatin, and sodium 
orthovanadate) work to inhibit (decrease) neuronal network formation. In the HCI assays, similarly, the 
positive controls (aphidocholin, lithium chloride, bisindolylmaleimide I, sodium orthovanadate, NSC 
23766 trihydrochloride, and staurosporine) all work to inhibit key critical neurodevelopmental processes 
(i.e., neurite outgrowth, synaptogenesis, proliferation) in specific cell types, save staurosporine, which 
reduces cell viability via apoptosis (Supplemental Appendix A). Overall, these assays appear robust and 
reproducible for fit-for-purpose application to identify putative DNT bioactivity, with reasonable assay 
performance controls established. The current DNT-NAM battery covers much of the network of DNT-
relevant processes suggested in Section 2.3.2 and represents a major milestone in filling data gaps for 
evaluation of putative DNT activity. Charge Questions 1 and 2 solicit comment from the SAP on the 
strengths and limitations of these assays for fit-for-purpose evaluation of putative DNT-related activity. 
 
As described in detail in Section 2.3.5, for the case study application of DNT-NAMs to OPs, there are 
some key findings for this 27-chemical set. First, the range of log10-AC50 values for active assay 
endpoints was similar for the MEA NFA and the HCI assays, and relatively limited in terms of the total 
concentration range (0-2 log10-µM). Though not all OPs demonstrated the same pattern of effects in the 
MEA NFA and HCI assays, chemicals that were active in the HCI assays tended to be active in the MEA 
NFA, and negative/equivocal activity in the MEA NFA appeared to correspond to limited, sparse activity 
in the HCI assays, giving some confidence in strong positives and strong negatives across these two 
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different technologies. There is only 1 OP chemical (ethoprop) that was positive in MEA NFA and 
demonstrated minimal activity in the HCI assays, indicating that negatives tend to be consistent between 
MEA NFA and HCI assays. Acephate, diazoxon, dichlorvos, dicrotophos, malaoxon, omethoate, and 
profenofos demonstrated limited to no activity in the MEA NFA and the HCI assays (Table 11). 
Considering all chemicals with greater activity in the HCI assays, only 1 OP chemical (methamidophos) 
was not positive in the MEA NFA, indicating that if activity is observed in the HCI assays, it is likely that 
the OP chemical will also be active in the MEA NFA. 
 
Currently there are some limitations in understanding whether cytotoxicity in neural cell types is relevant 
for putative DNT-related bioactivity. As such, efforts have been made to distinguish the “selectivity” of 
OPs in the MEA NFA and HCI assays, i.e., bioactivity in these assays at concentrations at least 0.3 log10-
micromolar less than the concentrations at which cytotoxicity was observed, in Sections 2.3.5 and 2.3.6. 
In comparing AED50 values from the DNT-NAMs to BMD/BMDL values, it is evident that a subset of 
the AED50 values were based on “selective” activity in the DNT-NAMs, and that these “selective” AED50 
values tend to fall on the lower end of the distribution of AEDs, having been derived from lower AC50 
values.  
 
The AED50 values from DNT-NAM bioactivity presented for comparison, importantly, used the median 
individual in the general population for the HTTK-based IVIVE approach; accounting for interindividual 
variability (i.e., first order hepatic clearance, plasma protein binding, liver physiology, and glomerular 
filtration rate) and/or using a more sensitive individual or subpopulation would result in different AED 
values (indeed, lower values would result by using an estimate of a more toxicokinetically-sensitive 
individual). Within the case study application presented here, the median individual from the general 
population was chosen because susceptible subpopulations and population-based differences are handled 
in separate parts of the risk assessment. Overall, the AED50 to BMD10/BMDL10 comparisons suggest 
that the doses required to achieve plasma concentrations (in the median individual in the general 
population) that demonstrate in vitro bioactivity relevant to DNT are higher than and in some cases 
approach the doses that have been associated with significant changes in AChE activity in rats. Oxon 
metabolites were tested as separate chemical samples for several OPs; however, oxons were not tested for 
all the OPs that require activation and lack of these data will need to be considered in the context of this 
case study. In Charge Question 4, the Agency is soliciting comments on the strengths and limitations of 
the IVIVE approach taken in this proof-of-concept application for evaluation of putative DNT bioactivity 
for OPs. 
 
The analysis presented in this Issue Paper demonstrates several conclusions: 

• the MEA NFA and HCI assay suite recapitulates key cellular events and processes relevant to 
DNT, as demonstrated through the use of appropriate assay performance controls; 

• the DNT-NAMs presented here represent a major milestone for in vitro fit-for-purpose 
identification of putative DNT-related hazard, though additional methods may be available in the 
future; 

• the MEA NFA and HCI assay suite demonstrates reproducibility in terms of positive responses 
and potency of these responses;  

• the 27 OP chemicals in this set are differentially active in the MEA NFA and HCI assay suite; 
and,  
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• application of IVIVE approaches for the in vitro bioactivity observed in these DNT-NAMs results 
in AED50 values that are greater than or in some cases approximate the doses that inhibit AChE in 
vivo.  

As discussed in Section 2.1, EPA has shifted its testing focus from the in vivo DNT guideline study to 
more targeted testing due to several challenges associated with the study and its limited impact on human 
health risk assessments for pesticides. The development of a DNT-NAM battery for assessing potential 
DNT-related effects provides an opportunity to overcome some of the challenges with the in vivo DNT 
guideline study by evaluating underlying critical processes of neurodevelopment and incorporating 
human relevant information. The MEA NFA and HCI assays provide an opportunity to evaluate the 
majority of the critical processes of neurodevelopment (as presented in Table 3 and Figure 2) and 
represent a significant advancement toward developing a DNT-NAM battery for fit-for-purpose DNT 
evaluation. Additional assays are currently under development by EFSA-funded researchers that evaluate 
processes not covered by the MEA NFA and HCI assays (i.e., neuronal migration and oligodendrocyte 
differentiation and maturation). The relative contribution of these assays for a NAM battery will be 
considered once data are available. Additionally, any OP data from these other assays will be considered 
in combination with the results of the MEA NFA and HCI assays as part of an overall weight of evidence 
evaluation of the DNT potential for individual OPs.  
 

3.0 Development of DDEFs for Interspecies and Intraspecies Extrapolation  

3.1 Background 

For risk assessment, default uncertainty factors are commonly applied to extrapolate toxicity data derived 
from animal models to humans (interspecies or UFA) and to account for human variability (intraspecies or 
UFH). For OP human health risk assessments, except chlorpyrifos, the default 10X interspecies and 10X 
intraspecies extrapolation factors have been applied. For chlorpyrifos, the PBPK-PD model is used to 
derive PODs. Since the model accounts for the pharmacokinetic and pharmacodynamic differences 
between animals and humans, the default interspecies factor was reduced to 1X for chlorpyrifos human 
health risk assessments. Similar PBPK-PD models have been developed for dimethoate and malathion 
and their oxons; these models are under review by EPA for their potential use in future risk assessments.  
 
The EPA’s 2014 Guidance for Applying Quantitative Data to Develop DDEF for Interspecies and 
Intraspecies Extrapolation11 provides guidance on the process for identifying reliable data that are useful 
for quantifying interspecies and intraspecies differences to serve as the basis for empirically deriving 
DDEFs. When using DDEFs, interspecies and intraspecies extrapolation factors are divided into two 
components representing toxicokinetic (TK) variability and toxicodynamic (TD) variability. Therefore, 
four DDEFs can be calculated given sufficient information. Two extrapolation factors for interspecies 
extrapolation are: 1) extrapolation factor covering interspecies toxicokinetics (EFAK) to account for TK 
variability and 2) extrapolation factor for interspecies toxicodynamics (EFAD) to account for TD 
variability. Similarly, the two extrapolation factors for intraspecies extrapolation are: 1) extrapolation 
factor covering intraspecies toxicokinetics (EFHK) to account for TK variability; and 2) extrapolation 
factor for intraspecies toxicodynamics (EFHD) to account for TD variability. The composite factor (CF) is 
calculated after the appropriate DDEF values for interspecies and intraspecies differences in TK and TD 
have been derived as shown in Equation 3. 

 
11 https://www.epa.gov/risk/guidance-applying-quantitative-data-develop-data-derived-extrapolation-factors-
interspecies-and 
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𝐴𝐴𝐶𝐶 = 𝐸𝐸𝐶𝐶𝑀𝑀𝐴𝐴 × 𝐸𝐸𝐶𝐶𝑀𝑀𝐴𝐴 × 𝐸𝐸𝐶𝐶𝐻𝐻𝐴𝐴 × 𝐸𝐸𝐶𝐶𝐻𝐻𝐴𝐴    Equation 3 

             
  
The CF calculation is analogous to calculating composite uncertainty factors when using the 10X defaults 
for UFA and UFH. If data are only available to develop a DDEF for one component of extrapolation or 
another, the remaining extrapolation is done by an appropriate default procedure. 
 
As described in the EPA’s DDEF guidance, information on MOA, even when a complete understanding 
of mechanism is not available, is important for DDEF derivation since DDEFs are considered in the 
context of toxicity endpoints most relevant for risk assessment purposes. As discussed in Section 2.2, 
EPA has determined that the OPs share a common mechanism of toxicity based on their shared ability to 
inhibit AChE. 
 
In 2016, three OP pesticide registrants (AMVAC, FMC, and Gowan) worked in conjunction with their 
consultant (Exponent) and Dr. Janice Chambers from Mississippi State University to develop an 
experimental plan to determine if differences exist in AChE inhibition between rats and humans and 
estimate intra-human variability and these differences. Representatives of OPP and ORD considered the 
plan and supported continued development of these efforts to generate data to inform the TD variability in 
the DDEF development. Since 2016, there have been numerous meetings with EPA to discuss the 
experimental plan, data review, and statistical analyses. EPA provided feedback on experimental 
protocols to determine the AChE inhibition kinetic constants of OP compounds to inform interspecies and 
intraspecies pharmacodynamic differences. Three study reports were submitted testing 17 OP pesticides 
and oxons: 

• MRID 50773501: malaoxon (the active metabolite of malathion) and omethoate (the active 
metabolite of dimethoate) 

• MRID 50773502: DDVP, naled, dicrotophos, tribufos, phorate oxon sulfone (phorate metabolite), 
phorate oxon sulfoxide (phorate metabolite), ethoprop, methamidophos, fenamiphos, terbufos 
oxon sulfone (terbufos metabolite), terbufos oxon sulfoxide (terbufos metabolite), chlorethoxyfos 
oxon (chlorethoxyfos metabolite), and tebupirimphos oxon (tebupirimphos metabolite) 

• MRID 50773503: bensulide oxon (the active metabolite of bensulide) and phosmet oxon (the 
active metabolite of phosmet).   

A separate report was submitted on using these data to calculate pharmacodynamic DDEFs (MRID 
50773504). This report includes an evaluation by Exponent of the criteria outlined in the EPA’s DDEF 
guidance for using in vitro data for estimating DDEFs12, which includes: 

• Was the toxicologically active form of the agent studied?  
• How directly was the measured response linked to the adverse effect?  
• Are the biological samples used in the assays derived from equivalent organs, tissues, cell types, 

age, stage of development, and sex of the animals/humans in which the target organ toxicity was 
identified?  

 
12 These criteria can be found in Section 2.4 on page 19 of the EPA’s 2014 Guidance for Applying Quantitative Data 
to Develop DDEFs for Interspecies and Intraspecies Extrapolation. 
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• What is the range of variability (e.g., diverse human populations and life stages) that the 
biological materials cover? 

• If the effect occurs or can be measured in several tissues, is the studied tissue or tissue preparation 
an appropriate surrogate? Or, in situations where the effect is not localized, is the effect consistent 
across tissues?  

• Does the design of the study allow for statistically valid comparisons based on such factors as 
replicate and sample size?  

• Was chemical uptake considered when the chemical was applied to the samples so as to give 
comparable intracellular concentrations across tissues?  

• Were similar tissues or samples evaluated across species?  
• Do the concentrations in the in vitro studies allow for comparison with in vivo conditions? 

EPA believes all of the criteria have been appropriately considered and met for use of in vitro data for 
estimating pharmacodynamic DDEFs for OP compounds based on the evaluation provided by Exponent; 
however, EPA has noted concerns with the sample size for intraspecies analyses.  EPA provided feedback 
on the statistical analyses performed in this report, as well as supplemental statistical analyses (MRID 
51182301) that were subsequently submitted to address EPA’s comments and concerns. Although 
statistical analyses and results are presented in earlier reports from Exponent, the SAP should focus on the 
statistical analyses and results presented in the supplemental analysis (MRID 51182301) for their 
evaluation and comment.  Lastly, EPA has reviewed a supplemental whitepaper submitted by Exponent 
(MRID 50773504) that provides a summary of existing knowledge regarding AChE in rats and humans, 
including amino acid sequence alignments and 3D structures.   
 

3.2 Methods  

3.2.1 Laboratory Experiments  

The methods used to measure kinetic constants (biomolecular rate constant ki, dissociation constant KI, 
and phosphorylation constant kp) for AChE inhibition are described in detail in MRIDs 50773501-
50773503. Briefly, a continuous spectrophometric assay was used to determine AChE activities for 17 
OPs, as well as paraoxon as the positive control. The assays were performed using "erythrocyte ghost" 
preparations (i.e., erythrocyte cell membranes separated from hemoglobin and other cytoplasmic 
constituents) that were obtained from either human or rat erythrocytes as the source of AChE. For 
humans, the kinetic constants were determined for 18 individual samples (9 adults, 5 juveniles, and 4 cord 
blood samples). Human AChE utilized in the experiments was derived from blood samples from 
individual healthy humans of both sexes (adults age 16-60, and juveniles age 10-13), as well as cord 
blood samples. Blood samples from multiple race and ethnic groups were included in the study. For rats, 
the kinetic constants were determined for three individual pooled samples from adult rats (Sprague 
Dawley [Crl:CD(SD)BR]). Each male sample (n=3) was prepared from the pooled blood of five male 
rats. Similarly, each female sample (n=3) was prepared from the pooled blood of five female rats.  

The absorbance in each well was measured and the velocity of each reaction was calculated by 
determining the slope of the line from a plot of absorbance (proportional to product formed) as a function 
of time. The inhibition reaction was terminated by addition of the substrate acetylthiocholine. For each 
species and each inhibitor, all regressions and calculations were performed using either Microsoft Excel 
2010 or SigmaPlot version 14 to obtain the AChE velocity remaining and apparent rate of AChE 



 
 

70 
 

phosphorylation (kapp) for determination of ki, kp, and KI. The key result from the experiments was ki, 
which is directly proportional to the rate of in vivo inhibition for a given internal dose. Since the 
inhibition of AChE from an internal dose is a pharmacodynamic process, it can be directly used in the 
estimation of DDEFs. 

 
3.2.2 Statistical Approach 

For each of the 16 OPs, Exponent used SAS PROC NLMIXED to fit nonlinear mixed models to kapp (the 
apparent rate of AChE phosphorylation in mol/L/min) as a function of the inhibitor concentration (Conc). 
These mixed models were specified to have a hyperbolic functional form (referred to as the classic 
Michaelis-Menten equation for describing the kinetics of enzyme-substrate reactions), where the 
parameter estimates correspond to the phosphorylation rate constant (A, min-1) and disassociation rate 
constant (B, mol/L): 
 

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐴𝐴 ∗  𝐴𝐴𝑙𝑙𝑝𝑝𝑠𝑠
𝐵𝐵 + 𝐴𝐴𝑙𝑙𝑝𝑝𝑠𝑠

 
 
 

 
In turn, ki was estimated as the ratio of the phosphorylation rate constant and the dissociation rate 
constant (A/B) parameters from nonlinear mixed model. 
 

 
 
As part of the nonlinear mixed-effects model approach where kapp was nonlinearly regressed on inhibition 
concentration (Conc), each sample13 was treated as a unique experimental subject, such that each sample 
was allowed to have a different hyperbolic curve (i.e., each sample had a different random value of A and 
different random value of B). Additionally, in the nonlinear mixed-effects models, each group (e.g., 
species, sex, age, or ethnicity groups) is allowed to have different average A value and average B value 
(i.e., each group has a fixed effect Am value and fixed effect Bm value). These fixed effect values are the 
average of all random A values or the average of all random B values within each group. Thus, each group 
is allowed to have an “average” hyperbolic curve. 

 
13 The term “sample” refers to blood samples either collected from an individual human subject or pooled together 
from a group of rats. 
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𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎.𝑚𝑚𝑚𝑚𝑚𝑚 =
(𝐴𝐴𝑚𝑚 + 𝛾𝛾𝑚𝑚𝑚𝑚) × 𝐴𝐴𝑙𝑙𝑝𝑝𝑠𝑠𝑚𝑚
(𝐵𝐵𝑚𝑚 + 𝜑𝜑𝑚𝑚𝑚𝑚) + 𝐴𝐴𝑙𝑙𝑝𝑝𝑠𝑠𝑚𝑚

+ 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 

 
Where  𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎.𝑚𝑚𝑚𝑚𝑚𝑚 is the 𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 value of the sample ith in the group m at the inhibition concentration 𝐴𝐴𝑙𝑙𝑝𝑝𝑠𝑠𝑚𝑚, 

Am and Bm are the fixed effects A and B of group m, 
 𝛾𝛾𝑚𝑚𝑚𝑚 and 𝜑𝜑𝑚𝑚𝑚𝑚 are the random effects associated with Am and Bm of the sample ith in the group m, 
 𝛾𝛾𝑚𝑚𝑚𝑚 and 𝜑𝜑𝑚𝑚𝑚𝑚 follow normal distributions with mean = 0 and  
 

variance-covariance matrix =� 𝐺𝐺𝑀𝑀𝑚𝑚 𝐺𝐺𝑀𝑀𝐴𝐴𝑚𝑚
𝐺𝐺𝑀𝑀𝐴𝐴𝑚𝑚 𝐺𝐺𝐴𝐴𝑚𝑚

�, and 

 
𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 is the error of the measurement of the sample ith in the group m at the inhibition  

concentration 𝐴𝐴𝑙𝑙𝑝𝑝𝑠𝑠𝑚𝑚, with 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚~N(0, 𝜎𝜎2). 
 
The above equation can be rewritten and implemented in SAS as: 
 

𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎.𝑚𝑚𝑚𝑚𝑚𝑚 =
{(𝐴𝐴1 + 𝛾𝛾1𝑚𝑚) × 𝐼𝐼[𝑠𝑠 = 1] +  (𝐴𝐴2 + 𝛾𝛾2𝑚𝑚) × 𝐼𝐼[𝑠𝑠 = 2]} × 𝐴𝐴𝑙𝑙𝑝𝑝𝑠𝑠𝑚𝑚
{(𝐵𝐵1 + 𝜑𝜑1𝑚𝑚) × 𝐼𝐼[𝑠𝑠 = 1] +  (𝐵𝐵2 + 𝜑𝜑2𝑚𝑚) × 𝐼𝐼[𝑠𝑠 = 2]} + 𝐴𝐴𝑙𝑙𝑝𝑝𝑠𝑠𝑚𝑚

 + 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚 

 
where, A1 and B1 are the fixed effects A and B of group m=1, 

A2 and B2 are the fixed effects A and B of group m=2, 

I[m=1] = �
1 𝑝𝑝𝑖𝑖 𝑠𝑠 = 1
0 𝑝𝑝𝑖𝑖 𝑠𝑠 = 2 , and 

I[m=2] = �
1 𝑝𝑝𝑖𝑖 𝑠𝑠 = 2
0 𝑝𝑝𝑖𝑖 𝑠𝑠 = 1 

 
and the variance-covariance matrix of random effects 𝛾𝛾1𝑚𝑚, 𝜑𝜑1𝑚𝑚, 𝛾𝛾2𝑚𝑚 and 𝜑𝜑2𝑚𝑚 is 
 

variance-covariance matrix =�

𝐺𝐺𝑀𝑀1 𝐺𝐺𝑀𝑀𝐴𝐴1
𝐺𝐺𝑀𝑀𝐴𝐴1 𝐺𝐺𝐴𝐴1

0    0
0    0

0    0
0    0

𝐺𝐺𝑀𝑀2 𝐺𝐺𝑀𝑀𝐴𝐴2
𝐺𝐺𝑀𝑀𝐴𝐴2 𝐺𝐺𝐴𝐴2

� 

 
As shown in the variance-covariance matrix above, the random effects are independent between the 
groups m=1 and m=2. 
 
For each chemical, the ratio of ki values between two groups (e.g., m=1 for human and m=2 for rat) was 

estimated using the estimated values of the parameters in the model as 
𝑀𝑀1

𝐴𝐴1�
𝑀𝑀2

𝐴𝐴2�
, and the 95% confidence 

interval (CI) of the estimated ratio was calculated based on the standard error that was approximately 
computed using the delta method14 (all of these computations were done with the ESTIMATE statement 
in SAS PROC NLMIXED). When the ratios of the ki values are from the human and rat groups, the 
chemical-specific ratios and their corresponding 95% CIs are used to evaluate the interspecies differences 
in AChE phosphorylation between two species. When the ratios of the ki values are from the various 
human subpopulation groups (i.e., males and females; adults and infants; or Caucasian and non-

 
14 Billingsley, P. (1986). Probability and Measure. 2nd ed. New York: John Wiley & Sons. 
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Caucasian), the chemical-specific ratios and their corresponding 95% CIs are used to evaluate the 
intraspecies differences in AChE phosphorylation between the human subpopulations. 
 
For each data analysis, there were two final models: one assumed that both groups (e.g., human and rat 
species) had the same variance-covariance matrix for random effects 𝛾𝛾𝑚𝑚𝑚𝑚 and 𝜑𝜑𝑚𝑚𝑚𝑚 (model 2 in SAS code) 
and one assumed that both groups (e.g., human and rat) had different variance covariance matrices (model 
3 in SAS code)15. Exponent selected the results of the final model that had the lower Akaike’s 
Information Criterion (AIC) value. However, if the model with the lower AIC value had a SAS warning 
statement, but the alternative final model did not have a warning statement, Exponent selected the 
alternative model. In some cases, both models 2 and 3 had SAS warning statements (i.e., model fit issue), 
indicating the results of the selected final model should be interpreted with caution.  
 
Exponent also conducted regression diagnostics for the selected final models of all data analyses. Based 
on a visual evaluation of diagnostic plots, some of the selected final models had severe outliers or a 
severe imbalance in the distribution of residuals in the residuals vs. predicted values plots (i.e., model fit 
is questionable). The results of the estimated ratios from these analyses should similarly be interpreted 
with caution. 
 
For each chemical, phosphorylation rate constant (A) and disassociation rate constant (B) values of the 
human blood samples were calculated using the sample random value coefficients obtained from the 
selected final models for the human vs. rat analyses. The bimolecular rate constant of inhibition (ki) was 
then calculated as the ratio of these rate constants (A/B). Exponent then provided normal Q-Q plots of the 
ki values and the ln(ki) values to support rationale for assuming the ki values were lognormally distributed 
for all chemicals. Coverage ratios (i.e., 90%-tile/GM, 95%-tile/GM, 97.5%-tile/GM, and 99%-tile/GM) 
were then calculated based on the assumption that ki values are lognormally distributed. These chemical-
specific coverage ratios were calculated only for the final selected models with the human and rat groups 
and were used to evaluate the variability AChE phosphorylation within humans (i.e., intraspecies 
variability of AChE phosphorylation). 

3.3 Results 

The sections below provide the summary results for the interspecies data (rat to human) and the 
intraspecies (within human) analyses. Values are reported for 16 of the 17 OPs tested because tribufos did 
not produce any AChE inhibition even at a final concentration of 1 mM; therefore, ki values are not 
reported for tribufos.  

3.3.1 Interspecies data analyses 
 

• There were 9 (of 16) chemicals for which we can interpret the results of estimated ki ratios 
human/rat without any concern for severe outliers or model fit issues in the selected final models 
(Table 15). For all these 9 chemicals, both the 95% upper confidence limit (UCL) and lower 
confidence limit (LCL) for the ratios between the human estimated ki values and the rat estimated 
ki values are less than 3-fold from the point estimate (i.e., UCL < 3 and LCL > 0.33). 
 

• As shown in Table 15, there were 6 (of 16) chemicals for which the estimated ratios of human/rat 
should be interpreted with caution due to severe outlier/model fit concern. Except for naled with 

 
15The same variance-covariance matrix model (model 2) assumes that the variations of random effects and the 
correlation between the random effects of the samples are the same or similar between human samples and animal 
samples. A different variance-covariance matrix model (model 3) assume the variation of random effects and the 
correlation between random effects of samples are different between human samples and rat samples. 
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estimated ki ratio human/rat = 0.5 (95% CI = 0.35-0.66) and omethoate with estimated ki ratio 
human/rat = 0.26 (95% CI = 0.09-0.43), the other 4 chemicals had similar ki values between 
human and rat, and both the 95% UCL and LCL for the ratios between the human estimated ki 
values and the rat estimated ki values differ less than 2-fold (i.e., UCL < 2 and LCL > 0.5). 

 
• There was 1 (of 16) chemical for which there was a SAS warning statement (model fit issue) in 

the selected final model (Table 15). The result of estimated ki ratio human/rat from this model 
should be interpreted with caution. 

 

Table 15. Interspecies biomolecular rate constant (ki) ratios and associated 95% confidence 
intervals for 16 OPs 

Chemical 
Estimated ki 

ratio 
human/rat 

95% CI 
Severe 

outliers/ 
model fit 
concern? 

Warning 
statement/ 
model fit 

issue Lower  Upper 
Bensulide oxon 0.62* 0.42 0.81 No No 
Chlorethoxyfos 0.48* 0.39 0.57 No No 
DDVP 1.14 0.98 1.29 No No 
Ethoprop 2.06* 1.45 2.67 No No 
Fenamiphos 0.89 0.63 1.15 No No 
Methamidophos 0.86 0.64 1.09 No No 
Phorate oxon sulfoxide 0.84* 0.72 0.96 No No 
Phosmet oxon 1.07 0.83 1.3 No No 
Terbufos oxon sulfone 1.2 0.89 1.52 No No 
Terbufos oxon sulfoxide 1.35 1.2 1.5 No Yes 
Dicrotophos 0.76* 0.62 0.9 Yes No 
Malaoxon 0.96 0.53 1.39 Yes No 
Naled 0.50* 0.35 0.66 Yes No 
Omethoate 0.26* 0.09 0.43 Yes No 
Phorate oxon sulfone 0.88 0.5 1.25 Yes No 
Tebuprimphos oxon 0.44* 0.21 0.67 Yes No 

*Statistically significantly different from 1 (p<0.05) 

3.3.2 Intraspecies data analyses 
 
Three stratified intraspecies data analyses were separately conducted for each of 16 chemicals. These 
analyses are presented on pages 23-30 of MRID 51182301. However, there is low confidence in the 
results of these analyses, in part, due to the small sample sizes following stratification. EPA is concerned 
that results based on a limited number of samples would not be representative of the subpopulations being 
evaluated. There were 14 adult samples and 4 infant samples in the analysis of adult vs. infant (number of 
samples per group would be very small if the sample was further split into additional age groups). There 
were 8 male samples and 10 female samples in the analysis of male vs. female. There were 13 Caucasian 
samples and 5 non-Caucasian samples16 in the analysis of Caucasian vs. non-Caucasian. Additionally, 

 
16 The Exponent analysis and nomenclature included African American (n=3) and Hispanic subjects (n=2) in the 
“non-Caucasian” category for this analysis. 
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several of the models for these analyses resulted in model outliers or had model convergence issues. 
Further exploratory analysis would be needed to address these model fit issues, which may in part be due 
to the limited number of samples. 
 
Exponent estimated the coverage ratios of ki distributions (Table 16), where the ki values were estimated 
from the nonlinear mixed effects models using all available human samples. The human fixed effects and 
sample random of Phosphorylation Constant kp (SAS coding as HA and RHA, respectively) and 
Dissociation Constant KI (SAS coding as HB and RHB, respectively) obtained from the selected final 
models of human vs. rat analyses were used to calculate the ki values (ki = (HA + RHA)/(HB+RHB)). The 
coverage ratios of the ki distributions, that is, the ratio between various upper percentiles values and the 
geometric mean or GM (e.g., 90%-tile/GM, 95%-tile/GM, 97.5%-tile/GM, and 99%-tile/GM) were 
calculated based on the assumption that the ki values were distributed lognormally. Among 9 chemicals 
with no issue or concern of model fit, all the ki ratios of the 95%-tile/GM were less than 3. Of those 7 
chemicals with model fit issues or model fit concerns in the analysis of human vs. rat, 2 chemicals 
(malaoxon and naled) had estimated ki ratios of the 95%-tile/GM > 3. 
 
Exponent also presented the results of an alternative coverage ratio analysis in MRID 51182301, which 
was based on fitting separate nonlinear models to each of the samples. For each chemical, the estimated 
nonlinear model for each human subject was considered completely independent and the model 
parameters were estimated completely independent of one another. However, EPA prefers the other 
mixed effect model approach over this alternative analysis because it better reflects the structure of the 
observed data and leverages the information contained in the entire set of chemical-specific data. 
 

Table 16. Intraspecies coverage ratios of biomolecular rate constant (ki) distributions for 16 OPs assuming lognormal 
distribution  
Model fit 
issue/ model 
fit concern 

Chemical GM GSD 90%-tile/ 
GM 

95%-tile/ 
GM 

97.5%-
tile/ GM 

99%-tile/ 
GM 

No 

Bensulide oxon 3.7E+02 1.30 1.40 1.54 1.67 1.84 
Chlorethoxyfos 2.5E+07 1.17 1.23 1.30 1.37 1.45 
DDVP 5.1E+04 1.18 1.24 1.31 1.38 1.47 
Ethoprop 1.5E+03 1.18 1.24 1.32 1.39 1.48 
Fenamiphos 1.5E+02 1.23 1.31 1.41 1.50 1.62 
Methamidophos 1.1E+03 1.23 1.31 1.41 1.51 1.63 
Phorate oxon 
sulfoxide 5.2E+04 1.12 1.15 1.20 1.24 1.29 

Phosmet oxon 1.0E+05 1.21 1.27 1.36 1.45 1.55 
Terbufos oxon 
sulfone 3.8E+05 1.56 1.77 2.08 2.39 2.82 

Model fit 
concern 

Dicrotophos 5.3E+03 1.22 1.29 1.38 1.47 1.58 
Malaoxon 1.1E+05 2.49 3.22 4.48 5.97 8.33 
Naled 3.1E+06 2.16 2.69 3.56 4.54 6.02 
Omethoate 6.6E+02 1.71 1.99 2.41 2.86 3.48 
Phorate oxon 
sulfone 7.7E+04 1.39 1.53 1.72 1.91 2.16 

Tebupirimphos 
oxon 6.6E+05 1.73 2.02 2.47 2.94 3.59 

Model fit issue Terbufos oxon 
sulfoxide 1.1E+04 1.32 1.43 1.58 1.72 1.91 

GM = geometric mean; GSD = geometric standard deviation
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 Exponent also conducted another data analysis to evaluate the variation of ki between human 
samples (Table 17). The ki data of 3 chemicals (naled, omethoate, and phosmet oxon) from 3 subsamples 
from each of 4 human samples were available. Note that these ki values were obtained from the nonlinear 
regression analyses that Exponent separately performed on each subsample data. To achieve the normality 
assumption, log-transformation was applied to the ki data, then a mixed-effects model (SAS PROC 
MIXED) with human sample ID as random effect (i.e., experimental subject in the model) was used to 
analyze the log-transformed ki data of each chemical. The intraclass correlation (ICC), between subject 
variance (this is actually the estimate of the variance of human log(ki), and within subject variance (this is 
actually the variance of log(experimental error)) were obtained from the model. Using the estimated 
variance of human log(ki ) obtained from the mixed-effect model, the coverage ratios of the ki 
distributions17 were calculated for each chemical and are presented in the following table.  
 
As described in MRID 51182301, the results from this analysis are not consistent across the 3 chemicals. 
For naled, there was relatively large within subject variability with 84% of the total variability due to 
differences observed between the 3 replicate analyses of the human blood samples. Whereas, for phosmet 
oxon, only 3% of the total variability was due to differences in the 3 replicate analyses of the blood 
sample; 97% of the observed variability was due to the differences between human subjects. 
 
 

Table 17. Coverage ratios of biomolecular rate constant (ki) distributions calculated using 
subsample data assuming lognormal distribution 

Chemical GM GSDtotal ICC GSDa
between 

human 

90%-
tile/ 
GM 

95%-
tile/ 
GM 

97.5%-
tile/ 
GM 

99%-
tile/ 
GM 

Naled 2.7E+06 2.1 0.84 1.86 2.4 3.0 3.7 4.8 

Omethoate 6.9E+02 2.2 0.20 1.17 1.6 1.8 2.0 2.3 

Phosmet 
Oxon 9.8E+04 1.3 0.027 1.01 1.1 1.1 1.1 1.1 

a GSDbetween human is the geometric standard deviation of between human sample variation, calculated based on the formula ICC = 
between human sample variance/Total Variance = between human sample variance/(between human sample variance + variance 
of experimental errors). Specifically, GSD between human = exp(sqrt([ln(GSDtotal) * ln(GSDtotal)]*ICC)). 

 
3.4. Proposed Approach to the Human Health Risk Assessment 
 
3.4.1 Interspecies Pharmacodynamic DDEFs 
 
The interspecies pharmacodynamic DDEFs ranged from 0.26 to 2.06. All DDEFs, except one value 
(ethoprop), were approximately 1 or less. There were no concerns for warning statements, severe outliers, 
and/or model fit issues for 9 of the chemicals tested. These included bensulide oxon, chlorethoxyfos, 
DDVP, ethoprop, fenamiphos, methamidophos, phorate oxon sulfoxide, phosmet oxon, and terbufos oxon 
sulfone. EPA’s prelimary proposal is to use the pharmacodynamic DDEFs presented in Table 15 for these 
9 chemicals in lieu of the 3X default interspecies pharmacodynamic uncertainty factor for human health 
risk assessment, pending review by the SAP. Although some values are less than 1, the EPA’s DDEF 
guidance states that interspecies pharmacodynamic values “can be less than 1 if the data show humans are 

 
17 The ratio between various upper percentiles values and the geometric mean or GM (e.g., 90%-tile/GM, 95%-
tile/GM, 97.5%-tile/GM, and 99%-tile/GM) 
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less sensitive than test species” but the decision of what value to use is considered policy and beyond the 
scope of the SAP. 

For the remaining chemicals, there are concerns with using the DDEFs due to warning statements, 
potential outliers, and/or model fit issues. The OPP is soliciting feedback and advice from the SAP on the 
warning statements and model fit issues as part of Charge Question 6. 
 

3.4.2 Intraspecies Pharmacodynamic DDEFs 
 
Due to small sample sizes, the Agency does not have confidence in the stratified analyses (adult/infant, 
male/female, and Caucasian/non-Caucasian). There is more confidence in the coverage ratios (the ratio 
between various upper percentiles values and the geometric mean) that were calculated using all of the 
available human samples; however, it is still questionable whether the sample size (n=18) is sufficient and 
representative for these analyses. The same 9 chemicals listed in Section 3.4.1 for interspecies 
extrapolation with no concerns for warning statements, severe outliers, and/or model fit issues were also 
found to have no concerns for intraspecies pharmacodynamic DDEFs. Therefore, EPA’s preliminary 
proposal is to use the intraspecies pharmacodynamic DDEFs generated for bensulide oxon, 
chlorethoxyfos, DDVP, ethoprop, fenamiphos, methamidophos, phorate oxon sulfoxide, phosmet oxon, 
and terbufos oxon sulfone (Table 16) in lieu of the 3X default intraspecies pharmacodynamic uncertainty 
factor, pending review by the SAP. The percentile used is a policy decision that will be made by the OPP 
when applying these data for human health risk assessments and beyond the scope of the SAP.  

For the remaining chemicals, there are concerns with using the DDEFs due to warning statements, 
potential outliers, and/or model fit issues. The OPP is soliciting feedback and advice from the SAP on the 
warning statements and model fit issues as part of Charge Question 6. Additionally, in Charge Question 8, 
EPA is seeking advice from the SAP on the utility of the analyses performed for a subset of OPs to 
evaluate experimental and intrinsic variability and whether additional data should be generated for other 
OPs. 

4.0 Summary & Next Steps 
 

The EPA’s OPP is actively engaged in numerous activities related to developing and implementing 
NAMs, which reduce reliance on laboratory animal studies and have the ability to provide human relevant 
information that may challenging to obtain from in vivo studies. This Issue Paper presented two 
approaches related to these efforts. The first approach presented work completed by ORD thus far to 
develop a battery of NAMs for evaluating DNT, using OPs as a case study. The MEA NFA and HCI 
assays were found to be robust and reproducible for fit-for-purpose application to identify putative DNT-
related bioactivity, with reasonable assay performance controls established. Differential activity was 
observed across the 27 OPs tested in the MEA NFA and HCI assay suite. These assays evaluate the 
majority of the critical processes of neurodevelopment (as presented in Table 3 and Figure 2) and 
represent a significant advancement toward developing a NAM battery for fit-for-purpose DNT 
evaluation.  
 
IVIVE approaches with HTTK models were utilized to approximate NAM-derived AEDs, which were 
greater than or in some cases approximating BMD/BMDL values based on AChE inhibition. Predictions 
from PBPK-PD models were found to be higher than HTTK predictions; however, these comparisons 
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were limited to the 3 chemicals where PBPK-PD models could be applied. The IVIVE approach used is 
driven by the chemical-specific data available. Due to the lack of rat clearance data for many of the OPs 
tested, the use of human data in the rat model (i.e., huRat) was evaluated. Predictions were not found to 
be uniformly higher or lower when using human rather than rat data. Therefore, for chemicals that are 
lacking rat clearance data and have huRat AEDs approximating the BMD/BMDL values, it is unknown 
whether the predictions are over- or underestimates. Pending the recommendations from the SAP and the 
overall weight of evidence evaluation of DNT potential based on the currently available data, the OPP 
may determine that the rat in vitro clearance data for particular OPs are needed to improve AED vs. 
BMD/BMDL comparisons and may reach out to registrants in the future to generate these data. 
 
Additional assays are currently under development by EFSA-funded researchers that evaluate processes 
not covered by the MEA NFA and HCI assays (i.e., migration and differentiation). The relative 
contribution of these assays for a fit-for-purpose NAM battery will be considered once data are available. 
Additionally, any OP data from these assays will be considered in combination with the results of the 
MEA NFA and HCI assays as part of an overall weight of evidence evaluation of the DNT potential for 
individual OPs. 
 
The second approach presented in vitro data generated by academia on behalf of pesticide registrants to 
calculate pharmacodynamic DDEF values for 16 OPs in accordance with the EPA’s 2014 guidance on 
DDEFs. For both interspecies and intraspecies DDEFs, there were no statistical issues identified for 9 
chemicals. EPA’s preliminary proposal is to use the DDEFs calculated for these 9 chemicals (bensulide 
oxon, chlorethoxyfos, DDVP, ethoprop, fenamiphos, methamidophos, phorate oxon sulfoxide, phosmet 
oxon, and terbufos oxon sulfone) in lieu of the default pharmacodynamic uncertainty factors, pending 
review by the SAP. For the remaining chemicals, SAP recommendations regarding warning statements 
and model fit issues will be considered before determining the potential use of the calculated DDEFs. 
Ultimately, the selection and application of DDEFs for each chemical is a policy decision that will be 
made by EPA. 
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