

Session 6: Iron and Manganese Control in Groundwater Systems

Asher Keithley US EPA Office of Research and Development

EPA ORD-Region 4 Small Drinking Water Systems Meeting

October 15, 2020

Fe and Mn in Drinking Water

- Iron (Fe)
 - Secondary maximum contaminant level (SMCL) = 0.3 mg/L
 - Staining, red water, taste, accumulation in distribution system
- Manganese (Mn)
 - SMCL = 0.05 mg/L
 - Many systems target 0.01-0.02 mg/L
 - Staining, accumulation in distribution system
 - Health concerns
 - Neurotoxin
 - Lifetime Health Advisory Level (HAL) = 0.3 mg/L
 - Acute HAL = 1 mg/L
 - Health Canada maximum allowable concentration = 0.12 mg/L
 - Included in Unregulated Contaminant Monitoring Rule (UCMR) 4

https://www.pbwatersoftening.com/5harmful-effects-high-levels-iron-water/

https://www.wachsws.com/using-unidirectional-flushing-programs-to-combat-tuberculation/

Occurrence in Groundwater

Iron

€PA

Manganese

Dissolved Organic Carbon

Data from USGS NWIS, McMahon et al. (2019)

Water Chemistry

- Mostly present in groundwater as Fe(II) (Fe²⁺) and Mn(II) (Mn²⁺)
 - Soluble
- Oxidized forms Fe(III) (Fe³⁺) and Mn(IV) (Mn⁴⁺) are relatively insoluble (form a solid)
- Possible other reduced co-contaminants
 - Ammonia
 - Arsenic
 - Total organic carbon (TOC)

Sequestration does not remove Fe and Mn

- Sequestration: add polyphosphate to disperse Fe³⁺ and Mn⁴⁺ colloidal particles
- Does not remove the Fe or Mn
 - Mn still poses a health concern
- Polyphosphates revert or breakdown over time
 - Reversion rate depends on chemical, water quality and temperature
 - Still get accumulation in the distribution system
 - Still get customer complaints
- Polyphosphate not recommended for corrosion control

\$EPA

Fe and Mn Treatment Techniques

- Ion exchange
 - Maintain low Dissolved Oxygen (DO) and remove Fe²⁺ and Mn²⁺
 - If bypass is used, some Fe and Mn would remain in the water
 - Generate waste brine
- Oxidation + physical separation
 - Chemical oxidation Air, free chlorine (Cl₂), ozone (O₃), permanganate (MnO₄⁻)
 - Biological oxidation Bacteria naturally present in the groundwater can oxidize Fe and Mn
 - MnO_x coated media can improve Mn removal
 - Generate residuals in backwash wastewater

Fe and Mn Treatment Schematics

Chemical Oxidation + Filtration

Biological Oxidation + Filtration

Fe and Mn Oxidant Comparison

Oxidant	Benefits	Drawbacks	
Aeration	 Simple Forms Fe particles that are easier to remove via filtration 	Not effective for Mn	
Free Chlorine (Cl ₂)	 Effective for Fe and Mn if filter media is coated with MnO_x 	 Not effective if elevated NH₃ is present Could form disinfection byproducts (DBPs) if TOC is elevated 	
Ozone (O ₃)	• Rapid	 Forms colloidal Fe and Mn that are difficult to remove via filtration Expensive 	
Permanganate (MnO ₄ -)	 Effective for Fe and Mn even if NH₃ and TOC are elevated 	 Overdosing problematic – pink water Generate increased residuals 	
Biological	 Longer filter run times Lower chemical cost Can remove Fe, Mn and NH₃ 	 Mn-oxidizing bacteria have long acclimation time (3-6 months) 	

Process Selection Considerations

- Level of complexity and safety (strong chemical oxidants, backwash, etc.)
- Residual (e.g., backwash waste stream) disposal (acceptable route such as sanitary sewer)
- Water use restrictions (relatively frequent backwash necessary)
- Water chemistry
- Well understood process
- Operating costs
- Presence of co-occuring contaminants
- Potential unintended consequences

Case Studies

- Climax, MN
 - Cl₂ for Fe and Mn removal
 - Location also has arsenic (As)
- Waynesville, IL
 - MnO₄⁻ for Fe removal
 - Location also has As, NH₃, and TOC
- Gilbert, IA
 - Biological treatment for Fe and Mn removal
 - Location also has NH₃ and As

Climax, MN – Cl₂ and Filtration

- Serves community of 264 people
- Supplied by 2 wells with combined capacity of 300 gallons per minute (gpm)

Raw Water Quality

Parameter	Unit	Concentration*
рН		7.5
Alkalinity	$mg/L CaCO_3$	319
Hardness	$mg/L CaCO_3$	270
Iron	mg/L	0.698
Manganese	mg/L	0.141
Arsenic	μg/L	37 [~95% as As(III)]
Chloride	mg/L	184
Sulfate	mg/L	114
Silica	mg/L	28

*Average concentration based on multiple samplings

Climax, MN – Treatment System

Kinetico[®] Mesh 40/60 Macrolite[®] Media

- Engineered ceramic filtration media
- Low density
- Spherical
- Up to 10 gpm/ft²

Set EPA

Climax, MN – Fe and As removal

- Good Fe removal through the filters
- Supplement Fe to get better As removal
- Good As removal through the filters
- Effluent As concentration <10 μ g/L (MCL) after Fe addition began

SEPA

Climax, MN – Mn removal

- Mn removal not primary treatment objective
- Some Mn removal after chlorination in the contact tanks (~5 minutes)
- Macrolite[®] media not coated with MnO_{x(s)}
- Mn leaving the plant was still in soluble form
- Plant achieved some Mn removal, but still was above SMCL of 0.05 mg/L and optimized target of 0.02 mg/L

Location	Mn (mg/L)
Raw	0.112 - 0.218
After Contact Tanks	0.059 – 0.089
After Filters	0.055 – 0.092

Waynesville, IL – Background

•	452	resid	lents
---	-----	-------	-------

- Average daily demand = 29,000 gal
- 2 supply wells with combined capacity of 84 gpm
- Theoretical free chlorine dose = 30.6 mg/L
 - Very high
 - DBP concerns
- Selected NaMnO₄ as oxidant

Parameter	Units	Plant Influent Average (Range)
Arsenic	µg/L	33.1 (23.9 – 45.2)
Iron	mg/L	2.298 (1.939 – 2.720)
Manganese	mg/L	0.033 (0.021 – 0.108)
Ammonia	mg N/L	3.8 (3.4 – 4.2)
тос	mg/L	7.9 (5.8 – 8.9)
рН		7.3 (6.9 – 8.0)
DO	mg/L	1.2 (0.6 – 2.5)
Alkalinity	mg/L as CaCO ₃	599 (542 – 651)

Treatment Process

S-PA

- Pressurized system to maintain low DO throughout
- (4) 3-ft diameter pressure vessels
 - 12 inches anthracite
 - 24 inches GreensandPlus[™]
- Design filtration rate 3.4 gpm/ft²
- Backwash every 3 days
- Backwash wastewater discharged to sewer via (2) 2,000-gal tanks

Treatment Plant

Treatment Plant

Operator onsite daily and spent ~20 min to perform visual inspections and record system operational parameters NaMnO₄ Feed

Pressure Vessels

MnO₄⁻ Dose Optimization

- Underdosing
 - Incomplete oxidation
 - Form colloids
 - High Mn
- Overdosing
 - Pink water
 - High Mn
- Selected mass ratios
 - KMnO₄:Fe = 1.0 mg/mg
 - KMnO₄:Mn = 2.0 mg/mg
 - $KMnO_4$:As = 1.4 mg/mg
 - $KMnO_4:TOC = 0.4 mg/mg$

Finished Water Quality

Parameter	Units	Plant Influent Average (Range)	Filter Effluent Average (Range)	 1) Optimizing dose 2) Increasing contact time
Arsenic	μg/L	33.1 (23.9 – 45.2)	3.4 (2.5 – 4.6)	\checkmark
Iron	mg/L	2.298 (1.939 – 2.720)	0.035 (<0.025 – 0.150)	\checkmark
Manganese	mg/L	0.033 (0.021 – 0.108)	0.071 (0.038 – 0.119)	>50 μg/L SMCL
Ammonia	mg N/L	3.8 (3.4 – 4.2)	3.7 (3.5 – 4.0)	Unchanged
тос	mg/L	7.9 (5.8 – 8.9)	7.4 (6.7 – 7.9)	Unchanged TTHM <4 μg/L. HAA5 <6 μg/L
рН		7.3 (6.9 – 8.0)	7.6 (6.7 – 8.2)	
DO	mg/L	1.2 (0.6 – 2.5)	0.9 (0.6 – 2.1)	Limits nitrification potential

Could improve Mn removal by:

Gilbert, IA – Biological Treatment

Parameter	Raw Water	
Temperature	13.3 °C	
рН	7.63	
Alkalinity	410 mg CaCO ₃ /L	
Hardness	280 mg CaCO ₃ /L	
As	23 μg/L	
Fe	2.91 mg/L	
Mn	0.08 mg/L	
NH ₄	2.91 mg N/L	
NO ₂	0.01 mg N/L	
NO ₃	0.02 mg N/L	
тос	2.68 mg/L	
DO	1.1 mg/L	

• Population ~1,100

- High NH₃ can result in nitrification in the distribution system and NO₂ >1 mg N/L
- Pilot study leading to full-scale construction

https://cityofgilbertiowa.org/151/Water-Department

€FPA

Pilot Reactor

- Contactor and filter are biologically active
 - Contactor is continuously aerated
 - Filter removes particles
- Nitrification requires
 4.5 mg O₂/mg NH₃-N
- Fe oxidized by air and bacteria
- Bacteria oxidize As(III) → As(V), which then sorbs with Fe oxides
- Bacteria oxidize Mn

Water & Air

7 hours/day, 7 days/week

Contactor

- 0.5 inch gravel
- Bed depth: 55 inches
- Air flow: 2.5 L/min
- Loading rate: 2.2 gpm/ft²
- Backwash monthly

Filter

- Bed depth: 10 inches anthracite, 30 inches Mn-oxide coated sand
- Backwash every 24 h of operation

Complete Nitrification

- Convert ~70% of NH₃ to NO₃ in the aerated contactor
- Polishing filter achieves finished water NH₃ <0.1 mg N/L
- Filter effluent NO₂ << MCL

⇒EP/

Good Fe, Mn, and As removal

- >50% removal of Fe, Mn, and As occurred in the contactor
- Filter effluent contained Fe < SMCL, Mn < target, and As < MCL

Summary

- Good to remove Fe and Mn at the treatment plant
- Sequestration is ineffective and does not protect human health when elevated Mn is present
- Chemical oxidation with Cl₂ or MnO₄⁻ effective for Fe and As removal
- Cl₂ + MnO_x-coated media effective for Mn removal
- Biological treatment can effectively remove Fe and Mn, as well as other co-occurring contaminants
- Choice of treatment technique driven by overall water quality

Contact

Asher Keithley, PhD

Postdoctoral Researcher Drinking Water Management Branch Center for Environmental Solutions and Emergency Response US EPA Office of Research and Development <u>Keithley.Asher@epa.gov</u> 513-569-7269

Acknowledgments: Darren Lytle, PhD, PE, US EPA ORD Dan Williams, US EPA ORD Christy Muhlen, US EPA ORD

Disclaimer: US EPA funded and managed, or partially funded and collaborated in, the research described herein. It has been subjected to the Agency's peer and administrative review and has been approved for external publication. Any opinions expressed in this paper are those of the author(s) and do not necessarily reflect the views of US EPA, therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.