

EPA/600/R-20/318 | September 202 0
www.epa.gov/homeland-security-research

Water Security Toolkit User Manual:
Version 1.5

Office of Research and Development
Homeland Security Research Program

WATER SECURITY TOOLKIT USER MANUAL:
VERSION 1.5

by

Katherine Klise, David Hart, John Siirola, William Hart, Cynthia Phillips

Sandia National Laboratories
Albuquerque, NM 87185

Carl Laird, Arpan Seth, Jose Santiago Rodriguez

Purdue University

West Lafayette, IN 47907

Terranna Haxton, Regan Murray, Robert Janke

U.S. Environmental Protection Agency

Cincinnati, OH 45268

Gabe Hackebeil, Angelica Mann, Shawn McGee

Texas A&M University

College Station, TX 77843

Thomas Taxon
Argonne National Laboratory

Lemont, IL 60439

Interagency Agreement DW8992450201

Terranna Haxton
U.S. Environmental Protection Agency Project OZcer

Homeland Security Research Program

Cincinnati, OH 45268

Disclaimer

The U.S. Environmental Protection Agency (EPA) through its OZce of Research and Development funded
and collaborated in the research described here under an Interagency Agreement (IA # DW8992192801
and # DW8992450201) with the Department of Energy’s Sandia National Laboratories. It has been subject
to the Agency’s review and has been approved for publication. Note that approval does not signify that the

contents necessarily re2ect the views of the Agency. Mention of trade names, products, or services does
not convey oZcial EPA approval, endorsement, or recommendation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Gov-

ernment. Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish

or reproduce the published form of this contribution, or allow others to do so for United States Government

purposes. Neither Sandia Corporation, the United States Government, nor any agency thereof, nor any of

their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for

the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or

represents that its use would not infringe privately-owned rights. Reference herein to any speci1c commer-

cial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

constitute or imply its endorsement, recommendation, or favoring by Sandia Corporation, the United States

Government, or any agency thereof. The views and opinions expressed herein do not necessarily state or
re2ect those of Sandia Corporation, the United States Government or any agency thereof.

Questions concerning this document or its application should be addressed to:

Terra Haxton
Center for Environmental Solutions and Emergency
Response

OZce of Research and Development

U.S. Environmental Protection Agency

Cincinnati, OH 45268

Haxton.Terra@epamail.epa.gov

513-569-7810

i

mailto:Haxton.Terra@epamail.epa.gov

License Notice

The Water Security Toolkit (WST) v.1.5

Copyright c 2012-2019 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a
non-exclusive license for use of this work by or on behalf of the U.S. government.

This software is distributed under the Revised BSD License (see below). In addition, WST leverages a variety

of third-party software packages, which have separate licensing policies:

Acro Revised BSD License
argparse Python Software Foundation License
Boost Boost Software License
Coopr Revised BSD License
Coverage BSD License
Distribute Python Software Foundation License / Zope Public License
EPANET 2.00.12 Public Domain
EPANET-ERD Revised BSD License
EPANET-MSX GNU Lesser General Public License (LGPL) v.3
gcovr Revised BSD License
GRASP AT&T Commercial License for noncommercial use; includes randomsample and

sideconstraints executable 1les
LZMA SDK Public Domain
nose GNU Lesser General Public License (LGPL) v.2.1
ordereddict MIT License
pip MIT License
PLY BSD License
PyEPANET Revised BSD License
Pyro MIT License
PyUtilib Revised BSD License
PyYAML MIT License
runpy2 Python Software Foundation License
setuptools Python Software Foundation License / Zope Public License
six MIT License
TinyXML zlib License
unittest2 BSD License
Utilib Revised BSD License
virtualenv MIT License
Vol Common Public License
vpykit Revised BSD License

Additionally, some precompiled WST binary distributions might bundle other third-party executable 1les:

Coliny Revised BSD License (part of Acro project)
Dakota GNU Lesser General Public License (LGPL) v.2.1
PICO Revised BSD License (part of Acro project)

ii

Revised BSD License

Redistribution and use in source and binary forms, with or without modi1cation, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the

following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and

the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Sandia National Laboratories nor Sandia Corporation nor the names of its con-

tributors may be used to endorse or promote products derived from this software without speci1c
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

iii

Acknowledgements

The U.S. Environmental Protection Agency (EPA) acknowledges the support in the development of the Water

Security Toolkit User Manual, and in the development and testing of the Water Security Toolkit software.

The Water Security Toolkit is an extension of the Threat Ensemble Vulnerability Assessment-Sensor Place-

ment Optimization Tool (TEVA-SPOT), which was also developed with funding from the U.S. Environ-

mental Protection Agency through its OZce of Research and Development (Interagency Agreement #

DW8992192801). EPA would like to acknowledge the following individuals for their previous contributions to

the development of the TEVA-SPOT toolkit software: Jonathan Berry (Sandia National Laboratories), Erik Bo-

man (Sandia National Laboratories), Lee Ann Riesen (Sandia National Laboratories), James Uber (University

of Cincinnati), and Jean-Paul Watson (Sandia National Laboratories).

iv

Acronyms

ATUS
BLAS
CFU
CVAR

American Time-Use Survey
Basic linear algebra sub-routines
Colony-forming unit
Conditional value at risk

CWS
EA
EDS
EPA
EC

Contamination warning system
Evolutionary algorithm
Event detection system
U.S. Environmental Protection Agency
Extent of Contamination

ERD EPANET results database 1le
GLPK
GRASP
HEX

GNU Linear Programming Kit
Greedy randomized adaptive sampling process
Hexadecimal

HTML
INP
LP
MC

HyperText markup language
EPANET input 1le
Linear program
Mass consumed

MILP
MIP
MSX
NFD

Mixed integer linear program
Mixed integer program
Multi-species extension for EPANET
Number of failed detections

NS Number of sensors
NZD Non-zero demand
ODE
PD
PDE
PE
PK
TAI
TCE
TD

Ordinary di−erential equation
Population dosed
Partial di−erential equation
Population exposed
Population killed
Threat assessment input 1le
Tailed-conditioned expectation
Time to detection

TEVA
TSB
TSG
TSI
VAR

Threat ensemble vulnerability assessment
Tryptic soy broth
Threat scenario generation 1le
Threat simulation input 1le
Value at risk

VC Volume consumed
WST
YML

Water Security Toolkit
YAML con1guration 1le format for WST

v

Symbols

Notation De1nition Example

{, } set brackets {1, 2, 3} means a set containing the values 1,2, and 3.

2 is an element of s 2 S means that s is an element of the set S.

8 for all s = 1 8 s 2 S means that the statement s = 1 is true for all s in
set S.

P
summation

Pn
i=1 si means s1 + s2 + · · · + sn.

\ set minus S \T means the set that contains all those elements of S that are
not in set T .

| given | is used to de1ne conditional probability. P (s|t) means the prob-

ability of s occurring given that t occurs.

|...| cardinality Cardinality of a set is the number of elements of the set. If set
S = {2, 4, 6}, then |S| = 3.

vi

Contents

1 Introduction 1

2 Getting Started 3

2.1 Obtaining the Water Security Toolkit . 3

2.2 Dependencies of the Water Security Toolkit . 3

2.3 Installing the Water Security Toolkit Binary Distributions . 5

2.4 Compiling the Water Security Toolkit Source Code . 6

2.4.1 Obtaining the Water Security Toolkit Source Code . 6

2.4.2 Con1guring the Python Virtual Environment . 6

2.4.3 Building the C++ Executable Files . 7

2.5 Basic Usage of the Water Security Toolkit . 7

2.6 Verifying Installation of the Water Security Toolkit . 8

2.7 Uninstalling the Water Security Toolkit . 8

3 Contaminant Transport 9

3.1 Hydraulic and Water Quality Analysis . 9

3.1.1 EPANET and EPANET-MSX . 9

3.1.2 Merlion . 10

3.2 Contaminant Transport Scenarios . 10

3.3 tevasim Subcommand . 11

3.3.1 Con1guration File . 11

3.3.2 Con1guration Options . 11

3.3.3 Subcommand Output . 13

3.4 Contaminant Transport Examples . 14

3.4.1 Example 1 . 14

3.4.2 Example 2 . 15

4 Impact Assessment 17

4.1 Impact Metrics . 18

vii

4.2 Human Health Impact Model . 20

4.2.1 Population . 20

4.2.2 Cumulative Dose . 21

4.2.3 Response . 22

4.2.4 Disease Progression Model . 22

4.3 sim2Impact Subcommand . 23

4.3.1 Con1guration File . 23

4.3.2 Con1guration Options . 23

4.3.3 Subcommand Output . 25

4.4 Impact Assessment Examples . 25

4.4.1 Example 1 . 25

4.4.2 Example 2 . 26

4.4.3 Example 3 . 26

5 Sensor Placement 28

5.1 Sensor Placement Formulations . 28

5.1.1 Expected-Impact Formulation . 29

5.1.2 Robust Formulations . 30

5.1.3 Side-Constrained Formulation . 31

5.1.4 Min-Cost Formulation . 32

5.2 Sensor Placement Solvers . 32

5.3 sp Subcommand . 33

5.3.1 Con1guration File . 34

5.3.2 Con1guration Options . 37

5.3.3 Subcommand Output . 42

5.4 Sensor Placement Examples . 43

5.4.1 Example 1: Solving eSP with a MIP Solver . 43

5.4.2 Example 2: Evaluating Solutions to eSP with Multiple Impact Files 46

5.4.3 Example 3: Solving eSP with a GRASP Solver . 48

5.4.4 Example 4: Solving wSP with a MIP Solver . 49

5.4.5 Example 5: Solving cvarSP with a MIP Solver . 51

5.4.6 Example 6: Solving scSP with a MIP Solver . 52

5.4.7 Example 7: Solving mcSP with a MIP Solver . 57

6 Hydrant Flushing 59

6.1 Flushing Formulation . 60

viii

6.2 Flushing Solvers . 61

6.2.1 Evolutionary Algorithm . 61

6.2.2 Network Solver . 61

6.2.3 Flushing Optimization for Large Problems . 62

6.2.3.1 Parallelization . 62

6.2.3.2 Stop time criteria . 62

6.2.3.3 Skeletonization . 62

6.3 flushing Subcommand . 63

6.3.1 Con1guration File . 63

6.3.2 Con1guration Options . 63

6.3.3 Subcommand Output . 69

6.4 Flushing Response Examples . 69

6.4.1 Example 1 . 70

6.4.2 Example 2 . 70

6.4.3 Example 3 . 70

6.4.4 Example 4 . 71

7 Booster Station Placement 77

7.1 Booster Placement Using Multi-species Reaction . 78

7.1.1 Booster MSX Solvers . 79

7.1.1.1 Evolutionary Algorithm . 79

7.1.1.2 Network Solver . 80

7.1.2 booster_msx Subcommand . 80

7.1.2.1 Con1guration File . 80

7.1.2.2 Con1guration Options . 80

7.1.2.3 Subcommand Output . 86

7.2 Booster Placement Using Neutralization or Limiting Reagent Reaction 86

7.2.1 Neutralization NEUTRAL Formulation . 87

7.2.2 Limiting Reagent LIMIT Formulation . 87

7.2.3 Booster MIP Solvers . 88

7.2.4 booster_mip Subcommand . 89

7.2.4.1 Con1guration File . 89

7.2.4.2 Con1guration Options . 89

7.2.4.3 Subcommand Output . 95

7.3 Booster Placement Subcommand Comparison . 95

7.4 Booster Placement Examples . 96

ix

7.4.1 Example 1 . 96

7.4.2 Example 2 . 98

8 Source Identi1cation 100

8.1 Source Identi1cation Formulations . 101

8.1.1 MIP Formulations . 101

8.1.2 Bayesian Probability Based Formulation . 103

8.1.3 Contaminant Status Algorithm (CSA) . 104

8.2 Source Identi1cation Solvers . 104

8.3 inversion Subcommand . 105

8.3.1 Con1guration File . 105

8.3.2 Con1guration Options . 106

8.3.3 Subcommand Output . 108

8.4 Source Identi1cation Examples . 109

8.4.1 Example 1 . 109

8.4.2 Example 2 . 110

8.4.3 Example 3 . 111

9 Uncertainty Quanti1cation 113

9.1 Uncertainty Quanti1cation Method . 114

9.2 uq Subcommand . 114

9.2.1 Con1guration File . 114

9.2.2 Con1guration Options . 115

9.2.3 Subcommand Output . 116

9.3 Uncertainty Quanti1cation Example . 116

10 Grab Sampling 118

10.1 Grab Sample Formulations . 118

10.1.1 Distinguishability Formulation . 119

10.1.2 Probability-based Formulations . 119

10.1.2.1 Maximization of expected number of scenarios that disagree with mea-

surements . 119

10.1.2.2 Maximization of scenario with least number of measurement disagreements121

10.2 Grab Sample Solvers . 122

10.3 grabsample Subcommand . 122

10.3.1 Con1guration File . 122

10.3.2 Con1guration Options . 123

x

10.3.3 Subcommand Output . 127

10.4 Grab Sample Examples . 127

10.4.1 Example 1 . 127

10.4.2 Example 2 . 129

11 Visualization 132

11.1 Color and Shape Options . 133

11.2 Data from YAML Files . 133

11.3 visualization Subcommand . 134

11.3.1 Con1guration File . 134

11.3.2 Con1guration Options . 136

11.3.3 Subcommand Output . 139

11.4 Visualization Examples . 139

11.4.1 Example 1 . 139

11.4.2 Example 2 . 142

12 Advanced Topics and Case Studies 144

12.1 Merlion Water Quality Model . 144

12.2 Average-case Sensor Placement . 146

12.2.1 Computing a Bound on the Best Sensor Placement Value 146

12.2.2 Managing Sensor Placement Locations . 148

12.2.3 Limited-Memory Sensor Placement Techniques . 148

Scenario Aggregation: . 149

Filtering Impacts: . 149

Feasible Locations: . 149

Witness Aggregation: . 149

Skeletonization: . 150

Explicit Memory Management: . 150

12.2.4 Evaluating a Sensor Placement . 150

12.3 Source Identi1cation with Grab Samples Case Study . 153

12.3.1 Case Study . 153

12.3.2 Cycle 1 . 155

12.3.3 Cycle 2 . 156

12.3.4 Cycle 3 . 156

12.4 Uncertainty Reduction with Grab Samples Case Study . 158

12.4.1 Case Study . 158

xi

12.4.2 Cycle 0 . 159

12.4.3 Cycle 1 . 159

12.4.4 Cycle 2 . 159

12.4.5 Cycle 3 . 160

12.5 Flushing with Source Identi1cation Case Study . 161

13 File Formats 167

13.1 Con1guration File . 167

13.2 Cost File . 169

13.3 ERD File . 170

13.4 Impact File . 170

13.5 Imperfect Junction Class File . 171

13.6 Imperfect Sensor Class File . 171

13.7 Measurements File . 171

13.8 Nodemap File . 172

13.9 Scenariomap File . 172

13.10 Sensor Placement File . 173

13.11 TAI File . 173

13.12 TSG File . 175

13.13 TSI File . 176

13.14 Weight File . 176

14 Executable Files 178

14.1 evalsensor . 178

14.1.1 Usage . 178

14.1.2 Options . 178

14.1.3 Arguments . 179

14.2 1lter_impacts . 180

14.2.1 Usage . 180

14.2.2 Options . 180

14.2.3 Arguments . 180

14.3 measuregen . 181

14.3.1 Usage . 181

14.3.2 Options . 181

14.3.3 Arguments . 182

14.4 scenarioAggr . 183

xii

14.4.1 Usage . 183

14.4.2 Options . 183

14.4.3 Arguments . 183

14.5 spotSkeleton . 184

14.5.1 Usage . 184

14.5.2 Arguments . 184

References 185

xiii

List of Figures

2.1 The tevasim template screen output. 8

3.1 Contaminant transport simulation 2owchart. 9

3.2 The tevasim con1guration template 1le. 11

3.3 Layout of the EPANET Example Network 3. 14

3.4 Example TSG contamination scenario 1le. 15

3.5 The tevasim con1guration 1le for example 1. 15

3.6 The tevasim con1guration 1le for example 2. 15

4.1 Impact assessment 2owchart. 17

4.2 The sim2Impact con1guration template 1le. 24

4.3 The sim2Impact con1guration 1le for example 1. 26

4.4 The sim2Impact con1guration 1le for example 2. 26

4.5 The sim2Impact con1guration 1le for example 3. 27

5.1 Sensor placement 2owchart. 28

5.2 The sp con1guration template 1le . 35

5.3 The sp con1guration template 1le (ctd.) . 36

5.4 The sp con1guration 1le for example 1. 44

5.5 The sp YAML output 1le for example 1. 44

5.6 The evalsensor output for sp example 1. 45

5.7 The sp con1guration 1le for example 2. 46

5.8 The evalsensor output for sp example 2. 47

5.9 The sp con1guration 1le for example 3. 48

5.10 The evalsensor output for sp example 3. 49

5.11 The sp con1guration 1le for example 4. 50

5.12 The evalsensor output for sp example 4. 50

5.13 The sp con1guration 1le for example 5. 51

5.14 The evalsensor output for sp example 5. 52

xiv

5.15 The sp con1guration 1le for example 6a. 53

5.16 The evalsensor output for sp example 6a. 54

5.17 The sp con1guration 1le for example 6b. 55

5.18 The evalsensor output for sp example 6b. 56

5.19 The sp con1guration 1le for example 7. 57

5.20 The evalsensor output for sp example 7. 58

6.1 Flushing response simulation 2owchart. 60

6.2 The flushing con1guration template 1le. 64

6.3 The flushing con1guration 1le for example 1. 72

6.4 The flushing YAML output 1le for example 1. 73

6.5 The flushing con1guration 1le for example 2. 73

6.6 The flushing YAML output 1le for example 2. 74

6.7 The flushing con1guration 1le for example 3. 74

6.8 The flushing YAML output 1le for example 3. 75

6.9 The flushing con1guration 1le for example 4. 75

6.10 The flushing YAML output 1le for example 4. 76

7.1 Multi-species reaction booster placement 2owchart. 78

7.2 MIP booster placement 2owchart. 78

7.3 The booster_msx con1guration template 1le. 81

7.4 The booster_mip con1guration template 1le. 90

7.5 The booster_mip con1guration 1le for example 1. 97

7.6 The booster_mip YAML output 1le for example 1. 98

7.7 The booster_msx con1guration 1le for example 2. 99

8.1 Contamination source identi1cation 2owchart. 101

8.2 Three di−erent types of contamination injection pro1les. 103

8.3 The inversion con1guration template 1le. 105

8.4 The inversion con1guration 1le for example 1. 109

8.5 The inversion YAML output 1le for example 1. 110

8.6 The inversion con1guration 1le for example 2. 111

8.7 The inversion YAML output 1le for example 2. 111

8.8 The inversion con1guration 1le for example 3. 112

8.9 The inversion YAML output 1le for example 3. 112

9.1 Uncertainty quanti1cation 2owchart. 114

xv

9.2 The uq con1guration template 1le. 115

9.3 The uq con1guration 1le for example 1. 116

9.4 List of scenarios. 116

9.5 Screen output for example 1. 117

10.1 Grab sample 2owchart. 118

10.2 The grabsample con1guration template 1le. 123

10.3 The grabsample con1guration 1le for example 1. 128

10.4 The grabsample YAML output for example 1. 129

10.5 The grabsample con1guration 1le for example 2. 130

10.6 List of scenarios example 2. 130

10.7 List of measurements example 2. 131

10.8 The grabsample YAML output for example 2. 131

11.1 Visualization 2owchart. 133

11.2 The visualization con1guration template 1le. 135

11.3 The visualization con1guration 1le for example 1. 140

11.4 Graphic from visualization example 1. 141

11.5 The visualization con1guration 1le for example 2. 142

11.6 The location 1le used in visualization example 2. 143

11.7 Graphic from visualization example 2. 143

12.1 Illustration of the origin tracking algorithm. 145

12.2 The sp con1guration 1le using the GLPK solver to compute a lower bound. 146

12.3 The sp YAML 1le with the lower bound from the GLPK solver. 147

12.4 The sp con1guration 1le using the Lagrangian solver. 147

12.5 The sp YAML 1le with the lower bound from the Lagrangian solver. 148

12.6 The sp con1guration 1le using the Lagrangian solver and the compute bound option. 149

12.7 The evalsensor example output. 151

12.8 The evalsensor output using sensor failure probabilities. 152

12.9 Illustration of the source inversion and grab sample cycling strategy. 153

12.10 Fixed sensors (blue) and contamination location (red) for case study. 154

12.11 Cycle 1 identi1ed optimal grab sample locations (blue). 155

12.12 Cycle 2 identi1ed optimal grab sample locations (blue). 156

12.13 The possible injection nodes (red) identi1ed in Cycle 3. 157

12.14 Illustration of the source inversion and grab sample cycling strategy. 158

12.15 The con1guration 1le for sampling case study. 159

xvi

160

161

162

163

164

165

166

12.16 EPANET Example Network 3 with grab sample locations (dark gray/black diamonds), con-

taminated nodes (red circles), uncertain nodes (yellow circles), and clean nodes (blue-gray

circles) identi1ed for each of the cycles in the case study.

12.17 Net6 water distribution network with water quality sensors.

12.18 Net6 with positive contamination detection at JUNCTION-1617.

12.19 Net6 with possible contamination sources identi1ed by inversion subcommand.

12.20 Net6 with nodes impacted by the 25 possible contamination sources.

12.21 Net6 with the 2ushing nodes identi1ed by the flushing subcommand.

12.22 The reduction in the PE metric for each of the 25 possible contamination sources.

xvii

Chapter 1

Introduction

An abundant supply of safe, high-quality drinking water is critical to modern industrialized societies. At
home, water is used for drinking, cooking, washing clothes and bathing. At work, water is used to oper-

ate restaurants, hospitals and manufacturing plants. In our communities, water is used for 1ghting 1res.
Consequently, contamination of drinking water infrastructure could severely impact the public health and

economic vitality of a community. The distributed physical layout of drinking water systems makes them in-

herently vulnerable to a variety of incidents, such as terrorist attacks, accidents and even natural disasters.

The physical destruction of water infrastructure can disrupt water service to communities; speci1cally key

facilities such as hospitals, power stations and military installations. Similarly, contamination with deadly

agents could result in large numbers of illnesses and fatalities.

Since the events of September 11, 2001, water utilities have had increasing concerns about the possibility

of harm to our water quality due to an accidental or intentional contamination incident within a distribution

network. The U.S. EPA’s Response Protocol Toolbox (EPA, 2004) provides recommendations on actions that

water utilities can take to minimize potential impacts to consumers following a contamination threat or

incident. Detection and consequence management are major steps in this protocol. EPA has also developed

modeling and simulation tools to assist in the detection of contamination incidents in water distribution

networks. The Threat Ensemble Vulnerability Assessment-Sensor Placement Optimization Tool, or TEVA-

SPOT (EPA, 2011), identi1es the optimal placement of online water quality monitoring sensors to detect

contamination incidents. Another EPA developed tool to assist in detection is the CANARY event detection

system (Hart and McKenna, 2012), which analyzes water quality data from sensors and identi1es periods of
anomalous water quality. These tools work together to help form a contamination warning system (CWS).

The overall goal of a CWS is to detect contamination incidents in time to reduce potential public health and

economic consequences. The current terminology for a CWS is a water quality surveillance and response

system. For more information on CWS, see U.S. EPA Water Security Initiative (EPA, 2013b).

Should a CWS detect the presence of contamination in a water distribution network, consequence manage-

ment must be employed. Decision-making tools that assist water utilities in evaluating and planning various

response strategies are needed to support rapid response to contamination incidents. The Water Security

Toolkit (WST) is a suite of tools that help provide the information necessary to make good decisions resulting

in the minimization of further human exposure to contaminants, and the maximization of the e−ectiveness
of intervention strategies. WST is intended to assist in:

• Planning response actions to natural disasters and terrorist attacks,

• Developing consequence management plans,

• Informing large-scale exercises/training,

• Planning response actions to address traditional utility challenges, such as pipe breaks and water

quality problems and

1

• Evaluating implications of di−erent response strategies.

For water utilities with hydraulic modeling expertise, WST combined with EPANET-RTX (EPA, 2013a; Hatchett

et al., 2011; Janke et al., 2011) could use data from CANARY, other sensor stations and 1eld investigations
to optimize and implement response actions in real-time.

WST assists in the evaluation of multiple response actions in order to select the most bene1cial conse-

quence management strategy. It includes hydraulic and water quality modeling software and optimization
methodologies to identify: (1) sensor locations to detect contamination, (2) locations in the network in

which the contamination was introduced, (3) hydrants to remove contaminated water from the distribu-

tion system, (4) locations in the network to inject decontamination agents to inactivate, remove or destroy

contaminants and (5) locations in the network to take grab sample to con1rm contamination or cleanup.

This user manual describes the di−erent components of WST. It is also available as a Sandia Report (Klise

et al. (2015)). The manual contains one chapter on each of the water security tools:

• Contaminant transport

• Impact assessment

• Sensor placement

• Hydrant 2ushing

• Booster placement

• Source identi1cation

• Grab sampling

• Visualization

Another chapter discusses advanced topics and provides case studies. WST uses YAML format con1guration
1les to supply input parameters to each water security tool. Additional information on the YAML format can

be found in File Formats Section 13.1.

The contaminant transport simulation, impact assessment and sensor placement optimization tools were

all developed as part of the TEVA-SPOT Toolkit (EPA, 2011). All functionality in TEVA-SPOT has been repli-

cated in WST using new, user friendly YAML format con1guration 1les. WST builds upon the simulation and

optimization framework of TEVA-SPOT and adds several new features. These features were all developed

to model possible response action plans once a contamination incident has been detected in the system.

These action plans include redirecting 2ow by opening hydrants and closing valves, injecting decontaminant

to inactivate biological agents and using sensor measurements to identify possible source locations.

The main data requirement to use WST is a calibrated water utility network model. Additional input data is
dependent on the WST application. This includes information on the simulated contamination incident(s)

(e.g., type, location(s), amount), the impact metric (e.g., extent of contamination, population exposed) and

the response actions (e.g., 2ushing hydrants, injecting disinfectant). To optimize a response action, WST

must be given additional information about the potential locations for water quality sensors, hydrants to

2ush, valves to close, disinfectant booster stations and manual grab samples. The operating characteris-

tics of these di−erent response actions are also required, such as the detection limits of the water quality

sensors, the rate and duration that hydrants can be 2ushed, the control settings for injecting disinfectant at

booster stations and the number of manual grab samples that can be taken at the same time. More details

on the data requirements are provided in the chapter describing each of the speci1c water security tool. In
addition, each chapter has example applications. All examples are included with WST and can be found in
the examples folder. These examples use simple networks and data 1les that are also distributed with WST.
The examples shown in this user manual are all executed on a Linux computer, so the CPU time for each

example might not be the same on computers with di−erent operating systems.

2

Chapter 2

Getting Started

This chapter provides information on downloading and installing WST. WST is an open source toolkit for

modeling and analyzing water distribution systems to minimize the potential impact of contamination inci-

dents.

2.1 Obtaining the Water Security Toolkit

WST is distributed by the EPA in both source and pre-built binary forms through the World Wide Web at
https://github.com/USEPA/Water-Security-Toolkit. From the main WST web page, click the “Releases”

link. The download page has options to download the WST source code as well as pre-built binary packages

for 64-bit Microsoft Windows R
operating system. For most users, installing pre-built binary versions of WST

is recommended.

Alternatively, the WST source code can be checked out directly from the master git version control system

through https://github.com/USEPA/Water-Security-Toolkit. In particular, the source can be checked
out with the git command:

git clone https://github.com/USEPA/Water-Security-Toolkit

2.2 Dependencies of the Water Security Toolkit

WST is a collection of Python
TM

(Python Software Foundation) and compiled C++ software. It has dependen-

cies on several third-party software packages. First and foremost, a Python interpreter must be installed.

WST is currently compatible with Python 2.6 or 2.7. Python 3.x is not supported. Python is available from
http://python.org/.

The WST source code and binary distributions bundle several additional Python packages, including:

Coopr

A collection of open-source optimization-related Python packages that support a diverse set of

optimization capabilities for formulating and analyzing optimization models. Coopr in turn bundles

several third-party dependency libraries:

argparse

A Python command line argument parsing utility
coverage

A Python utility for capturing and reporting code coverage

distribute
A Python utility for building and installing Python packages

gcovr

A utility for parsing and reporting GCOV code coverage reports

3

https://github.com/USEPA/Water-Security-Toolkit
https://github.com/USEPA/Water-Security-Toolkit
http://python.org/
https://github.com/USEPA/Water-Security-Toolkit

nose
A Python test-harness driver

ordereddict
A utility that back-ports ordered dictionaries to Python 2.6

pip
A Python utility for installing Python packages

ply
A general parser-lexer

pyro

A utility for managing distributed Python execution

runpy2

A utility that back-ports runpy functionality to Python 2.4

setuptools

A Python utility for building and installing Python packages
six

A utility that provides a portable interface to Python 2.x and 3.x

unittest2
A utility that back-ports unittest functionality from Python 2.7 to 2.3-2.6

virtualenv
A utility for creating virtual Python environments

PyUtilib

A collection of Python utilities, including the testing harness used in WST

PyEPANET

Python wrappers for the EPANET 2.00.12 Programmers Toolkit

PyYAML

A YAML parser and emitter for Python

WST subcommands can leverage numerous third-party programs that are not available in the WST zipped

1le that contains the source code and binary distribution:

AMPL
A commercial algebraic modeling environment, available from http://www.ampl.com/

CBC
An open-source mixed-integer linear programming solver, available from https://github.com/
coin-or/Cbc. The COIN Binary Project provides pre-compiled binaries through the CoinAll distri-

bution, available from https://www.coin-or.org/download/binary/CoinAll.
CPLEX

A commercial mixed-integer linear programming solver, available from https://www.ibm.com/
products/ilog-cplex-optimization-studio

Coliny

An open-source package that provides algorithms for model transformation and black-box opti-

mization, available as part of the Dakota project at http://dakota.sandia.gov/
Dakota

An open-source package that provides algorithms for black-box optimization, sensitivity analysis,

surrogate modeling and uncertainty quanti1cation, available from http://dakota.sandia.gov/.
For Windows users, the 6.8 Windows build is recommended. The information on how to download

and install Dakota is provided in the 2.3 section.

GLPK
An open-source mixed-integer linear programming solver, available from http://www.gnu.org/
software/glpk/. Pre-compiled binary distributions are available as part of most UNIX-like oper-

ating systems. The GLPK for Windows Project provides pre-compiled Windows binaries, available

4

http://www.ampl.com/
https://github.com/coin-or/Cbc
https://github.com/coin-or/Cbc
https://www.coin-or.org/download/binary/CoinAll
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
http://dakota.sandia.gov/
http://dakota.sandia.gov/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/

from http://winglpk.sourceforge.net/.
Gurobi

A commercial mixed-integer linear programming solver, available from http://www.gurobi.com/.

Please refer to the individual projects’ documentation for licensing, pricing and installation information.

2.3 Installing the Water Security Toolkit Binary Distributions

This is the last binary build of the WST software, since it is no longer in active development. The source

code is available along with the "NMAKE" 1les in the appropriate package directory. The build is frag-

ile, since it might require older versions of Python and MSVS runtime libraries. Due to these limita-

tions, the best method to compile and build WST is on a Linux machine. Associated projects under ac-

tive development include the following: Water Network Tool for Resilience (WNTR) available at https:
//github.com/USEPA/WNTR, Chama available at https://github.com/sandialabs/chama and Pecos avail-

able at https://github.com/sandialabs/pecos.

The following instructions are provided for installing WST on Windows machines. For the most up-to-date

instructions, including updated third-party URLs, please see the Install page on the GitHub site at https:
//github.com/USEPA/Water-Security-Toolkit.

• Download Anaconda 2.7 from https://www.anaconda.com/distribution/#download-section. Get
the “Anaconda 2.7” version, not the Anaconda 3.x.

• Download Dakota/Coliny from https://dakota.sandia.gov/downloads. Get the “Windows”, “6.8”,

“command line only”, “unsupported” version (dakota-6.8-release-public-Windows.x86.zip).

• Download CBC from https://www.coin-or.org/download/binary/CoinAll. Get the “Windows
1.7.4” version build date “2013-12-26 18:14” (COIN-OR-1.7.4-win32-msvc11.zip).

• Download WST. Get the “Release 2019” from the “Releases” tab (wst-2019.zip).

• Perform the following steps:

1. Install Anaconda2 as “Just Me” so administrator access is not needed

2. Unzip the wst-2019.zip 1le into the desired directory

3. Unzip the dakota-6.8-release-public-Windows.x86.zip 1le (should create a directory called

the same thing, without the .zip extension, in the same directory as the zip 1le)

4. Copy all the 1les from the dakota-6.8-release-public-Windows.x86/bin directory into the
wst-2019/bin directory

5. Unzip the COIN-OR-1.7.4-win-21-msvc11.zip 1le (should create a directory called the same

thing, without the .zip extension, in the same directory as the zip 1le)

6. Copy all the 1les from the COIN-OR-1.7.4-win-21-msvc11/win32-msvc11/bin directory into the
wst-2019/bin directory

7. Open an Anaconda Prompt from the “Start -> Anaconda2” menu

8. Change directory into the wst-2019 directory

9. Type “install”

10. Change directory into the wst-2019/examples directory

11. Run the examples (e.g., wst sp sp_ex1.yml)

5

http://winglpk.sourceforge.net/
http://www.gurobi.com/
https://github.com/USEPA/WNTR
https://github.com/USEPA/WNTR
https://github.com/sandialabs/chama
https://github.com/sandialabs/pecos
https://github.com/USEPA/Water-Security-Toolkit
https://github.com/USEPA/Water-Security-Toolkit
https://www.anaconda.com/distribution/#download-section
https://dakota.sandia.gov/downloads
https://www.coin-or.org/download/binary/CoinAll

2.4 Compiling the Water Security Toolkit Source Code

Compiling WST from the source code is an advanced topic and targeted only at potential developers. It
assumes familiarity with compilers and build terminology. General users are strongly recommended to use
the pre-built binary packages whenever possible.

Compiling WST from the source code uses the Python VirtualEnv package to set up a virtual Python environ-

ment within the WST source code distribution. The Python components of WST are installed into this virtual

environment to better insulate WST from the other Python installations (and vice-versa). The compiled (C++)

binary executable 1les are installed into a bin directory within the source code distribution. Currently, WST

does not support out-of-source builds.

While WST can be compiled from the source code for Windows and Linux operating systems, Windows

users are recommended to leverage the pre-built binary distributions. WST can be compiled for Linux using

a 3-step process:

1. Obtain the WST source code

2. Con1gure the Python virtual environment

3. Build the C++ executable 1les

2.4.1 Obtaining the Water Security Toolkit Source Code

The WST source code can either be extracted from a downloaded source zip/tar archive or checked out

directly from the repository using git. The following directions assume that the source code is in the wst-

1.5 directory.

2.4.2 Con1guring the Python Virtual Environment

The Python virtual environment is automatically con1gured by the setup command distributed in the top-

level directory of the source code distribution:

cd ~/wst-1.5
./setup

This con1gures WST using the system’s default Python interpreter and the bundled versions of the Python
dependencies. A di−erent version of Python can be used with WST by specifying it explicitly when running
the setup command:

cd ~/wst-1.5
python2.7 ./setup

Setup con1gures the Python virtual environment within the wst/python directory (e.g.,/wst-1.5/python).

The virtual interpreter and the main wst command both reside in wst/python/bin directory (e.g.,/wst-

1.5/python/bin/wst). If only a single virtual environment is going to be on the machine, adding the

wst/python/bin directory to the system PATH variable is recommended. Alternatively, the lbin and lpython
commands (installed into wst/python/bin) can be used to correctly locate local binaries and the local vir-

tual python interpreter. To run the wst command from anywhere under the main WST directory, use the
lbin wst command. Similarly, to run the local python (virtual environment) interpreter, use the lpython
command. It is safe to copy both lbin and lpython to other directories (e.g.,/bin).

After the installation of the core functionality of the python environments a couple of installations are re-

quired.

pip install numpy
pip install texttable
pip install matplotlib

6

2.4.3 Building the C++ Executable Files

WST relies on the GNU Autotools to manage the build process for compiled executables. In particular, Au-

toconf version 2.60 or newer must be installed on the system along with a relatively new C++ compiler and

linker (e.g., gcc >= 3.4). The build process follows the normal autoreconf – configure – make sequence:

cd ~/wst-1.5
./setup
autoreconf -v -i -f
./configure
make

It is not recommended to use the make install command. The resulting compiled binaries reside in
wst/bin, and are easily accessed from anywhere under the main WST directory using the lbin command.

This process could be simpli1ed by using the main setup command:

cd ~/wst-1.5
./setup build

2.5 Basic Usage of the Water Security Toolkit

The main command line structure to execute a WST subcommand is the following:

wst SUBCOMMAND <configfile>

where SUBCOMMAND is the one of subcommands available under the wst command and configfile is the
con1guration 1le associated with the speci1ed subcommand. The subcommands include the following:

• tevasim

• sim2Impact

• sp

• flushing

• booster_msx

• booster_mip

• inversion

• grabsample

• visualization

Each subcommand is described in more detail in Chapters 3 through 11.

In addition, the –-help option prints information about the di−erent subcommand options available.

wst --help

Each subcommand has the option to generate a template con1guration 1le by using the following command
line:

wst SUBCOMMAND --template <configfile>

where configfile is the name of the template con1guration 1le created for the speci1ed SUBCOMMAND.

7

2.6 Verifying Installation of the Water Security Toolkit

An example using one of the WST subcommands can be used to verify the proper installation of WST. This
example uses the WST subcommand tevasim, which is documented in Chapter 3.

1. A template con1guration 1le for the tevasim subcommand can be generated using the following com-

mand line, in which verify-wst.yml is the template con1guration 1le to be created:

wst tevasim --template verify-wst.yml

This example assumes that the wst/bin directory was added to the PATH variable. If the path was
not modi1ed, the wst command would be replaced with the full path to the main WST script (e.g.,

C:\wst-1.5\bin\wst) in this and all subsequent commands.

2. The EPANET input 1le for the example network (Net3.inp) needs to be copied from the wst/exam-

ples/Net3 directory to the current working directory, since it is the network 1le referenced in the
generated template 1le. On Windows (assuming WST is installed to C:\wst-1.5), the command line to
copy this 1le is the following:

copy C:\wst-1.5\examples\Net3\Net3.inp

On Linux (assuming WST is installed to ~/wst-1.5), the command line to copy this 1le is the following:

cp ~/wst-1.5/examples/Net3/Net3.inp

3. The tevasim subcommand using this example is executed with the following command line:

wst tevasim verify-wst.yml

This runs the tevasim subcommand and produces the output shown in Figure 2.1

WST tevasim subcommand

Validating configuration file
Running contaminant transport simulations

WST normal termination

Directory: C:/wst-1.5/examples/
Results file: Net3tevasim_output.yml
Log file: Net3tevasim_output.log

Figure 2.1: The tevasim template screen output.

2.7 Uninstalling the Water Security Toolkit

As WST does not rely on a formal installer, uninstalling WST only requires deleting the main WST directory

(regardless if the pre-built binaries were installed or WST was built from the source code). If the wst/bin

and/or wst/python/bin directories were added to the system PATH variable, these entries should be re-

moved also.

8

Chapter 3

Contaminant Transport

This chapter describes how to simulate contamination incidents in a water distribution network, which is
one of the 1rst steps before designing a water quality sensor network or evaluating response actions to

a contamination incident. The tevasim subcommand simulates the hydraulics and contaminant transport

within a water distribution network model, which consists of pipe, node, pump, valve, storage tank and

reservoir components. The tevasim subcommand uses the hydraulic engine from EPANET 2.00.12 to solve
the 2ow continuity and headloss equations (Rossman, 2000). Water quality simulations are calculated using

either EPANET 2.00.12 (Rossman, 2000), EPANET-MSX (Shang et al., 2011) or Merlion (Mann et al., 2012a).

To increase eZciency when simulating a large ensemble of contamination incidents, the tevasim subcom-

mand uses a single hydraulic simulation to simulate an ensemble of water quality simulations. A 2owchart
representation of the tevasim subcommand is shown in Figure 3.1. The utility network model is de1ned
by an EPANET compatible network model (INP format) in WST. The simulation input is supplied through the
tevasim WST con1guration 1le.

Contaminant
Transport

 Utility Network
Model

Simulation
Input

 Threat Ensemble
Database

Figure 3.1: Contaminant transport simulation 2owchart.

3.1 Hydraulic and Water Quality Analysis

Three water quality simulators, EPANET, EPANET-MSX and Merlion, can be used within WST. These simula-

tors are explained in more detail in the following subsections.

3.1.1 EPANET and EPANET-MSX

EPANET performs extended-period simulation of the hydraulic and water quality behavior within pressur-

ized pipe networks. These models can evaluate the expected 2ow in water distribution systems, and model
the transport of contaminants and related chemical interactions. The multi-species extension, EPANET-

MSX, is also included in WST to simulate contamination incidents using multi-species reactions. Any reac-

9

tion dynamics between chemical and/or biological species (e.g., chemical-chemical, chemical-biological or

biological-biological) can be modeled and simulated using EPANET-MSX. EPANET-MSX can be used in sen-

sor network design (sp subcommand) and booster station placement (booster_msx subcommand). More
speci1cs on these applications can be found in Chapters 5 and 7. Additional information on EPANET can be

found at https://www.epa.gov/water-research/epanet and in the EPANET 2.00.12 user manual (Ross-

man, 2000). Additional information on EPANET-MSX can be found in the EPANET-MSX user manual (Shang

et al., 2011).

3.1.2 Merlion

The tevasim subcommand also includes a water quality modeling framework called Merlion. Unlike
EPANET, Merlion does not model bulk or wall reactions. Given hydraulic information from simulation pack-

ages like EPANET or experimental data, Merlion models the transport of a substance as it spreads through

the water distribution system based on the network dynamic 2ow patterns. Merlion 1rst formulates a linear
water quality model with explicit all-to-all mapping (inputs include injections at all possible nodes and time

steps, and outputs include concentrations at all possible nodes and time steps). This model is then used

for forward tracing simulations by 1rst specifying the injection pro1le and then solving the system for the
network concentration pro1le. The linear model can also be embedded within other numerical applications

or for analysis in many security applications. Using Merlion in the tevasim subcommand can be faster for
multi-scenario simulations; however, it is also more memory intensive. Merlion can also be used to identify

booster station locations, contaminant source injection locations and manual grab sample locations. More

speci1cs about these applications are in Chapters 7, 8 and 10. More information on Merlion can be found

in Section 12.1 and Mann et al. (2012a).

3.2 Contaminant Transport Scenarios

Contaminant transport scenarios can be de1ned directly in a WST con1guration 1le or by using a TSI or TSG
1le. These options are set in the scenario block of the con1guration 1le for all of the WST subcommands
that require scenarios.

The recommended approach is to de1ne the contamination transport scenarios directly in the scenario
block of the WST con1guration 1le. The options that must be set are the location, type, strength, species

(required only for EPANET-MSX) and start and end times for the contamination scenarios. The injection lo-

cation can be speci1ed by a list of EPANET node IDs, or by the key words NZD (non-zero demand nodes) or

ALL (all nodes) to create an ensemble of contaminant scenarios. The injection type can be CONCEN, MASS,

FLOWPACED or SETPOINT as de1ned in the EPANET user manual(Rossman, 2000). CONCEN represents the

concentration of an external source entering a node and applies only when the node has a net negative

demand (i.e., 2ows into the network). MASS, FLOWPACED and SETPOINT represent booster sources, where

a contaminant is injected directly into the network regardless of nodal demand. A MASS source type adds
a 1xed mass 2ow to that resulting from in2ow to the node, while a FLOWPACED booster adds a 1xed con-

centration to the resultant in2ow concentration at the node. A SETPOINT booster 1xes the concentration
leaving the node as long as the in2ow concentration was below the setpoint. The strength of a MASS source
is in units of mass 2ow per minute, while CONCEN, FLOWPACED and SETPOINT sources are in units of con-

centration (mass per volume). The con1guration 1le de1nes injection time in minutes and strength in mg/L
or mg/min depending on the injection type.

Alternatively, the contamination transport scenarios can be de1ned using a TSI or TSG 1le. Each line of
a TSI 1le speci1es a single contaminant scenario by listing the injection location, type, species (required

only for EPANET-MSX), strength and time frame. Each scenario can include multiple injection locations

and multiple injection species with unique injection strengths and time frames. This format allows for the
greatest 2exibility in combined scenario options. For more detail on the TSI 1le, see File Formats Section
13.13.

The TSG 1le is a short hand format of the more detailed TSI 1le. Multiple injection locations can be speci1ed

10

https://www.epa.gov/water-research/epanet

on a single line. All permutations of the combined locations are used to create multiple scenarios. Each line

of the TSG 1le is limited to a single injection species and time frame. For more detail on the TSG 1le, see File
Formats Section 13.12. The TSI and TSG 1les specify the injection time frame in seconds (which is di−erent
than the units speci1ed for the start and end times in the con1guration 1le) and the strength units depend
on the INP network model 1le units.

Specifying a TSI 1le overrides the TSG 1le, as well as the location, type, strength, species, start time and
end time options speci1ed in the WST con1guration 1le. Specifying a TSG 1le overrides the location, type,
strength, species, start time and end time options speci1ed in the WST con1guration 1le.

3.3 tevasim Subcommand

The tevasim subcommand is executed using the following command line:

wst tevasim <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst tevasim --help

3.3.1 Con1guration File

The tevasim subcommand generates a template con1guration 1le using the following command line:

wst tevasim --template <configfile>

The tevasim WST template con1guration 1le is shown in Figure 3.2. Brief descriptions of the options are
included in the template after the # sign.

tevasim configuration template
network:

epanet file: Net3.inp # EPANET 2.00.12 network file name
scenario:

location: [NZD] # Injection location: ALL, NZD or EPANET ID
type: MASS # Injection type: MASS, CONCEN, FLOWPACED, or SETPOINT
strength: 100.0 # Injection strength [mg/min or mg/L depending on

type]
species: null # Injection species, required for EPANET-MSX
start time: 0 # Injection start time [min]
end time: 1440 # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
signals: null # Signal files, overrides TSG or TSI files
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

Figure 3.2: The tevasim con1guration template 1le.

3.3.2 Con1guration Options

Full descriptions of the WST con1guration options used by the tevasim subcommand are listed below.

11

network

epanet 1le
The name of the EPANET 2.00.12 input (INP) 1le that de1nes the water distribution network
model.

Required input.
scenario

location
A list that describes the injection locations for the contamination scenarios. The options are: (1)

ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection loca-

tions; (2) NZD, which denotes all nodes with non-zero demands as contamination injection loca-

tions; or (3) an EPANET node ID, which identi1es a node as the contamination injection location.
This allows for an easy speci1cation of single or multiple contamination scenarios.

Required input unless a TSG or TSI 1le is speci1ed.
type

The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOWPACED

or SETPOINT. See the EPANET 2.00.12 user manual for additional information about source types

(Rossman, 2000).

Required input unless a TSG or TSI 1le is speci1ed.
strength

The amount of contaminant injected into the network for the contamination scenarios. If the
type option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.

Required input unless a TSG or TSI 1le is speci1ed.
species

The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but

only one is injected into the network. For cases where multiple contaminants are injected, a TSI
1le must be used.

Required input for EPANET-MSX unless a TSG or TSI 1le is speci1ed.
start time

The injection start time that de1nes when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents

an injection that starts at hour 1 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
end time

The injection end time that de1nes when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents

an injection that ends at hour 2 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
tsg 1le

The name of the TSG scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSG 1le will override the location, type, strength, species and start and
end times options speci1ed in the WST con1guration 1le. The TSG 1le format is documented in
File Formats Section 13.12.

Optional input.
tsi 1le

The name of the TSI scenario 1le that de1nes the ensemble of contamination scenarios to be

12

simulated. Specifying a TSI 1le will override the TSG 1le, as well as the location, type, strength,
species and start and end time options speci1ed in the WST con1guration 1le. The TSI 1le format
is documented in File Formats Section 13.13.

Optional input.

signals

Name of 1le or directory with information to generate or load signals. If a 1le is provided the
list of INP-TSG tuples will be simulated and the information stored in signals 1les. If a directory
with the signals 1les is speci1ed, the signal 1les will be read and loaded in memory. This input

is only valid for the uq subcommand and the grabsample subcommand with probability based

formulations.

Optional input.
msx 1le

The name of the EPANET-MSX multi-species 1le that de1nes the multi-species reactions to be
simulated using EPANET-MSX.

Required input for EPANET-MSX.

msx species

The name of the MSX species whose concentration pro1le will be saved by the EPANET-MSX
simulation and used for later calculations.

Required input for EPANET-MSX.

merlion
A 2ag to indicate if the Merlion water quality simulator should be used. The options are true or

false. If an MSX 1le is provided, EPANET-MSX will be used.

Required input, default = false.
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

3.3.3 Subcommand Output

The tevasim subcommand creates two output 1les, one is in the YAML 1le format and the other is
a log 1le. The YAML 1le is called <output pre1x>tevasim_output.yml and the log 1le is <output pre-

1x>tevasim_output.log. The YAML 1le contains the name of the EPANET report 1le, the name of the binary
ERD database 1le, the run date and the CPU time. The EPANET report 1le and binary ERD database 1les are
described below. The log 1le contains basic debugging information.

• EPANET report: This 1le provides information on the EPANET simulations. The EPANET report 1le
format is described in Appendix C.3 of the EPANET 2.00.12 Users Manual (Rossman, 2000).

• ERD database: The database contains the simulation results, and is stored in four 1les: header 1le,

index 1le, hydraulics 1le and a water quality 1le. The ERD database format is described in Geib et al.
(2011). This 1les is not intended to be read by users but rather is read by other WST subcommands.

13

3.4 Contaminant Transport Examples

An EPANET network model (INP format) and a con1guration 1le are required to run the tevasim subcom-

mand.

The tevasim template con1guration 1le uses the EPANET Example Network 3 (Net3.inp). The network is

shown in Figure 3.3. Net3 contains 92 junctions, 2 reservoirs and 3 tanks. This network has 59 non-zero

demand (NZD) nodes. The network 1le is setup to run a 48-hour hydraulic and water quality simulation. A

1-hour hydraulic time step and 5-minute water quality time step are used.

Figure 3.3: Layout of the EPANET Example Network 3.

The scenario ensemble in the tevasim template con1guration 1le de1nes a contaminant injection from each

NZD node, with a MASS injection of 100 mg/L, starting at time 0 and injecting for 24 hours (1440 minutes).

To de1ne scenarios that start and stop at multiple times, a TSG 1le can be used to de1ne the scenario set.
Figure 3.4 shows the example TSG 1le, Net3.tsg, in which the contamination scenarios are injected at all

NZD nodes starting at 12 am, 6 am, 12 pm and 6 pm for a total of 236 scenarios. Each injection lasts 24

hours and injects a contaminant at 100 mg/L.

3.4.1 Example 1

The 1rst example uses the Net3.inp network 1le, the contamination scenario set de1ned by Net3.tsg and
the Merlion water quality model. The con1guration 1le, tevasim_ex1.yml, for this example is shown in Figure
3.5.

14

; Four 24-hour incidents (12 am, 6 am, 12 pm and 6 pm)

;Injection Injection Injection Start Stop
;Location Type Mass Time (secs) Time (secs)
NZD MASS 100 0 86400
NZD MASS 100 21600 108000
NZD MASS 100 43200 129600
NZD MASS 100 64800 151200

Figure 3.4: Example TSG contamination scenario 1le.

network:
epanet file: Net3/Net3.inp

scenario:
tsg file: Net3/Net3.tsg
merlion: true

configure:
output prefix: ${CWD}/tevasim_ex1/Net3
debug: 0

Figure 3.5: The tevasim con1guration 1le for example 1.

The example can be executed using the following command line:

wst tevasim tevasim_ex1.yml

3.4.2 Example 2

The second example uses EPANET-MSX to simulate the transport of multiple contaminants. For a multi-

species simulation, a MSX 1le and the MSX species must be added to the tevasim con1guration 1le. The
MSX species is the species whose concentration pro1le will be saved by EPANET-MSX to be used for fu-

ture calculations. The MSX species can be di−erent than the species which is injected into the network.
The con1guration 1le, tevasim_ex2.yml, for this example is shown in Figure 3.6. The example uses the
Net3.inp network 1le and the MSX 1le, Net3_EColi_TSB.msx, which simulates the reaction dynamics be-

tween Escherichia coli, chlorine and a tryptic soy broth (TSB), a nutrient broth that helps to grow bacteria.

For more information about this speci1c reaction dynamics, see the E. coli-TSB model described in Murray
et al. (2011). In this example, both the species and MSX species are the same.

network:
epanet file: Net3/Net3.inp

scenario:
location: [’15’]
type: MASS
strength: 5.77e8
species: EColi
start time: 0
end time: 360
tsg file: null
tsi file: null
msx file: Net3/Net3_EColi_TSB.msx
msx species: EColi
merlion: false

configure:
output prefix: ${CWD}/tevasim_ex2/Net3_EColi_TSB
debug: 0

Figure 3.6: The tevasim con1guration 1le for example 2.

15

The example can be executed using the following command line:

wst tevasim tevasim_ex2.yml

To simulate the simultaneous injection of two species, a TSI 1le is needed. For example, the TSI 1le,

Net3_EColi_TSB.tsi, de1nes the simultaneous injection of E. coli and TSB at multiple locations within Net
3. The TSI 1le contains explicit injections for the 59 NZD nodes used in example 1, with four species injected
per node.

16

Chapter 4

Impact Assessment

The potential consequences of individual contamination scenarios can be quanti1ed using the results
from the contaminant transport simulations and a variety of impact assessment metrics. The sim2Impact
subcommand performs impact assessments using the output threat ensemble database (ERD) from the
tevasim subcommand. This analysis provides all necessary network statistics for sensor network design

(described in Chapter 5) as well as response actions, such as 2ushing hydrants and boosting disinfectant
(described in Chapters 6 and 7, respectively).

A 2owchart representation of the sim2Impact subcommand is shown in Figure 4.1. The threat ensemble
database (ERD) is the output from the tevasim subcommand and is required input for the sim2Impact sub-

command. The consequences input parameters are supplied through the sim2Impact WST con1guration
1le. Additional input data that describes the exposure and dose response models of a particular contam-

inant is required if a human health impact metric is used. These models are de1ned by parameters listed
in a threat assessment input (TAI) 1le. More details on the TAI 1le are provided in the File Formats Section
13.11.

Impact
Assessment

 Threat Ensemble
Database

Consequences
Input

Impact File

Figure 4.1: Impact assessment 2owchart.

Several impact metrics are included in the sim2Impact subcommand to re2ect di−erent criteria that deci-

sion makers could use in sensor network design or response actions. These metrics include: population

dosed (PD), population exposed (PE), population killed (PK), extent of contamination (EC), mass consumed

(MC), volume consumed (VC), time to detection (TD) and number of failed detections (NFD). The equations

used to compute the impact metrics are listed in Section 4.1. Impact metrics are calculated at discrete time

steps for a given contamination scenario. The discrete time steps are de1ned by the reporting time step
and the duration of the water quality simulation.

Human health impacts (PD, PE and PK) can be estimated by combining the water quality simulations with

exposure models. Contaminant-speci1c data are needed to accurately estimate the health endpoints. For

17

many contaminants, reliable data are lacking, and the ensuing uncertainty in the results must be under-

stood. More information on the human health impacts is provided in Section 4.2.

4.1 Impact Metrics

Impact assessment results are calculated and stored in an impact 1le. This 1le is not typically read by a WST

user, rather it is read by a sensor or response optimization routine. For each contamination scenario, the

impact 1le contains a list of all the locations (nodes) in the network where a sensor might detect contami-

nation from a speci1c scenario. Nodes that do not detect contamination are not included in the impact 1le
for that speci1c scenario. For each node that detects contamination, the impact 1le contains the detection
time and consequence at that time, as measured by one of the impact metrics.

The impact 1le is used as input for sensor placement optimization and during the optimization process of

response actions, such as 2ushing hydrants and boosting disinfectant. When calculating impacts, a detec-

tion threshold can be speci1ed such that contaminants are only detected above a speci1ed concentration
limit (the default limit is zero). Second, a response time can be speci1ed in the sim2Impact con1guration
1le, which accounts for the time needed to verify the presence of contamination (e.g., by 1eld investiga-

tion), inform the public and/or initiate 2ushing, booster disinfection, or other response action (the default

response time is zero). The contamination impact is computed at the time when the response has been

initiated (the detection time plus response time), which is called the e−ective response time. Finally, a de-

tection con1dence can be de1ned, which speci1es the number of sensors that must detect contamination
from any given scenario before it is considered to be detected, at which time the impacts are calculated (the

default is 1 sensor).

The impact 1le contains four columns of information:

• Column 1 contains the contamination scenario number, a

• Column 2 contains the node location where contamination was detected, i

• Column 3 contains the e−ective response time in minutes, T 0 i

• Column 4 contains the impact at the e−ective response time as measured by a speci1ed metric, da,i

The impact 1le is documented in the File Formats Section 13.4. The impact metric, da,i, is used directly in
the sensor placement formulation (Equation 5.1), the 2ushing formulation and the booster formulation.

The e−ective response time at node i, T 0 i , is calculated using the following equation:

= min (t : |Cn,t > detection limit| � detection confdence)�T + response time (4.1)

is the contaminant concentration at node n at time step t for every node and time step in the

0Ti

where Cn,t
water quality simulation. The concentration is typically expressed in units of milligrams per liter (mg/L).

Concentration could also be a count of cells for a biological contaminant, where the units are cells/L or

CFU/L (colony forming units/L). The length of the reporting time step is denoted as �T and has units of
time. For detection, the concentration must be above the detection limit, and the number of detections

must be above the detection con1dence. (Note |Cn,t > detection limit| is the number of node, time step

pairs where contaminant was detected above the detection limit, this includes detection at node i).

In the impact 1le, the impact at the end of the simulation time is included for each contamination scenario.

Essentially, this is the impact if contamination was not detected at any node location, and is often referred

to as the dummy sensor location. The dummy sensor location is not a physical location in the network. For
this entry, i is set to -1, T is the time at the end of the water quality simulation and da,i is the impact at the i

end of the simulation.

The impact, da,i, can be computed using one of the following metrics: PD, PE, PK, EC, MC, VC, TD and NFD.

These metrics are de1ned in the following equations. In the equations, the e−ective response time step

18

0

for node i, t0 , equals T 0/�T , and subscripts n, t and p are used to reference a speci1c node, time step and i i

person, respectively.

• PDa,i, population dosed, is the total number of individuals that received a cumulative dose of con-

taminant above a speci1ed threshold for scenario a when contamination is detected at node i:

N pop (XXn 1 if dn,p,t > dose threshold
(4.2)

0
iPDa,i = �n,p,t0

i
where �n,p,t0

i
=

0 otherwise
n=1 p=1

where N is the number of nodes in the network, pop
Equation 4.10, d 0n,p,t

i

t0 i

is the population at node n calculated using n

is the cumulative dose for person p at node n at the e−ective response time step
calculated using Equation 4.14 and dose threshold is de1ned by the user in the TA I 1le.

• PEa,i, population exposed, is the number of individuals with a response to a contaminant for scenario
a when contamination is detected at node i:

N NX X
(4.3)PEa,i = popnrn,t0 i

� (In,t0
i

+ Dn,t0
i
)

n=1 n=1

where N is the number of nodes in the network, pop is the population at node n calculated using n

Equation 4.10 and rn,t is the percentage of the population at node n at the e−ective response time
that responds to a cumulative dose dn,p,t

0
i

calculated using Equation 4.17. The variables, In,tstep t0 i
and Dn,t

0
i

0
i

, represent the number of people in the infected and diseased states, respectively, at node
n at the e−ective response time step t0 computed from the disease progression model described in i

Section 4.2.4.

0
i

• PKa,i, population killed, is the number of individuals killed by a contaminant for scenario a when
contamination is detected at node i:

NX
(4.4)PKa,i = Fn,t

n=1

0
i

where N is the number of nodes in the network and Fn,t represents the number of people in the 0
i

fatality state (number of fatalities) at node n at the e−ective response time step t0 computed from the i

disease progression model described in Section 4.2.4.

• ECa,i, extent of contamination, is the length of contaminated pipe for scenario a when contamination
is detected at node i: (

NX 1 if Cn,t > detection limit
(4.5)

0
iECa,i where �n,t = = 0

i
Ln,t

n=1

where N is the number of nodes in the network, Ln,t

�n,t0
i

0
i 0 otherwise

0
i

is the length of all pipes connected to node n
and Cn,t is the contaminant con-

0
i

with 2ow starting at node n at the e−ective response time step t0 i
centration at node n at the e−ective response time step t0 i. An entire pipe is considered contaminated
if the contaminant enters the pipe.

• MCa,i, mass consumed, is the cumulative mass of the contaminant consumed via the nodal demands

for scenario a when contamination is detected at node i:

NX tX0 i

MCa,i = Cn,tqn,t�T
n=1 t=1

19

(4.6)

where N is the number of nodes in the network, Cn,t is the contaminant concentration at node n at
time step t, qn,t is the demand at node n at time step t and �T is the length of the reporting time step.
In other words, this metric measures the mass of the contaminant removed from the system at node
i via nodal demand between the start of the simulation and time ti.

• VCa,i, volume consumed, is the cumulative volume of contaminated water consumed via nodal de-

mand for scenario a when contamination is detected at node i:

0 (
N tiXX 1 if Cn,t > detection limit VCa,i = qn,t�T�n,t where �n,t = (4.7)

0 otherwise
n=1 t=1

where N is the number of nodes in the network, Cn,t is the contaminant concentration at node n at

0

time step is the demand at node at time step and is the length of the reporting time �T,t tq nn,t

step. In other words, this metric measures the volume of the contaminant removed from the system

at node i via nodal demand between the start of the simulation and time t0 i.

• TDa,i, time to detection, is the time from the beginning of scenario a until contamination is 1rst
detected at a node i.

(4.8)i − injection start time 0

• NFDa,i, number of failed detections, is a binary value to indicate the detection of scenario a at node
i: (

1 if scenario a is not detected at node iNFDa,i = (4.9)
0 otherwise

where the total impact is given a value of 1 if scenario a is not detected at node i or the value of 0 if
scenario a is detected at node i. Since the impact 1le only lists nodes which detect scenarios, all node,

time pairs have a total impact of 0, except for the dummy location (i = -1), which is given a value of 1.

4.2 Human Health Impact Model

The human health impact model is used to compute PD, PE and PK. In order to calculate these metrics,

an estimate of the population ingesting water and the cumulative dose and response for each individual

at each node is required. A disease progression model is used to compute the population susceptible,

infected, diseased and killed given a cumulative dose of contaminant. Input parameters for the human
health impact model are stored in a TAI 1le. The TAI 1le format is described in Section 13.11. Additional
information on human health impact models can be found in the EPA compendium report (Murray et al.,

2010).

4.2.1 Population

The population at each network node can either be de1ned explicitly in the TAI 1le using a population 1le
or calculated based on the demand at each node. The population 1le has one line per node. Each line
contains the node ID followed by the population value for that node. For the demand-based calculation,

it is assumed that all water leaving the network is consumed by the population. The water consumption

is more than just the ingestion of water by people, since it includes all uses of water, such as domestic,

commercial, industrial, agricultural and others. Therefore, the population at node n, pop , is computed n

using the following equation:
qnpop = (4.10)n R

TDa,i = T
where T is the e−ective response time. 0

i

20

where q is the average volume of water consumed at node n per day and R is the average volume of water n

consumed per capita per day. The variable, R, is set in the TAI 1le. A USGS report provides usage rates by

state and gives a nationwide average of 179 gallons per capita per day (U.S. Geological Survey, 2004). Often

200 gallons per capita per day is used for R. The population is assumed to be constant over time.

4.2.2 Cumulative Dose

At each node, the total number of people potentially ingesting water is given by pop . In order to compute n

the cumulative dose, additional information is needed, including when and how much a person drinks.

Ingestion timing and volume models are used to make this calculation. Additional information on the inges-

tion and volume models can be found in Davis and Janke (2008). Three di−erent ingestion timing models
are available:

• Demand-based (D24): assumes that tap water is ingested at every time step in an amount propor-

tional to the total water demand at that node.

• Fixed (F5): assumes that tap water is ingested at 1ve 1xed times during a day. These times are set
to the typical starting times for the three major meals on weekdays (7:00, 12:00 and 18:00) and times

halfway between these meals (9:30 and 15:00).

• Probabilistic (P5): also assumes that tap water is ingested at 1ve times per day at major meals and

halfway between them, but it uses a probabilistic approach to determine meal times. This is based on

data from the American Time-Use Survey (ATUS) (Bureau of Labor Statistics and U.S. Census Bureau,

2005).

In addition, there are two ingestion volume models:

• Mean (M): assumes the same average quantity of tap water is ingested by all individuals in the popu-

lation who consume tap water.

• Probabilistic (P): uses a probabilistic approach to estimate the volume ingested by individual people.

The ingestion timing model and the volume model are set in the TAI 1le. The D24 ingestion timing model

is used only with the M volume model. Either the M or P volume models can be used with the F5 and P5

timing models. The volume models are used to determine a per capita ingestion volume, V̂
n,p, in liters/day

for each person p at node n. When using the M volume model, V̂
n,p is the same for each person and is

commonly set to 1 to 2 liters/day. When using the P volume model, V̂
n,p can be di−erent for each person. In

each case, the volume ingested per day, V̂
n,p, must be converted to a volume ingested per time step, Vn,p,t,

to calculate cumulative dose for each time step.

When using the D24 ingestion timing model, Vn,p,t is related to the demand at that node. The fraction
of demand water, rhon,t, that is ingested at node n at time step t, considering the entire length of the
simulation, is computed by:

qn,t
ˆn,t = Pnsteps nsteps�T (4.11)

t=1 qn,t

where qn,t is the demand at node n at time step t, nsteps is number of time steps in the entire simulation
and �T is the length of the reporting time step. The length of the simulation equals nsteps�T . The volume
Vn,p,t is then computed using:

Vn,p,t = ˆn,tV̂
n,p (4.12)

When using the F5 and P5 ingestion timing models, ˆ is divided equally among each time step in which
water is ingested.

Vn,p (
V̂
n,p/5 if t 2 {ingestion time steps}

Vn,p,t = (4.13)
0 otherwise

21

�

�

�

The set of ingestion time steps is calculated by dividing the ingestion times by the length of the reporting

time step. This value is rounded down to the nearest discrete time step. The simulation start time should

1rst be subtracted from the ingestion times. For example, if the set of ingestion times are de1ned using the

F5 model as {7:00, 9:30, 12:00, 15:00 and 18:00}, the start time is 4:15 and the reporting time step is a half

hour, the set of ingestion time steps are {5, 10, 15, 21 and 27}.

The cumulative dose for person p at node n at time step t, dn,p,t, is computed using the following equation:

t

dn,p,t =
X

Cn,jVn,p,j (4.14)
j=1

where Vn,p,j is calculated using Equation 4.12 or Equation 4.13 and Cn,j is the contaminant concentration
in the water at node n at time step j as predicted by the water quality simulations. Cumulative dose is given

in number of organisms or mass in milligrams.

4.2.3 Response

Dose-response functions are used to predict the percentage of the population that might experience a
particular health outcome after receiving a speci1c cumulative dose. Two dose-response functions, r(dn,p,t),

are available in the sim2Impact subcommand:

• Log-Probit model:
r(dn,p,t) = �(ln(dn,p,tLD50)) (4.15)

where � is the cumulative distribution function of a standard normal random variable, is related to
the slope of the curve, LD50 (or ID50 for biological agents) is the dose at which 50% of the exposed
population would die and dn,p,t is calculated using Equation 4.14. The parameters and LD50 are set
in the TAI 1le.

• Generic logistic function:

a(1 + me−dn,p,t/˝) LD50/˝ − 2r(dn,p,t) = where � = e (4.16)
1 + �e−dn,p,t/˝

where a, m, � and ˝ are function coeZcients used to 1t the model to available data and dn,p,t is
calculated using Equation 4.14. The parameters a, m, � and ˝ are set in the TAI 1le.

The average response, rn,t, of the population at node n at time step t is calculated by: Ppopn r(dn,p,t)
rn,t = p=1

pop (4.17)
n

where pop is calculated using Equation 4.10 and r(dn,p,t) is calculated using Equation 4.15 or Equation n

4.16.

4.2.4 Disease Progression Model

To track how the population at each node responds to a speci1ed contaminant over time, a disease pro-

gression model is used. Given the percentage of people at each node who would become ill after being

exposed to the contaminant, disease transmission models predict how the disease would progress over

time. Disease models are used to predict the number of people at each node susceptible to illness from the

contaminant (S), exposed to a lethal or infectious dose (I), experiencing symptoms of disease (D) and either
recovering (R) or being fatally impacted (F). These equations assume that the recovered population does

22

�

�

�

�

not rejoin the susceptible population. These quantities are predicted at each node over time according to
the following di−erential equations:

dS = −�S (4.18)
dt
dI = �S − ̇I (4.19)
dt
dD = ˙I − (+ �)D (4.20)
dt
dR = �D (4.21)
dt
dF = D (4.22)
dt

where � is the per capita rate of infection, ˙ is the per capita rate at which infected move to diseased,

is the per capita disease induced untreated death rate and � is the per capita recovery rate, or the rate at
which diseased moved to recovered or fatal states.

The infection rate, �, is given by:
drn,p,t Sn,0

�n,t = (4.23)
dt Sn,t

where r(dn,p,t) is calculated using Equation 4.15 or Equation 4.16 and S is calculated by Equation 4.18.

In the TAI 1le, the LATENCY TIME is the inverse of ˙, the FATALITY RATE is and the FATALITY TIME is the
inverse of �. For more detail on the disease progression model and health impacts, see Murray et al. (2006).

4.3 sim2Impact Subcommand

The sim2Impact subcommand is executed using the following command line:

wst sim2Impact <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst sim2Impact --help

4.3.1 Con1guration File

The sim2Impact subcommand generates a template con1guration 1le using the following command line:

wst sim2Impact --template <configfile>

The sim2Impact WST con1guration template is shown in Figure 4.2. Brief descriptions of the options are
included in the con1guration template after the # sign.

4.3.2 Con1guration Options

Full descriptions of the WST con1guration options used by the sim2Impact subcommand are listed below.

impact

erd 1le
The name of the ERD database 1le that contains the contaminant transport simulation results.
It is created by running the tevasim subcommand. Multiple ERD 1les (entered as a list, i.e.,
[<1le1>, <1le2>]) can be combined to generate a single impact 1le. This can be used to combine

23

sim2Impact configuration template
impact:

erd file: [Net3.erd] # ERD database file name
metric: [MC] # Impact metric
tai file: null # Health impact file name, required for public health

metrics
response time: 0 # Time [min] needed to respond
detection limit: [0.0] # Thresholds needed to perform detection
detection confidence: 1 # Number of sensors for detection

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

Figure 4.2: The sim2Impact con1guration template 1le.

simulation results from di−erent types of contaminants, in which the ERD 1les were generated
from di−erent TSG 1les.

Required input.

metric
The impact metric used to compute the impact 1le. Options include EC, MC, NFD, PD, PE, PK, TD
or VC. One impact 1le is created for each metric selected. These metrics are de1ned in Section
4.1.

Required input.
tai 1le

The name of the TAI 1le that contains health impact information. The TAI 1le format is docu-

mented in File Formats Section 13.11.

Required input if a public health metric is used (PD, PE or PK).

response time

The number of minutes that are needed to respond to the detection of a contaminant. This
represents the time that it takes a water utility to stop the spread of the contaminant in the

network and eliminate the consumption of contaminated water. As the response time increases,

the impact increases because the contaminant a−ects the network for a greater length of time.

Required input, default = 0 minutes.
detection limit

The minimum concentration that must be exceeded before a sensor can detect a contaminant.
There must be one threshold for each ERD 1le. The units of these detection limits depend on the

units of the contaminant simulated for each ERD 1le (e.g., number of cells of a biological agent).

Required input, default = 0.
detection con1dence

The number of sensors that must detect an incident before the impacts are calculated.

Required input, default = 1 sensor.
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

24

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

4.3.3 Subcommand Output

The sim2Impact subcommand creates two output 1les, one is in the YAML 1le format and the other
is a log 1le. The YAML 1le is called <output pre1x>sim2Impact_output.yml and the log 1le is <output
pre1x>sim2Impact_output.log. The YAML 1le contains the names of the impact 1le(s), the ID 1le(s), the
nodemap 1le and the scenario map 1le, as well as the run date and the CPU time. These 1les are described
below. The log 1le contains basic debugging information.

• Impact 1le: One impact 1le is generated for each of the impact metrics speci1ed. The 1le contains the
observed impact at each location where a contamination scenario could be observed by a potential

sensor. This 1le is not intended to be read by users, but it is used later for sensor placement or other

response optimization. The impact 1le is documented in the File Formats Section 13.4.

• ID 1le: For each impact 1le (e.g., wst_Net3_mc.impact), a corresponding ID 1le is generated to map
the location IDs back to the network node labels. This 1le is not intended to be read by users, since it
is used internally by the software code.

• Nodemap 1le: The nodemap 1le maps sensor placement IDs to the network node labels (de1ned by
EPANET). This 1le is not intended to be read by users, since it is used internally by the software code.
The nodemap 1le is documented in the File Formats Section 13.8.

• Scenario map 1le: The scenario map 1le maps contamination scenario IDs to the network node labels
(de1ned by EPANET). This 1le is not intended to be read by users, since it is used internally by the

software code. The scenario map 1le is documented in the File Formats Section 13.9.

4.4 Impact Assessment Examples

After simulating the fate and transport of contaminants in a water distribution network, the output can

be used to quantify the impacts of the contamination incidents. An ERD 1le and a con1guration 1le are
required to run the sim2Impact subcommand. In the following examples, the EPANET Example Network 3
is used. The output database, Net3.erd, from the 1rst tevasim subcommand example is used to compute
the impact assessments.

4.4.1 Example 1

Figure 4.3 shows the con1guration 1le, sim2Impact_ex1.yml, for the 1rst sim2Impact subcommand exam-

ple. This example computes an impact assessment, based on Net3.erd, for the mass consumed (MC), vol-

ume consumed (VC), extent of contamination (EC), time to detection (TD), number of failed detections (NFD)

and population exposed (PE) impact metrics. The TAI 1le, Net3_bio.tai, is added to de1ne the human health
impact for a biological contaminant. The response time, detection limit and detection con1dence are all set
at the default values (i.e., 0, 0, 1, respectively).

The example can be executed using the following command line:

wst sim2Impact sim2Impact_ex1.yml

For each impact metric, an impact 1le (e.g., Net3_pe.impact) and a corresponding ID 1le is generated (e.g.,

Net3_pe.impact.id). For each contamination scenario (shown in column 1 after a two line header), the im-

pact 1le contains a list of nodes in the network (column 2) where a sensor might detect that contamination.

For each such node, the impact 1le contains the detection time (column 3) and the total impact (column 4)
given a sensor at that node is the 1rst to detect contamination from that scenario.

25

https://Net3_pe.impact.id

impact:
erd file: [Net3/Net3.erd]
metric: [MC, VC, EC, TD, NFD, PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

configure:
output prefix: ${CWD}/sim2Impact_ex1/Net3
debug: 0

Figure 4.3: The sim2Impact con1guration 1le for example 1.

4.4.2 Example 2

The second example using the sim2Impact subcommand investigates the e−ect of changing the re-

sponse time and detection limit on a speci1c impact metric, MC. The example 2 con1guration 1le,

sim2Impact_ex2.yml, is shown in Figure 4.4. This example uses a 60-minute response time and a detec-

tion limit of 0.1. Note that the units for detection limit are the same as for the mass values speci1ed in the
TSG 1le.

impact:
erd file: [Net3/Net3.erd]
metric: [MC]
tai file: null
response time: 60
detection limit: [0.1]
detection confidence: 1
msx species: null

configure:
output prefix: ${CWD}/sim2Impact_ex2/Net3
debug: 0

Figure 4.4: The sim2Impact con1guration 1le for example 2.

The example can be executed using the following command line:

wst sim2Impact sim2Impact_ex2.yml

4.4.3 Example 3

The sim2Impact example 3 calculates the impact associated with multi-species contamination incidents.

The msx species option speci1es which species concentration pro1le to use to calculate impact metrics.

This option is required for multi-species contamination scenarios created by the tevasim subcommand. The
con1guration 1le for the multi-species example, sim2Impact_ex3.yml, is shown in Figure 4.5. This example
uses an ERD 1le created by EPANET-MSX and computes the MC impact metric for the E. coli species. The
response time, detection limit and detection con1dence are all set at their default values.

The example can be executed using the following command line:

wst sim2Impact sim2Impact_ex3.yml

26

impact:
erd file: [Net3/Net3_EColi_TSB.erd]
metric: [MC]
tai file: null
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: EColi

configure:
output prefix: ${CWD}/sim2Impact_ex3/Net3
debug: 0

Figure 4.5: The sim2Impact con1guration 1le for example 3.

27

Chapter 5

Sensor Placement

The sp subcommand optimizes the location of sensors in a water distribution network to minimize the

impact of potential contamination incidents. The sp subcommand has a rich interface that supports a
variety of optimization formulations, and it integrates a wide range of optimization solvers. An impact 1le is
used to de1ne the ensemble of contamination incidents. By default, sensors can be placed at any feasible

junction in the network, but 1xed and infeasible locations can be speci1ed within the sp subcommand.

A 2owchart representation of the sp subcommand is shown in Figure 5.1.

Sensor
Placement

Impact File

Sensor Locations

Sensor
Characteristics

Figure 5.1: Sensor placement 2owchart.

The required input for the sp subcommand is an impact 1le and sensor characteristics. The impact 1le
could be created by the sim2Impact subcommand, or through some non-WST impact calculation process.
Multiple impact 1les can be used as input to the sensor placement problem. The other required input is the

sensor characteristics. These characteristics are supplied through the sp WST con1guration 1le as well as
additional 1les that provide details on the cost and failure rates of the sensors.

Advanced features of the sp subcommand are discussed in Section 12.2. This includes a discussion of
how to specify feasible sensor locations and evaluation techniques. The section also includes advanced
sensor placement methods for computing a bound on the quality of sensor networks, and techniques for

minimizing memory used during sensor placement: (a) aggregation of scenarios and (b) skeletonization of

the water distribution system network model.

5.1 Sensor Placement Formulations

Several sensor placement optimization formulations are available in the sp subcommand. The following
formulations are described below: expected-impact, robust optimization, side-constrained and minimum

cost formulations. WST also supports several sensor placement formulations that are not documented yet:

28

�

�

multi-stage sensor placement and imperfect sensor models.

5.1.1 Expected-Impact Formulation

The most widely studied sensor placement formulation for a contamination warning system (CWS) design

is to minimize the expected impact of an ensemble of contamination incidents given a 1xed number of
sensors. This formulation has also become the standard formulation in the sp subcommand, because it
can be e−ectively used to select sensor placements in large water distribution networks.

A mixed-integer programming (MIP) formulation for expected-impact sensor placement is (eSP):

minimize
X

a

X
daixai (5.1)

a2A i2La

subject to
X

xai = 1 8a 2 A (5.2)
i2La

xai � si 8a 2 A, i 2 La (5.3)X
cisi � p (5.4)

i2L

si 2 {0, 1} 8i 2 L (5.5)

0 � xai � 1 8a 2 A, i 2 La (5.6)

This MIP minimizes the expected impact of a set of contamination incidents de1ned by A. For each incident
a 2 A, a is the weight of incident a, which is typically a probability. This formulation integrates contam-

ination impact calculations, which are reported at a set of locations from the full set, denoted L, where
a location refers to a network node. For each incident a, La � L is the set of locations that can be con-

taminated by a. Thus, a sensor at a location i 2 La can detect contamination from incident a at the time
contamination 1rst arrives at location i. Each incident is witnessed by the 1rst sensor to see it. For each in-

cident a 2 A and location i 2 La, dai de1nes the impact of the contamination incident a if it is witnessed by
location i. This impact metric assumes that as soon as a sensor witnesses contamination, then any further

contamination impacts are mitigated (perhaps after a suitable delay that accounts for the response time of

the water utility). The si variables indicate where sensors are placed in the network, ci is the cost of placing
a sensor at location i and p is the budget.

The xai variables indicate whether incident a is witnessed by a sensor at location i. They are de1ned as
continuous variables between 0 and 1. In practice, there is always an optimal solution where xai is binary.
If xai is fractional, then two or more equally good locations have sensors Murray et al. (2010). A given
set of sensors might not be able to witness all contamination incidents. To account for this, L contains
a dummy location, q. The dummy location is assigned the impact if contamination was not detected at
any node location. The dummy location is not a physical location in the network. This dummy location
is in all sets La. If the dummy location witnesses an incident, it generally means that no real sensor can

detect that incident. The impact for this location is the impact of the contamination incident after the

entire contaminant transport simulation has 1nished, which estimates the impact that would occur without
an online sensor network. The impact of a dummy detection is greater than all other impacts for each

incident, so the witness variable xai for the dummy will only be selected if no sensors have been placed

that can detect this incident with smaller impact.

For examples on expected-impact sensor placement (eSP), see Example 5.4.1, 5.4.2 and 5.4.3. Berry et al.

(2006) describe eSP, and they note that this formulation is identical to the well-known p-median facility
location problem (Mirchandani and Francis, 1990) when ci = 1. In the p-median problem, p facilities (e.g.,
central warehouses) are to be located on m potential sites such that the sum of distances dai between
each of n customers (e.g., retail outlets) and the nearest facility i is minimized. In comparing eSP and p-

median problems, there is equivalence between (1) sensors and facilities, (2) contamination incidents and

customers and (3) contamination impacts and distances. While eSP allows placement of at most p sensors,

29

�

�

�
�

� �

�

�
�

� �

�

p-median formulations generally enforce placement of all p facilities; in practice, the distinction is irrelevant
unless p approaches the number of possible locations. This equivalence enables the application of p-median
solvers to eSP (see Example 5.4.3).

5.1.2 Robust Formulations

The eSP model described in Section 5.1.1 can be viewed as optimizing one particular statistic of the distribu-

tion of impacts de1ned by the contaminant transport simulations. However, other statistics might provide

more robust solutions that are less sensitive to changes in this distribution (Watson et al., 2006, 2009).

Consider the following generalization of eSP:

minimize

subject to

Impactf (, d, x)X
xai = 1 8a 2 A

(5.7)

(5.8)
i2La

xai � siX
cisi � p

8a 2 A, i 2 La (5.9)

(5.10)
i2L

si 2 {0, 1}
0 � xai � 1

8i 2 L
8a 2 A, i 2 La

(5.11)

(5.12)

The function Impactf (, d, x) computes a statistic of the impact distribution. The following functions sup-

ported in WST have been developed by researchers to 1nd robust solutions to optimization problems (Wat-

son et al., 2006, 2009):

• Mean: This is the statistic used in eSP (Equation 5.1)

• VaR: Value-at-Risk (VaR) is a percentile-based metric. Given a con1dence level 2 (0, 1), the VaR is the
value of the distribution at the 1 − percentile (Topaloglou et al., 2002). The value of VaR is less than

the TCE value (see below). Mathematically, suppose a random variable W describes the distribution
of possible impacts. The probability that W is less than a value w is denoted as ¶[W � w]. Then

VaR(W,) = min{w | ¶[W � w] � } (5.13)

Note that the distribution W changes with each sensor placement. Further, VaR can be computed
using the , d and x values.

• TCE: The Tail-Conditioned Expectation (TCE) is a related metric that measures the conditional expec-

tation of impact exceeding VaR at a given con1dence level. Given a con1dence level 1 − , TCE is
the expectation of the worst impacts whose likelihood sums to . This value is between VaR and the
worst-case value. Mathematically, then

TCE() = E [W | W � VaR()] (5.14)

• CVar: The Conditional Value-at-Risk (CVaR) is a linearization of TCE investigated by Rockafellar and

Uryasev (2002). CVaR approximates TCE with a continuous, piecewise-linear function of , which en-

ables the use of CVaR in a MIP model.

• Worst: The worst impact value can be easily computed, since a 1nite number of contamination inci-

dents are simulated. However, this statistic is sensitive to changes in the number of contamination

incidents that are simulated; adding additional contamination incidents could signi1cantly impact this
statistic.

30

�

�
�

WST includes robust MIP reformulations of eSP for the the worst and CVar statistics. The reformulation to
minimize the worst contamination impact is (wSP):

minimize

subject to

w X
a daixai � w 8a 2 A

(5.15)

(5.16)
i2LaX
xai = 1 8a 2 A (5.17)

i2La

xai � siX
cisi � p

8a 2 A, i 2 La (5.18)

(5.19)
i2L

si 2 {0, 1}
0 � xai � 1

8i 2 L
8a 2 A, i 2 La

(5.20)

(5.21)

This is a standard formulation for the p-center problem (Daskin, 1995; Elloumi et al., 2004).

Similarly, the reformulation to minimize CVaR is (cvarSP):

1 X
minimize v + aya (5.22)

a2A

subject to ya �
X

daixai − v 8a 2 A (5.23)
i2La

yq � 0 8a 2 A (5.24)X
xai = 1 8a 2 A (5.25)

i2La

xai � si 8a 2 A, i 2 La (5.26)X
cisi � p (5.27)

i2L

si 2 {0, 1} 8i 2 L (5.28)

0 � xai � 1 8a 2 A, i 2 La (5.29)

The variable v represents VaR, which is implicitly computed when this model is solved. See Rockafellar and

Uryasev (2002) for further discussion of CVaR formulations.

Note that these formulations share a core set of constraints and variables with eSP. The di−erence in these
models is how the objective is expressed. For examples on robust sensor placement (wSP and cvarSP), see

Example 5.4.4 and 5.4.5.

5.1.3 Side-Constrained Formulation

Another natural generalization of eSP is to consider the addition of side constraints that represent bounds

on alternate objectives or statistics. For example, consider a simple extension of eSP that includes a single

31

�

�

�

side-constraint (scSP):

minimize
X

a

X
daixai (5.30)

a2A i2La

subject to
X

xai = 1 8a 2 A (5.31)
i2La

xai � si 8a 2 A, i 2 La (5.32)X
cisi � p (5.33)

i2L

si 2 {0, 1} 8i 2 L (5.34)

0 � xai � 1 8a 2 A, i 2 La (5.35)X
a

X
d̂
aixai � G (5.36)

a2A i2La

The last constraint in this formulation bounds the value of an impact statistic d̂
ai. Note that this statistic

could easily be used as the objective for (eSP). This can be viewed as a goal constraint. Iteratively solving
scSP for di−erent goals, G, provides an assessment of the trade-o− between the impact statistics in the

objective and this constraint. Hence, the scSP formulation provides a mechanism for analyzing trade-o−s
between di−erent objectives.

WST provides general support for side-constraints beyond what is represented in scSP, since multiple side-

constraints can be speci1ed. Additionally, robust statistics can be speci1ed. For example, WST can express

sensor placement formulations where the mean impact is minimized while the worst-case impact is con-

strained. See Example 5.4.6 for a demonstration of side-constrained sensor placement (scSP).

5.1.4 Min-Cost Formulation

The eSP model described in Section 5.1.1 minimizes expected contamination impact subject to a cost con-

straint on the number of sensors that are installed. A related sensor placement formulation is to minimize

the cost of installing sensors while constraining the contamination impact to be below a speci1ed threshold,
u.

For example, eSP can be reformulated to minimize cost (mcSP):

minimize
X

cisi (5.37)
i2L

subject to
X

xai = 1 8a 2 A (5.38)
i2La

xai � si 8a 2 A, i 2 La (5.39)X
a

X
daixai � u (5.40)

a2A i2La

si 2 {0, 1} 8i 2 L (5.41)

0 � xai � 1 8a 2 A, i 2 La (5.42)

See Example 5.4.7 for a demonstration of min-cost sensor placement (mcSP).

5.2 Sensor Placement Solvers

The sp subcommand performs optimization using a solver speci1ed in the con1guration 1le. All of the
solvers supported by the sp subcommand are practical for small-sized water distribution networks, and

heuristic solvers can be used to 1nd sensor placements for very large networks.

32

--

The sp subcommand interfaces with a variety of external solvers that can be used to perform sensor place-

ment. Several di−erent MIP solvers can be used to 1nd a globally optimal solution for the eSP MIP formu-

lation. However, this might be a computationally expensive process (especially for large problems), and the

size of the MIP formulation can become prohibitively large in some cases. A variety of public-domain and
commercial solvers can be used by the sp subcommand, including GLPK, CBC, PICO, CPLEX, GUROBI and
XPRESS.

A greedy randomized adaptive sampling process (GRASP) heuristic performs sensor placement optimization

without explicitly creating a MIP formulation. Thus, this solver uses much less memory, and it usually runs
very quickly. Although the GRASP heuristic does not guarantee that a globally optimal solution is found,

it has proven e−ective at 1nding optimal solutions to a variety of large-scale applications. Two di−erent
implementations of the GRASP solvers can be used: an AT&T commercial solver (att_grasp) or an open-

source implementation of this solver (snl_grasp).

The Lagrangian heuristic uses the structure of the p-median MIP formulation (eSP) to 1nd near-optimal
solutions while computing a lower bound on the best possible solution.

5.3 sp Subcommand

The sp subcommand is executed with the following command:

wst sp <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst sp --help

Two other options can be used to print help information. The –-help-problems option prints a table of the
di−erent types of optimization problems that can be solved with the sp subcommand. For example, the
following is a description of the standard problem solved by the sp subcommand (eSP):

default, p-median, average-case perfect-sensor

mean obj
0 constraints
perfect
single obj
1 stage
exact

The 1rst row lists the di−erent names that can be used to specify this problem type. These are synonyms,

since the standard problem, eSP, is a p-median problem where the objective is an average statistic. This
is also the standard perfect-sensor formulation, where all sensors are assumed to work perfectly without

failures. The six rows following the dashed lines are di−erent characteristics of this problem:

1. the type of objective used

2. the number of side-constraints

3. specify whether sensors are perfect (i.e., without failures) or whether they can fail

4. the number of objectives

5. the number of stages (i.e., time steps) in the sensor placement formulation

6. the type of solution that is required (e.g., an exact solution versus any feasible solution).

33

These six characteristics are used by the sp subcommand to verify the suitability of solvers that are speci1ed
for optimization.

The –-help-solvers option prints a table of the di−erent solvers that can be applied to perform optimiza-

tion. For example, the following is a description of the solvers that can be used to optimize average-case
perfect-sensor problems (which is the default):

Problem Type Solver Modeling Language
==
average-case perfect-sensor *att_grasp none
average-case perfect-sensor *cbc pyomo
average-case perfect-sensor *cplex pyomo
average-case perfect-sensor *glpk pyomo
average-case perfect-sensor gurobi pyomo
average-case perfect-sensor *lagrangian none
average-case perfect-sensor pico ampl
average-case perfect-sensor pico pyomo
average-case perfect-sensor *snl_grasp none
average-case perfect-sensor xpress pyomo

Solvers highlighted with an asterisk are available in the current installation of WST. The modeling language

indicates whether AMPL (Fourer et al., 2002), Pyomo (Hart et al., 2012) or neither is used to solve sensor

placement optimization problem. Note that GLPK includes a modeling tool that includes a subset of AMPL.

Thus, problems that require AMPL can be solved if either AMPL or GLPK is installed.

5.3.1 Con1guration File

The sp subcommand generates a template con1guration 1le using the following command line:

wst sp --template <configfile>

The template con1guration 1le for the sp subcommand is shown in Figure 5.2. Brief descriptions of the
options are included in the template after the # character.

34

sp configuration template
impact data:

-
name: impact1 # Impact block name
impact file: Net3_mc.impact # Impact file name
nodemap file: Net3.nodemap # Nodemap file name
weight file: null # Weight file name

cost:
-

name: null # Cost block name
cost file: null # Cost file name

objective:
-

name: obj1 # Objective block name
goal: impact1 # Optimization objective
statistic: MEAN # Objective statistic
gamma: 0.05 # Gamma, required with statistics VAR or CVAR

constraint:
-

name: const1 # Constraint block name
goal: NS # Constraint goal
statistic: TOTAL # Constraint statistic
gamma: 0.05 # Gamma, required with statistics VAR or CVAR
bound: 5 # Constraint upper bound

aggregate:
-

name: null # Aggregation block name
type: null # Aggregation type: THRESHOLD, PERCENT or RATIO
goal: null # Aggregation goal
value: null # Aggregation value
conserve memory: 0 # Aggregation conserve memory
distinguish detection: 0 # Detection goal
disable aggregation: [0] # Aggregation disable aggregation

imperfect:
-

name: null # Imperfect block name
sensor class file: null # Imperfect sensor class file
junction class file: null # Imperfect junction class file

sensor placement:
-

type: default # Sensor placement problem type
modeling language: NONE # Modeling language: NONE, PYOMO or AMPL, default = NONE
objective: obj1 # Objective block name used in sensor placement
constraint: [const1] # Name of constraint block(s) used in sensor placement
imperfect: null # Imperfect block name used in sensor placement
aggregate: null # Aggregate block name used in sensor placement
compute bound: false # Compute bounds: true or false, default = false
presolve: true # Presolve problem: true or false, default = true
compute greedy ranking: false # Compute greedy ranking of sensor locations, default =

false
location:

-
feasible nodes: ALL # Feasible sensor nodes
infeasible nodes: NONE # Infeasible sensor nodes
fixed nodes: NONE # Fixed sensor nodes
unfixed nodes: NONE # Unfixed sensor nodes

solver:
type: snl_grasp # Solver type
options: # A dictionary of solver options
threads: 1 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

35
Figure 5.2: The sp con1guration template 1le (continued in Figure 5.3).

sp configuration template
impact data:

-
name: impact1 # Impact block name
impact file: Net3_mc.impact # Impact file name
nodemap file: Net3.nodemap # Nodemap file name
weight file: null # Weight file name

cost:
-

name: null # Cost block name
cost file: null # Cost file name

objective:
-

name: obj1 # Objective block name
goal: impact1 # Optimization objective
statistic: MEAN # Objective statistic
gamma: 0.05 # Gamma, required with statistics VAR or CVAR

constraint:
-

name: const1 # Constraint block name
goal: NS # Constraint goal
statistic: TOTAL # Constraint statistic
gamma: 0.05 # Gamma, required with statistics VAR or CVAR
bound: 5 # Constraint upper bound

aggregate:
-

name: null # Aggregation block name
type: null # Aggregation type: THRESHOLD, PERCENT or RATIO
goal: null # Aggregation goal
value: null # Aggregation value
conserve memory: 0 # Aggregation conserve memory
distinguish detection: 0 # Detection goal
disable aggregation: [0] # Aggregation disable aggregation

imperfect:
-

name: null # Imperfect block name
sensor class file: null # Imperfect sensor class file
junction class file: null # Imperfect junction class file

sensor placement:
-

type: default # Sensor placement problem type
modeling language: NONE # Modeling language: NONE, PYOMO or AMPL, default = NONE
objective: obj1 # Objective block name used in sensor placement
constraint: [const1] # Name of constraint block(s) used in sensor placement
imperfect: null # Imperfect block name used in sensor placement
aggregate: null # Aggregate block name used in sensor placement
compute bound: false # Compute bounds: true or false, default = false
presolve: true # Presolve problem: true or false, default = true
compute greedy ranking: false # Compute greedy ranking of sensor locations, default =

false
location:

-
feasible nodes: ALL # Feasible sensor nodes
infeasible nodes: NONE # Infeasible sensor nodes
fixed nodes: NONE # Fixed sensor nodes
unfixed nodes: NONE # Unfixed sensor nodes

solver:
type: snl_grasp # Solver type
options: # A dictionary of solver options
threads: 1 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

36
Figure 5.3: The sp con1guration template 1le (continued from Figure 5.2).

5.3.2 Con1guration Options

Full descriptions of the WST con1guration options used by the sp subcommand are listed below.

impact data

name
The name of the impact block that is used in the objective or constraint block.

Required input.

impact 1le
The name of the impact 1le that is created by sim2Impact and contains the detection time and
the total impact given a sensor at that node is the 1rst to detect contamination from that sce-

nario. The impact 1le format is documented in File Formats Section 13.4.

Required input.

nodemap 1le
The name of the nodemap 1le that is created by sim2Impact and maps sensor placement ids to
the network node labels. The nodemap 1le format is documented in File Formats Section 13.8.

Required input.

weight 1le
The name of the weight 1le that speci1es the weights for contamination incidents. This 1le sup-

ports the optimization of weighted impact metrics. The weight 1le format is documented in File
Formats Section 13.14.

Optional input; by default, incidents are optimized with weight 1.
cost

name
The name of the cost block that is used in the objective or constraint block.

Optional input.
cost 1le

The name of the cost 1le that contains the costs for the installation of sensors throughout the

distribution network. This 1le contains EPANET ID/cost pairs. The cost 1le format is documented
in File Formats Section 13.2.

Optional input.
objective

name
The name of the objective block that is used in sensor placement block.

Required input.
goal

The objective of the optimization process that de1nes what is going to minimized. The options

are the name of the impact block, the name of the cost block, the number of sensors (NS) or the

number of failed detections (NFD).

Required input.

statistic
The objective statistic. The TOTAL statistic is used when the goal is NS or NFD. When the goal is
to compute a statistic of an impact block, the options are MEAN, MEDIAN, VAR, TCE, CVAR, TOTAL

or WORST. For example, MEAN will minimize the mean impacts over all of the contamination sce-

narios, while WORST will only minimize the worst impacts from the ensemble of contamination

scenarios. Required input.
gamma

37

The value of gamma that speci1es the fraction of the distribution of impacts that will be used to

compute the VAR, CVAR and TCE statistics. Gamma is assumed to be in the interval (0,1], which

means that gamma can be greater than zero but less than or equal to one. It can be interpreted

as specifying the 100*gamma percent of the worst contamination incidents that are used for

these calculations. Required input for VAR or CVAR objective statistics, default = 0.05.
constraint

name
The name of the constraint block that is used in sensor placement block.

Required input.
goal

The constraint goal. The options are the name of the impact block name, the name of the cost

block, the number of sensors (NS) or the number of failed detections (NFD).

Required input.

statistic
The constraint statistic. The TOTAL statistic is used when the goal is NS or NFD. When the goal is
to compute a statistic of an impact block, the options are MEAN, MEDIAN, VAR, TCE, CVAR, TOTAL

or WORST. For example, MEAN will constrain the mean impacts over all of the contamination sce-

narios, while WORST will only constrain the worst impacts from the ensemble of contamination

scenarios.

Required input.
gamma

The value of gamma that speci1es the fraction of the distribution of impacts that will be used to

compute the VAR, CVAR and TCE statistics. Gamma is assumed to be in the interval (0,1], which

means that gamma can be greater than zero but less than or equal to one. It can be interpreted

as specifying the 100*gamma percent of the worst contamination incidents that are used for

these calculations.

Required input for VAR or CVAR objective statistics, default = 0.05.
bound

The upper bound on the constraint.

Optional input.
aggregate

name
The name of the aggregation block that is used in sensor placement block.

Optional input.
type

The type of aggregation used to reduce the size of the sensor placement problem. The options

are THRESHOLD, PERCENT or RATIO.

THRESHOLD is used to aggregate similar impacts by specifying a goal and a value. This is used

to reduce the total size of the sensor placement formulation (for large problems). Solutions
generated with non-zero thresholds are not guaranteed to be globally optimal.

PERCENT is an alternative method to compute the aggregation threshold in which the value (of

the goal-value pair) is a real number between 0.0 and 1.0. Over all contamination incidents,
compute the maximum di−erence, d, between the impact of the contamination incident if it is
not detected and the impact if it is detected at the earliest possible feasible location and set the

aggregation threshold to d times the aggregation percent. If both THRESHOLD and PERCENT are
set to valid values, then PERCENT takes priority.

RATIO is also speci1ed with a goal-value pair in which value is a real number between 0.0 and

38

1.0.

Optional input.
goal

The aggregation goal for the aggregation type.

Optional input.

value
The aggregation value for the aggregation type. If the aggregation type is PERCENT or RATIO,
then this value is a real number between 0.0 and 1.0.

Optional input.
conserve memory

The maximum number of impact 1les that should be read into memory at any one time. This
option allows impact 1les to be processed in a memory conserving mode if location aggregation

is chosen and the original impact 1les are very large. For example, a conserve memory value of

10000 requests that no more than 10000 impacts should be read into memory at any one time

while the original impact 1les are being processed into smaller aggregated 1les.

Optional input, default = zero to turn o− this option.
distinguish detection

A goal for which aggregation should not allow incidents to become trivial. If the aggregation

threshold is so large that all locations, including the dummy, would form a single superlocation,

this forces the dummy to be in a superlocation by itself. Thus, the sensor placement will distin-

guish between detecting and not detecting. This option can be listed multiple times, to specify

multiple goals.

Optional input, default = 0.
disable aggregation

Disable aggregation for this goal, even at value zero, which would incur no error. Each witness
incident will be in a separate superlocation. This option can be listed multiple times to specify

multiple goals. ALL can be used to specify all goals.

Optional input, default = 0.
imperfect

name
The name of the imperfect block that is used in sensor placement block.

Optional input.

sensor class 1le
The name of the imperfect sensor class 1le that de1nes the detection probabilities for all sensor
categories. It is used with the imperfect-sensor model and must be speci1ed in conjunction
with a imperfect junction class 1le. The imperfect sensor class 1le format is documented in File
Formats Section 13.6.

Optional input.

junction class 1le
The name of the imperfect junction class 1le that de1nes a sensor category for each network
node. It is used with the imperfect-sensor model and must be speci1ed in conjunction with a
imperfect sensor class 1le. The imperfect junction class 1le format is documented in File Formats
Section 13.5.

Optional input.

sensor placement

type

The sensor placement problem type. The command wst sp –-help-problems provides a list

39

of problem types for sensor placement. For example, average-case perfect-sensor is the stan-

dard problem type for sensor placement, since it uses the mean statistic, zero constraints, single

objective and perfect sensors.

Required option, default = average-case perfect-sensor.
modeling language

The modeling language to generate the sensor placement optimization problem. The options
are NONE, PYOMO or AMPL.

Required input, default = NONE.
objective

The name of the objective block previously de1ned to be used in sensor placement.

Required input.

constraint
The name of the constraint block previously de1ned to be used in sensor placement.

Required input.

imperfect

The name of the imperfect block previously de1ned to be used in sensor placement.

Optional input.
aggregate

The name of the aggregate block previously de1ned to be used in sensor placement.

Optional input.

compute bound

A 2ag to indicate if bounds should be computed on the sensor placement solution. The options

are true or false.

Optional input, default = false.
presolve

A 2ag to indicate if the sensor placement problem should be presolved. The options are true or

false.

Optional input, default = true.
compute greedy ranking

A 2ag to indicate if a greedy ranking of the sensor locations should be calculated. The options

are true or false.

Optional input, default = false.
location

feasible nodes
A list that de1nes nodes that can be considered for the sensor placement problem. The
options are: (1) ALL, which speci1es all nodes as feasible sensor locations; (2) NZD, which
speci1es all non-zero demand nodes as feasible sensor locations; (3) a list of EPANET node
IDs, which identi1es speci1c nodes as feasible sensor locations; (4) a 1lename, which refer-

ences a space or comma separated 1le containing a list of speci1c nodes as feasible sensor
locations; or (5) NONE, which indicates this option is ignored.

Required input, default = ALL.
infeasible nodes

A list that de1nes nodes that cannot be considered for the sensor placement problem. The

options are: (1) ALL, which speci1es all nodes as infeasible sensor locations; (2) NZD, which
speci1es non-zero demand nodes as infeasible sensor locations; (3) a list of EPANET node
IDs, which identi1es speci1c nodes as infeasible sensor locations; (4) a 1lename, which refer-

ences a space or comma separated 1le containing a list of speci1c nodes as infeasible sensor

40

locations; or (5) NONE, which indicates this option is ignored.

Optional input, default = NONE.
1xed nodes

A list that de1nes nodes that are already sensor locations. The options are: (1) ALL, which
speci1es all nodes as 1xed sensor locations; (2) NZD, which speci1es non-zero demand nodes
as 1xed sensor locations; (3) a list of EPANET node IDs, which identi1es speci1c nodes as
1xed sensor locations; (4) a 1lename, which references a space or comma separated 1le
containing a list of speci1c nodes as 1xed sensor locations; or (5) NONE, which indicates this
option is ignored.

Optional input, default = NONE.
un1xed nodes

A list that de1nes nodes that are un1xed sensor locations. The options are: (1) ALL, which
speci1es all nodes as un1xed sensor locations; (2) NZD, which speci1es non-zero demand
nodes as un1xed sensor locations; (3) a list of EPANET node IDs, which identi1es speci1c
nodes as un1xed sensor locations; (4) a 1lename, which references a space or comma sep-

arated 1le containing a list of speci1c nodes as un1xed sensor locations; or (5) NONE, which
indicates this option is ignored.

Optional input, default = NONE.
solver

type

The solver type. Each component of WST (e.g., sensor placement, 2ushing response, booster
placement) has di−erent solvers available. More speci1c details are provided in the subcom-

mand’s chapter.

Required input.

options

A list of options associated with a speci1c solver type. More information on the options available
for a speci1c solver is provided in the solver’s documentation. The Getting Started Section 2.2
provides links to the di−erent solvers.

Optional input.

threads
The maximum number of threads or function evaluations the solver is allowed to use. This option

is not available to all solvers or all analyses.

Optional input.
log1le

The name of a 1le to output the results of the solver.

Optional input.

verbose
The solver verbosity level.

Optional input, default = 0 (lowest level).
initial points

nodes
A list of node locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing and booster_msx subcom-

mands. This input causes an error for other subcommands.

Optional input.

pipes

A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this option

41

is only supported for the network solver used in the 2ushing subcommand. This input causes
an error for other subcommands.

Optional input.
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

5.3.3 Subcommand Output

The sp subcommand creates several output 1les. The YAML 1le called <output pre1x>sp_output.yml con-

tains the sensor locations, 1nal impact metric, the run date and CPU time. For some solvers, the lower and

upper bound on the objective is reported. The log 1le called <output pre1x>sp_output.log contains basic
debugging information. A visualization YAML con1guration 1le called <output pre1x>sp_output_vis.yml is
also created and can be used to generate network graphics of the sensor placement solution using the
visualization subcommand. The correct EPANET INP 1le must be included in the visualization YAML con-

1guration 1le for the graphic to display properly.

The sp subcommand also outputs information a 1le named <output pre1x>_evalsensor.out That 1le in-

cludes the following data:

• Objective: The impact metric value achieved with the sensor network design.

• Lower bound: The lower bound on the impact metric with the sensor network design.

• Upper bound: The upper bound on the impact metric with the sensor network design.

• Solutions: The internal node indices used by sp for the sensor network design.

• Locations: The EPANET junction labels for the sensor placement locations.

• Sensor placement ID: An integer ID used to distinguish the sensor network design.

• Number of sensors: The number of sensors in the sensor network design.

• Total cost: The cost of the sensor network design, which could be non-zero if cost data is provided.

• Sensor node IDs: The internal node indices used by sp for the sensor network design. The same as
Solutions.

• Sensor junctions: The EPANET junction labels for the sensor placement locations. The same as Loca-

tions.

• Impact 1le: The name of the impact 1le used in the sensor network design.

• Number of events: The number of contamination scenarios that were simulated.

The performance of the sensor network design is summarized for each impact data 1le speci1ed in the
con1guration 1le. The impact statistics included are:

42

�
� �

• Min impact: The minimum impact over all contamination incidents simulated. Assuming that a sen-

sor protects the node at which it is placed, this statistic will typically be zero.

• Mean impact: The mean (or average) impact over all contamination incidents simulated.

• Lower quartile impact: 25% of the contamination incidents, weighted by their likelihood, have an

impact value less than this quartile.

• Median impact: 50% of the contamination incidents simulated, weighted by their likelihood, have an

impact value less than this quartile.

• Upper quartile impact: 75% of the contamination incidents simulated, weighted by their likelihood,

have an impact value less than this quartile.

• Value at Risk (VaR): VaR is the minimum value for which 100×(1−)% of the contamination incidents
simulated have a smaller impact, in which is a user-de1ned percentage between 0.0 < < 1.0.

• TCE: The tailed-conditioned expectation (TCE) is the mean value of the impacts that are greater than

or equal to VaR.

• Worst impact: The worst impact over all contamination incidents simulated.

If the [compute greedy ranking] option is used, a greedy sensor placement is printed to <output pre-

1x>_evalsensor.out. The greedy ranking places sensors one-at-a-time at the locations in the optimal sensor

network design by consecutively minimizing the mean impact of placing each sensor. This analysis gives a
sense of the relative priorities for these sensors. The greedy ranking is listed in terms of the sensor node
IDs used by the sp subcommand. The corresponding EPANET node ID is listed at the top of the 1le.

5.4 Sensor Placement Examples

The following examples illustrate common ways that the sp subcommand can be used. Additional examples
using the sp subcommand are provided in Section 12.2.

5.4.1 Example 1: Solving eSP with a MIP Solver

The 1rst example uses the con1guration 1le, sp_ex1.yml, shown in Figure 5.4. It speci1es the impact 1le
as Net3_ec.impact created by the sim2Impact subcommand using the extent of contamination (EC) impact

metric and EPANET Example Network 3. The objective is to minimize the mean EC over all contamination

incidents simulated while limiting the number of sensors (NS) to no more than 1ve. The solver is the GLPK
mixed-integer programming (MIP) solver, which 1nds globally optimal sensor placements. In addition, the
greedy ranking option is used.

The sp subcommand is executed using the following command line:

wst sp sp_ex1.yml

The sp subcommand for example 1 generates the YAML output 1le, Net3sp_output.yml, which summarizes

the sensor placement results (see Figure 5.5). The sensor network design places sensors at nodes 113, 121,

141, 163 and 209 to achieve an objective value of approximately 8655 of pipe feet contaminated.

The Net3_evalsensor.out 1le for the 1rst sp subcommand example is shown in Figure 5.6. It displays the
same sensor network design and impact value as in the YAML output 1le. It also includes the greedy ranking

of the sensor network design, in which a sensor at node 163 would provide the greatest reduction in the

impact followed by sensors at nodes 209, 113, 141 and 121. The 1rst value in the greedy ranking is -1 (or

the dummy location value), which gives the impact if no sensors are placed in the network.

43

impact data:
- name: impact1

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/sp_ex1/Net3
debug: 0

Figure 5.4: The sp con1guration 1le for example 1.

sp output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 3.83 # CPU time (sec)
directory: C:/wst-1.5/examples/sp_ex1
log file: Net3sp_output.log # Log file

sensor placement:
nodes: [[’113’, ’121’, ’141’, ’163’, ’209’]] # List of sensor nodes
objective: [’8655.81’] # Objective value
lower bound: 8655.806356 # Lower bound
upper bound: 8655.806356 # Upper bound
greedy ranking: Net3_evalsensor.out # Upper bound
stage 2: [] # Upper bound

Figure 5.5: The sp YAML output 1le for example 1.

44

--

--
--

--

Sensor placement id: 114124
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 21 28 38 65
Sensor junctions: 113 121 141 163 209

Impact File: Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8655.8064
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12444.0000
Value at Risk (VaR) (5%): 27269.0000
TCE (5%): 29853.9750
Max impact: 36740.0000

Greedy ordering of sensors: Net3_ec.impact

-1 47126.3322
38 23998.0814
65 16138.4225
16 11534.0903
28 9821.7386
21 8655.8064

Figure 5.6: The evalsensor output for sp example 1.

45

5.4.2 Example 2: Evaluating Solutions to eSP with Multiple Impact Files

The sp subcommand can also be con1gured to evaluate a sensor network design using impact data not used

for optimization. The second example uses the con1guration 1le, sp_ex2.yml, shown in Figure 5.7. Several
impact 1les, Net3_ec.impact and Net3_mc.impact, are de1ned in the impact block of the WST con1guration
1le. The objective of the sensor placement optimization is to minimize the mean EC impact metric. The
optimal sensor network design is then evaluated against the mass consumed (MC) impact metric.

impact data:
- name: ec

impact file: ${CWD}/Net3/Net3_ec.impact
nodemap file: ${CWD}/Net3/Net3.nodemap

- name: mc
impact file: ${CWD}/Net3/Net3_mc.impact
nodemap file: ${CWD}/Net3/Net3.nodemap

objective:
- name: obj1

goal: ec
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/sp_ex2/Net3
debug: 0

Figure 5.7: The sp con1guration 1le for example 2.

The sp subcommand is executed using the following command line:

wst sp sp_ex2.yml

All of the impact 1les speci1ed in the con1guration 1le are used when evaluating the sensor placement, and

a greedy sensor placement is generated for each (see Figure 5.8). The sensor network design optimized for

EC has a mean MC impact of 56320 mg, while the EC impact is 8655 feet. The greedy ranking of the sensors

is di−erent for the two di−erent impact metrics. A sensor at node 209 would be the 1rst sensor placed for

the MC impact metric compared to a sensor at node 163 for the EC impact metric. The greedy ranking is a
cumulative e−ect of adding more sensors, so the -1 value is the impact of having no sensors in the network

and the next sensor location is the impact of adding one sensor and so forth down the list.

46

--

--
--

--

--

--

Sensor placement id: 114288
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 21 28 38 65
Sensor junctions: 113 121 141 163 209

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8655.8064
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12444.0000
Value at Risk (VaR) (5%): 27269.0000
TCE (5%): 29853.9750
Max impact: 36740.0000

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_mc.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 56320.3850
Lower quartile impact: 307.6690
Median impact: 4200.0900
Upper quartile impact: 137021.0000
Value at Risk (VaR) (5%): 143999.0000
TCE (5%): 143999.0000
Max impact: 143999.0000

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact

-1 47126.3322
38 23998.0814
65 16138.4225
16 11534.0903
28 9821.7386
21 8655.8064

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_mc.impact

-1 136858.7347
65 71509.1322
28 56685.0096
16 56409.8878
38 56329.1362
21 56320.3850

Figure 5.8: The evalsensor output for sp example 2.

47

5.4.3 Example 3: Solving eSP with a GRASP Solver

The third example illustrates the use of a heuristic solver for sensor placement. A GRASP heuristic iteratively

applies local search to adaptively sample locations. Two GRASP heuristics are provided in WST. The AT&T
GRASP solver is based on the AT&T popstar software, and it can be used for research purposes. The SNL

GRASP solver is a new implementation of the GRASP algorithm in popstar. Example 3 uses the con1gura-

tion 1le, sp_ex3.yml, which is shown in Figure 5.9. The sensor placement parameters are the same as in

Example 5.4.1; the only di−erence is that the SNL GRASP solver is used instead of GLPK.

impact data:
- name: impact1

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: snl_grasp
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/sp_ex3/Net3
debug: 0

Figure 5.9: The sp con1guration 1le for example 3.

The sp subcommand is executed using the following command line:

wst sp sp_ex3.yml

The Net3_evalsensor.out 1le for example 3 is shown in Figure 5.10. The SNL GRASP heuristic solver 1nds
the same solution found by the GLPK solver in example 1. In addition, the solver found another solution

during the search with the same performance. Since GRASP is a heuristic solver, it is not guaranteed to 1nd
sensor placements with the globally optimal value. However, GRASP has proven capable of 1nding optimal
or near-optimal solutions even for large sensor placement problems. While the MIP solver in example 1

provided an upper and lower bound on the value of the solution, the GRASP solver does not generate these

bounds since it is a heuristic.

GRASP is a heuristic search that is partly dependent on a random number generator. Consequently, users

should not expect the solver to give identical results when run on di−erent machines or operating systems.

Thus, the solution shown in Figure 5.10 might not be the solution on everyone’s machine.

48

--

--
--

--

Sensor placement id: 115198
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 21 28 38 65
Sensor junctions: 113 121 141 163 209

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8655.8064
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12444.0000
Value at Risk (VaR) (5%): 27269.0000
TCE (5%): 29853.9750
Max impact: 36740.0000

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact

-1 47126.3322
38 23998.0814
65 16138.4225
16 11534.0903
28 9821.7386
21 8655.8064

Figure 5.10: The evalsensor output for sp example 3.

5.4.4 Example 4: Solving wSP with a MIP Solver

The subsequent examples illustrate the use of WST to solve more complex sensor placement problems. In
most cases, these problems are signi1cantly harder to solve than eSP. MIP solvers are used in the following

examples to ensure consistency in the solution, but the time required to solve these problems is non-trivial.

The fourth example uses the con1guration 1le, sp_ex4.yml, shown in Figure 5.11. The objective is to mini-

mize the worst-case expected contamination over all contamination incidents simulated while limiting the

number of sensors to no more than 1ve. The solver is the CBC solver, which 1nds globally optimal sensor
placements. In addition, the greedy ranking option is used.

The sp subcommand is executed using the following command line:

wst sp sp_ex4.yml

The Net3_evalsensor.out 1le for this example is shown in Figure 5.12. Compared with the results from

example 1, this solution has a lower maximum impact for EC and a higher mean impact for EC. This re2ects
the di−erence in the objectives of these two problems.

49

--

--
--

--

impact data:
- name: impact1

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: impact1
statistic: WORST

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: worst-case perfect-sensor
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: cbc
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/sp_ex4/Net3
debug: 0

Figure 5.11: The sp con1guration 1le for example 4.

Sensor placement id: 100087
Number of sensors: 5
Total cost: 0
Sensor node IDs: 15 19 24 41 66
Sensor junctions: 111 119 127 167 211

Impact File: c:/wst-1.5/examples/Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 10026.9436
Lower quartile impact: 1650.0000
Median impact: 9694.0000
Upper quartile impact: 14120.0000
Value at Risk (VaR) (5%): 24715.0000
TCE (5%): 26984.0917
Max impact: 28290.0000

Greedy ordering of sensors: c:/wst-1.5/examples/Net3/Net3_ec.impact

-1 47126.3322
41 24603.2763
66 17828.3250
15 14033.1216
19 10795.6131
24 10026.9436

Figure 5.12: The evalsensor output for sp example 4.

50

5.4.5 Example 5: Solving cvarSP with a MIP Solver

Example 5 uses the con1guration 1le, sp_ex5.yml, shown in Figure 5.13. The objective is to minimize the
conditional value-at-risk (CVaR) over all contamination incidents simulated while limiting the number of
sensors to no more than 1ve. The parameter = 0.05 speci1es the weight of the tail that is used to
measure CVaR (CVaR approximates the mean impact of the 5% worst scenarios). Hence, minimizing CVaR
is similar to minimizing the worst-case; the di−erence is that minimizing CVaR reduces the impact of all of
the worst 5% of the scenarios. The GLPK solver and the greedy ranking option are used.

impact data:
- name: impact1

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: impact1
statistic: CVAR
gamma: 0.05

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5

sensor placement:
type: robust-cvar perfect-sensor
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: cbc
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/sp_ex5/Net3
debug: 0

Figure 5.13: The sp con1guration 1le for example 5.

The sp subcommand is executed using the following command line:

wst sp sp_ex5.yml

The Net3_evalsensor.out 1le for this example is shown in Figure 5.14. Compared with the results of example

1, this solution has a lower TCE for EC and a higher mean impact for EC. Compared with the results of

example 4, this solution has the same maximum impact for EC and a lower TCE impact for EC. Both of these

comparisons re2ect the di−erence in the objectives of these problems.

51

--

--
--

--

Sensor placement id: 177096
Number of sensors: 5
Total cost: 0
Sensor node IDs: 15 19 24 42 66
Sensor junctions: 111 119 127 169 211

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 9459.9911
Lower quartile impact: 1650.0000
Median impact: 9694.0000
Upper quartile impact: 14120.0000
Value at Risk (VaR) (5%): 24199.0000
TCE (5%): 26366.8750
Max impact: 28290.0000

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact

-1 47126.3322
42 22431.5335
66 15738.1076
15 12523.3470
19 10228.6606
24 9459.9911

Figure 5.14: The evalsensor output for sp example 5.

5.4.6 Example 6: Solving scSP with a MIP Solver

This example considers two sensor placement problems where a side constraint is used to limit the feasible

sensor networks. Example 6a uses the con1guration 1le, sp_ex6a.yml, shown in Figure 5.17. The objective is
to minimize the mean contamination impact for EC over all contamination incidents simulated while limiting

(1) the number of sensors to no more than 1ve and (2) the mean contamination impact for MC to no more

than 50000.0. The GLPK solver and the greedy ranking option are used.

The sp subcommand is executed using the following command line:

wst sp sp_ex6a.yml

The Net3_evalsensor.out 1le for this example is shown in Figure 5.16. By comparison with example 1,

this solution has a higher mean impact for EC and a lower mean impact for MC. This comparison re2ects
how adding constraints to the formulation in example 1 leads to a worse solution for the objective while

satisfying a side constraint.

Example 6b illustrates that a di−erent impact statistic can be used in a side-constraint than is used in the

objective. Note that the solution in Figure 5.16 has a worst-case impact statistic of 143999.0 The con1gura-

tion 1le in Figure 5.17 uses a side-constraint where the MC impacts are constrained by the worst-case value
of 150000.0.

Figure 5.18 shows the solution to Example 6b. This solution is similar to the solution in Example 6a. Al-

though the solution has the same worst-case value for MC impacts, the mean MC impacts are larger.

52

impact data:
- name: ec

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

- name: mc
impact file: Net3/Net3_mc.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: ec
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5

- name: const2
goal: mc
statistic: MEAN
bound: 50000.0

sensor placement:
type: side-constrained
objective: obj1
constraint:

- const1
- const2

presolve: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/sp_ex6a/Net3
debug: 0

Figure 5.15: The sp con1guration 1le for example 6a.

53

--

--
--

--

--

--

Sensor placement id: 180417
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 28 38 63 74
Sensor junctions: 113 141 163 207 237

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8763.7513
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12315.9000
Value at Risk (VaR) (5%): 27754.8000
TCE (5%): 34161.9833
Max impact: 41105.0000

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_mc.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 46060.0860
Lower quartile impact: 192.2400
Median impact: 2039.0300
Upper quartile impact: 124175.0000
Value at Risk (VaR) (5%): 143999.0000
TCE (5%): 143999.0000
Max impact: 143999.0000

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact

-1 47126.3322
63 23283.0614
38 16121.9182
16 11657.3742
28 9945.0225
74 8763.7513

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_mc.impact

-1 136858.7347
74 61640.7514
28 46758.6920
63 46281.6318
16 46085.6101
38 46060.0860

Figure 5.16: The evalsensor output for sp example 6a.

54

impact data:
- name: ec

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

- name: mc
impact file: Net3/Net3_mc.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: ec
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5

- name: const2
goal: mc
statistic: WORST
bound: 150000.0

sensor placement:
type: side-constrained
objective: obj1
constraint:

- const1
- const2

presolve: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/sp_ex6b/Net3
debug: 0

Figure 5.17: The sp con1guration 1le for example 6b.

55

--

--
--

--

--

--

Sensor placement id: 180455
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 21 28 38 65
Sensor junctions: 113 121 141 163 209

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8655.8064
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12444.0000
Value at Risk (VaR) (5%): 27269.0000
TCE (5%): 29853.9750
Max impact: 36740.0000

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_mc.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 56320.3850
Lower quartile impact: 307.6690
Median impact: 4200.0900
Upper quartile impact: 137021.0000
Value at Risk (VaR) (5%): 143999.0000
TCE (5%): 143999.0000
Max impact: 143999.0000

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact

-1 47126.3322
38 23998.0814
65 16138.4225
16 11534.0903
28 9821.7386
21 8655.8064

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_mc.impact

-1 136858.7347
65 71509.1322
28 56685.0096
16 56409.8878
38 56329.1362
21 56320.3850

Figure 5.18: The evalsensor output for sp example 6b.

56

5.4.7 Example 7: Solving mcSP with a MIP Solver

Example 7 uses the con1guration 1le, sp_ex7.yml, shown in Figure 5.19. The objective is to minimize the

number of sensors while limiting the mean contamination impact for EC over all contamination incidents to

no more than 5000.0. The CBC solver and the greedy ranking option are used.

impact data:
- name: impact1

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: NS
statistic: TOTAL

constraint:
- name: const1

goal: impact1
statistic: MEAN
bound: 5000.0

sensor placement:
type: min-sensors
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: cbc
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/sp_ex7/Net3
debug: 0

Figure 5.19: The sp con1guration 1le for example 7.

The sp subcommand is executed using the following command line:

wst sp sp_ex7.yml

The Net3_evalsensor.out 1le for this example is shown in Figure 5.20. By comparison with example 1, this

solution uses 11 sensors to 1nd a lower mean impact for EC. Both the mcSP and eSP formulations can be
used to explore the trade-o− between number of sensors and contamination impact. However, the eSP

formulation is much easier to solve, especially for large-scale sensor placement problems.

57

--

--
--

--

Sensor placement id: 180497
Number of sensors: 11
Total cost: 0
Sensor node IDs: 10 16 18 21 24 32 38 46 53 63 74
Sensor junctions: 101 113 117 121 127 149 163 179 191 207 237

Impact File: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 4724.7551
Lower quartile impact: 0.0000
Median impact: 3695.0000
Upper quartile impact: 9485.0000
Value at Risk (VaR) (5%): 12230.0000
TCE (5%): 14060.8333
Max impact: 18020.0000

Greedy ordering of sensors: c:/wst-1.5/doc/wst/examples/sp/Net3/Net3_ec.impact

-1 47126.3322
63 23283.0614
38 16121.9182
16 11657.3742
21 10174.8530
32 8824.5564
74 7643.2852
10 6916.9716
46 6255.5941
24 5677.5178
53 5190.0517
18 4724.7551

Figure 5.20: The evalsensor output for sp example 7.

58

Chapter 6

Hydrant Flushing

A common operational approach that water utilities use to address water quality concerns is 2ushing, which
is the purging of water from the distribution network via a 1re hydrant or blow-o− port. Many utilities 2ush
water mains following maintenance work or in response to customer complaints. Flushing can remove the

sources of poor water quality (e.g., pipe corrosion, bio-1lm microorganisms), as well as loose or suspended
material that has accumulated in low-2ow portions or dead-ends of the distribution system. It is a response

option that can be undertaken relatively quickly after a contamination incident, and it can be made more
eZcient through the careful selection of where to implement 2ushing activities. This chapter describes
the flushing subcommand in WST that assists in the identi1cation of e−ective hydrant locations to 2ush
in order to remove contaminated water and the valves to close in order to direct the contaminated water
towards the hydrants.

A 2owchart representation of the flushing subcommand is shown in Figure 6.1. The flushing subcom-

mand employs an iterative process that combines contaminant transport, impact assessment and optimiza-

tion. The optimization process identi1es a set of 2ushing activities that are simulated in the contaminant

transport process and evaluated based upon the impact assessment process. Since the flushing sub-

command relies on the tevasim and sim2Impact subcommands, their required input is also required for
the flushing subcommand. In addition, the sensor network design used to detect the contamination in-

cident(s) and the 2ushing characteristics are required inputs. The utility network model is de1ned by a
EPANET 2.00.12 INP 1le, while the rest of the input can be speci1ed in the flushing WST con1guration 1le.

59

Contaminant
Transport

 Utility Network
Model

Simulation
Input

 Threat Ensemble
Database

Impact
Assessment

Consequences
Input

Impact File Flushing
Optimization

 Sensor
Placements

Flushing
Characteristics

Flushing
Locations

Figure 6.1: Flushing response simulation 2owchart.

6.1 Flushing Formulation

The 2ushing problem formulation can be summarized as selecting a set of hydrant locations to 2ush and
valves to close that minimizes the average impact of all contamination incidents given a set of potential

hydrant locations to 2ush and valves to close. The mathematical formulation can be written as follows:

minimize
X1

da,max
A

(6.1)

subject to
a2AX
yh � Hmax (6.2)

h2HX
yv � Vmax (6.3)

v2V

yh 2 {0, 1}
yv 2 {0, 1}

8h 2 H
8v 2 V

(6.4)

(6.5)

where A represents a set of contamination incidents, da,max de1nes the maximum impact of the contam-

ination incident a, H represents the set of potential hydrant locations, yh is a binary variable which is 1 if
node h is selected as a 2ushing location, Hmax is the maximum number of hydrant locations, V represents
the set of potential valve locations, yv is a binary variable which is 1 if node v is selected as a valving location
and Vmax is the maximum number of valve locations. The maximum impact of a contamination incident,
da,max, is the total impact across the entire network at the end of the simulation assuming that the contam-

inant was not detected by a sensor, and no interventions to reduce impacts were implemented. This value

is found in the -1 entry of the impact 1le.

For this problem, hydrants are assumed to be located at any user-de1ned nodes in the network. In addition,
valves are assumed to be located on any user-de1ned pipes in the network.

60

6.2 Flushing Solvers

The 2ushing problem is solved through an iterative optimization process which selects di−erent sets of
hydrant and valve locations and evaluates their e−ectiveness in minimizing the impact of a set of contami-

nation incidents. Two optimization methods, an evolutionary algorithm and a network solver, are available

in WST to solve this problem. Each solver is explained in more detail in the following subsections.

6.2.1 Evolutionary Algorithm

The evolutionary algorithm (EA) included with DAKOTA, Coliny EA, is used in the optimization routine for

the flushing subcommand. Additional information on DAKOTA/Coliny solvers can be found at http:
//dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html and in the DAKOTA user manual (Adams

et al., 2013). The random number generator used in Coliny EA is platform dependent. This can result in

slight variations in the solution.

To design an EA, the parameter space for the optimization problem is 1rst encoded into a string of numbers.

This encoded representation of the problem is called a genetic string, where each element of the genetic

string represents one parameter. When the EA is used with the flushing subcommand, the parameter
space is de1ned by the number of 2ushing and valve closure locations. Each location is assigned a sequen-

tial integer that represents a feasible location within the EPANET network. The 1nal EA solution is reported
based on the EPANET node/pipe IDs.

The EA has several solver options that de1ne how the EA evolves. These options can be set in
the [solver][options] sections of the flushing WST con1guration 1le and are speci1c to the Coliny
EA solver. The EA evolves an initial genetic strings of size [population_size] that is set based on
[initialization_type] using the following steps:

1. Evaluation: Evaluate the solution for each genetic string. This involves function calls to the tevasim
and sim2Impact subcommands for each string to de1ne the impact value.

2. Breeding: Select two members of the population based on 1tness. The probability of selection is
based on [fitness_type].

3. Crossover: Crossover two members based on [crossover_type] and [crossover_rate].

4. Mutation: Mutate the two members based on [mutation_type] and [mutation_rate].

5. Steps 2-4 are repeated until the entire population has been changed.

6. Replacement: After a new population is created, the old population is replaced by the current popu-

lation while keeping the highest ranked string (elitist = 1 replacement option).

Steps 1-6 are repeated until [max_iterations] or [max_function_evaluations] criteria is met.

6.2.2 Network Solver

The network solver used in WST is a network-constrained, derivative-free local search optimization algo-

rithm. It is a discrete analog-to-pattern search. The allowable moves are to adjacent nodes (or pipes),
rather than moves in the continuous space. This approach provides local re1nement of candidate solu-

tions. The valid moves include removing a node (or pipe) location and replacing it with one anywhere in the

network. Two forms of the network solver can be used: with and without initial starting points. The initial

starting points are node (or pipe) locations in the network in which the algorithm should begin its local

search. If these points are not supplied to the algorithm, then it reduces to a greedy placement algorithm.

Convergence is met when no remaining moves improve the solution.

61

http://dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html
http://dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html

6.2.3 Flushing Optimization for Large Problems

The iterative optimization process used for 2ushing requires numerous simulations of the network hy-

draulics and water quality. Computational run time depends on several factors, including the size of the

network model, the number of possible contamination incidents, the number of feasible 2ushing locations

and the solver options. For the network solver,the computational run time also depends on the network

model geometry surrounding the local search region. For large 2ushing optimization problems, several
techniques can be used to decrease the computational run time. These options include running multiple

instances of the underlying simulation in parallel, setting a stop time criteria and skeletonizing the network

model.

6.2.3.1 Parallelization

The Dakota coliny_ea and StateMachineLS solvers both include an option to set the number of threads used

to perform the simulations. This option is speci1ed in [solver][threads], as shown below. It should be set
to the number of threads that are available for the simulation. The default value is 1. If an integer greater
than 1 is speci1ed, Dakota will run that many threads. The expected eZciency of parallelization is nearly

linear with the number of threads (up to the number of processor cores in the computer).

solver:
type: coliny_ea
threads: 2

6.2.3.2 Stop time criteria

If a solution needs to be identi1ed within a certain amount of time, a simulation stop time criteria can be
de1ned. This option causes the solver to terminate after a speci1ed time, even if the underlying algorithm

has not converged to an optimal solution. The stop time criteria is included with both the Dakota coliny_ea

and StateMachineLS solvers, and it is speci1ed in [solver][options][misc_options], as shown below.

The max_time has to be given in seconds. As the optimization algorithms only check the elapsed time once

per major iteration, the actual solver run time will be slightly longer than the speci1ed maximum run time.
When the optimization process is cut o− prematurely, the best solution obtained so far is reported to the
user.

solver:
type: StateMachineLS
options:

misc_options: "’max_time=10’"

6.2.3.3 Skeletonization

To reduce the size of the network model, possible contamination incidents and the number of feasible

2ushing locations, the user can skeletonize the problem and evaluate the results on the full network model.

WST includes a utility script, spotSkeleton, that can be used to skeletonize network models (See Executable

Files Section 14.5). Network models are skeletonized based on a pipe diameter threshold. The executable,

spotSkeleton, creates a new EPANET input (inp) 1le and a related map 1le. The map 1le associates the nodes
in the skeletonized network model (upscaled nodes) to the nodes in the original network model (downscaled

nodes). When working with a skeletonized network model, other aspects of the 2ushing problem also need
to upscaled based on the skeletonization map. These include: the injection location(s) and strength of

the contamination incident(s), the population at each node, the sensor placement, the feasible 2ushing

locations and the initial points for the optimization solver. For example, if Nodes 1, 2, 3 and 4 in the original

network model are represented by Node 2 in the skeletonized network model, then a sensor placed at Node

4 in the original network model should be placed at Node 2 in the skeletonized network model.

After 2ushing optimization is run on the skeletonized network model, the solution can then be evaluated

62

or re1ned using the original network model. To evaluate the current solution, the locations on the skele-

tonized network should be listed as the only feasible 2ushing locations in the original network model and

the EVALUATE solver option should be used (See Example 6.4.3). To re1ne the current solution, downscale

the locations on the skeletonized network and use those original network nodes as the only feasible 2ush-

ing locations in a second optimization. In this re1nment, the solver type and solver options can be di−erent
for the 1rst and second optimization.

6.3 flushing Subcommand

The flushing subcommand is executed using the following command line:

wst flushing <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst flushing --help

6.3.1 Con1guration File

The flushing subcommand generates a template con1guration 1le using the following command line:

wst flushing --template <configfile>

The flushing template con1guration 1le is shown in Figure 6.2. Brief descriptions of the options are in-

cluded in the template after the # sign.

6.3.2 Con1guration Options

Full descriptions of the WST con1guration options used by the flushing subcommand are listed below.

network

epanet 1le
The name of the EPANET 2.00.12 input (INP) 1le that de1nes the water distribution network
model.

Required input.
scenario

location
A list that describes the injection locations for the contamination scenarios. The options are: (1)

ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection loca-

tions; (2) NZD, which denotes all nodes with non-zero demands as contamination injection loca-

tions; or (3) an EPANET node ID, which identi1es a node as the contamination injection location.
This allows for an easy speci1cation of single or multiple contamination scenarios.

Required input unless a TSG or TSI 1le is speci1ed.
type

The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOWPACED

or SETPOINT. See the EPANET 2.00.12 user manual for additional information about source types

(Rossman, 2000).

Required input unless a TSG or TSI 1le is speci1ed.
strength

The amount of contaminant injected into the network for the contamination scenarios. If the
type option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,

63

flushing configuration template
network:

epanet file: Net3.inp # EPANET 2.00.12 network file name
scenario:

location: [NZD] # Injection location: ALL, NZD or EPANET ID
type: MASS # Injection type: MASS, CONCEN, FLOWPACED or SETPOINT
strength: 100.0 # Injection strength [mg/min or mg/L depending on

type]
species: null # Injection species, required for EPANET-MSX
start time: 0 # Injection start time [min]
end time: 1440 # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
signals: null # Signal files, overrides TSG or TSI files
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

impact:
erd file: null # ERD database file name
metric: [PE] # Impact metric
tai file: Net3_bio.tai # Health impact file name, required for public health

metrics
response time: 0 # Time [min] needed to respond
detection limit: [0.0] # Thresholds needed to perform detection
detection confidence: 1 # Number of sensors for detection

flushing:
detection: [111, 127, 179] # Sensor locations to detect contamination scenarios
flush nodes:

feasible nodes: NZD # Feasible flushing nodes
infeasible nodes: NONE # Infeasible flushing nodes
max nodes: 2 # Maximum number of nodes to flush
rate: 800.0 # Flushing rate [gallons/min]
response time: 0.0 # Time [min] between detection and flushing
duration: 480.0 # Flushing duration [min]

close valves:
feasible pipes: ALL # Feasible pipes to close
infeasible pipes: NONE # Infeasible pipes to close
max pipes: 0 # Maximum number of pipes to close
response time: 0.0 # Time [min] between detection and closing pipes

solver:
type: StateMachineLS # Solver type
options: # A dictionary of solver options
threads: 1 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

Figure 6.2: The flushing con1guration template 1le.

64

FLOWPACED or SETPOINT, then units are in mg/L.

Required input unless a TSG or TSI 1le is speci1ed.
species

The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but

only one is injected into the network. For cases where multiple contaminants are injected, a TSI
1le must be used.

Required input for EPANET-MSX unless a TSG or TSI 1le is speci1ed.
start time

The injection start time that de1nes when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents

an injection that starts at hour 1 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
end time

The injection end time that de1nes when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents

an injection that ends at hour 2 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
tsg 1le

The name of the TSG scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSG 1le will override the location, type, strength, species, start and end
times options speci1ed in the WST con1guration 1le. The TSG 1le format is documented in File
Formats Section 13.12.

Optional input.
tsi 1le

The name of the TSI scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSI 1le will override the TSG 1le, as well as the location, type, strength,
species, start and end time options speci1ed in the WST con1guration 1le. The TSI 1le format is
documented in File Formats Section 13.13.

Optional input.

signals

Name of 1le or directory with information to generate or load signals. If a 1le is provided the
list of inp tsg tuples will be simulated and the information stored in signals 1les. If a directory
with the signals 1les is speci1ed, the signal 1les will be read and loaded in memory. This input

is only valid for the uq subcommand and the grabsample subcommand with probability based

formulations.

Optional input.
msx 1le

The name of the EPANET-MSX multi-species 1le that de1nes the multi-species reactions to be
simulated using EPANET-MSX.

Required input for EPANET-MSX.

msx species

The name of the MSX species whose concentration pro1le will be saved by the EPANET-MSX
simulation and used for later calculations.

Required input for EPANET-MSX.

merlion
A 2ag to indicate if the Merlion water quality simulator should be used. The options are true or

65

false. If an MSX 1le is provided, EPANET-MSX will be used.

Required input, default = false.
impact

erd 1le
The name of the ERD database 1le that contains the contaminant transport simulation results.
It is created by running the tevasim subcommand. Multiple ERD 1les (entered as a list, i.e.,
[<1le1>, <1le2>]) can be combined to generate a single impact 1le. This can be used to combine
simulation results from di−erent types of contaminants, in which the ERD 1les were generated
from di−erent TSG 1les.

Required input.

metric
The impact metric used to compute the impact 1le. Options include EC, MC, NFD, PD, PE, PK, TD
or VC. One impact 1le is created for each metric selected. These metrics are de1ned in Section
4.1.

Required input.
tai 1le

The name of the TAI 1le that contains health impact information. The TAI 1le format is docu-

mented in File Formats Section 13.11.

Required input if a public health metric is used (PD, PE or PK).

response time

The number of minutes that are needed to respond to the detection of a contaminant. This
represents the time that it takes a water utility to stop the spread of the contaminant in the

network and eliminate the consumption of contaminated water. As the response time increases,

the impact increases because the contaminant a−ects the network for a greater length of time.

Required input, default = 0 minutes.
detection limit

The minimum concentration that must be exceeded before a sensor can detect a contaminant.
There must be one threshold for each ERD 1le. The units of these detection limits depend on the

units of the contaminant simulated for each ERD 1le (e.g., number of cells of a biological agent).

Required input, default = 0.
detection con1dence

The number of sensors that must detect an incident before the impacts are calculated.

Required input, default = 1 sensor.
2ushing

detection
The sensor network design used to detect contamination scenarios. The sensor locations are
used to compute a detection time for each contamination scenario. The options are a list of
EPANET node IDs or a 1le name which contains a list of EPANET node IDs.

Required input.
2ush nodes

feasible nodes
A list that de1nes the nodes in the network that can be 2ushed. The options are: (1) ALL,
which speci1es all nodes as feasible 2ushing locations; (2) NZD, which speci1es all non-zero
demand nodes as feasible 2ushing locations; (3) NONE, which speci1es no nodes as feasible
2ushing locations; (4) a list of EPANET node IDs, which identi1es speci1c nodes as feasible
2ushing locations; or (5) a 1lename, which references a space or comma separated 1le con-

taining a list of speci1c nodes as feasible 2ushing locations.

66

Required input, default = ALL.
infeasible nodes

A list that de1nes the nodes in the network that cannot be 2ushed. The options are: (1) ALL,
which speci1es all nodes as infeasible 2ushing locations; (2) NZD, which speci1es all non-

zero demand nodes as infeasible 2ushing locations; (3) NONE, which speci1es no nodes as
infeasible 2ushing locations; (4) a list of EPANET node IDs, which identi1es speci1c nodes as
infeasible 2ushing locations; or (5) a 1lename, which references a space or comma separated
1le containing a list of speci1c nodes as infeasible 2ushing locations.

Optional input, default = NONE.
max nodes

The maximum number of node locations that can be 2ushed simultaneously in the network.

The value is a nonnegative integer or a list of nonnegative integers. When a list is speci-

1ed, the optimization will be performed for each number in this list. For example, a value

of 3 means that a maximum of 3 node will be identi1ed as 2ushing locations during the
optimization process.

Required input.
rate

The 2ushing rate for each node location to be 2ushed. A new demand pattern will be created

using this rate for the node. The value is a nonnegative integer. For example, a value of 800

means that an additional demand of 800 gpm is applied at a particular node. This rate is

applied to all 2ushing locations identi1ed in the optimization process.

Required input.

response time

The time in minutes between the detection of a contamination incident and the start of
2ushing. The value is a nonnegative integer. For example, a value of 120 represents a 120

minutes or a 2 hour delay between the time of detection and the start of 2ushing.

Required input.

duration
The length of time in minutes that 2ushing will be simulated at a particular node. The value is
a nonnegative integer. For example, a value of 240 means that 2ushing would be simulated
at a particular node for 4 hours. This duration is applied to all 2ushing locations identi1ed in
the optimization process.

Required input.

close valves

feasible pipes

A list that de1nes the pipes in the network that can be closed. The options are: (1) ALL, which
speci1es all pipes as feasible pipes to close; (2) DIAM min max, which speci1es all pipes with
a speci1c diameter as feasible pipes to close; (3) NONE, which speci1es no pipes as feasible
pipes to close; (4) a list of EPANET pipe IDs, which identi1es speci1c pipes as feasible pipes to
close; or (5) a 1lename, which references a space or comma separated 1le containing a list
of speci1c pipes as feasible pipes to close.

Required input, default = ALL.
infeasible pipes

A list that de1nes the pipes in the network that cannot be closed. The options are: (1) ALL,
which speci1es all pipes as infeasible pipes to close; (2) DIAM min max, which speci1es all
pipes with a speci1c diameter as infeasible pipes to close; (3) NONE, which speci1es no pipes
as infeasible pipes to close; (4) a list of EPANET pipe IDs, which identi1es speci1c pipes as
infeasible pipes to close; or (5) a 1lename, which references a space or comma separated

67

1le containing a list of speci1c pipes as infeasible pipes to close.

Optional input, default = NONE.
max pipes

The maximum number of pipes that can be closed simultaneously in the network. The value

must be a nonnegative integer or a list of nonnegative integers. When a list is speci1ed, the

optimization will be performed for each number in this list. For example, a value of 2 means

that a maximum of 2 pipes to close will be identi1ed during the optimization process.

Required input.

response time

The time in minutes between the detection of a contamination incident and closing pipes.

The value is a nonnegative integer. For example, a value of 120 would represent a 120
minutes or a 2 hour delay between the time of detection and the start of pipe closures.

Required input.
solver

type

The solver type. Each component of WST (e.g., sensor placement, 2ushing response, booster
placement) has di−erent solvers available. More speci1c details are provided in the subcom-

mand’s chapter.

Required input.

options

A list of options associated with a speci1c solver type. More information on the options available
for a speci1c solver is provided in the solver’s documentation. The Getting Started Section 2.2
provides links to the di−erent solvers.

Optional input.

threads
The maximum number of threads or function evaluations the solver is allowed to use. This option

is not available to all solvers or all analyses.

Optional input.
log1le

The name of a 1le to output the results of the solver.

Optional input.

verbose
The solver verbosity level.

Optional input, default = 0 (lowest level).
initial points

nodes
A list of node locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing and booster_msx subcom-

mands. This input causes an error for other subcommands.

Optional input.

pipes

A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing subcommand. This input causes
an error for other subcommands.

Optional input.
con1gure

68

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

In addition to these standard WST con1guration options, the solver block can de1ne an evaluation option.
To evaluate the 2ushing response without solving the optimization problem, the solver type can be set as

EVALUATE. This option allows a set of 2ushing locations to be evaluated against a di−erent contamination
scenario than the one for which it was designed.

The solver block can also de1ne speci1c options for the optimization solver. The solver options should be
modi1ed according to the speci1c optimization problem. If the options are not set in the solver block, then

the default values for these options are used. The two solvers available in the flushing subcommand each
have their own options. The EA solver has numerous options which can be de1ned. Additional information
on the options available for the EA solver can found in the DAKOTA user manual (Adams et al., 2013). An

example of the EA solver options are listed below.

solver:
type: coliny_ea
options:

crossover_rate: 0.8
crossover_type: uniform
fitness_type: linear_rank
initialization_type: unique_random
max_function_evaluations: 30000
max_iterations: 1000
mutation_rate: 1
mutation_type: offset_uniform
population_size: 50
seed: 11011011

The network solver has two options that can be set in the solver block of the con1guration 1le.

solver:
type: StateMachineLS
options:

verbosity: 2
max_fcn_evaluations: 0

6.3.3 Subcommand Output

The flushing subcommand creates a YAML 1le called <output pre1x>2ushing_output.yml that contains an
optimized set of node locations (EPANET node IDs) to 2ush, an optimized set of pipe locations (EPANET
pipe IDs) to close, the 1nal impact metric, the run date and CPU time. The log 1le called <output
pre1x>2ushing_output.log contains basic debugging information. A visualization YAML con1guration 1le
named <output pre1x>2ushing_output_vis.yml is also created. The visualization subcommand is auto-

matically run using this YAML 1le.

6.4 Flushing Response Examples

To demonstrate the two di−erent solvers available in the flushing subcommand, two examples are pre-

sented. Both examples have the same characteristics in terms of the contamination scenario and 2ushing

69

parameters. EPANET Example Network 3 (Net3.inp) is the network used and the contamination scenario is
an hour long injection at node 101 beginning at hour 3 in the simulation. A maximum of three hydrants

can be 2ushed for a duration of eight hours at a rate 800 gal/min. The option to close pipes/valves was

not included in these analyses. The impact metric being minimized is population exposed (PE). In addi-

tion, the third and forth examples are provided to demonstrate the evaluate and stop time criteria options,

respectively.

6.4.1 Example 1

The 1rst example uses the EA solver (coliny_ea) with the parallization option enabled and the con1gura-

tion 1le, 2ushing_ex1.yml, is shown in Figure 6.3. This example has the [solver][threads] option set to
2 threads. Please note: if the computer used to execute the example only has one thread, change the
[solver][threads] option to 1 instead of 2.

The example can be executed using the following command line:

wst flushing flushing_ex1.yml

The YAML output 1le, Net32ushing_output.yml, for example 1 is shown in Figure 6.4. The EA selected to
2ush nodes 113, 191 and 197 for a PE impact value of 5292. The CPU time was approximately 6 minutes

using 2 threads. Since the random number generator used in the EA solver is platform dependent, the

solution can be slightly di−erent if the example is executed on a computer with Windows.

6.4.2 Example 2

The second example uses the network solver (StateMachineLS) without initial points and the con1guration
1le, 2ushing_ex2.yml, is shown in Figure 6.5.

The example can be executed using the following command line:

wst flushing flushing_ex2.yml

The YAML output 1le, Net32ushing_output.yml, for example 2 is shown in Figure 6.6. The network solver
selected to 2ush nodes 101, 103 and 109 for a PE impact metric of 4919. The CPU time was approximately
2 minutes.

Examining the output 1les from the two examples shows that the optimization solvers identi1ed di−erent
solutions. As EAs are not guaranteed to 1nd the optimal solution, these results are not unexpected. In
addition, the CPU times to obtain the solutions are di−erent. The EA solution took about 6 minutes to
obtained using 2 threads, while the network solver solution was achieved in approximately 2 minutes.

6.4.3 Example 3

The third example uses the evaluate option and the con1guration 1le, 2ushing_ex3.yml, is shown in Figure
6.7. In this example, the same contamination scenario is used but only two (2) 2ushing locations are evalu-

ated in terms of reducing the PE impact metric. The 2ushing locations being evaluated are nodes 101 and
127.

The example can be executed using the following command line:

wst flushing flushing_ex3.yml

The YAML output 1le, Net32ushing_output.yml, for example 3 is shown in Figure 6.8. These two 2ushing

locations resulted in a PE impact metric of 10,759. Compared to the results from example 2, the PE impact

metric is much larger since only two 2ushing locations are used instead of three. The evaluate option can
be used to compare the impact metrics obtained from various 2ushing location combinations.

70

6.4.4 Example 4

The fourth example demonstrates the stop time option and uses almost the same con1guration 1le as
example 2. The con1guration 1le, 2ushing_ex4.yml, is shown in Figure 6.9, in which the stop criteria option
is enabled using the [solver][options][misc_options] option set to "’max_time=30’".

The example can be executed using the following command line:

wst flushing flushing_ex4.yml

The YAML output 1le, Net32ushing_output.yml, for example 4 is shown in Figure 6.10. The network solver
selected to 2ush node 105 for a PE impact value of 9676. The CPU time was 45 seconds, which is greater

than the stop time criteria since it is only checked periodically. The 2ushing solution was di−erent than the
solution obtained from example 2, since the stop time option was not used and it executed the optimization

process to completion.

71

network:
epanet file: Net3/Net3.inp

scenario:
location: [’101’]
type: MASS
strength: 1.450000e+010
species: null
start time: 180
end time: 240
tsg file: null
tsi file: null
msx file: null
msx species: null
merlion: false

impact:
erd file: null
metric: [PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

flushing:
detection: [’111’, ’127’, ’179’]
flush nodes:

feasible nodes: NZD
infeasible nodes: NONE
max nodes: 3
rate: 800.0
response time: 0.0
duration: 480.0

close valves:
feasible pipes: NONE
infeasible pipes: NONE
max pipes: 0
response time: 0.0

solver:
type: coliny_ea
threads: 2
options:

crossover_rate: 0.8
crossover_type: uniform
fitness_type: linear_rank
initialization_type: unique_random
max_function_evaluations: 1000
max_iterations: 1000
mutation_rate: 1
mutation_type: offset_uniform
population_size: 50
seed: 11011011

logfile: null
verbose: 0

configure:
output prefix: ${CWD}/flushing_ex1/Net3
debug: 0

Figure 6.3: The flushing con1guration 1le for example 1.

72

flushing output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 345.938 # CPU time (sec)
directory: C:/wst-1.5/examples/flushing_ex1
log file: Net3flushing_output.log # Log file

flushing:
nodes: [’197’, ’191’, ’113’] # List of nodes to flush
pipes: [] # List of pipes to close
objective: 5292.66 # Objective value

Figure 6.4: The flushing YAML output 1le for example 1.

network:
epanet file: Net3/Net3.inp

scenario:
location: [’101’]
type: MASS
strength: 1.450000e+010
species: null
start time: 180
end time: 240
tsg file: null
tsi file: null
msx file: null
msx species: null
merlion: false

impact:
erd file: null
metric: [PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

flushing:
detection: [’111’, ’127’, ’179’]
flush nodes:

feasible nodes: NZD
infeasible nodes: NONE
max nodes: 3
rate: 800.0
response time: 0.0
duration: 480.0

close valves:
feasible pipes: NONE
infeasible pipes: NONE
max pipes: 0
response time: 0.0

solver:
type: StateMachineLS
threads: 1
options:
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/flushing_ex2/Net3
debug: 0

Figure 6.5: The flushing con1guration 1le for example 2.

73

flushing output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 119.257 # CPU time (sec)
directory: C:/wst-1.5/examples/flushing_ex2
log file: Net3flushing_output.log # Log file

flushing:
nodes: [’101’, ’103’, ’109’] # List of nodes to flush
pipes: [] # List of pipes to close
objective: 4918.76 # Objective value

Figure 6.6: The flushing YAML output 1le for example 2.

network:
epanet file: Net3/Net3.inp

scenario:
location: [’101’]
type: MASS
strength: 1.450000e+010
species: null
start time: 180
end time: 240
tsg file: null
tsi file: null
msx file: null
msx species: null
merlion: false

impact:
erd file: null
metric: [PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

flushing:
detection: [’111’, ’127’, ’179’]
flush nodes:

feasible nodes: [’101’, ’127’]
infeasible nodes: NONE
max nodes: 2
rate: 800.0
response time: 0.0
duration: 480.0

close valves:
feasible pipes: NONE
infeasible pipes: NONE
max pipes: 0
response time: 0.0

solver:
type: EVALUATE
options:
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/flushing_ex3/Net3
debug: 0

Figure 6.7: The flushing con1guration 1le for example 3.

74

flushing output
general:

version: 1.5 # WST version
date: ’2019-03-04’ # Run date
cpu time: 3.715 # CPU time (sec)
directory: C:/wst-1.5/examples/flushing_ex3
log file: Net3flushing_output.log # Log file

flushing:
nodes: [’101’, ’127’] # List of nodes to flush
pipes: [] # List of pipes to close
objective: 10758.9 # Objective value

Figure 6.8: The flushing YAML output 1le for example 3.

network:
epanet file: Net3/Net3.inp

scenario:
location: [’101’]
type: MASS
strength: 1.450000e+010
species: null
start time: 180
end time: 240
tsg file: null
tsi file: null
msx file: null
msx species: null
merlion: false

impact:
erd file: null
metric: [PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

flushing:
detection: [’111’, ’127’, ’179’]
flush nodes:

feasible nodes: NZD
infeasible nodes: NONE
max nodes: 3
rate: 800.0
response time: 0.0
duration: 480.0

close valves:
feasible pipes: NONE
infeasible pipes: NONE
max pipes: 0
response time: 0.0

solver:
type: StateMachineLS
threads: 1
options:

misc_options: "’max_time=30’"
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/flushing_ex4/Net3
debug: 0

Figure 6.9: The flushing con1guration 1le for example 4.

75

flushing output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 40.109 # CPU time (sec)
directory: C:/wst-1.5/examples/flushing_ex4
log file: Net3flushing_output.log # Log file

flushing:
nodes: [’105’] # List of nodes to flush
pipes: [] # List of pipes to close
objective: 9676.3 # Objective value

Figure 6.10: The flushing YAML output 1le for example 4.

76

Chapter 7

Booster Station Placement

Disinfection booster stations are commonly used throughout water distribution networks to maintain drink-

ing water standards. Disinfectants degrade as they move through the system and booster stations, de-

signed to inject disinfectant at strategic locations, help maintain residual levels. Booster stations can also

be placed with water security objectives in mind. WST includes two booster subcommands, booster_msx
and booster_mip that are designed to place booster stations to minimize the impact of a contamination

incident. These subcommands use di−erent approaches to model the reaction dynamics between a con-

taminant and disinfectant.

The booster_msx subcommand uses EPANET-MSX to simulate the reaction dynamics between the contam-

inant and disinfectant. A 2owchart representation of the booster_msx subcommand is shown in Figure 7.1.
The booster_msx subcommand employs an iterative process that combines contaminant transport, impact

assessment and optimization. The optimization process identi1es a set of booster station locations where
disinfectant is injected. The contaminant and disinfectant injections and their reaction dynamics are sim-

ulated in the contaminant transport process and the e−ectiveness of the booster injections are evaluated
based upon the impact assessment process. Since the booster_msx subcommand relies on the tevasim
and sim2Impact subcommands, their required input is also required for the booster_msx subcommand.
Additionally, the sensor network design used to detect the contamination incident(s) and the booster sta-

tion characteristics are required inputs. The utility network model is de1ned by a EPANET 2.00.12 INP 1le,

while the rest of the input can be speci1ed in the booster_msx WST con1guration 1le.

The booster_mip subcommand uses the linear water quality model Merlion and assumes the reaction
dynamics between the contaminant and disinfectant can be approximated by a neutralization or limiting

reagent reaction model. A 2owchart representation of the booster_mip subcommand is shown in Figure
7.2. The utility network model is de1ned by a EPANET 2.00.12 INP 1le. Additional input speci1ed in the
booster_mip WST con1guration 1le are the contamination scenarios, the sensor network design used to

detect the contamination incident(s) and the booster station characteristics.

77

Contaminant
Transport

 Utility Network
Model

Simulation
Input

 Threat Ensemble
Database

Impact
Assessment

Consequences
Input

Impact File Booster Placement
Optimization

 Sensor
Placement

Booster
Characteristics

Booster
Locations

Figure 7.1: Multi-species reaction booster placement 2owchart.

Contaminant
Transport

 Utility Network
Model

Simulation
Input

Booster Placement
Optimization

 Sensor
Placement

Booster
Characteristics

Booster
Locations

Figure 7.2: MIP booster placement 2owchart.

7.1 Booster Placement Using Multi-species Reaction

The booster_msx subcommand uses optimization methods integrated with EPANET-MSX to evaluate
booster placements using multi-species reaction dynamics between the contaminant and disinfectant. The

booster station placement problem formulation selects a set of booster station locations that minimizes

the average impact of all contamination incidents given a set of potential booster stations that inject a

disinfecting agent. The mathematical formulation can be written as follows:

minimize 1
A

X
da,max (7.1)

subject to
a2AX
yb � Bmax (7.2)

b2B

yb 2 {0, 1} 8b 2 B (7.3)

78

where A represents a set of contamination incidents, da,max de1nes the maximum impact of the contami-

nation incident a, B represents the set of potential booster station locations, yb is a binary variable which
is 1 if node b is selected as a booster station location and Bmax is the maximum number of booster station
locations. The maximum impact of a contamination incident, da,max, is the total impact across the entire

network at the end of the simulation assuming that the contaminant was not detected by a sensor, and no

interventions to reduce impacts were implemented. This value is found in the -1 entry of the impact 1le. For
this problem, it is assumed that booster stations can be located at any user-de1ned nodes in the network.

7.1.1 Booster MSX Solvers

The multi-species booster station placement problem is solved through an iterative optimization process

which selects di−erent sets of booster station locations and evaluates their e−ectiveness in minimizing the
impact of a set of contamination incidents. Two optimization methods, an evolutionary algorithm and a

network solver, are available in WST to solve this problem. Each solver is explained in more detail in the

following subsections.

7.1.1.1 Evolutionary Algorithm

The evolutionary algorithm (EA) included with DAKOTA, Coliny EA, is used in the optimization routine for

the booster_msx subcommand. Additional information on DAKOTA/Coliny solvers can be found at http:
//dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html and in the DAKOTA user manual (Adams

et al., 2013). The random number generator used in Coliny EA is platform dependent. This can result in

slight variations in the solution.

To design an EA, the parameter space for the optimization problem is 1rst encoded into a string of numbers.

This encoded representation of the problem is called a genetic string, where each element of the genetic

string represents one parameter. When the EA is used with booster_msx the parameter space is de1ned
by the number of booster station locations. Each location is assigned a sequential integer that represents a
feasible location within the EPANET network. The 1nal EA solution is translated to represent EPANET node
IDs.

The EA has several solver options that de1ne how the EA evolves. These options can be set in the
[solver][options] sections of the booster_msx WST con1guration 1le and are speci1c to the Coliny
EA solver. The EA evolves an initial genetic strings of size [population_size] that is set based on
[initialization_type] using the following steps:

1. Evaluation: Evaluate the solution for each genetic string. This involves function calls to the tevasim
and sim2Impact subcommands for each string to de1ne the 1tness score.

2. Breeding: Select two members of the population based on 1tness. The probability of selection is
based on [fitness_type].

3. Crossover: Crossover two members based on [crossover_type] and [crossover_rate].

4. Mutation: Mutate the two members based on [mutation_type] and [mutation_rate].

5. Steps 2-4 are repeated until the entire population has been changed.

6. Replacement: After a new population is created, the old population is replaced by the current popu-

lation while keeping the highest ranked string (elitist = 1 replacement option).

Steps 1-6 are repeated until [max_iterations] or [max_function_evaluations] criteria is met.

79

http://dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html
http://dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html

7.1.1.2 Network Solver

The network solver used in WST is a network-constrained, derivative-free local search optimization algo-

rithm. It is a discrete analog-to-pattern search. The allowable moves are to adjacent nodes, rather than

moves in the continuous space. This approach provides local re1nement of candidate solutions. The valid
moves include removing a node location and replacing it with one anywhere in the network. Two forms
of the network solver can be used: with and without initial starting points. The initial starting points are

node locations in the network in which the algorithm should begin its local search. If these points are not

supplied to the algorithm, then it reduces to a greedy placement algorithm. Convergence is met when no

remaining moves improve the solution.

7.1.2 booster_msx Subcommand

The booster_msx subcommand is executed using the following command line:

wst booster_msx <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst booster_msx --help

7.1.2.1 Con1guration File

The booster_msx subcommand generates a template con1guration 1le using the following command line:

wst booster_msx --template <configfile>

The booster_msx template con1guration 1le is shown in Figure 7.3. Brief descriptions of the options are
included in the template after the # sign.

7.1.2.2 Con1guration Options

Full descriptions of the WST con1guration options used by the booster_msx subcommand are listed below.

network

epanet 1le
The name of the EPANET 2.00.12 input (INP) 1le that de1nes the water distribution network
model.

Required input.
scenario

location
A list that describes the injection locations for the contamination scenarios. The options are: (1)

ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection loca-

tions; (2) NZD, which denotes all nodes with non-zero demands as contamination injection loca-

tions; or (3) an EPANET node ID, which identi1es a node as the contamination injection location.
This allows for an easy speci1cation of single or multiple contamination scenarios.

Required input unless a TSG or TSI 1le is speci1ed.
type

The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOWPACED

or SETPOINT. See the EPANET 2.00.12 user manual for additional information about source types

(Rossman, 2000).

80

booster_msx configuration template
network:

epanet file: Net3.inp # EPANET 2.00.12 network file name
scenario:

location: [’101’] # Injection location: ALL, NZD or EPANET ID
type: MASS # Injection type: MASS, CONCEN, FLOWPACED or SETPOINT
strength: 100.0 # Injection strength [mg/min or mg/L depending on

type]
species: BIO # Injection species, required for EPANET-MSX
start time: 0 # Injection start time [min]
end time: 1440 # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
signals: null # Signal files, overrides TSG or TSI files
msx file: Net3_bio.msx # Multi-species extension file name
msx species: BIO # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

impact:
erd file: null # ERD database file name
metric: [MC] # Impact metric
tai file: null # Health impact file name, required for public health

metrics
response time: 0 # Time [min] needed to respond
detection limit: [0.0] # Thresholds needed to perform detection
detection confidence: 1 # Number of sensors for detection

booster msx:
detection: [111, 127, 179] # Sensor locations to detect contamination scenarios
toxin species: BIO # Toxin species injected in each contaminant scenario
decon species: CLF # Decontaminant injected from booster station
feasible nodes: ALL # Feasible booster nodes
infeasible nodes: NONE # Infeasible booster nodes
max boosters: 2 # Maximum number of booster stations
type: FLOWPACED # Booster source type: FLOWPACED
strength: 4.0 # Booster source strength [mg/L]
response time: 0.0 # Time [min] between detection and booster injection
duration: 600.0 # Time [min] for booster injection

solver:
type: coliny_ea # Solver type
options: # A dictionary of solver options
threads: 1 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

Figure 7.3: The booster_msx con1guration template 1le.

81

Required input unless a TSG or TSI 1le is speci1ed.
strength

The amount of contaminant injected into the network for the contamination scenarios. If the
type option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.

Required input unless a TSG or TSI 1le is speci1ed.
species

The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but

only one is injected into the network. For cases where multiple contaminants are injected, a TSI
1le must be used.

Required input for EPANET-MSX unless a TSG or TSI 1le is speci1ed.
start time

The injection start time that de1nes when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents

an injection that starts at hour 1 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
end time

The injection end time that de1nes when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents

an injection that ends at hour 2 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
tsg 1le

The name of the TSG scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSG 1le will override the location, type, strength, species, start and end
times options speci1ed in the WST con1guration 1le. The TSG 1le format is documented in File
Formats Section 13.12.

Optional input.
tsi 1le

The name of the TSI scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSI 1le will override the TSG 1le, as well as the location, type, strength,
species, start and end time options speci1ed in the WST con1guration 1le. The TSI 1le format is
documented in File Formats Section 13.13.

Optional input.

signals

Name of 1le or directory with information to generate or load signals. If a 1le is provided the
list of inp tsg tuples will be simulated and the information stored in signals 1les. If a directory
with the signals 1les is speci1ed, the signal 1les will be read and loaded in memory. This input

is only valid for the uq subcommand and the grabsample subcommand with probability based

formulations.

Optional input.
msx 1le

The name of the EPANET-MSX multi-species 1le that de1nes the multi-species reactions to be
simulated using EPANET-MSX.

Required input for EPANET-MSX.

msx species

The name of the MSX species whose concentration pro1le will be saved by the EPANET-MSX
simulation and used for later calculations.

82

Required input for EPANET-MSX.

merlion
A 2ag to indicate if the Merlion water quality simulator should be used. The options are true or

false. If an MSX 1le is provided, EPANET-MSX will be used.

Required input, default = false.
impact

erd 1le
The name of the ERD database 1le that contains the contaminant transport simulation results.
It is created by running the tevasim subcommand. Multiple ERD 1les (entered as a list, i.e.,
[<1le1>, <1le2>]) can be combined to generate a single impact 1le. This can be used to combine
simulation results from di−erent types of contaminants, in which the ERD 1les were generated
from di−erent TSG 1les.

Required input.

metric
The impact metric used to compute the impact 1le. Options include EC, MC, NFD, PD, PE, PK, TD
or VC. One impact 1le is created for each metric selected. These metrics are de1ned in Section
4.1.

Required input.
tai 1le

The name of the TAI 1le that contains health impact information. The TAI 1le format is docu-

mented in File Formats Section 13.11.

Required input if a public health metric is used (PD, PE or PK).

response time

The number of minutes that are needed to respond to the detection of a contaminant. This
represents the time that it takes a water utility to stop the spread of the contaminant in the

network and eliminate the consumption of contaminated water. As the response time increases,

the impact increases because the contaminant a−ects the network for a greater length of time.

Required input, default = 0 minutes.
detection limit

The minimum concentration that must be exceeded before a sensor can detect a contaminant.
There must be one threshold for each ERD 1le. The units of these detection limits depend on the

units of the contaminant simulated for each ERD 1le (e.g., number of cells of a biological agent).

Required input, default = 0.
detection con1dence

The number of sensors that must detect an incident before the impacts are calculated.

Required input, default = 1 sensor.
booster msx

detection
The sensor network design used to detect contamination scenarios. The sensor locations are
used to compute a detection time for each contamination scenario in the TSG 1le. The options
are a list of EPANET node IDs or a 1le name which contains a list of EPANET node IDs.

Required input.

toxin species

The name of the contaminant species that is injected in each contamination scenario. This is the

species that interacts with the injected disinfectant and whose impact is going to be minimized.

Required input.

decon species

83

The name of the decontaminant or disinfectant species that is injected from the booster stations.

Required input.

feasible nodes
A list that de1nes nodes that can be considered for the booster station placement problem.

The options are: (1) ALL, which speci1es all nodes as feasible booster station locations; (2) NZD,
which speci1es all non-zero demand nodes as feasible booster station locations; (3) NONE, which
speci1es no nodes as feasible booster station locations; (4) a list of EPANET node IDs, which
identi1es speci1c nodes as feasible booster station locations; or (5) a 1lename, which references
a space or comma separated 1le containing a list of speci1c nodes as feasible booster station
locations.

Required input, default = ALL.
infeasible nodes

A list that de1nes nodes that cannot be considered for the booster station placement problem.

The options are: (1) ALL, which speci1es all nodes as infeasible booster station locations; (2) NZD,
which speci1es non-zero demand nodes as infeasible booster station locations; (3) NONE, which
speci1es no nodes as infeasible booster station locations; (4) a list of EPANET node IDs, which
identi1es speci1c nodes as infeasible booster station locations; or (5) a 1lename, which refer-

ences a space or comma separated 1le containing a list of speci1c nodes as infeasible booster
station locations.

Optional input, default = NONE.
max boosters

The maximum number of booster stations that can be placed in the network. The value must be

a nonnegative integer or a list of nonnegative integers. When a list is speci1ed, the optimization
will be performed for each number in this list.

Required input.
type

The injection type for the disinfectant at the booster stations. The option is FLOWPACED. See the

EPANET 2.00.12 user manual for additional information about source types Rossman (2000).

Required input.

strength

The amount of disinfectant injected into the network from the booster stations. For the source

type FLOWPACED, the strength units are in mg/L.

Required input.

response time

The time in minutes between the detection of a contamination incident and the start of injecting

disinfectants from the booster stations. The value is a nonnegative integer. For example, a value

of 120 represents a 120 minutes or a 2 hour delay between the time of detection and the start of

booster injections.

Required input.

duration
The length of time in minutes that disinfectant will be injected at the booster stations during the

simulation. The value is a nonnegative integer. For example, a value of 240 means that a booster

would simulate injection of disinfectant at a particular node for 4 hours. This duration is applied

to all booster station locations identi1ed in the optimization process.

Required input.
solver

type

The solver type. Each component of WST (e.g., sensor placement, 2ushing response, booster

84

placement) has di−erent solvers available. More speci1c details are provided in the subcom-

mand’s chapter.

Required input.

options

A list of options associated with a speci1c solver type. More information on the options available
for a speci1c solver is provided in the solver’s documentation. The Getting Started Section 2.2
provides links to the di−erent solvers.

Optional input.

threads
The maximum number of threads or function evaluations the solver is allowed to use. This option

is not available to all solvers or all analyses.

Optional input.
log1le

The name of a 1le to output the results of the solver.

Optional input.

verbose
The solver verbosity level.

Optional input, default = 0 (lowest level).
initial points

nodes
A list of node locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing and booster_msx subcom-

mands. This input causes an error for other subcommands.

Optional input.

pipes

A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing subcommand. This input causes
an error for other subcommands.

Optional input.
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

In addition to these standard WST con1guration options, the solver block can de1ne an evaluation option.

To evaluate the placement of the booster stations without solving the optimization problem, the solver

type can be set as EVALUATE. This option allows a booster placement to be evaluated against a di−erent
contamination incident than which it was designed.

The solver block can also de1ne speci1c options for the optimization solver. The solver options should be
modi1ed according to the speci1c optimization problem. If the options are not set in the solver block, then

the default values for these options are used. The EA solver available in the booster_msx subcommand has

85

numerous options which can be de1ned. Additional information on the options available for the EA solver

can found in the DAKOTA user manual (Adams et al., 2013). An example of the EA solver options are listed

below.

solver:
type: coliny_ea
options:

crossover_rate: 0.8
crossover_type: uniform
fitness_type: linear_rank
initialization_type: unique_random
max_function_evaluations: 30000
max_iterations: 1000
mutation_rate: 1
mutation_type: offset_uniform
population_size: 50
seed: 11011011

The network solver has two options that can be set in the solver block of the con1guration 1le.

solver:
type: StateMachineLS
options:

verbosity: 2
max_fcn_evaluations: 0

7.1.2.3 Subcommand Output

The booster_msx subcommand creates a YAML 1le called <output pre1x>booster_msx_output.yml that
contains an optimized list of node locations (EPANET node IDs) to inject the disinfectant, the 1nal im-

pact metric, the run date and CPU time. The log 1le called <output pre1x>booster_msx_output.log

contains basic debugging information. A visualization YAML con1guration 1le named <output pre-

1x>booster_msx_output_vis.yml is also created. The visualization subcommand is automatically run
using this YAML 1le.

7.2 Booster Placement Using Neutralization or Limiting Reagent Reaction

If either the contaminant or the disinfectant are present in the water distribution system in excess (i.e.,

there is a clear limiting reagent), the booster station placement problem can be formulated as a mixed-

integer program (MIP). The booster_mip subcommand uses this MIP to determine optimal node locations
of booster stations used for responding to contamination incidents.

Two separate model formulations are available within the booster_mip subcommand. These are referred to
as the neutralization (NEUTRAL) formulation and the limiting reagent (LIMIT) formulation. Each has a unique

set of advantages that can be leveraged depending on the needs of the user. The NEUTRAL formulation
models the idealized situation in which the disinfecting agent (e.g., chlorine) immediately inactivates any

amount of contaminant it comes into contact with; the amount of disinfectant available for inactivation

is not considered. This allows for a highly compact model formulation, which is tractable for application

to both large water distribution systems and large scenario ensembles. The placements resulting from the

NEUTRAL formulation represent booster station locations that are optimal when the amount of disinfectant

required to perform inactivation is small and the time required for complete inactivation is fast.

The LIMIT formulation models the case where the disinfectant is consumed during the reaction with the

contaminant. This is more realistic than the NEUTRAL formulation in that the optimal solution is highly

dependent on the amount of disinfectant injected by the booster stations. However, the model still assumes

that upon mixing the limiting reagent is completed consumed, leaving the excess of the other species. The

LIMIT formulation includes a stoichiometric ratio, which represents the mass of disinfectant removed per

mass of contaminant removed. The units for disinfectant mass and contaminant mass are determined by

86

�

�

the type of injection used for each species (mg for chemical and CFU for biological). The stoichiometric ratio

can be adjusted to approximate a more realistic pairing of speci1c disinfectant and contaminant species
(e.g., chlorine and E. coli).

The optimization is performed over an ensemble of contamination incidents. The booster_mip subcom-

mand uses Merlion to perform water quality simulations, which are used to generate the necessary data

for the optimization formulation. The amount of time required for simulations can di−er depending on the
problem formulation selected by the user (e.g., LIMIT or NEUTRAL).

7.2.1 Neutralization NEUTRAL Formulation

The NEUTRAL formulation is as follows:

X XX
minimize a �n,t,amn,t,a where mn,t,a = cn,t,adn,t (7.4)

a2A n2N t2T

subject to �n,t,a � 1 −
X

ybZn,t,a,b 8n 2 N, t 2 T, a 2 A (7.5)
b2BX

yb � Bmax (7.6)
b2B

0 � �n,t,a � 1 8n 2 N, t 2 T, a 2 A (7.7)

yb 2 {0, 1} 8b 2 B (7.8)

where A represents the set of scenarios, N de1nes the set of network nodes, T represents the set of
time steps, B de1nes the set of potential booster station locations, a is the probability of scenario a,
mn,t,a and cn,t,a are the mass and concentration, respectively, of contaminant leaving node n at time step
t for scenario a, dn,t is the demand for the corresponding node and time step and Bmax is the maximum
number of booster stations. The continuous variable, �n,t,a, indicates whether the contaminant is available
for consumption at node n and time step t for scenario a and the binary variable, yb, is 1 if node b is
selected as a booster station location. In addition, Zn,t,a,b is determined from the pre-computed booster
station simulations. These simulations determine the node-time pairs that are neutralized based on the
speci1c contaminant scenario and feasible booster station locations. The parameter Zn,t,a,b is equal to 1
only if a booster station installed at node b neutralizes the contaminant leaving node n and time step t for
scenario a, otherwise, Zn,t,a,b is 0.

Equation 7.4 is the objective function, which minimizes the mass consumed across all nodes, for every
scenario, for every time step in the simulation. Equation 7.5 ensures that �n,t,a equals 0 if at least one
selected disinfectant booster station location provides neutralization of node n at time step t for scenario
a, otherwise, �n,t,a equals 1. Equation 7.6 restricts the number of booster stations to be less than or equal
to Bmax and Equations 7.7 and 7.8 limit the range for �n,t,a and yb.

Contaminant and disinfectant simulations are computed by the booster_mip subcommand using Merlion.
These simulations de1ne the parameters Zn,t,a,b and mn,t,a. Similar simulations and parameters could be

obtained using EPANET 2.00.12. However, the linear water quality model de1ned in Merlion is necessary for
the limiting reagent model.

7.2.2 Limiting Reagent LIMIT Formulation

The LIMIT formulation is as follows:

87

�

�

X XX
conminimize a cn,t,adn,t (7.9)

a2A n2N t2T

Gccon con consubject to = D(m − r) 8a 2 A (7.10)n,t,a n,t,a n,t,a

Gcdecon decon − ̇rcon= D(m) 8a 2 A (7.11)n,t,a n,t,a n,t,a

decon m = ybIb,t,a 8b 2 B, t 2 T, a 2 A (7.12)b,t,a

decon m = 0 8n 2 N \ B, t 2 T, a 2 A (7.13)n,t,aX
yb � Bmax (7.14)

b2B
con decon c , c � 0 8n 2 N, t 2 T, a 2 A (7.15)n,t,a n,t,a

con r � 0 8n 2 N, t 2 T, a 2 A (7.16)n,t,a

yb 2 {0, 1} 8b 2 B (7.17)

where A represents the set of scenarios, N de1nes the set of network nodes, T represents the set of time
steps, B de1nes the set of potential booster locations, a is the probability of scenario a, dn,t is the demand
at node n and time step t, rn,t,a is the mass of contaminant removed at node n and time step t for scenario
a (based on the reaction dynamics between the contaminant and disinfectant), ˙ is the stoichiometric ratio
for the reaction dynamics (mass unit of disinfectant removed per mass unit of contaminant removed) and

con deconBmax is the maximum number of booster stations. In addition, cn,t,a and cn,t,a are the concentrations of
con

contaminant and disinfectant, respectively, at node n and time step t for scenario a. The variables mn,t,a
decon

and m are the mass injection pro1les for the contaminant and disinfectant, respectively, at node n andn,t,a

time step t for scenario a. The parameters G and D are matrices that de1ne the water quality model. They

form the mathematical relationship between the input mass injected and the output concentration at all

nodes and times. These are discussed in more detail in Section 12.1. A 1rst order decay rate can be added
to the contaminant and disinfectant. The binary variable, yb, is 1 if node b is selected as a booster station
location. The variable Ib,t,a is the injection pro1le for booster b at time step t for scenario a.

Equation 7.9 is the objective function, which minimizes the mass consumed across all nodes, for every

scenario, for every time step in the simulation. Equations 7.10 and 7.11 include the embedded linear water

quality model, as stored in the G and D matrices. Equation 7.12 sets the injection pro1le if a booster is
placed. Equation 7.13 sets the injection pro1le to 0 if a booster is not placed. The variable N \ B is the
set of nodes that are not potential booster station locations. Equation 7.14 restricts the number of booster

stations to be less than or equal to Bmax. Equation 7.15 places bounds on the contaminant and disinfectant

concentrations. Equation 7.16 places bounds on the disinfectant mass injection. Equation 7.17 de1nes yb
as a binary variable.

7.2.3 Booster MIP Solvers

The booster_mip subcommand requires a standard MIP solver to perform booster station placement. A
variety of public domain and commercial MIP solvers exist that can be used with the booster_mip subcom-

mand, including GLPK, CBC, PICO, CPLEX, GUROBI and XPRESS.

The modeling language, speci1ed by the model format option in the booster mip block of the con1gura-

tion 1le, determines the true list of solvers available for booster station placement. The following shows

examples of solvers available with AMPL (Fourer et al., 2002) and Pyomo (Hart et al., 2012):

Solver [type] [model format]
====================================
GLPK glpk PYOMO
CPLEX cplex PYOMO
CPLEX cplexamp PYOMO

88

CPLEX cplexamp AMPL
GUROBI gurobi PYOMO
GUROBI gurobi_ampl PYOMO
GUROBI gurobi_ampl AMPL
CBC cbc PYOMO
CBC cbc AMPL

Documentation for AMPL (Fourer et al., 2002) and Pyomo (Hart et al., 2012) can provide more information

about the solvers available with these modeling languages.

7.2.4 booster_mip Subcommand

The booster_mip subcommand is executed using the following command line:

wst booster_mip <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst booster_mip --help

7.2.4.1 Con1guration File

The booster_mip subcommand generates a template con1guration 1le using the following command line:

wst booster_mip --template <configfile>

The booster_mip template con1guration 1le is shown in Figure 7.4. Brief descriptions of the options are
included in the template after the # sign.

7.2.4.2 Con1guration Options

Full descriptions of the WST con1guration options used by the booster_mip subcommand are listed below.

network

epanet 1le
The name of the EPANET 2.00.12 input (INP) 1le that de1nes the water distribution network
model.

Required input.
scenario

location
A list that describes the injection locations for the contamination scenarios. The options are: (1)

ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection loca-

tions; (2) NZD, which denotes all nodes with non-zero demands as contamination injection loca-

tions; or (3) an EPANET node ID, which identi1es a node as the contamination injection location.
This allows for an easy speci1cation of single or multiple contamination scenarios.

Required input unless a TSG or TSI 1le is speci1ed.
type

The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOWPACED

or SETPOINT. See the EPANET 2.00.12 user manual for additional information about source types

(Rossman, 2000).

Required input unless a TSG or TSI 1le is speci1ed.
strength

89

booster_mip configuration template
network:

epanet file: Net3.inp # EPANET 2.00.12 network file name
scenario:

location: null # Injection location: ALL, NZD or EPANET ID
type: null # Injection type: MASS, CONCEN, FLOWPACED or SETPOINT
strength: null # Injection strength [mg/min or mg/L depending on

type]
species: null # Injection species, required for EPANET-MSX
start time: null # Injection start time [min]
end time: null # Injection end time [min]
tsg file: Net3.tsg # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
signals: null # Signal files, overrides TSG or TSI files
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

booster mip:
detection: [111, 127, 179] # Sensor locations to detect contamination scenarios
model type: NEUTRAL # Booster model type: NEUTRAL or LIMIT
model format: PYOMO # Booster optimization model: AMPL or PYOMO
stoichiometric ratio: [0.0] # Stoichiometric ratio [decon/toxin], LIMIT model only
objective: MC # Objective to minimize
toxin decay coefficient: 0 # Toxin decay coefficient: None, INP or number
decon decay coefficient: 0 # Decontaminant decay coefficient: None, INP or number
feasible nodes: ALL # Feasible booster nodes
infeasible nodes: NONE # Infeasible booster nodes
max boosters: [2] # Maximum number of booster stations
type: FLOWPACED # Booster source type: MASS or FLOWPACED
strength: 4.0 # Booster source strength [mg/min or mg/L depending on

type]
response time: 0.0 # Time [min] between detection and booster injection
duration: 600.0 # Time [min] for booster injection
evaluate: false # Evaluate booster placement: true or false, default

= false
solver:

type: glpk # Solver type
options: # A dictionary of solver options
threads: 1 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

boostersim:
eventDetection:
boosterimpact:

Figure 7.4: The booster_mip con1guration template 1le.

90

The amount of contaminant injected into the network for the contamination scenarios. If the
type option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.

Required input unless a TSG or TSI 1le is speci1ed.
species

The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but

only one is injected into the network. For cases where multiple contaminants are injected, a TSI
1le must be used.

Required input for EPANET-MSX unless a TSG or TSI 1le is speci1ed.
start time

The injection start time that de1nes when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents

an injection that starts at hour 1 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
end time

The injection end time that de1nes when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents

an injection that ends at hour 2 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
tsg 1le

The name of the TSG scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSG 1le will override the location, type, strength, species, start and end
times options speci1ed in the WST con1guration 1le. The TSG 1le format is documented in File
Formats Section 13.12.

Optional input.
tsi 1le

The name of the TSI scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSI 1le will override the TSG 1le, as well as the location, type, strength,
species, start and end time options speci1ed in the WST con1guration 1le. The TSI 1le format is
documented in File Formats Section 13.13.

Optional input.

signals

Name of 1le or directory with information to generate or load signals. If a 1le is provided the
list of inp tsg tuples will be simulated and the information stored in signals 1les. If a directory
with the signals 1les is speci1ed, the signal 1les will be read and loaded in memory. This input

is only valid for the uq subcommand and the grabsample subcommand with probability based

formulations.

Optional input.
msx 1le

The name of the EPANET-MSX multi-species 1le that de1nes the multi-species reactions to be
simulated using EPANET-MSX.

Required input for EPANET-MSX.

msx species

The name of the MSX species whose concentration pro1le will be saved by the EPANET-MSX
simulation and used for later calculations.

Required input for EPANET-MSX.

91

merlion
A 2ag to indicate if the Merlion water quality simulator should be used. The options are true or

false. If an MSX 1le is provided, EPANET-MSX will be used.

Required input, default = false.
booster mip

detection
The sensor network design used to detect contamination scenarios. The sensor locations are
used to compute a detection time for each contamination scenario in the TSG 1le. The options
are a list of EPANET node IDs or a 1le name which contains a list of EPANET node IDs.

Required input.

model type

The model type used to determine optimal booster station locations. Options include NEUTRAL

(complete neutralization) or LIMIT (limiting reagent).

Required input, default = NEUTRAL.
model format

The modeling language used to build the formulation speci1ed by the model type option. The

options are AMPL and PYOMO. AMPL is a third party package that must be installed by the user if
this option is speci1ed. PYOMO is an open source software package that is distributed with WST.

Required input, default = PYOMO.
stoichiometric ratio

The stoichiometric ratio used by the limiting reagent model (LIMIT) represents the mass of dis-

infectant removed per mass of contaminant removed. The units for disinfectant mass and con-

taminant mass are determined by the type of injection used for each species (mg for chemical

and CFU for biological). This can be a number or a list of numbers greater than 0.0. When a list is
speci1ed, the optimization will be performed for each number in this list. As the stoichiometric

ratio approaches 0, the LIMIT model converges to the NEUTRAL model.

Required input if the model type = LIMIT.
objective

The impact metric used to place the booster stations. In the current version, all models sup-

port MC metric (mass of toxin consumed through the node demands). The PD metric is only
supported in the LIMIT Pyomo model.

Required input, default = MC.
toxin decay coeZcient

The contaminant (toxin) decay coeZcient. The options are (1) None, which runs the simulations
without 1rst-order decay, (2) INP, which runs the simulations with 1rst-order decay using the
coeZcient speci1ed in the EPANET 2.00.12 INP 1le or (3) a number, which runs the simulation
with 1rst-order decay and the speci1ed 1rst-order decay coeZcient in units of (1/min) (overrides
the decay coeZcient in the EPANET 2.00.12 INP 1le).

Required input, default = 0.
decon decay coeZcient

The disinfectant (decontaminant) decay coeZcient. The options are (1) None, which runs the
simulations without 1rst-order decay, (2) INP, which runs the simulations with 1rst-order decay
using the coeZcient speci1ed in the EPANET 2.00.12 INP 1le or (3) a number, which runs the
simulation with 1rst-order decay and the speci1ed 1rst-order decay coeZcient in units of (1/min)
(overrides the decay coeZcient in the EPANET 2.00.12 INP 1le).

Required input, default = 0.
feasible nodes

A list that de1nes nodes that can be considered for the booster station placement problem.

92

The options are: (1) ALL, which speci1es all nodes as feasible booster station locations; (2) NZD,
which speci1es all non-zero demand nodes as feasible booster station locations; (3) NONE, which
speci1es no nodes as feasible booster station locations; (4) a list of EPANET node IDs, which
identi1es speci1c nodes as feasible booster station locations; or (5) a 1lename, which references
a space or comma separated 1le containing a list of speci1c nodes as feasible booster station
locations.

Required input, default = ALL.
infeasible nodes

A list that de1nes nodes that cannot be considered for the booster station placement problem.

The options are: (1) ALL, which speci1es all nodes as infeasible booster station locations; (2) NZD,
which speci1es non-zero demand nodes as infeasible booster station locations; (3) NONE, which
speci1es no nodes as infeasible booster station locations; (4) a list of EPANET node IDs, which
identi1es speci1c nodes as infeasible booster station locations; or (5) a 1lename, which refer-

ences a space or comma separated 1le containing a list of speci1c nodes as infeasible booster
station locations.

Optional input, default = NONE.
max boosters

The maximum number of booster stations that can be placed in the network. The value must be

a nonnegative integer or a list of nonnegative integers. When a list is speci1ed, the optimization
will be performed for each number in this list.

Required input.
type

The injection type for the disinfectant at the booster stations. The options are MASS or FLOW-

PACED. See the EPANET 2.00.12 user manual for additional information about source types Ross-

man (2000).

Required input.

strength

The amount of disinfectant injected into the network from the booster stations. If the source
type option is MASS, then the units for the strength are in mg/min. If the source type option is
FLOWPACED, then units are in mg/L.

Required input.

response time

The time in minutes between the detection of a contamination incident and the start of injecting

disinfectants from the booster stations. The value is a nonnegative integer. For example, a value

of 120 represents a 120 minutes or a 2 hour delay between the time of detection and the start of

booster injections.

Required input.

duration
The length of time in minutes that disinfectant will be injected at the booster stations during the

simulation. The value is a nonnegative integer. For example, a value of 240 means that a booster

would simulate injection of disinfectant at a particular node for 4 hours. This duration is applied

to all booster station locations identi1ed in the optimization process.

Required input.

evaluate
The option to evaluate the booster station placement created from the optimization process.

Optional input, default = false.
solver

type

93

The solver type. Each component of WST (e.g., sensor placement, 2ushing response, booster
placement) has di−erent solvers available. More speci1c details are provided in the subcom-

mand’s chapter.

Required input.

options

A list of options associated with a speci1c solver type. More information on the options available
for a speci1c solver is provided in the solver’s documentation. The Getting Started Section 2.2
provides links to the di−erent solvers.

Optional input.

threads
The maximum number of threads or function evaluations the solver is allowed to use. This option

is not available to all solvers or all analyses.

Optional input.
log1le

The name of a 1le to output the results of the solver.

Optional input.

verbose
The solver verbosity level.

Optional input, default = 0 (lowest level).
initial points

nodes
A list of node locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing and booster_msx subcom-

mands. This input causes an error for other subcommands.

Optional input.

pipes

A list of pipe locations (EPANET IDs) to begin the optimization process.Currently, this option is
only supported for the network solver used in the 2ushing subcommand. This input causes
an error for other subcommands.

Optional input.
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

In addition to these standard WST con1guration options, the solver block can de1ne speci1c options for the
solver selected. The solver options should be modi1ed according to the speci1c optimization problem. The
booster_mip subcommand recognizes the following options in the solver block of the con1guration 1le:

solver:
type: glpsol
options:

mipgap: 0.01

94

The solver block above shows an example of using the public domain solver GLPK (glpsol) with the LP-

1le (lp) interface available in the modeling language Pyomo. A common option available with MIP solvers
is mipgap, which is used to balance the quality of the solution found by the solver with the time taken to

obtain the solution. More information on the options available for a speci1c solver is provided in the solver’s
documentation. The Getting Started Section 2.2 provides links to the di−erent solvers.

7.2.4.3 Subcommand Output

The booster_mip subcommand creates a YAML 1le called <output pre1x>booster_mip_output-<count>.yml

(where <count> is an integer starting at 1) that contains an optimized list of node locations (EPANET node

IDs) to inject the disinfectant, the 1nal impact metric, the run date and CPU time. If more than one
booster station design is requested in the WST con1guration 1le, the <count> suZx is incrementally in-

creased each time to create multiple YAML 1les. The log 1le called <output pre1x>booster_msx_output.log

contains basic debugging information. A visualization YAML con1guration 1le named <output pre-

1x>booster_mip_output_vis.yml is also created. The visualization subcommand is automatically run us-

ing this YAML 1le.

7.3 Booster Placement Subcommand Comparison

This section summarizes some of the major di−erences between the booster_msx and booster_mip sub-

commands. The table below lists some of the positives and negatives of each of the subcommands.

95

booster_msx vs booster_mip
Pros Cons

booster_msx
Uses a more accurate representa-

tion of the reaction dynamics be-

tween the contaminant and the dis-

infectant. The user can specify

higher order reactions.

Needs information on the speci1c
contaminant that has been injected

and its reaction dynamics with the

disinfectant.

Uses the various impact metrics
available in sim2impact (e.g., MC,
PD, PE, PK, EC) to identify booster

station locations.

Solves the booster station place-

ment problem with algorithms (EA

and Network Solver), which are
heuristics with non-provable opti-

mality.

Is not recommended for larger net-

work models, since it could be very

computationally intensive.

booster_mip
Solves larger (less skeletonized)

network models in reasonable time.
Requires using linear input-output
water quality model (Merlion),

which only supports 1rst order
decay for both contaminant and
disinfectant. Furthermore, simplify-

ing reaction assumptions are made

in both Neutralization and Limiting

Reagent formulations.

Solves the booster station place-

ment problem to provable optimal-

ity using the model assumptions.

Supports only one impact metric
(MC) currently to identify booster
station locations.

Uses a generic stochiometric ratio
for di−erent classes of contaminant
to model the reaction dynamics in
case of limited information about
the contaminant.

7.4 Booster Placement Examples

Two booster station placement examples are provided. The 1rst example determines booster station place-

ment assuming complete inactivation of the contaminant (using NEUTRAL), and the second example evalu-

ates this placement in terms of a more realistic reaction dynamic between the contaminant and the disin-

fectant (using MSX). The examples use the EPANET Example Network 3 INP 1le, Net3.inp. A contamination
scenario ensemble is de1ned using all NZD nodes and a biological contaminant injection of 5.77e8 CFU/min

(colony forming units per minute), starting at time 0 and continuing for 6 hours. Sensors located at nodes

15, 35, 219 and 253 are used to detect each contamination scenario and initiate the booster response ac-

tion. Booster stations inject disinfectant at 4 mg/L for 12 hours after detection, since no additional response

time is added between detection and booster station operation.

7.4.1 Example 1

The 1rst example uses the booster_mip subcommand and the NEUTRAL approach. The model for-

mat is PYOMO and the solver is GLPK. These parameter options are listed in the con1guration 1le,

96

booster_mip_ex1.yml, shown in Figure 7.5. The maximum number of booster stations is listed as an ar-

ray to indicate that 1ve booster station designs should be created, using 2, 4, 6, 8 and 10 as the maximum

number of booster stations to place in the network. This notation uses the generated model 1les to eZ-

ciently solve for more than one design. The feasible booster station locations are limited to NZD nodes.

network:
epanet file: Net3/Net3.inp

scenario:
location: [NZD]
type: MASS
strength: 5.77e8
start time: 0
end time: 360

booster mip:
detection: [’15’, ’35’, ’219’, ’253’]
model type: NEUTRAL
model format: PYOMO
stoichiometric ratio: 0
objective: MC
toxin decay coefficient: 0
decon decay coefficient: 0
feasible nodes: NZD
infeasible nodes: NONE
fixed nodes: []
max boosters: [2,4,6,8,10]
type: FLOWPACED
strength: 4
response time: 0
duration: 1440
evaluate: false

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: ${CWD}/booster_mip_ex1/Net3
debug: 0

Figure 7.5: The booster_mip con1guration 1le for example 1.

The example can be executed using the following command line:

wst booster_mip booster_mip_ex1.yml

Since 1ve booster station designs were requested, 1ve YAML output 1les with the results were produced.
The 1le Net3booster_mip_output_3.yml, shown below in Figure 7.6 contains results for placing six booster

stations in the network.

The WST con1guration 1le for example 1 can be modi1ed for booster station placement using the LIMIT
approach. The model type option is changed from NEUTRAL to LIMIT and the stoichiometric ratio is set to
a value greater than 0. The stoichiometric ratio de1nes the unit mass of disinfectant needed to inactivate
a unit mass of contaminant. For example, a stoichiometric ratio of 0.01 mg/CFU speci1es that 0.01 mg of a
disinfectant is needed to inactivate 1 CFU of contaminant.

97

booster_mip output
general:

version: 1.5 # WST version
date: ’2018-10-15’ # Run date
cpu time: 27.142 # CPU time (sec)
directory: C:/wst-1.5/examples/booster_mip_ex1
log file: Net3booster_mip_output.log # Log file

booster:
nodes: [’101’, ’141’, ’171’, ’215’, ’219’, ’255’] # List of booster nodes
objective: 73485746.8756287 # Objective value

scenarios:
injection node: null
start time: null
end time: null # Injection node
discarded:

count: null # Number of discarded scenarios
non-detected:

count: null # Number of non-detected scenarios
mass injected: null # Mass injected (grams)

detected:
count: null # Number of detected scenarios
detection time: null # Detection time (min)
mass consumed: null # Mass consumed (grams)
mass injected: null # Mass injected (grams)
pre-booster mass injected: null # Mass injected before booster activate(grams)
mass in tanks: null # Mass remaining in tanks (grams)
mass balence: null # Mass balence

Figure 7.6: The booster_mip YAML output 1le for example 1.

7.4.2 Example 2

Since both the NEUTRAL and LIMIT formulations use simplifying assumptions to model the reaction dynam-

ics between a contaminant and a disinfectant, it is often useful to evaluate a booster station design from the

MIP methods using a more complex multi-species reaction model through the booster_msx subcommand.
While the booster_msx subcommand coupled with an EPANET-MSX model can be used to optimize booster

station placement, the number of function evaluations required for convergence often makes this process

infeasible.

The multi-species reaction equations in the Net3_EColi_TSB.msx 1le describe the inactivation of E. coli by
chlorine and the reaction of E. coli and chlorine with the nutrient broth (TSB) (Murray et al., 2011). The
contamination scenarios are setup using the TSI 1le, Net3_EColi_TSB.tsi. This 1le de1nes the same E. coli
injection as in the NEUTRAL approach, but includes a TSB injection at all NZD nodes in the network as well.

The con1guration 1le, booster_msx_ex1.yml, is shown in Figure 7.7 to evaluate a booster station design

from the NEUTRAL approach.

The example can be executed using the following command line:

wst booster_msx booster_msx_ex1.yml

This analysis indicates that the booster stations placed with the assumption that the disinfectant completely

inactivates the contaminant underestimates the mass consumed given a more realistic disinfectant and

contaminant reaction dynamics as represented in the the E. coli-TSB model. As expected, the booster_msx
subcommand computes a higher mass consumed than the NEUTRAL or LIMIT models because of their
simplifying reaction assumptions.

98

network:
epanet file: Net3/Net3.inp

scenario:
tsi file: Net3/Net3_EColi_TSB.tsi
msx file: Net3/Net3_EColi_TSB.msx
msx species: EColi

impact:
erd file: null
metric: [MC]
tai file: null
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: EColi

booster msx:
detection: [’15’, ’35’, ’219’, ’253’]
toxin species: EColi
decon species: CL
feasible nodes: [’101’,’141’,’171’,’215’,’219’,’255’]
infeasible nodes: NONE
max boosters: 6
type: FLOWPACED
strength: 4.0
response time: 0.0
duration: 720

solver:
type: EVALUATE
options: {}
verbose: True

configure:
output prefix: ${CWD}/booster_msx_ex1/Net3
debug: 0

Figure 7.7: The booster_msx con1guration 1le for example 2.

99

Chapter 8

Source Identi1cation

If a contamination incident is detected by a water utility, it will be important to determine the time and

location where the contaminant injection occurred. Once this information is available, the current extent

of contamination within the network can be estimated and appropriate control and clean-up strategies can

be devised in order to protect the population. The inversion subcommand included in WST is designed

to calculate a list of possible injection nodes and times given a set of measurements that could come from

manual grab samples and/or an event detection system (EDS) like CANARY (Hart and McKenna, 2012).

Three major challenges associated with source identi1cation calculations are addressed by this subcom-

mand.

• First, the source identi1cation algorithms provided through this subcommand have to consider mea-

surement data that can only provide a discrete yes/no indication of contamination at a particular

sensor node and time. It is assumed that the current level of sensor technology can only provide

standard water quality measures such as free chlorine, conductivity, pH, total organic carbon. Using

these measurements, the EDS performs statistical analysis to detect anomalous changes from a base-

line and provides a yes/no indication of potential contamination. Therefore, the source identi1cation
algorithms provided through this subcommand are designed to work with binary measurements.

• Second, measurement information available from a sparse set of 1xed sensors might not be suZcient
to narrow down the possible contamination nodes to a tractable number. One strategy is to get addi-

tional measurements in the form of manual grab samples from locations around the network to help

the source identi1cation calculations better identify the contamination location(s). The grabsample
subcommand (described in Chapter 10) can be used to establish the best manual grab sample loca-

tions that will provide the most useful information to help establish the likely source(s). The source

inversion algorithms in WST can use measurement information from both 1xed sensors and manual
grab samples.

• Third, during a contamination incident, being able to solve the source identi1cation problem in real-

time is of utmost importance. Therefore, all algorithms provided through this subcommand pay

special attention to computational eZciency and typically perform source identi1cation calculations
within minutes on realistic large-scale networks.

A 2owchart representation of the inversion subcommand is shown in Figure 8.1. The utility network model
is de1ned by an EPANET 2.00.12 compatible network models (INP format) in WST. The sensor/EDS measure-

ments are supplied through a measurements 1le (See File Formats Section 13.7). Additional details on the

source inversion approach to identify the contaminant injection location(s) is supplied by the user in the

WST con1guration 1le.

100

 Utility Network
Model Measurements

Source Inversion

Likely Injection
Scenarios

Figure 8.1: Contamination source identi1cation 2owchart.

8.1 Source Identi1cation Formulations

The inversion subcommand contains three di−erent source identi1cation formulations, a Mixed Integer

Programming (MIP) formulation, a formulation based on Bayesian probability calculations and a modi1ed
version of the Contaminant Status Algorithm by De Sanctis et al. (2009). The following subsections provide

brief descriptions of these formulations.

8.1.1 MIP Formulations

Typically, optimization based methods try to 1nd injection candidates that minimize the deviation between

calculated values and the measurements (e.g., least squares), penalizing any mismatch above or below the

measured values. The Mixed Integer Programming (MIP) formulation assumes that a 1eld sensor (or man-

ual grab sample) would yield a positive measurement if the contaminant concentration is above a certain

positive threshold concentration and a negative measurement if it is below a certain negative threshold

concentration. The objective function seeks to minimize the di−erence between the measured and calcu-

lated behavior according to this threshold. Therefore, if a sensor measurement (or a manual grab sample)

yields a positive measurement, any corresponding calculated concentration from the water quality model

above the positive threshold is deemed to be a perfect 1t with this measurement data. Hence, when con-

structing an objective for estimation, only calculated concentrations below this positive threshold should

be minimized. Likewise, if a sensor (or manual grab sample) yields a negative measurement, only the cor-

responding calculated concentration above the negative threshold should be minimized. Based on this
idea, the base MIP formulation is presented below followed by descriptions of three additional variations

that perform source inversion under di−erent assumptions. For more detailed information, please refer to
Mann et al. (2012b).

minimize
X

negn,t +
X

posn,t (8.1)
(n,t)2S− (n,t)2S+

subject to Gcn,t = DmR

0 � mn,t � BynX
yn � Imax

n2N

8n 2 N, t 2 T

8n 2 N, t 2 T

yn 2 {0, 1}

(8.2)

(8.3)

(8.4)

negn,t � 0, negn,t � cn,t − ̋neg 8 (n, t) 2 S− (8.5)

pos � 0,n,t posn,t � ̋pos − cn,t 8 (n, t) 2 S+. (8.6)

where N is the set of all nodes, T is the set of all time steps, S− represents the set containing the node-time

101

step pairs where the discrete measurement is a negative detection and S+ de1nes the set containing the

node-time step pairs where the discrete measurement is a positive detection. The parameters G and D are
matrices from the Merlion water quality model. The variable cn,t is the calculated concentrations from the
water quality model at node n and time step t, m is the vector of unknown time-discretized contaminant
injection pro1le over all node and time steps and mn,t is an element in the mR vector representing unknown
mass injected at node n and time step t. A binary variable, yn, indicates contaminant injection at node n if
yn=1 and B is a reasonable upper bound on the contaminant injection mass 2ow rate mn,t. The variable
Imax is the maximum number of possible injection locations. The user supplies two thresholds, ̋ neg and ̋ pos,

which can be used as concentration set-points indicating the presence or absence of contaminant. Having

a gap between the positive and negative threshold provides users a (bu−er) region of concentration values
where really small 2uctuations do not lead to a positive measurement. Therefore, the user can specify
a higher positive threshold than the negative threshold to only 2ag signi1cant concentration changes as
positive detection. The variable negn,t is the non-negative di−erence between the modeled concentration
cn,t and the user supplied threshold ˝neg for node-time step pairs belonging to S−. The variable posn,t is
the non-negative di−erence between the modeled concentration cn,t and the user supplied threshold ˝pos
for node-time step pairs belonging to S+.

Equation 8.1 is the MIP objective, which minimizes the mismatch between the discrete measurements and

their corresponding concentrations calculated from the model given the detection thresholds. Equation

8.2 is the embedded linear water quality model (Merlion, see Section 12.1 for details). Equation 8.3 is

the big-M constraint that enforces the bound on the maximum mass 2ow rate of the injections. Equation

8.4 is the maximum number of injections constraint, while Equation 8.5 and Equation 8.6 are part of the

reformulation of the objective function to handle the threshold treatment discussed above. For further
details please refer to Mann et al. (2012b). They are used to enforce negn,t and posn,t as non-negative
di−erences between modeled concentration and threshold for positive and negative measurements, ˝pos
and ˝neg, respectively.

This base MIP formulation for discrete measurements can be selected using the formulation option of
MIP_discrete in the inversion block of the inversion WST con1guration 1le.

The source inversion problem is ill-posed with non-unique solutions. To tackle this issue, the inversion
subcommand solves the problem multiple times, each time adding additional feasibility constraints to ex-

clude previously found solutions until the objective of the solution has reduced signi1cantly. Therefore, the
1nal result reported by the inversion subcommand contains a list of objective values for each solution and

the corresponding source node that was identi1ed for that particular solution.

The base MIP formulation allows for any type of injection pro1le including the ones shown in Figure 8.2.
In the presence of suZcient measurement information, identi1cation of any injection pro1le is reasonable.
For instance, the Pulse pro1le in Figure 8.2 (shown in red), requires frequent measurements from the sen-

sors in order to detect and characterize the injection. However, with relatively few 1xed sensors and manual
samples, identifying all possible injection pro1les can be very challenging. Therefore, in the presence of lim-

ited information, some source identi1cation methods only support continuous injections. To this aim, the
inversion subcommand provides two additional restrictions that can be applied to the base MIP formula-

tion. Depending on the possible contaminant injection pro1le assumptions, Figure 8.2 shows the di−erent
injection pro1le restrictions that are supported through the di−erent formulation variations. The Step and
No Decrease are two di−erent injection pro1le restrictions that can be enforced by the formulation varia-

tions. The Pulse injection does not require additional constraints and is supported by the base formulation.

When limited and/or less frequent measurement data is available (e.g., only manual grab samples), the Step

or the No Decrease formulation variations are recommended.

The 1rst variation of this formulation requires the injection to be a single step of any calculated strength S
and can be run using the formulation option of MIP_discrete_step in the inversion block. The Step pro1le
shown in Figure 8.2 illustrates an example of this type of injection. This variant is implemented by adding

the following constraints to the base formulation:

102

Figure 8.2: Three di−erent types of contamination injection pro1les.

mn,t � S 8n 2 N, t 2 T (8.7)

mn,t � S − B(1 − yn) 8n 2 N, t 2 T (8.8)

The second variation adds constraint Equation 8.9 to the base formulation to allow for the case where the
mass 2ow rate of the contaminant can stay the same or increase with time. The No Decrease pro1le shown
in Figure 8.2 gives an example of this kind of injection. This variant of the formulation can be run using the

formulation option of MIP_discrete_nd in the inversion block.

mn,t−1 � mn,t 8n 2 N, t 2 T : j 6= 0 (8.9)

The third variation solves the Step formulation by 1xing the binary variable yn corresponding to a source
node and solving the resulting linear program (LP) for all nodes n 2, N . The objective values for all LP
solutions are compared and only a fraction of the identi1ed nodes are reported in the results based on the
candidate threshold option in inversion block of the con1guration 1le. This LP variant can be run using the
formulation option of LP_discrete in the inversion block.

8.1.2 Bayesian Probability Based Formulation

This formulation calculates the probability of a node being the true injection node using Bayes rule:

P (m|i)P (i)
P (i|m) = (8.10)

P (m)

where contamination incident i is an injection at a node and at a particular time step and P (i|m) is the
probability of an incident i given a set of measurements m. Here, P (i) is the prior probability of an incident.

This formulation assumes that only a single injection incident is possible, and therefore it uses an uniform

prior of 1/(all possible incidents). Since it is diZcult to estimate P (m) (the prior probability of a measure-

ment), this calculation is substituted by obtaining the P (i|m) for all possible incidents and then normalizing

103

them to 1. Finally, P (m|i) is the probability of a measurement given an injection incident. It is calculated
using the following equation:

P (m|i) = (1 − pf)match(i) meas−match(i)
p (8.11)f

where, pf is the probability of measurement failure, meas is the total number of measurements and
match(i) is the number of discrete measurements that match the discrete concentrations obtained by sim-

ulating incident i. Note that calculating the discrete concentration pro1le obtained by simulating an incident
requires a threshold that is speci1ed by using the negative threshold option of the inversion block of the
inversion con1guration 1le.

After calculating the normalized probability P (i|m) for all incidents, only those having a probability above
a con1dence limit are reported as the set of likely incidents along with their corresponding P (i|m) values.
This con1dence limit is by default set to 95% (0.95) and can be changed by using the con1dence option of
the inversion block.

8.1.3 Contaminant Status Algorithm (CSA)

The Contaminant Status Algorithm (CSA), proposed by De Sanctis et al. (2009), performs source identi1ca-

tion by assigning a status to each candidate node-time pair as either being safe (not an injection candidate),

unsafe (possible injection candidate) or unknown. In WST, the CSA has been modi1ed to assign a likeliness

measure of 1 to a node if it is contained in the list of unsafe node-time pairs, while all other nodes are

assigned a likeliness measure of 0.

CSA uses a linear input-output water quality model generated through the Particle Backtracking Approach

(PBA) proposed by Shang et al. (2002). For every sensor j and analysis time t, this model provides the
upstream reachability set, Uj(t), that contains the list of node-time pairs that are hydraulically connected to

that measurement. Using this set, a station source matrix, Sj , which represents the list of safe, unsafe and

unknown nodes based on all the measurements available from sensor node j only, is updated iteratively
using the following algorithm:

1. Initialize Sj(i, t̂) = Unknown, 8i 2 N, 8t̂ 2 T

2. For (i, t̂) 2 Uj (t)

(a) For signi1cant hydraulic connections (based on a threshold in the PBA input-output model)- if the

current measurement at sensor j is positive, Set Sj (i, t̂) = Unsafe, else Set Sj (i, t̂) = Safe

(b) For weak hydraulic connections (based on a threshold in the PBA input-output model), Set
Sj(i, t̂) = Unknown

where N is the set of all candidate nodes and T is the set of all time steps in the time horizon. Based on the
status from every station source matrix, Sj , a total source status matrix S that contains the overall status
of all candidate node-time pairs, (i, t̂), is updated using the following rules - an unsafe node-time pair can
only change to safe based on its corresponding state in Sj ; an unknown node-time pair can change to both

safe or unsafe; and if a node-time pair is safe, it will remain safe. Hence, the total source status matrix

is also updated iteratively over the complete list of measurement time steps to obtain the 1nal status of
all candidate injection node-time pairs. Consequently, CSA allows for multiple simultaneous injections,

however, it assumes perfect measurements when marking candidate injections as safe.

8.2 Source Identi1cation Solvers

The MIP algorithm builds an optimization formulation, and requires a MIP solver to perform source inver-

sion. Therefore, if the MIP algorithm is selected (algorithm: optimization) as described in Section 8.3.2),

104

then a solver needs to be speci1ed. The solvers recognized by the inversion subcommand are the same
as those recognized by booster_mip subcommand (See Section 7.2.3 for more details).

8.3 inversion Subcommand

The inversion subcommand is executed using the following command line:

wst inversion <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst inversion --help

8.3.1 Con1guration File

The inversion subcommand generates a template con1guration 1le using the following command line:

wst inversion --template <configfile>

The inversion template con1guration 1le is shown in Figure 8.3. Brief descriptions of the options are
included in the template after the # sign.

inversion configuration template
network:

epanet file: Net3.inp # EPANET 2.00.12 network file name
measurements:

grab samples: measures.dat # Measurements file name
inversion:

algorithm: optimization # Source inversion algorithm: optimization, bayesian
or csa

formulation: MIP_discrete_nd # Optimization formulation type, optimization only
model format: PYOMO # Source inversion optimization formulation: AMPL or

PYOMO
merlion water quality model: true # Use Merlion water quality model for Bayesian

algorithm
horizon: 1440.0 # Amount of past measurement data to use (min)
num injections: 1.0 # No. of possible injections
measurement failure: 0.05 # Probability that a sensor fails
positive threshold: 100.0 # Sensor threshold for positive contamination

measurement
negative threshold: 0.1 # Sensor threshold for negative contamination

measurement
feasible nodes: null # Feasible source nodes
candidate threshold: null # Objective cut-off for candidate nodes
confidence: null # Probability confidence for candidate nodes
output impact nodes: false # Print likely injection nodes file

solver:
type: glpk # Solver type
options: # A dictionary of solver options
threads: 1 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

Figure 8.3: The inversion con1guration template 1le.

105

8.3.2 Con1guration Options

Full descriptions of the WST con1guration options used by the inversion subcommand are listed below.

network

epanet 1le
The name of the EPANET 2.00.12 input (INP) 1le that de1nes the water distribution network
model.

Required input.
measurements

grab samples

The name of the 1le that contains all the measurements from the manual grab samples and the
1xed sensors. The measurement 1le format is documented in File Formats Section 13.7.

Required input.
inversion

algorithm

The algorithm used to perform source inversion. The options are optimization, bayesian, or csa.

The optimization algorithm requires AMPL or PYOMO along with a MIP solver. The bayesian
algorithm uses Bayes’ Rule to update probability of a particular node being the contaminant

source node. The CSA is the Contaminant Status Algorithm by De Sanctis et al. (2009).

Required input, default = optimization.

formulation
The formulation used by the optimization algorithm. The options are LP_discrete (dis-

crete LP), MIP_discrete (discrete MIP), MIP_discrete_nd (discrete MIP with no decrease) or
MIP_discrete_step (discrete MIP for step injection).

Required input for optimization algorithm, default = MIP_discrete.
model format

The modeling language used to build the formulation speci1ed by the formulation option. The

options are AMPL and PYOMO. AMPL is a third party package that must be installed by the user if
this option is speci1ed. PYOMO is an open source software package that is distributed with WST.

Required input for optimization algorithm, default = PYOMO.
merlion water quality model

This option is set to true to use the Merlion water quality model for simulating the candidate

injections in the Bayesian probability-based method. It can be set to false to use EPANET 2.00.12
for these simulations. Note that the Merlion water quality model is required in either case to

generate the initial list of candidate injections.

Optional input, default = true.
horizon

The minutes over which the past measurement data is used for source inversion. It is calculated
backwards from the latest measurement time in the measurements 1le. All measurements in the
measurements 1le that are within the horizon are used (both negative and positive). In the case
of the CSA algorithm, the implementation assumes 1xed sensors only, and all measurements at

these sensors are assumed to be negative prior to the horizon. If the horizon is longer than the

time between the latest measurement and simulation start time, then all the measurements are

used for source inversion.

Required input, default = None (Start of simulation).
num injections

The number of possible injections to consider when performing inversion. Multiple injections

106

are only supported by the MIP formulation. This value must be set to 1 for the LP model or the
probability algorithm.

Required input for optimization algorithm, default = 1.
measurement failure

The probability that a sensors gives an incorrect reading. Must be between 0 and 1.

Required input for the Bayesian algorithm, default = 0.05.
positive threshold

The concentration threshold used by the sensors to 2ag a positive detection measurement. This

is a parameter in the optimization algorithm (Equation 8.6).

Required input for optimization algorithm, default = 100 mg/L.
negative threshold

The concentration threshold used by the sensors to 2ag a negative detection measurement. This

is a parameter in the optimization algorithm (Equation 8.5).

Required input for optimization algorithm, default = 0.0 mg/L.
feasible nodes

A list that de1nes nodes that can be considered for the source inversion problem. The options
are: (1) ALL, which speci1es all nodes as feasible source locations; (2) NZD, which speci1es all
non-zero demand nodes as feasible source locations; (3) a list of EPANET node IDs, which iden-

ti1es speci1c nodes as feasible source locations; or (4) a 1lename, which is a space or comma
separated 1le containing a list of speci1c nodes as feasible source locations.

Optional input.

candidate threshold
The objective cut-o− value for candidate contamination incidents using the optimization algo-

rithm. The objective value represents the likelihood of a particular node being the injection node

(See Equation 8.13). The objective values are normalized to 1 and only the nodes having their

objective values greater or equal to the threshold are reported in the inversion results.

Required input for optimization algorithm, default = 0.20.
con1dence

The probability cut-o− value for candidate contamination incidents using the Bayesian algorithm.

The value is between 0 and 1.

Required for the Bayesian algorithm, default = 0.95.
output impact nodes

A option to output a Likely_Nodes.dat 1le that contains only the node IDs of the possible con-

taminant injection nodes obtained from the inversion subcommand. This 1le can be used as
the feasible nodes for the next iteration of the inversion subcommand to only consider this set
of possible contaminant injection nodes.

Optional input, default = false.
solver

type

The solver type. Each component of WST (e.g., sensor placement, 2ushing response, booster
placement) has di−erent solvers available. More speci1c details are provided in the subcom-

mand’s chapter.

Required input.

options

A list of options associated with a speci1c solver type. More information on the options available
for a speci1c solver is provided in the solver’s documentation. The Getting Started Section 2.2
provides links to the di−erent solvers.

107

Optional input.

threads
The maximum number of threads or function evaluations the solver is allowed to use. This option

is not available to all solvers or all analyses.

Optional input.
log1le

The name of a 1le to output the results of the solver.

Optional input.

verbose
The solver verbosity level.

Optional input, default = 0 (lowest level).
initial points

nodes
A list of node locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing and booster_msx subcom-

mands. This input causes an error for other subcommands.

Optional input.

pipes

A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing subcommand. This input causes
an error for other subcommands.

Optional input.
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

8.3.3 Subcommand Output

The inversion subcommand creates several output 1les. The YAML 1le called <output pre-

1x>inversion_output.yml contains a list of possible source node locations (EPANET node IDs), the associ-

ated objective or probability value (node likeliness) for each possible source node (a higher value indicates

a higher likelihood of that node being the true contaminant injection node), the injection pro1les (start and

end times and the strength) for each possible source node, the run date and CPU time. The log 1le called
<output pre1x>inversion_output.log contains basic debugging information. The inversion subcommand
also outputs an <output pre1x>_pro1le.tsg 1le that contains the list of likely injection pro1les in the TSG
1le format (See File Formats Section 13.12). As discussed in Chapter 10, this TSG 1le can be directly used
as an input by the grabsample subcommand. A visualization YAML con1guration 1le named <output pre-

1x>inversion_output_vis.yml is also created. The visualization subcommand is automatically run using
this YAML 1le.

108

8.4 Source Identi1cation Examples

Three examples illustrating the use of the di−erent source identi1cation methods available in WST are pre-

sented. In the 1rst example, the optimization formulation is used to solve a source identi1cation problem,

while the second example uses the Bayesian probability formulation and the third example uses the Con-

taminant Status Algorithm (CSA) to solve the exact same problem. An EPANET 2.00.12 network model (INP
format) and a measurements 1le (See File Formats Section 13.7) are required to run the inversion sub-

command.

Since real system data is not available, a measurements 1le required for the inversion subcommand can
be generated using the measuregen executable (Executable Files Section 14.3). The three examples use the
EPANET Example Network 3 input 1le (Net3.inp) as the network 1le, which runs a two day hydraulic and

water quality simulation. An injection at node 151 is simulated from 8 hours until 24 hours, speci1ed using
the Net3_inversion.tsg 1le. The sensor locations are provided using the Net3_1xed_sensors 1le, and the

measurements are obtained every 15 minutes with a concentration threshold of 0 indicating contamination.

The following command line statement can be run from the examples folder to generate the measurements

1le:

measuregen --inp=Net3/Net3.inp --tsg=Net3/Net3_inversion.tsg --start-sensing-time=0
--stop-sensing-time=705 --measures-per-hour=4 --threshold=0 --ignore-merlion-warnings
--output-prefix=Net3/Net3 Net3/Net3_fixed_sensors

The resulting Net3_MEASURES.dat 1le is used in the following three examples.

8.4.1 Example 1

In the 1rst example, the optimization method is used to solve the source identi1cation problem. The con-

1guration 1le, inversion_ex1.yml, shown in Figure 8.4 is used to identify the possible contaminant source

locations. The MIP optimization formulation, MIP_discrete_step, is used for this example. The example uses
the Net3_MEASURES.dat 1le generated using the measuregen executable.

network:
epanet file: Net3/Net3.inp

measurements:
grab samples: Net3/Net3_MEASURES.dat

inversion:
algorithm: optimization
formulation: MIP_discrete_step
model format: PYOMO
horizon: null
num injections: 1.0
measurement failure: 0.05
positive threshold: 100.0
negative threshold: 0.1
feasible nodes: null
candidate threshold: 0.25
confidence: 0.95
output impact nodes: false

solver:
type: glpk
options:
logfile: null
verbose: 0
initial points: []

configure:
output prefix: ${CWD}/inversion_ex1/Net3
debug: 0

Figure 8.4: The inversion con1guration 1le for example 1.

109

The example can be executed using the following command line:

wst inversion inversion_ex1.yml

The results are contained in the 1le Net3inversion_output.yml. A section of this results 1le is shown in
Figure 8.5. The results contain a list of sets where each set contains - possible contaminant source node
in the Nodes list (which contains a node Name and a Pro1le), CPU computation time in seconds and the
Objective value corresponding to the solution which identi1es that node as the source node. The Objective
value for each candidate node n in the results 1le is related to the objective of the MIP formulations 8.1.1
(Equation 8.1). The objective calculated from the MIP formulation is transformed such that it is normalized
to 1 and a higher value means a higher likelihood of a node being the source node. This transformation is
done by the following equations:

INV_NORM_OBJn = 1 − FORM_OBJn
max(FORM_OBJ) 8n 2 N (8.12)

Objectiven = INV_NORM_OBJn
max(INV_NORM_OBJ) 8n 2 N (8.13)

where FORM_OBJn (Formulation Objective) is the objective value as calculated from the MIP formulation
Equation 8.1 when node n is identi1ed as the most likely node, INV_NORM_OBJn is an intermediate vari-

able that represents one (1) minus the normalized formulation objective and Objective is the normalized n

form of the INV_NORM_OBJn which is reported in the inversion subcommand results 1le.

This results 1le only contains the list of possible contaminant source nodes that have an objective (as calcu-

lated by 8.13) greater than the candidate threshold provided in the inversion block of the WST con1guration
1le.

inversion output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 260.199 # CPU time (sec)
directory: C:/wst-1.5/examples/inversion_ex1
log file: Net3inversion_output.log # Log file

inversion:
tsg file: Net3profile.tsg
likely nodes file: Net3Likely_Nodes.dat
candidate nodes: [’149’, ’151’, ’153’, ’125’, ’123’, ’121’] # List of candidate injection

nodes
node likeliness: [1.0, 1.0, 1.0, 0.962, 0.298, 0.274] # Likeliness measure of each

node being true injection
node.

Figure 8.5: The inversion YAML output 1le for example 1.

For this example scenario, the inversion subcommand is able to correctly identify node 151 as one of

the three most likely source nodes. This means that given the current measurement information available,

nodes 151, 153 and 149 are equally likely. Further measurements can be obtained from selected grab

sampling locations that can help in distinguishing between these three potential source nodes. An example

of how to use the grabsample subcommand to optimally select grab sampling location to improve the
identi1cation of the true contamination source is provided in the source identi1cation case study in the
Advanced Topics and Case Studies chapter 12.3.

8.4.2 Example 2

In this example, the Bayesian probability formulation is used to solve the same problem described in exam-

ple 1. The con1guration 1le, inversion_ex2.yml, shown in Figure 8.6, is used for this example. The bayesian

formulation is selected by using the algorithm option in the inversion block.

110

network:
epanet file: Net3/Net3.inp

measurements:
grab samples: Net3/Net3_MEASURES.dat

inversion:
algorithm: bayesian
formulation: MIP_discrete_step
model format: PYOMO
horizon: null
num injections: 1.0
measurement failure: 0.05
positive threshold: 100.0
negative threshold: 0.1
feasible nodes: null
candidate threshold: 0.2
confidence: 0.95
output impact nodes: false

solver:
type: glpk
options:
logfile: null
verbose: 0
initial points: []

configure:
output prefix: ${CWD}/inversion_ex2/Net3
debug: 0

Figure 8.6: The inversion con1guration 1le for example 2.

The example can be executed using the following command line:

wst inversion inversion_ex2.yml

The results are contained in the 1le Net3inversion_output.yml shown in Figure 8.7. The likeliness value
reported in this 1le corresponds to the probability value calculated by Equation 8.10. The probability algo-

rithm is also able to correctly identify node 151 as the one of the three most probable source nodes along

with nodes 149 and 153.

inversion output
general:

version: 1.5 # WST version
date: ’2019-03-19’ # Run date
cpu time: 0.278 # CPU time (sec)
directory: C:/wst-1.5/examples/inversion_ex2
log file: Net3inversion_output.log # Log file

inversion:
tsg file: Net3profile.tsg
likely nodes file: Net3Likely_Nodes.dat
candidate nodes: [’149’, ’151’, ’153’] # List of candidate injection nodes
node likeliness: [0.333107, 0.333107, 0.333107] # Likeliness measure of each node being true

injection node.

Figure 8.7: The inversion YAML output 1le for example 2.

8.4.3 Example 3

In this example, the Contaminant Status Algorithm (CSA) is used to solve the same problem described in
example 1. The con1guration 1le, inversion_ex3.yml, shown in Figure 8.8, is used for this example. CSA is
selected by using the algorithm option in the inversion block.

111

network:
epanet file: Net3/Net3.inp

measurements:
grab samples: Net3/Net3_MEASURES.dat

inversion:
algorithm: csa
formulation: MIP_discrete_nd
model format: PYOMO
horizon: 480.0
num injections: 1.0
measurement failure: 0.05
positive threshold: 100.0
negative threshold: 0.0
feasible nodes: null
candidate threshold: null
confidence: null
output impact nodes: false

solver:
type: glpk
options:
logfile: null
verbose: 0
initial points: []

configure:
output prefix: ${CWD}/inversion_ex3/Net3
debug: 0

Figure 8.8: The inversion con1guration 1le for example 3.

The example can be executed using the following command line:

wst inversion inversion_ex3.yml

The results are contained in the 1le Net3inversion_output.yml shown in Figure 8.9. Since in WST, a likeliness

measure of 1 is assigned to a node if it is contained in the list of unsafe node-time pairs, while a likeliness

measure of 0 is assigned to all other nodes, the node likeliness in the results output 1le is 1.0 for all possible

contamination injection nodes. CSA is also able to correctly identify node 151 as the one of the four most

probable source nodes along with nodes 125, 149 and 153.

inversion output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 0.15 # CPU time (sec)
directory: C:/wst-1.5/examples/inversion_ex3
log file: Net3inversion_output.log # Log file

inversion:
tsg file: Net3profile.tsg
likely nodes file: Net3Likely_Nodes.dat
candidate nodes: [’125’, ’149’, ’151’, ’153’] # List of candidate injection nodes
node likeliness: [1.0, 1.0, 1.0, 1.0] # Likeliness measure of each node being true

injection node.

Figure 8.9: The inversion YAML output 1le for example 3.

112

Chapter 9

Uncertainty Quanti1cation

Mathematical models used to simulate water distribution systems are subject to uncertainty. E−ective char-

acterization of uncertainty is critical for reliable analysis with simulation-based studies. Particularly for con-

tamination incidents, uncertainty quanti1cation is needed to e−ectively use simulation tools that provide
insights into response actions. Hydraulic parameters that might cause uncertainty include: (1) customer

demands at each node and time, (2) operational controls (e.g., valve settings, pump curves), (3) infrastruc-

ture topography and characteristics (e.g., missing pipes or junctions, e−ective pipe diameters) and (4) initial
conditions (e.g., tank levels, pump statuses). Water quality parameters that might cause uncertainty in-

clude: (1) initial water quality, (2) contaminant species, (3) contaminant reaction dynamics, (4) the amount

of contaminant injected, (5) injection location, (6) injection time and (7) injection duration.

The uq subcommand examines the e−ect of hydraulic and water quality uncertainty on the extent of con-

tamination in terms of the identi1cation of the contamination source. This subcommand can be used to
quantify uncertainty after running source identi1cation using the Bayesian probability based formulation
(Section 8.1.2). Given a particular con1dence level, nodes can be categorized according to their probabil-

ity of contamination. Nodes whose contamination probability, n, that are above a threshold are labeled
with respect to their contamination state as LY for “likely yes,” LN for“likely no” and UN for “unknown.” For
example, for a 95% con1dence level:

8 < n � 0.975 LY,
0.025 � n � 0.975 UN,:
n � 0.025 LN

With the uq subcommand the e−ects of uncertainty in customer demand, isolation valve status, bulk reac-

tion rate coeZcient and contaminant injection location, start time, duration and rate can be studied on the

size and location of the contamination incident.

A 2owchart representation of the uq subcommand is shown in Figure 9.1. Given a list of EPANET 2.00.12
compatible network models (INP format) coupled with a list of injection scenarios (TSG format), the uq
subcommand runs Monte Carlo simulations to estimate the probability that each node in the network is

contaminated.

113

 �

 �

�

�

Figure 9.1: Uncertainty quanti1cation 2owchart.

9.1 Uncertainty Quanti1cation Method

The uq subcommand runs an ensemble of scenarios where each scenario is de1ned using an INP and TSG
1le. The INP and TSG 1les contain the hydraulic and water quality parameters for the scenario. The results

are used to compute the probability that each node is contaminated, using the following equation:

n =
X

�s,n s (9.1)
s2S

where n is the probability that node n is contaminated, s is the probability of scenario s and �s,n is a binary
parameter that is 1 if scenario s contaminates node n, and 0 otherwise. The values of �s,n are determined
from the simulations over the full potential scenario set, and the values for s are determined using equa-

tion (8.10) based on previous measurements provided in the measurements 1le. If no measurements 1le is
provided, then the values for s are assumed to be uniform. A threshold value is used to decide whether a
node is contaminated or not in a single scenario.

9.2 uq Subcommand

The uq subcommand is executed using the following command line:

wst uq <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst uq --help

9.2.1 Con1guration File

The uq subcommand generates a template con1guration 1le using the following command line:

wst uq --template <configfile>

The uq template con1guration 1le is shown in Figure 9.2. Brief descriptions of the options are included in

114

the template after the # sign.

uq configuration template
scenario:

signals: list_scenarios # Signal files, overrides TSG or TSI files
uq:

analysis time: 60 # Analysis time (min)
threshold: 0.01 # Contamination threshold. Default 0.01 (mg/L)
confidence: 0.9 # Probability confidence for candidate nodes (unitless)

measurements:
grab samples: null # Measurements file name

configure:
output prefix: ’’ # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

Figure 9.2: The uq con1guration template 1le.

9.2.2 Con1guration Options

Full descriptions of the WST con1guration options used by the uq subcommand are listed below.

scenario

signals

Name of 1le or directory with information to generate or load signals. If a 1le is provided the
list of inp tsg tuples will be simulated and the information stored in signals 1les. If a directory
with the signals 1les is speci1ed, the signal 1les will be read and loaded in memory. This input

is only valid for the uq subcommand and the grabsample subcommand with probability based

formulations.

Required input.
uq

analysis time

The time at which the manual grab sample should be taken. The algorithm determines the best

possible manual grab sample location(s) based upon this time. Units: Minutes from the simula-

tion start time in the EPANET 2.00.12 INP 1le.
threshold

This threshold determines whether or not an incident impacts a location (mg/L).
1lter scenarios

This options enables 1ltering scenarios. Only those scenarios that match at least one of the

measurements are considered in the optimal sampling analysis, default = False.
measurement failure

The probability that a sensor gives an incorrect reading. Must be between 0 and 1.

Required input for the Bayesian algorithm, default = 0.05.
con1dence

The probability cut-o− value for classifying nodes as certain to be contaminated, uncertain to

be contaminated and certain to not be contaminated. The value is between 0 and 1. Nodes
with probability greater than (((1-con1dence)/2)+con1dence) are classi1ed likely to be contami-

nated or likely yes LY, nodes with probability less than ((1-con1dence)/2) are classi1ed likely not
contaminated LN and nodes with probability in between are uncertain nodes UN.

Required for node classi1cation, default = 0.95 (unitless).
measurements

grab samples

115

The name of the 1le that contains all the measurements from the manual grab samples and the
1xed sensors. The measurement 1le format is documented in File Formats Section 13.7.

Optional input.
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

9.2.3 Subcommand Output

The uq subcommand creates two YAML 1les called <output pre1x>_uq_scenarios.yml and <output pre-

1x>_uq_nodes.yml that contain a list of probabilities for the scenarios and nodes, respectively. The log
1le named <output pre1x>uq_output.log contains basic debugging information.

9.3 Uncertainty Quanti1cation Example

A list of EPANET 2.00.12 INP and TSG 1les are required to run the uq subcommand. The con1guration 1le
for this example, uq_ex1.yml, is shown in Figure 9.3.

uq configuration template
scenario:

signals: Net3/uq/list_scenarios.dat # Signal files, overrides TSG or TSI files
uq:

analysis time: 60 # Analysis time (min)
threshold: 0.01 # Contamination threshold. Default 0.01 (mg/L)
confidence: 0.9 # Probability confidence for candidate nodes. (unitless)

measurements:
grab samples: null # Measurements file name

configure:
output prefix: ${CWD}/uq_ex1/Net3 # Output file prefix
output directory: ${CWD}/uq_ex1 # Output directory
debug: 0 # Debugging level, default = 0

Figure 9.3: The uq con1guration 1le for example 1.

The 1le with the list of scenarios for this example is shown in Figure 9.4.

0 Net3/uq/inps/0.inp Net3/uq/injections/0.tsg
1 Net3/uq/inps/1.inp Net3/uq/injections/1.tsg
2 Net3/uq/inps/2.inp Net3/uq/injections/2.tsg

Figure 9.4: List of scenarios.

Summary information is printed to the screen, as shown in Figure 9.5.

The results from the uq subcommand can be represented in probability maps using the visualization
subcommand (Chapter 11).

116

WST uq subcommand

Validating configuration file

NODE PROBABILITIES

Number of red nodes 0
Number of yellow nodes 47
Number of green nodes 50
+-------+-------------+----------------+
| Node | Probability | Classification |
+=======+=============+================+
| 149 | 0.047101 | LN |
+-------+-------------+----------------+
| 107 | 0.010870 | LN |
+-------+-------------+----------------+
| 3 | 0.003623 | LN |
+-------+-------------+----------------+
.
.
.
+-------+-------------+----------------+
| 189 | 0.097826 | UN |
+-------+-------------+----------------+
| 195 | 0.054348 | UN |
+-------+-------------+----------------+
| 184 | 0.115942 | UN |
+-------+-------------+----------------+

WST normal termination

Figure 9.5: Screen output for example 1.

117

Chapter 10

Grab Sampling

When source identi1cation is performed following initial detection of a contamination incident, it is likely
that the identi1ed set of possible injection locations is fairly large due to the limited measurement informa-

tion available at the early stages of detection. As time progresses, more measurements become available to

help decrease the number of possible injection locations. It is possible to obtain additional measurements

in the form of grab samples from optimally selected locations that can help in quickly narrowing down the

set of likely incident locations when source inversion calculations are performed again. The grabsample
subcommand can be used to identify optimal grab sample locations that are likely to provide the most

information in narrowing down the list of possible injection locations identi1ed from the inversion sub-

command.

A 2owchart representation of the grabsample subcommand is shown in Figure 10.1. The required input for
the grabsample subcommand includes a utility network model speci1ed with an EPANET 2.00.12 compatible
input 1le (INP) and a list of likely injection scenarios.

inversion/grabsample

 Utility Network
Model Measurements

Source Inversion

Likely Injection
Scenarios

inversion

 Utility Network
Model

Grab Sampling

Grab Sample
Locations

Likely Injection
Scenarios

Figure 10.1: Grab sample 2owchart.

10.1 Grab Sample Formulations

The grabsample subcommand contains three di−erent grab sampling formulations, the distinguishability

formulation and two probability-based formulations. The probability functions will likely be faster for larger

problems (linear scaling), while the distinguishability formulation scales quadratically with the number of

contamination scenarios. The following subsections provide brief descriptions of these formulations.

118

10.1.1 Distinguishability Formulation

Considering two possible contamination incidents i and j, if a particular sample location is impacted by
incident i, but not impacted by incident j, then this sample location is able to distinguish between the two
incidents. The grabsample subcommand can be used to identify grab sample locations that maximize the

number of pairwise distinguishable incidents in a list of possible contamination incidents. The <output
pre1x>pro1le.tsg obtained from the inversion subcommand contains a list of possible injection locations.

The data sets required by the optimization formulation below are obtained by simulating each possible

incident using the EPANET 2.00.12 hydraulics model and either the EPANET 2.00.12 water quality model or

the Merlion water quality model (Mann et al., 2012b), which can be selected using the merlion option in the

scenario block of the con1guration 1le.

The distinguishability problem formulation is: X
maximize dij (10.1)

subject to

(i,j)2P E X
sn � dij 8 (i, j) 2 PE (10.2)

n2DijX
sn � Smax + |F |

n2G
(10.3)

sn 2 {0, 1}
sn = 1
0 � dij � 1

8 n 2 G
8 n 2 F
8 (i, j) 2 PE

(10.4)

(10.5)

(10.6)

where G is the set of all grab sample locations, F is the set of 1xed sensor locations and PE is the pairwise
set of all candidate incidents (i.e., possible contamination incidents). The variable Dij is the set of sample
locations that distinguish incident i from incident j; Smax is the maximum number of samples that can be
taken at the same time (i.e., number of sampling teams); sn is a binary variable that is 1 if node n is a good
sample and is 0 otherwise; and dij is a continuous variable that will be 1 if incident i is distinguishable from
incident j and is 0 otherwise.

Equation 10.1 represents the mixed-integer programming (MIP) objective, which maximizes the number of

pairwise distinguishable incidents. Equation 10.2 requires that at least one or more sample locations be

selected for a distinguishable incident. Equation 10.3 limits the number of selected locations to be less

than or equal to the number of sampling teams (speci1ed by the user). Equation 10.4 de1nes sn as a binary
variable. Equation 10.5 ensures that the 1xed sensor locations are always sampled since measurements
from these 1xed sensors are always available, which avoids double counting distinguished incidents. This

formulation is the default formulation solved in the grabsample subcommand.

10.1.2 Probability-based Formulations

From a source inversion perspective, the contamination incident that agrees with the largest number of

measurements is the contamination incident with the higher probability of occurrence. Similarly, all con-

tamination incidents that disagree with many of the measurements have a low probability of occurrence.

Following this idea, two optimization formulations were implemented in the grabsample subcommand in
order to determine optimal sampling locations that are intended to maximize the probability of identifying

the true contamination incident (or minimizing the probability of incidents that did not occur).

10.1.2.1 Maximization of expected number of scenarios that disagree with measurements

Given a set of potential contamination incidents, a few scenarios will agree with all the measurements,
while many more will disagree. For this reason, the formulations in this section aim to select locations

119

�

�

�

�

�

 �

�

that maximize the number of disagreements between incidents and measurements (quickly reduce the

probabilities of the incidents that are not likely to be consistent with observations). The development of an

MILP problem formulation that meets this goal is presented next.

P missmaximize
X

(10.7)s

s2S

P miss = 1 − P match subject to 8 s 2 S (10.8)s s

match P = exp(P̃
s) 8 s 2 S (10.9)s

P̃
s =

X
xn ln(s,n) 8 s 2 S (10.10)

n2NX
xn � Smax (10.11)

n2N

xn 2 {0, 1} 8 n 2 N (10.12)

Here Pmiss
is the probability that incident s disagrees with the outcome of the measurements at the selected s

locations. P match
(complement of P miss

) is given by the product of the probabilities s,n over all selected s s

sampling locations,

match xnP =
Y

(10.13)s s,n

n2N

where xn is a binary variable that will be 1 if location n is selected for sampling, and is 0 otherwise. In the
formulation, this product is written in equations (10.9) and (10.10). The parameter s,n is the probability
that incident s disagrees with the outcome of a measurement taken at location n

ˆ
n if �s,n = 1;

s,n = (10.14)1 − n otherwise.

where �s,n is a binary parameter that is 1 if incident s contaminates node n, and 0 otherwise. The values
of �s,n are determined from the simulations pre-computed over the full potential incident set. The param-

eter n is the probability that node n is contaminated and can be computed from the probability of the
contamination incidents

n =
X

�s,n s, (10.15)
s2S

Here s is the current estimate of the probability of contamination incident s. Finally, Smax is the maximum
number of samples to be taken. The formulation as written is an MINLP because of Equation (10.9). How-

ever, it is easily made linear. Note that the equality in Equation (10.9) can be replaced with a lower bounding

inequality. Since the objective function is maximizing Pmiss
(and pushing down on P match

), this inequality s s

will always be satis1ed with equality at the solution. Note also that this new inequality is convex and can be

replaced with a set of linear under-estimators.

This new MILP formulation, referred to as problem Probability1, is shown below, where vi are tangent points
selected for the linear under-estimators of the exponential term and L is the set of indices corresponding
to each of the linear under-estimators:

120

�

�

�

missmaximize
X

P (10.16)s

s2S

P miss = 1 − Pmatch subject to 8 s 2 S (10.17)s s � ̃ �match P � exp(vi) + exp(vi) Ps − vi 8 i 2 L, s 2 S (10.18)s

P̃
s =

X
xn ln(s,n) 8 s 2 S (10.19) X n2N

xn � Smax (10.20)
n2N

xn 2 {0, 1} 8 n 2 N, (10.21)

10.1.2.2 Maximization of scenario with least number of measurement disagreements

A third formulation is also presented that maximizes the worst-case number of mismatches (instead of the

expected value). This formulation does not contain the exponential term and is already an MILP without
the need for any linear under-estimators, which avoids numerical issues that can occur when too many

numerically similar under-estimators are added. This produces the max-min formulation shown below:

Pmissmaximize minimize s
s

miss match subject to P = 1 − P 8 s 2 Ss s

Pmatch = exp(P̃
s) 8 s 2 Ss

P̃
s =

X
xn ln(s,n) 8 s 2 S X n2N

xn � Smax

n2N

xn 2 {0, 1} 8 n 2 N,

Recognizing that
miss match arg min P = arg min −Ps s

s s

and that
arg min −x = arg min − exp(x),

x x

the prior bilevel optimization formulation is reformulated to a single level optimization formulation as,

maximize q (10.22)

subject to q � − ̃PsX
P̃s = xn ln(s,n) 8 s 2 S

(10.23)

(10.24)
n2NX
xn � Smax (10.25)

n2N

xn 2 {0, 1} 8 n 2 N, (10.26)

This formulation is referred to as Probability2, where q is an auxiliary variable that supports the max-min

reformulation to a single level optimization problem.

121

10.2 Grab Sample Solvers

The grabsample subcommand requires standard MIP solvers to identify optimal grab sample locations.
The solvers recognized by the grabsample subcommand are the same as those recognized by booster_mip
subcommand (See Section 7.2.3 for more details).

10.3 grabsample Subcommand

The grabsample subcommand is executed using the following command line:

wst grabsample <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand:

wst grabsample --help

10.3.1 Con1guration File

The grabsample subcommand generates a template con1guration 1le using the following command line:

wst grabsample --template <configfile>

The grabsample template con1guration 1le is shown in Figure 10.2. Brief descriptions of the options are
included in the template after the # sign.

122

grabsample configuration template
network:

epanet file: Net3.inp # EPANET 2.00.12 network file name
scenario:

location: null # Injection location: ALL, NZD or EPANET ID
type: null # Injection type: MASS, CONCEN, FLOWPACED or SETPOINT
strength: null # Injection strength [mg/min or mg/L depending on

type]
species: null # Injection species, required for EPANET-MSX
start time: null # Injection start time [min]
end time: null # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
signals: null # Signal files, overrides TSG or TSI files
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

grabsample:
model format: PYOMO # Grab sample model format: AMPL or PYOMO
sample criteria: distinguish # Criteria to sample: distinguish, probability1,

probability2
sample time: 720.0 # Sampling time (min)
threshold: null # Contamination threshold. Default 0.001
fixed sensors: null # Fixed sensor nodes
nodes metric: null # Map of node to metric (e.g., EC, PI)
list scenario ids: null # List of scenario ids considered from the signals

folder
feasible nodes: null # Feasible sampling nodes
num samples: null # Maximum number of grab samples, default = 1
greedy selection: false # Perform greedy selection. No optimization
with weights: false # Perform optimization with weights in the objective

function
filter scenarios: false # Filters scenarios that match measurements

measurements:
grab samples: null # Measurements file name

solver:
type: glpk # Solver type
options: # A dictionary of solver options
threads: 1 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

Figure 10.2: The grabsample con1guration template 1le.

The grabsample subcommand requires information about likely scenarios, which is set in the scenario
block. These scenarios must be de1ned using a TSG 1le or by specifying the scenario location, type, strength,

start and stop times (see Section 3.2 for more information on de1ning scenarios). In general, the TSG 1le
created by the inversion subcommand will be used to de1ne likely scenarios. Either the EPANET option

or the Merlion option can be used as the water quality model, although, the Merlion water quality model is
recommended for larger networks.

10.3.2 Con1guration Options

Full descriptions of the WST con1guration options used by the grabsample subcommand are listed below.

network

123

epanet 1le
The name of the EPANET 2.00.12 input (INP) 1le that de1nes the water distribution network
model.

Required input.
scenario

location
A list that describes the injection locations for the contamination scenarios. The options are: (1)

ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection loca-

tions; (2) NZD, which denotes all nodes with non-zero demands as contamination injection loca-

tions; or (3) an EPANET node ID, which identi1es a node as the contamination injection location.
This allows for an easy speci1cation of single or multiple contamination scenarios.

Required input unless a TSG or TSI 1le is speci1ed.
type

The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOWPACED

or SETPOINT. See the EPANET 2.00.12 user manual for additional information about source types

(Rossman, 2000).

Required input unless a TSG or TSI 1le is speci1ed.
strength

The amount of contaminant injected into the network for the contamination scenarios. If the
type option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.

Required input unless a TSG or TSI 1le is speci1ed.
species

The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but

only one is injected into the network. For cases where multiple contaminants are injected, a TSI
1le must be used.

Required input for EPANET-MSX unless a TSG or TSI 1le is speci1ed.
start time

The injection start time that de1nes when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents

an injection that starts at hour 1 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
end time

The injection end time that de1nes when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents

an injection that ends at hour 2 of the simulation.

Required input unless a TSG or TSI 1le is speci1ed.
tsg 1le

The name of the TSG scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSG 1le will override the location, type, strength, species, start and end
times options speci1ed in the WST con1guration 1le. The TSG 1le format is documented in File
Formats Section 13.12.

Optional input.
tsi 1le

The name of the TSI scenario 1le that de1nes the ensemble of contamination scenarios to be
simulated. Specifying a TSI 1le will override the TSG 1le, as well as the location, type, strength,
species, start and end time options speci1ed in the WST con1guration 1le. The TSI 1le format is

124

documented in File Formats Section 13.13.

Optional input.

signals

Name of 1le or directory with information to generate or load signals. If a 1le is provided, the
list of INP-TSG tuples will be simulated and the information stored in signals 1les. If a directory
with the signals 1les is speci1ed, the signal 1les will be read and loaded in memory. This input

is only valid for the uq subcommand and the grabsample subcommand with probability based

formulations.

Optional input.
msx 1le

The name of the EPANET-MSX multi-species 1le that de1nes the multi-species reactions to be
simulated using EPANET-MSX.

Required input for EPANET-MSX.

msx species

The name of the MSX species whose concentration pro1le will be saved by the EPANET-MSX
simulation and used for later calculations.

Required input for EPANET-MSX.

merlion
A 2ag to indicate if the Merlion water quality simulator should be used. The options are true or

false. If an MSX 1le is provided, EPANET-MSX will be used.

Required input, default = false.
grabsample

model format
The modeling language used to build the formulation speci1ed by the model format option. The

options are AMPL and PYOMO. AMPL is a third party package that must be installed by the user if
this option is speci1ed. PYOMO is an open source software package that is distributed with WST.

Required input, default = PYOMO.
sample criteria

Determines which optimization model to solve. This option is only checked when running the

problem with signal 1les. By default the optimization is based on distinguishability of pair-wise
scenarios.

Optional input.

sample time

The time at which the manual grab sample should be taken. The algorithm determines the best

possible manual grab sample location(s) based upon this time. Units: Minutes from the simula-

tion start time in the EPANET 2.00.12 INP 1le.

Required input.

threshold
This threshold determines whether or not an incident impacts a candidate sample location.

Required input, default = 0.001.
1xed sensors

A list that de1nes nodes that are already 1xed continuous sensor locations. The options are:
(1) ALL, which speci1es all nodes as 1xed sensor locations; (2) NZD, which speci1es non-zero
demand nodes as 1xed sensor locations; (3) NONE, which speci1es no nodes as 1xed sensor
locations; (4) a list of EPANET node IDs, which identi1es speci1c nodes as 1xed sensor locations;
or (5) a 1lename, which references a space or comma separated 1le containing a list of speci1c
nodes as 1xed sensor locations.

125

Optional input.

nodes metric
File containing a map of node to metric. The map is used for determining weighting factors in
the objective of the distinguishability optimization formulation. Each line in the 1le has the node
name separated by the corresponding metric.

Optional input.

list scenario ids
File containing list of scenarios to considered from the signals folder. Each line in the 1le has the
signals ID and the contamination ID separated by a space.

Optional input.

feasible nodes
A list that de1nes nodes that can be considered as potential sampling locations for the optimal

sample location problem. The options are: (1) ALL, which speci1es all nodes as feasible sampling
locations; (2) NZD, which speci1es all non-zero demand nodes as feasible sampling locations; (3)
a list of EPANET node IDs, which identi1es speci1c nodes as feasible sampling locations; or (4) a
1lename, which references a space or comma separated 1le containing a list of speci1c nodes as
feasible sampling locations.

Optional input.

num samples

The maximum number of locations that can be sampled at one time. This is usually equal to the

number of sampling teams that are available.

Required input, default = 1.
greedy selection

The option to select manual grab sample locations based upon a greedy search, which orders

and selects the locations in order of the best solution. This does not require any optimization.

Optional input, default = false.
with weights

The option to add weights in the objective function of the distinguishability optimization formu-

lation.

Optional input, default = false.
1lter scenarios

This option enables 1ltering scenarios. Only those scenarios that match at least one of the mea-

surements are considered in the optimal sampling analysis.

Optional input, default = false.
solver

type

The solver type. Each component of WST (e.g., sensor placement, 2ushing response, booster
placement) has di−erent solvers available. More speci1c details are provided in the subcom-

mand’s chapter.

Required input.

options

A list of options associated with a speci1c solver type. More information on the options available
for a speci1c solver is provided in the solver’s documentation. The Getting Started Section 2.2
provides links to the di−erent solvers.

Optional input.

threads
The maximum number of threads or function evaluations the solver is allowed to use. This option

126

is not available to all solvers or all analyses.

Optional input.
log1le

The name of a 1le to output the results of the solver.

Optional input.

verbose
The solver verbosity level.

Optional input, default = 0 (lowest level).
initial points

nodes
A list of node locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing and booster_msx subcom-

mands. This input causes an error for other subcommands.

Optional input.

pipes

A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this option

is only supported for the network solver used in the 2ushing subcommand. This input causes
an error for other subcommands.

Optional input.
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

10.3.3 Subcommand Output

The grabsample subcommand creates a YAML 1le called <output pre1x>grabsample_output.yml that con-

tains a list of node locations (EPANET node IDs) to take manual grab samples, the objective function value

(based on the particular formulation selected), the run date and CPU time. The log 1le named <output
pre1x>grabsample_output.log contains basic debugging information. A visualization YAML con1guration
1le named <output pre1x>grabsample_output_vis.yml is also created, and following the execution of the
grabsample subcommand, the visualization subcommand is automatically run using this YAML 1le.

10.4 Grab Sample Examples

Two examples for the grabsample subcommand are provided. The 1rst example uses the distinguishability

formulation, while the second uses the probability-based formulation, Probability1.

10.4.1 Example 1

An EPANET 2.00.12 network model (INP format) and a 1le containing a list of possible injection scenarios
(e.g., a TSG 1le, which is generated by the inversion subcommand) are required to run the grabsample
subcommand. The con1guration 1le for this example, grabsample_ex1.yml, is shown in Figure 10.3. The

127

EPANET Example Network 3 input 1le, Net3.inp, is used for this example. The grabsample subcommand is
typically used to identify sampling location after the results of the source identi1cation calculation give a
large list of candidate injection nodes. The time line of using the inversion and grabsample subcommand
sequentially is provided in Figure 12.9. The TSG 1le, Net3_gs_pro1le.tsg, which contains the possible con-

tamination incidents, is created by the inversion subcommand using the measurement data created by the
measuregen executable (Executable Files Section 14.3). For this example, the measuregen executable is used
to simulate and obtain the measurements from a contaminant injection at node 251 at 24 hours. The injec-

tion is detected at 30.5 hours by using a set of 1xed sensor locations de1ned in the Net3_1xed_sensors 1le.
The list of eight equally likely contamination injection locations as listed in the TSG 1le, Net3_gs_pro1le.tsg,

produced by the inversion subcommand is used as input to the grabsample subcommand along with the
EPANET 2.00.12 network 1le. The sample time is set to 1890 minutes (31.5 hours), since it is assumed that

it takes 60 minutes to perform source identi1cation and obtain the manual grab samples (including travel

time). The maximum number of manual grab samples that can be taken is two.

network:
epanet file: Net3/Net3.inp

scenario:
location: null
type: null
strength: null
species: null
start time: null
end time: null
tsg file: Net3/Net3_gs_profile.tsg
tsi file: null
msx file: null
msx species: null
merlion: true

grabsample:
model format: PYOMO
sample time: 1890.0
threshold: null
fixed sensors: Net3/Net3_fixed_sensors
feasible nodes: null
num samples: 2
greedy selection: false
with weights: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0
initial points: []

configure:
output prefix: grabsample_ex1/Net3
debug: 0

Figure 10.3: The grabsample con1guration 1le for example 1.

The example can be executed using the following command:

wst grabsample grabsample_ex1.yml

The results are available in the Net3grabsample_output.yml, which is shown in Figure 10.4. The manual grab

sample locations identi1ed are nodes 241 and 251. Twenty-three pairwise incidents will be distinguished

after taking the samples at these locations. To reiterate the con1guration parameters, the sampling time is
1890 minutes and the maximum number of sampling locations is two. The grab sample locations identi1ed
in Figure 10.4 might be one of several solutions that produce the same objective value. If multiple grab

sample locations provide the same ability to distinguish the contamination source, the solver will randomly

128

pick a solution. Thus, the solution identi1ed in Figure 10.4 could be di−erent for other users.

grabsample output
general:

version: 1.5 # WST version
date: ’2019-03-19’ # Run date
cpu time: 0.351 # CPU time (sec)
directory: C:/wst-1.5/examples/grabsample_ex1
log file: Net3grabsample_output.log # Log file

grabsample:
nodes: [’241’, ’251’] # List of grabsample nodes
objective: 96.0 # Objective value
threshold: null # Threshold
count: 2 # Count
time: 1890.0 # Time

Figure 10.4: The grabsample YAML output for example 1.

Next, as shown in Figure 12.9, the measurements from these selected grab sample locations (actual or

simulated using measuregen executable) can be used to again perform source identi1cation. Please refer
to Section 12.3 for a complete case study of how to use the inversion and grabsample subcommands in
tandem.

10.4.2 Example 2

In the second example, the probability-based formulation, Probability1, is used to select the optimal sam-

pling locations, since the probability-based formulations are particularly eZcient when the number of con-

tamination scenarios is considerably large. The con1guration 1le for this example, grabsample_ex2.yml, is
shown in Figure 10.5.

129

grabsample configuration template
network:

epanet file: Net3/Net3.inp # EPANET network file name
scenario:

signals: Net3/grabsample/list_scenarios.dat # Signal files, overrides TSG or TSI files
grabsample:

model format: PYOMO # Grab sample model format: AMPL or PYOMO
sample time: 720.0 # Sampling time (min)
threshold: null # Contamination threshold. Default 0.001
fixed sensors: null # Fixed sensor nodes
nodes metric: null # Map of node to metric (e.g., EC, PI)
feasible nodes: null # Feasible sampling nodes
num samples: 3 # Maximum number of grab samples, default = 1
sample criteria: probability1
filter scenarios: True

measurements:
grab samples: Net3/grabsample/MEAS.dat # Measurements file name

solver:
type: glpk # Solver type
options: # A dictionary of solver options
threads: 24 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: grabsample_ex2/Net3 # Output file prefix
output directory: grabsample_ex2 # Output directory
debug: 0 # Debugging level, default = 0

Figure 10.5: The grabsample con1guration 1le for example 2.

The scenario information is provided with a list of pairs of INP-TSG 1les. This input allows the user to include
di−erent hydraulic and contamination in the set of potential scenarios. The list of potential scenarios used

is shown in Figure 10.6. Ten di−erent INP 1les with variations in the demand patterns are speci1ed in the
list to account for uncertainty in the hydraulics of the system. For simplicity a single TSG 1le is speci1ed to
provide information about the contamination scenarios. However, each entry in the list of scenarios could

have a di−erent TSG 1le.

0 Net3/grabsample/inps/0.inp Net3/grabsample/injections.tsg
1 Net3/grabsample/inps/1.inp Net3/grabsample/injections.tsg
2 Net3/grabsample/inps/2.inp Net3/grabsample/injections.tsg
3 Net3/grabsample/inps/3.inp Net3/grabsample/injections.tsg
4 Net3/grabsample/inps/4.inp Net3/grabsample/injections.tsg
5 Net3/grabsample/inps/5.inp Net3/grabsample/injections.tsg
6 Net3/grabsample/inps/6.inp Net3/grabsample/injections.tsg
7 Net3/grabsample/inps/7.inp Net3/grabsample/injections.tsg
8 Net3/grabsample/inps/8.inp Net3/grabsample/injections.tsg
9 Net3/grabsample/inps/9.inp Net3/grabsample/injections.tsg

Figure 10.6: List of scenarios example 2.

In addition, a list of the currently available measurements is provided in a measurement 1le with columns
labeled as “location, time and measurement value.” The measurements are used to compute the probability
of the scenarios following a Bayesian approach. When no measurements are provided, the probability
distribution of the scenarios is assumed to be uniform. The measurement 1le in this example is shown in
Figure 10.7

The example can be executed using the following command:

wst grabsample grabsample_ex2.yml

130

40 7200 1
111 7200 1
115 7200 1

Figure 10.7: List of measurements example 2.

The results are available in the Net3grabsample_output.yml, which is shown in Figure 10.8.

grabsample output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 6.757 # CPU time (sec)
directory: c:/wst-1.5/examples/grabsample_ex2 # Results directory
log file: Net3grabsample_output.log # Log file

grabsample:
nodes: [’50’, ’115’, ’3’] # List of grabsample nodes
objective: 9.193169619999995 # Objective value
threshold: null # Threshold
count: 3 # Count
time: 720.0 # Time

Figure 10.8: The grabsample YAML output for example 2.

131

Chapter 11

Visualization

Visualization tools are an important aspect of network analysis. For example, after completing a sensor

placement optimization, it is important to understand how the physical location of the sensors relates to

the underlying structure of the water distribution network. The visualization subcommand overlays
graphical layers on a water distribution network and creates a HyperText markup language (HTML) 1le
with scalar vector graphics that can be opened in a Web browser. The HTML 1le provides an interactive

visualization of the results from which images can be saved for later use via a screen capture (saved as a
JPEG, PNG). After the HTML 1le is opened in a Web browser, the user has the ability to (1) scroll over node

and link elements to identify the respective EPANET ID, (2) scroll over the legend to isolate a speci1c layer,
(3) move the legend and (4) zoom or pan the screen to change the size and location of the network.

The visualization subcommand includes an extensive number of graphic options within the con1guration
1le. To format the appearance of the network model, the user can de1ne the color, size and opacity for

the network elements (e.g., junctions, reservoirs, tanks, pipes, pumps and valves). The user can also decide

which network elements to include in the legend. Multiple node and link layers can then overlay the network

model. The order of those layers is de1ned by the user. For each layer, the user can select the layer shape

(for node layers) along with the color, size and opacity. The color, size and opacity can be de1ned as a
constant or can be set as a function of the layers value. These options can be set independently for the

layers 1ll and line. Each layer is assigned a label to be used in the legend. Other options include the screen

size and background color, and the legend location and background color.

Several WST subcommands automatically run the visualization subcommand upon completion to gen-

erates graphical representation of the results. These include sp, flushing, booster_msx, booster_mip,
inversion and grabsample. The graphic can be modi1ed by editing the visualization con1guration 1le,

which is also automatically generated, and rerunning the visualization subcommand. A 2owchart repre-

sentation of the visualization subcommand is shown in Figure 11.1. The utility network model is de1ned
by an EPANET 2.00.12 compatible network model (INP format). Graphic options are supplied through the
visualization WST con1guration 1le.

132

Contaminant
Transport

 Utility Network
Model

Simulation
Input

 Threat Ensemble
Database

Impact
Assessment

 Threat Ensemble
Database

Consequences
Input

Impact File

Sensor
Placement

Impact File

Sensor Locations

Sensor
Characteristics

tevasim

sim2Impact

sp

Visualization

 Utility Network
Model

Graphic
Options

 HTML graphics
 file

visualization

Figure 11.1: Visualization 2owchart.

11.1 Color and Shape Options

The color of a network element is speci1ed using a six character hexadecimal (HEX) color code or using a pre-

de1ned color name. HEX color codes can be found at various website, including http://www.color-hex.
com/color-wheel/, and can be used to create any color between black (#000000) and white (#FFFFFF). The
following prede1ned colors can also be used in the the visualization subcommand.

Name RGB HEX
==

red [225,0,0] \#FF0000
orange [225,165,0] \#FFA500
yellow [225,225,0] \#FFFF00
green [0,128,0] \#008000
blue [0,0,225] \#0000FF
purple [128,0,128] \#800080
black [0,0,0] \#000000
white [225,225,225] \#FFFFFF
lime [0,225,0] \#00FF00
navy [0,0,128] \#000080
aqua [0,225,225] \#00FFFF
teal [0,128,128] \#008080
olive [128,128,0] \#808000
maroon [128,0,0] \#800000
fuchsia [225,0,225] \#FF00FF
silver [192,192,192] \#C0C0C0
gray [128,128,128] \#808080

The shape of a network element is speci1ed using one of the following prede1ned shapes, using either the
long or short name.

Long Name Short Name
===========================

circle o
square s
triangle t
diamond d
plus +
x x

11.2 Data from YAML Files

Within the visualization WST con1guration 1le, layers can be de1ned by (1) directly including the network
element values, or (2) referencing data in an external YAML 1le.

133

http://www.color-hex.com/color-wheel/
http://www.color-hex.com/color-wheel/

The following subset of a visualization WST con1guration 1le demonstrates how element values are
directly included in the layers block.

layers:
locations: [’115’, ’101’, ’171’]
file: null

The same data can be stored in an external YAML 1le and referenced in the visualization WST con1gura-

tion 1le, as shown below.

layers:
locations: ’["flushing"]["nodes"][i]’
file: data.yml

In this example, the referenced 1le, data.yml, contains the following information.

flushing:
nodes: [’115’, ’101’, ’171’]

The WST subcommands (e.g., sp, flushing) that automatically run the visualization subcommand upon
completion read data from external YAML 1les.

11.3 visualization Subcommand

The visualization subcommand is executed using the following command line:

wst visualization <configfile>

where configfile is a WST con1guration 1le in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-

scription:

wst visualization --help

11.3.1 Con1guration File

The visualization subcommand generates a template con1guration 1le using the following command
line:

wst visualization --template <configfile>

The visualization WST template con1guration 1le is shown in Figure 11.2. Brief descriptions of the op-

tions are included in the template after the # sign.

134

visualization configuration template
network:

epanet file: Net3.inp # EPANET 2.00.12 network file name
visualization:

screen:
color: white # Screen color, HEX or predefined code
size: [1200, 800] # Screen size [width, height] in pixels

legend:
color: white # Legend color, HEX or predefined code
scale: 1.0 # Legend text size multiplier, real number
location: [800, 20] # Legend location [left, bottom] in pixels

nodes:
color: null # Node color, HEX or predefined code
size: null # Node size, real number
opacity: 0.6 # Node opacity, real number

links:
color: null # Link color, HEX or predefined code
size: null # Link size, real number
opacity: 0.6 # Link opacity, real number

layers:
-

label: pipes with different colors # Label used in legend
locations: [’101’, ’171’] # Data locations, list of EPANET IDs
file: null # Locations from file, YAML format
location type: link # Location type, node or link
shape: [circle] # Marker shape, predefined name
fill:

color: [yellow, red] # Fill color, HEX or predefined code
size: [10, 20] # Fill size, real number
opacity: [0.5, 1] # Fill opacity, real number
color range: null # Fill color range [min, max]
size range: null # Fill size range [min, max]
opacity range: null # Fill opacity range [min, max]

line:
color: null # Line color, HEX or predefined code
size: null # Line size, real number
opacity: 0.6 # Line opacity, real number
color range: null # Line color range [min, max]
size range: null # Line size range [min, max]
opacity range: null # Line opacity range [min, max]

-
label: orange nodes # Label used in legend
locations: [’105’, ’35’, ’15’] # Data locations, list of EPANET IDs
file: null # Locations from file, YAML format
location type: node # Location type, node or link
shape: [diamond] # Marker shape, predefined name
fill:

color: orange # Fill color, HEX or predefined code
size: 10 # Fill size, real number
opacity: 0.6 # Fill opacity, real number
color range: null # Fill color range [min, max]
size range: null # Fill size range [min, max]
opacity range: null # Fill opacity range [min, max]

line:
color: black # Line color, HEX or predefined code
size: 1 # Line size, real number
opacity: 1 # Line opacity, real number
color range: null # Line color range [min, max]
size range: null # Line size range [min, max]
opacity range: null # Line opacity range [min, max]

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

Figure 11.2: The visualization con1guration template 1le.

135

11.3.2 Con1guration Options

Full descriptions of the WST con1guration options used by the visualization subcommand are listed be-

low.

network

epanet 1le
The name of the EPANET 2.00.12 input (INP) 1le that de1nes the water distribution network
model.

Required input.

visualization

screen

color
The screen background color de1ned using a HEX color code or prede1ned color name.

Optional input, default = white
size

The screen size [width, height] in pixels.

Optional input, default = [1000,600]

legend

color
The legend background color de1ned using a HEX color code or prede1ned color name.

Optional input, default = white
scale

The legend text size multiplier, real number.

Optional input, default = 1.0
location

The legend location [left, top] in pixels.

Optional input, default = [10,10] (upper left)
nodes

color
The node color de1ned using HEX color code or prede1ned color name. The color will apply
to junctions, reservoirs and tanks. If the color is left blank, then junctions are black, reservoirs
are blue and tanks are green.

Optional input, default = None
size

The node size, real number.

Optional input.

opacity

The node opacity, real number between 0.0 (transparent) and 1.0 (opaque).

Optional input, default = 0.6
links

color
The link color de1ned using HEX color code or prede1ned color name. The color will apply
to pipes, pumps and valves. If the color is left blank, then pipes are black, pumps are yellow
and valves are turquoise.

136

Optional input, default = None
size

The link size, real number.

Optional input.

opacity

The link opacity, real number between 0.0 (transparent) and 1.0 (opaque).

Optional input, default = 0.6
layers

label
The layer label used in the legend.

Optional input, default = None
locations

The data locations to plot over the network. Locations are speci1ed using a list of EPANET
IDs.

Required input unless an external 1le is speci1ed.
1le

The name of an external 1le that contains data to be used in the visualization. The 1le is in
YAML format.

Required input unless ’locations’ are speci1ed. Data from a 1le overrides data speci1ed in
’locations’

location type

The location type is used to indicate if the EPANET ID is of type ’node’ (junction, reservoir,
tank) or ’link’ (pipe, pump, valve).

Optional input. If left blank, node is tested before link
shape

The marker shape, used only for node type layers. The shape can be a single string, or a list

of strings which is the same length as the location data.

Optional input, only used for node type layers, default = circle
1ll

color
The 1ll color de1ned using HEX color code or prede1ned color name.

Optional input, default = None
size

The 1ll size, real number.

Optional input.

opacity

The 1ll opacity, real number between 0.0 (transparent) and 1.0 (opaque).

Optional input, default = 0.6
color range

The 1ll color range used to scale line data.

Optional input, default = [data min, data max]
size range

The 1ll size range used to scale line data.

Optional input, default = [data min, data max]
opacity range

137

The 1ll opacity range used to scale line data.

Optional input, default = [data min, data max]
line

color
The line color de1ned using HEX color code or prede1ned color name.

Optional input, default = None
size

The line size, real number.

Optional input.

opacity

The 1ll opacity, real number between 0.0 (transparent) and 1.0 (opaque).

Optional input, default = 0.6
color range

The line color range used to scale line data.

Optional input, default = [data min, data max]
size range

The line size range used to scale line data.

Optional input, default = [data min, data max]
opacity range

The line opacity range used to scale line data.

Optional input, default = [data min, data max]
con1gure

output pre1x
The pre1x used for all output 1les.

Required input.

output directory

The output directory to store the results.

debug

The debugging level (0 or 1) that indicates the amount of debugging information printed to the

screen, log 1le and output yml 1le.

Optional input, default = 0 (lowest level).

For additional control over the way that junctions, reservoir, tanks, pipes, pumps and valves are displayed,

the following YAML blocks can be added to the visualization con1guration block. The color, size and opacity

of each element can be changed; and the element can be added to the legend. These options will override

the node and link blocks.

junctions:
color: red
size: 5.0
opacity: 0.5

reservoirs:
color: orange
size: 12.0
opacity: 1

tanks:
color: yellow
size: 12.0
opacity: 1

pipes:
color: green

138

size: 3.0
opacity: 0.5

pumps:
color: blue
size: 3.0
opacity: 1

valves:
color: purple
size: 3.0
opacity: 0.7

11.3.3 Subcommand Output

The visualization subcommand creates a HTML 1le named <output pre1x>visualization_output.html that
contains scalar vector graphics that can be opened in a Web browser. Two other 1les are created: (1) an
output YAML 1le named <output pre1x>visualization_output.yml that includes run date and CPU time, and
(2) a log 1le named <output pre1x>visualization_output.log that includes basic debugging information.

11.4 Visualization Examples

An EPANET 2.00.12 network model input 1le (INP format) and a con1guration 1le, which contain the graphics
options, are required to run the visualization subcommand. Several examples for visualization are given
below.

11.4.1 Example 1

The 1rst example customizes the color, size and opacity of the network elements (junctions, reservoirs,
tanks, pipes and pumps). The reservoir and tank colors are speci1ed using HEX color codes. Additionally,
the graphic highlights 1ve pipes and uses their diameter to scale the pipe width. All the data is supplied in
the con1guration 1le. The con1guration 1le, visualization_ex1.yml, for this example is shown in Figure 11.3.

The example can be executed using the following command line:

wst visualization visualization_ex1.yml

The resulting graphic is shown in Figure 11.4.

139

network:
epanet file: Net3/Net3.inp

visualization:
screen:

color: white
size: [1600, 1000]

legend:
color: white
scale: 2.0
location: [20, 20]

junctions:
color: black
size: 5.0
opacity: 0.5

reservoirs:
color: ’#a0b0f8’
size: 18.0
opacity: 1

tanks:
color: ’#3ec427’
size: 18.0
opacity: 1

pipes:
color: black
size: 1.0
opacity: 0.5

pumps:
color: maroon
size: 10.0
opacity: 1

layers:
label: Five Pipes
locations: [’145’, ’287’, ’155’, ’231’, ’175’]
file: null
location type: link
shape: circle
fill:

color: red
size: [8, 10, 12, 24, 30]
opacity: 1
color range: null
size range: null
opacity range: null

configure:
output prefix: ${CWD}/visualization_ex1/Net3
debug: 0

Figure 11.3: The visualization con1guration 1le for example 1.

140

Five Pipes

Figure 11.4: Graphic from visualization example 1.

141

11.4.2 Example 2

The second example uses an external data 1le to de1ne locations and values to be used in the network
graphic. The con1guration 1le, visualization_ex2.yml, for this example is shown in Figure 11.5. The location
1le used in this example is shown in Figure 11.6. This example uses the pipe length to scale the size and

opacity of the links and the base demand to scale the color and size of the nodes. This graphic shows that

link 329 is very long compared to the other 30-inch diameter pipes and that node 109 has the largest base

demand. The size range option in the con1guration 1le is used to automatically scale the size and opacity

of each layer. For example, the link length ranges from 1 to 45,500, but is scaled to a size range of 5 to 20.

network:
epanet file: Net3/Net3.inp

visualization:
screen:

color: white
size: [1600, 1000]

legend:
color: white
scale: 2.0
location: [20, 20]

layers:
- label: 30 inch diameter pipes

locations: ’["links"][i]’
file: Net3/Net3_locations.yml
location type: link
shape: circle
fill:

color: blue
size: ’["length"][i]’
opacity: ’["length"][i]’
color range: null
size range: [5,20]
opacity range: [0.5,1]

- label: Nodes with base demand > 100
locations: ’["nodes"][i]’
file: Net3/Net3_locations.yml
location type: node
shape: circle
fill:

color: ’["base demand"][i]’
size: ’["base demand"][i]’
opacity: 1
color range: [orange, red]
size range: [15,35]
opacity range: null

configure:
output prefix: ${CWD}/visualization_ex2/Net3
debug: 0

Figure 11.5: The visualization con1guration 1le for example 2.

The example can be executed using the following command line:

wst visualization visualization_ex2.yml

The resulting graphic is shown in Figure 11.7.

142

nodes: [109, 101, 119, 151, 111, 105, 103, 199, 117, 189]
base demand: [231.4, 189.95, 176.13, 144.48, 141.94, 135.37, 133.2,

119.32, 117.71, 107.92]
links: [123, 125, 173, 175, 177, 179, 183, 187, 189, 321, 329, 330, 333]
length: [2000, 1500, 2080, 2910, 2000, 430, 590, 1270, 50, 1200, 45500, 1, 1]

Figure 11.6: The location 1le used in visualization example 2.

30 inch diameter pipes

Nodes with base demand > 100

Figure 11.7: Graphic from visualization example 2.

143

Chapter 12

Advanced Topics and Case Studies

This chapter provides more background information on the Merlion water quality model and discusses a
few of the more advanced topics for the sensor placement problem. In addition, a few case study applica-

tions using the di−erent WST subcommands are provided.

12.1 Merlion Water Quality Model

The Merlion water quality modeling framework is provided with WST to enable fast multi-scenario simula-

tions and solution of optimization problems that require an embedded water quality model (e.g., booster

placement with booster_mip, source identi1cation MIP formulation). In this section, the model equations

and the calculations performed inside WST in order to generate a linear system of equations to describe the

water quality in a network are brie2y described. The equations and the discretization process described in
this section do not require any additional work from the user (except for selecting the merlion option in the
con1guration 1le). More details about the Merlion modeling framework is provided in (Mann et al., 2012a).

The model formulation ensures mass balances at all junctions, pipes and tanks. The following mass balance

equations describe the transport of a species inside the network. For simplicity, complete instantaneous

mixing is assumed for the tanks, and plug 2ow is assumed for the pipes.

P P
O

(t) Qi(t)ĉi (t) − P I
(t) Qi(t)ĉ (t) + mn(t)i

cn(t) =
OPn i2� i2�I

n
(12.1), 8 n 2 J

i2�O
n (t) Qi(t) − (t) Qi(t) + Qext(t)ni2�I

n

X X
(t)dcn(t) O IVn = Qi(t)ĉ (t) − Qi(t)ĉ (t) + mn(t)i idt

i2� (t) i2� (t)2 3 O
n

I
n

− 4 X
Qi(t) −

X
Qi(t) + Qext(t)5 cn(t), 8 n 2 ST (12.2)n

i2�O
n (t) i2�I

n(t)

@ĉi(x, t) ci(x, t)+ ui(t)
@ˆ = 0, 8i 2 P (12.3)

dt dx

where cn and mn denotes the concentration and mass injected at a node, respectively. The variable ĉi is
the concentration inside pipe i and Vn is the volume of water inside tank n. The variable J is a set of all
junctions, ST is a set of all storage tanks and P is a set of all pipes. The variable Q denotes volumetric 2ow
rates that are pre-calculated using EPANET 2.00.12 and are assumed to be constant over each hydraulic

144

time step. The 2ow rate of a known external source entering a node is also pre-calculated and is denoted
by Qext

. The variable �O represents the set of all pipes with 2ow going away from node n. Similarly, �I i n n

represents the set of all pipes with 2ow coming into node n.

Equation 12.1 represents a set of algebraic equations dependent on time alone and Equation 12.2 repre-

sents a set of ordinary di−erential equations (ODEs) also dependent on time alone. Therefore, these two

equations can be discretized in time. However, discretizing Equation 12.3, which are partial di−erential
equations (PDEs), in both time and space would lead to a prohibitively large model. Instead, these pipe

balance PDEs are replaced using an origin-tracking algorithm. This algorithm is based on the Lagrangian

method; however, instead of tracking concentration values as packets of water moving through the net-

work, the origin-tracking algorithm tracks the originating node and time step of each packet as it enters a
pipe (see Figure 12.1). Once the water packet exits the pipe, equations are written relating the concentration

of the pipe inlet and outlet to the concentration of connected nodes based on time delay. These time delay
expressions are formulated for each pipe independently. Therefore, the algorithm scales favorably for a

large water distribution system having a linear computational cost as the size of the network increases.

BA

Flow direction

	�������	�� = A
�����
���	����� = 1

BA

	�������	�� = A
�����
���	����� = 1

Timestep

t = 1

t = 3

t = 5 A

	�������	�� = A
�����
���	����� = 1

B

.

.

.

.

.

.

Equations

ĉ(x = Ii(t1), t1) = ĉA(t1)

ĉ(x = Oi(t1), t1) = 0

ĉ(x = Ii(t5), t5) = ĉA(t5)

ĉ(x = Oi(t5), t5) = ĉA(t1)

Figure 12.1: Illustration of the origin tracking algorithm.

By calculating time delay expressions, a very large but sparse linear system of equations is generated that

relates input injections (m) from all nodes and time steps to output concentrations (c) from all nodes and
time steps.

Gc = Dm (12.4)

Unlike black box simulations, this linear model can be extended and embedded inside other numerical

applications. For example, the water quality model can be embedded inside a mathematical programming

formulation for applications like booster placement, source inversion and optimal grab sampling.

After formulating the linear system, performing a tracing simulation is straightforward. First, an injection
pro1le (m) is speci1ed. Then, the system is factorized and 1nally backsolved for the network concentration
pro1le c. This process is fast, and even more eZcient when simulating a large ensemble of tracing simu-

lations. In this case, the system is factorized once, and a backsolve is performed for each simulation. To

get additional speedup, a tailored solver is also provided that takes advantage of the structure of the linear

system by permuting matrix G into lower triangular, which removes the need for any factorization. The tai-

lored solver also utilizes the Basic Linear Algebra Sub-routines (BLAS) library to perform multiple backsolves

(corresponding to multiple injection scenarios) more eZciently. For additional information about Merlion,
refer to Mann et al. (2012a).

145

12.2 Average-case Sensor Placement

The sp subcommmand can design a sensor network for contamination warning systems (CWSs) using a

variety of di−erent optimization formulations. The most widely studied sensor placement formulation for

CWS design is to minimize the expected impact of an ensemble of contamination incidents given a sensor

budget. This formulation has also become the standard formulation for sp, because it can be e−ectively

used to select sensor placements in large water distribution networks. This chapter provides a variety of

examples that illustrate the application of the sp subcommand for this optimization formulation. Sensor

placement formulation and examples illustrating common use of sp are included in Chapter 5.

12.2.1 Computing a Bound on the Best Sensor Placement Value

A mixed-integer program (MIP) solver like GLPK provide upper and lower bounds on the value of the 1nal
solution. For large water distribution systems, it might be prohibitively expensive to perform optimization

with a MIP solver. However, computing a lower bound with these solvers might be practical even for large

water distribution systems.

The con1guration 1le shown in Figure 12.2 de1nes a sensor placement problem with the compute bound

option set to true in the problem block. This option indicates that the goal for the optimizer is to compute a
lower bound on the globally optimal solution, rather than 1nding a sensor placement. All other options are
those previously de1ned in example 3 of the Sensor Placement Examples (See Section 5.4).

impact data:
- name: impact1

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute bound: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_bound/Net3
debug: 0

Figure 12.2: The sp con1guration 1le using the GLPK solver to compute a lower bound.

The YAML output 1le in Figure 12.3 contains the lower bound value. This is the same value as the solution

generated by the GRASP heuristic in example 3 of the Sensor Placement Examples (See Section 5.4). In this
manner, a MIP solver can be used to evaluate whether a heuristic sensor placement is near-optimal.

The Lagrangian heuristic leverages the structure of the eSP model (Equations 5.1) to guide its search. Specif-

ically, this heuristic computes the optimal values for the integer relaxation of eSP and then applies a ran-

146

sp output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 4.364 # CPU time (sec)
directory: C:/wst-1.5/examples/sp_bound
log file: Net3sp_output.log # Log file

sensor placement:
nodes: [] # List of sensor nodes
objective: null # Objective value
lower bound: 8655.806356 # Lower bound
upper bound: null # Upper bound
greedy ranking: Net3_evalsensor.out # Upper bound
stage 2: [] # Upper bound

Figure 12.3: The sp YAML 1le with the lower bound from the GLPK solver.

domized rounding technique. As a consequence, this heuristic can also be used to compute bounds on

the value of sensor placement in a manner that is similar to a MIP solver. The con1guration 1le in Figure

12.4 uses the Lagrangian solver to determine the sensor placement for example 3 of the Sensor Placement

Examples (See Section 5.4).

impact data:
- name: impact1

impact file: Net3/Net3_ec.impact
nodemap file: Net3/Net3.nodemap

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute bound: False
compute greedy ranking: False

solver:
type: lagrangian
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_bound_lag/Net3
debug: 0

Figure 12.4: The sp con1guration 1le using the Lagrangian solver.

The YAML output 1le in Figure 12.5 shows the results of sensor placement using the Lagrangian solver for

example 3 of the Sensor Placement Examples (See Section 5.4). It contains the sensor locations (EPANET
IDs), the objective value (the impact metric value), the lower bound on this objective as well as the upper

bound, which is the same as the objective value. The sensor locations identi1ed are nodes 139, 161, 191
and 208. The mean extent of contamination (EC) impact for this design is approximately 9889 pipe feet

contaminated. The lower bound is approximately 9819 pipe feet contaminated, which is greater than the

147

bound computed by GLPK. This illustrates the fact that the bounds computed by the Lagrangian solver are

weaker than those computed by a MIP solver.

sp output
general:

version: 1.5 # WST version
date: ’2019-03-05’ # Run date
cpu time: 0.501 # CPU time (sec)
directory: C:/wst-/examples/sp_bound_lag
log file: Net3sp_output.log # Log file

sensor placement:
nodes: [[’139’, ’161’, ’191’, ’208’]] # List of sensor nodes
objective: [’9889.90378’] # Objective value
lower bound: 9819.335391 # Lower bound
upper bound: 9889.90378 # Upper bound
greedy ranking: Net3_evalsensor.out # Upper bound
stage 2: [] # Upper bound

Figure 12.5: The sp YAML 1le with the lower bound from the Lagrangian solver.

As with MIP solvers, the Lagrangian solver can also be used to simply compute this lower bound. The
con1guration 1le in Figure 12.6 shows an example of using the compute bound option in the problem block

with the Lagrangian solver.

12.2.2 Managing Sensor Placement Locations

By default, the sp subcommand assumes that all node locations in a water distribution network are feasible
sensor locations. In practice, sensors cannot be practically installed in many locations without signi1cant
cost and inconvenience. The location block in the con1guration 1le is used to specify options for declaring

feasible and infeasible node locations in the network. Additionally, the location block can be used to declare

node locations as 1xed, where a sensor must be placed, and un1xed, where a sensor cannot be located.

A location block consists of a list of declarations that are interpreted in their order within the con1guration
1le. Each declaration consists of a dictionary with a single key, whose value is either a string or list of EPANET

node IDs. For example, the following location block declares a list of infeasible node locations:

location:
- infeasible nodes:

- 113
- 121
- 141
- 163
- 209

The impact of infeasible sensor locations on the results for example 1 of the Sensor Placement Examples

(See Section 5.4) is shown in following example. The solution from this example placed sensors at nodes

113, 121, 141, 163 and 209 and the mean extent of contamination (EC) for this sensor design was 8655. If
these nodes were listed as infeasible sensor locations (as shown in the location block above) in the con-

1guration 1le, the new sensor locations are nodes 111, 119, 169, 207 and 237. The mean EC for this new

solution is 8932 which is worse than the initial design; this re2ects the fact that a sensor design that can use

any location will be better than a sensor design that can use a limited set of locations.

12.2.3 Limited-Memory Sensor Placement Techniques

Controlling the memory used by optimizers is a critical issue when solving large sensor placement formu-

lations. This is a particular challenge for MIP methods, but both the GRASP and Lagrangian heuristics can
exceed a workstation’s memory when solving very large problems. The sp subcommand supports a variety

of mechanisms that reduce the problem representation size while preserving the structure of the sensor

148

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute bound: True
compute greedy ranking: False

solver:
type: lagrangian
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_bound_only_lag/Net3
debug: 0

Figure 12.6: The sp con1guration 1le using the Lagrangian solver and the compute bound option.

placement problem. These techniques include: scenario aggregation and 1ltering, feasible locations, wit-

ness aggregation, skeletonization and explicit memory management.

Scenario Aggregation: Scenario aggregation compresses the data in an impact 1le while preserving its
fundamental structure. This strategy is e−ective when optimizing for mean performance objectives. Sce-

nario aggregation is performed with the scenarioAggr command, which is described in Section 14.4.

Filtering Impacts: Filtering impacts can also reduce memory requirements for sensor placement by re-

ducing the size of the impact 1les. Filtering can limit the sensor placement formulation to only consider

contamination incidents that are suZciently bad in the worst-case. Filtering is performed with the filter_-
impacts executable, which is described in Section 14.2

Feasible Locations: Limiting the feasible locations is another strategy to reduce memory requirements.

The size of the sensor placement formulation decreases as the number of feasible locations decreases. The

location block option described in Section 12.2.2 can be used to specify the set of feasible locations.

Witness Aggregation: Witness aggregation limits the size of the sensor placement formulation by ag-

gregating the decision variables that witness a contamination incident. By default, variables that witness

contamination incidents with the same impact are aggregated, and this typically reduces the MIP constraint
matrix by a signi1cant amount. Further reductions perform more aggressive aggregations that create an

approximate sensor placement formulation.

Witness aggregation is speci1ed using an aggregate block in the sp con1guration 1le. A named aggregation
block speci1es the type of aggregation, the aggregation limit value and the associated impact data. For
example:

149

aggregate:
- name: agg1

type: PERCENT
goal: impact1
value: 0.125
conserve memory: 0
distinguish detection: 0
disable aggregation: [0]

The following table illustrates the use of the two witness aggregation options when optimizing the mean

extent of contamination: aggregation type = PERCENT and aggregation type = RATIO. The RATIO aggregation

type can be used with distinguish detection option to help with aggregation. The second line of data in this

table is the default aggregation, which has about half as many non-zero values in the MIP constraint matrix.
Both the percent and ratio aggregation strategies e−ectively reduce the problem size while 1nding near-

optimal solutions.

Aggregation Type Aggregation Value Binary Variables MIP Nonzeros Solution Value
None NA 97 220736 8525
PERCENT 0.0 97 119607 8525
PERCENT 0.125 97 49576 9513
RATIO 0.125 97 12437 10991

Skeletonization: Another option to reduce the memory requirement for sensor placement is to reduce

the size of the network model through skeletonization. Skeletonization groups neighboring nodes based on

the topology of the network and pipe attributes. Section 14.5 describes the spotSkeleton executable, which

provides techniques for branch trimming, series pipe merging and parallel pipe merging. These techniques

eliminate pipes and nodes that have little e−ect on the overall hydraulics of the system. This e−ectively

contracts a connected piece of the network into a single node, called a supernode. Skeletonized networks

can be used to de1ne geographic proximity in a two-tiered sensor placement approach for large network

models (Klise et al., 2013).

Explicit Memory Management: The GRASP heuristic has several options for controlling how memory is
managed. The grasp-representation solver option can be used to control how the local search steps are

performed. By default, a dense matrix is precomputed to perform local search steps quickly, but a sparse
matrix can be used to perform local search with less memory. Also, the GRASP heuristic can be con1gured
to use the local disk to store this matrix.

12.2.4 Evaluating a Sensor Placement

Sensor placements can be evaluated based on an impact assessment of possible contaminant incidents.

The evalsensor executable measures the performance of each sensor placement with respect to the set

of possible contamination locations. This analysis assumes that probabilities have been assigned to these

contamination locations. If no probabilities are given, then uniform probabilities are used. The evalsensor
executable takes sensor placements in a sensor placement 1le and evaluates them using data from one or
more impact 1les. Sensor placement 1les are generated using the sp subcommand, and the 1le format is
described in File Formats Section 13.10. Impact 1les are generated using the sim2Impact subcommand,

and the 1le format is described in the File Formats Section 13.4. Additional information on evalsensor can
be found in the Executable Files Section 14.1.

The following example demonstrates the use of evalsensor using the sensor network design from Sec-

tion 5.4. The evalsensor command for this example is executed using the following command:

evalsensor --nodemap=Net3.nodemap Net3_ec.sensors Net3_ec.impact Net3_mc.impact

This example generates output shown in Figure 12.7.

150

--

--

Sensor placement id: 23112
Number of sensors: 5
Total cost: 0
Sensor node IDs: 17 19 24 65 88
Sensor junctions: 115 119 127 209 267

Impact File: Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 9951.5669
Lower quartile impact: 1650.0000
Median impact: 9694.0000
Upper quartile impact: 15044.8000
Value at Risk (VaR) (5%): 25485.0000
TCE (5%): 27992.4667
Max impact: 33110.0000

Impact File: Net3_mc.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 70806.1310
Lower quartile impact: 503.9170
Median impact: 83999.3000
Upper quartile impact: 143984.0000
Value at Risk (VaR) (5%): 143999.0000
TCE (5%): 144049.5000
Max impact: 144143.0000

Figure 12.7: The evalsensor example output.

The evalsensors command can also evaluate a sensor placement in the case where sensors can fail, and

there is some small number of di−erent classes of sensors (grouped by false negative probability). This
information is speci1ed by an imperfect sensor class 1le and an imperfect junction class 1le, which are
de1ned in Sections 13.6 and 13.5, respectively. The imperfect sensor class (sc) 1le, Net3.imperfectsc,

speci1es di−erent categories of sensor failures. Sensors of class 1 have a false negative probability of 25%,

sensors of class 2 have a probability of 50%, class 3 have a 75% probability and class 4 100%.

1 0.25
2 0.50
3 0.75
4 1.0

Once failure classes are de1ned, the nodes of the network are assigned to failure classes by using a im-

perfect junction class (jc) 1le. The beginning of the imperfect junction class 1le Net3.imperfectjc is shown
below.

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1

151

--

--

Given the junction classes, evalsensor is used to determine the expected impact of a sensor placement,

given that sensors might fail. The following command line executes evalsensor with speci1ed failure prob-

abilities:

evalsensor --nodemap=Net3.nodemap --sc-probabilities=Net3.imperfectsc \
--scs=Net3.imperfectjc Net3_ec.sensors Net3_ec.impact

This example generates output shown in Figure 12.8.

Sensor placement id: 23112
Number of sensors: 5
Total cost: 0
Sensor node IDs: 17 19 24 65 88
Sensor junctions: 115 119 127 209 267

Impact File: Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 16472.1977
Lower quartile impact: 5270.0000
Median impact: 13440.0000
Upper quartile impact: 24199.0000
Value at Risk (VaR) (5%): 49232.5172
TCE (5%): 52421.7876
Max impact: 55814.4578

Figure 12.8: The evalsensor output using sensor failure probabilities.

The mean extent of contamination impact changes dramatically if sensors are allowed to fail. The original

solution was misleading if sensors fail according to the assigned probabilities. With sensor failures, the
expected impact is much higher.

152

12.3 Source Identi1cation with Grab Samples Case Study

The following case study illustrates how the inversion and grabsample subcommands can be used in tan-

dem to perform multiple cycles of source inversion calculations as more and more measurement data be-

comes available. The solution approach integrates iterative sampling strategy for 1nding the contamination

source using discrete measurements obtained from manual grab samples taken during di−erent sampling
cycles. Figure 12.9 illustrates the source inversion and grab sample strategy. A contamination incident is
1rst suspected given a customer inquiry or detection from a 1xed continuous sensor in the Contamination
Warning System (CWS). At this stage, a team is sent out to gather manual grab samples at and around
the location of 1rst detection. Discrete yes/no measurements from these manual grab samples along with

the measurement from CWS are then used to identify the potential sources of the contamination incident.

Since the inversion problem is an ill-posed problem, the solution will generally be non-unique. A set of likely

locations can be identi1ed and the grabsample subcommand can be used to determine the location of the
next manual grab samples. The source inversion is performed again using the new information. This cycle

of collecting manual grab samples and performing source inversion is continued until the true injection

location(s) is identi1ed.

Contaminant
Detected

Physically Obtain
Measurements

Perform Source
Inversion

Small Set of
Likely Events?

Set of Likely Events

Determine Optimal
Grab Sample

Locations

Yes

Done

No

Measurements from
Sensors or EDS

Figure 12.9: Illustration of the source inversion and grab sample cycling strategy.

12.3.1 Case Study

Since real system data is not available, the measuregen executable is used to generate simulated data for
the contamination incident in the following case study. In this simulation, a conservative contaminant is

injected into node 163 of EPANET Example Network 3 (Net3) starting at 8 AM. The Bayesian probability

based formulation [8.1.2] is used in the inversion subcommand to identify the possible contamination
sources. Figure 12.10 shows the 1xed sensor locations in blue while the original contamination location is
shown in red. The CWS consists of 1ve 1xed sensors that provide measurements every 15 minutes (set as a
command line option in measuregen).

All the 1les required for this case study are provided in the examples/case_studies/inversion folder.

153

Figure 12.10: Fixed sensors (blue) and contamination location (red) for case study.

The case study is a composed of three cycles of source inversion and grab sampling to reduce the number of

possible contamination source locations. During each cycle, the inversion subcommand uses the following
data:

• Net3.inp - EPANET Example Network 3 input (INP) 1le.

• MEASURES.dat - Measurements 1le binary (yes/no) results from 1xed sensors and grab samples (gen-

erated using measuregen executable).

• <output_pre1x>_Likely_Nodes.dat - Likely nodes 1le containing a list of feasible nodes to consider as
possible contamination source nodes. This 1le is only used in cycles 2 & 3.

The inversion subcommand outputs a YAML 1le with a list of possible contamination sources. A TSG 1le is
also created that provides information about the possible contamination incidents. This 1le can be used in
the grabsample subcommand. Thereafter, Cycles 1 & 2 use the following data to determine optimal sample
location:

• Net3.inp - EPANET Example Network 3 input (INP) 1le.

• <output_pre1x>_pro1le.tsg - TSG 1le which contains a list of likely injections obtained from the
inversion subcommand from the preceding cycle.

• Sample time - Time in the future when the samples are expected to be taken. This is generally the

current time plus the time it would take the sample teams to obtain measurements.

154

• 1xed_sensors.dat - List of 1xed continuous sensor locations. This is used to avoid 1xed sensors being
selected as grab sample locations.

12.3.2 Cycle 1

At 8:15 AM, the sensor located at node 167 detects abnormal water quality. Further con1rmation is made
with another positive measurement at 8:30 AM. At this point, the measurement data from the past 8 hours

is used to perform source inversion. The inversion subcommand identi1es 24 possible injection locations
as shown in red in Figure 12.16a. The grabsample subcommand is then used to identify additional mea-

surement locations that will reduce the number of possible injection locations. The utility has three teams

available to gather manual grab samples and it takes 30 minutes for each team to obtain the manual sam-

ples. The grabsample subcommand identi1es the three optimal grab sample locations shown in blue and

the possible injection nodes in red in Figure 12.16a.

Figure 12.11: Cycle 1 identi1ed optimal grab sample locations (blue).

The 1les required and generated during this cycle of source inversion and grab sample are provided in the
examples/case_studies/inversion/Cycle1 folder.

155

12.3.3 Cycle 2

In the 30 minutes that the sampling teams take to get manual grab sample measurements from the loca-

tions identi1ed in Cycle 1, new measurements are also available from the 1xed sensors in the CWS. It is
assumed that the sampling teams have 1eld instruments that can provide them with a yes/no indication

of the presence or absence of a contaminant. At 9:00 AM, these new measurements are used to perform

source inversion again. This time the inversion subcommand identi1es seven possible injection locations
as shown in Figure 12.16b. In Cycle 2, the possible sources were restricted to the 24 nodes identi1ed in
Cycle 1 using the feasible nodes option. Again a 30-minute delay for sample collection and three sample

teams were used in the grabsample subcommand to identify the optimal grab sample locations at 9:30 AM.

These grab sample locations (blue) and the possible injection nodes (red) are shown in Figure 12.16b.

Figure 12.12: Cycle 2 identi1ed optimal grab sample locations (blue).

The 1les required and generated during this cycle of source inversion and grab sample are provided in the
examples/case_studies/inversion/Cycle2 folder.

12.3.4 Cycle 3

Grab sample measurements are obtained at 9:30 AM from the optimal locations identi1ed in Cycle 2. These
along with the new measurements obtained from the 1xed sensors are used to perform source inversion

again. Only the seven possible injection nodes obtained in Cycle 2 are considered as feasible nodes in

the inversion subcommand for Cycle 3. Three possible injection locations as shown in Figure 12.16c are

156

identi1ed in this cycle.

Figure 12.13: The possible injection nodes (red) identi1ed in Cycle 3.

Since the water utility has three sampling teams available, the teams can directly inspect the three possible

injection locations identi1ed in this cycle to con1rm the true injection location.

157

12.4 Uncertainty Reduction with Grab Samples Case Study

The following case study illustrates how the functionality of the inversion, grabsample and uq subcom-

mands can be used in tandem to identify multiple sampling cycles that reduce uncertainty in the extent

of contamination. The approach uses successive measurements obtained from manual grab samples to
1nd the contamination plume. Figure 12.14 illustrates the methodology. A contamination incident is 1rst
suspected following a customer inquiry or detection from a 1xed continuous sensor in the Contamination
Warning System (CWS). At this stage, a team is sent out to gather manual grab samples at and around the

location of 1rst detection. Discrete yes/no measurements from these manual grab samples along with the

measurement from contamination warning system are then used to estimate the probability that nodes

in the network are contaminated. The probability of node contamination provides a metric of uncertainty

quanti1cation. Given a particular con1dence level (e.g., 95%), nodes can be categorized according to their
probability of contamination: LY for “likely yes,” LN for “likely no” and UN for “unknown.”

If a suZciently small number of nodes remain uncertain, then the process is terminated, otherwise further

sampling cycles are required. This cycle of collecting manual grab samples is continued until the contami-

nation plume is estimated with a good level of con1dence.

1.	Quantify	uncertainty	and	build	
list	of	potential	scenarios

2.	Update	scenario	probabilities

3.	Compute	nodal	contamination	
probabilities

5.	Small	Plume	
Uncertainty?

6.	Determine	sampling	locations

7.	Take	sample	measurements

4.	Determine	uncertainty	in	
plume	extent

Alarm	Triggered

Yes

No

Figure 12.14: Illustration of the source inversion and grab sample cycling strategy.

12.4.1 Case Study

Since real system data is not available, the measuregen executable is used again to generate simulated data

for a contamination incident in the following case study. In this simulation, a conservative contaminant is
injected into node 115 of EPANET Example Network 3 (Net3) at 8 am. The set of potential scenarios includes

10 hydraulic realizations with 97 di−erent injection locations. All of the 1les required for this case study are
provided in the examples/case_studies/sampling folder.

The case study is composed of four sampling cycles to reduce uncertainty in the extent of contamination.

The initial warning is raised at 10 am. From this time, the procedure in Figure 12.14 is followed to reduce

uncertainty by gathering grab samples every hour. In each sampling cycle, three additional samples are

158

collected. Given the information provided by the new samples, the probability distribution of scenarios is
updated following Bayesian statistics. Then, the methodology proposed in Section 9.1 is followed to quantify

uncertainty. To facilitate the analysis, a script was implemented in Python to run the sampling cycles in a
loop, which is the signals.py 1le provided in the examples/case_studies/sampling/cycling folder. The
execution of the script follows the same convention as the WST subcommands:

python wst/packages/pywst/pywst/cycling/signals.py cycle <configfile>

The options for the script are the same as the options provided in the sections of the inversion, uq and
grabsample subcommands. Some additional options to specify duration of each cycle and number of cycles

are added. The con1guration 1le for this case study, sampling_case_study.yml, is shown in Figure 12.15.

confidence nodes: 0.90
confidence scenarios: 0.99
delta t: 60
measurements: MEAS.dat
num cycles: 6
mip solver: glpk
number of samples: 3
set scenarios: list_scenarios
start time: 120
threshold: 0.01
true scenario: list_true_scenario
sample criteria: probability1
prune scenarios: True

Figure 12.15: The con1guration 1le for sampling case study.

12.4.2 Cycle 0

At 10 AM, the contamination warning system detects abnormal water quality at nodes 40 and 111. The
measurement data from those two locations is used to perform a Bayesian update in the probability of

scenarios. At this point, given the probability distribution of scenarios, 73 possible scenarios are identi1ed
as most likely. The uncertainty in the number of scenarios is evident in the uncertainty quanti1cation as
most of the nodes are deemed unknown (UN). Figure 12.16a shows in yellow all locations that are consid-

ered uncertain to have contamination. The utility has three teams available to gather manual grab samples

and it takes 60 minutes for each team to obtain the manual samples. The probability-based formulation in
Chapter 10 identi1es the three optimal grab sample locations shown in dark gray/black in Figure 12.16a.

12.4.3 Cycle 1

At 11:00 AM, the new measurements are used to perform a Bayesian update and an uncertainty quanti1-

cation. This time the number of uncertain nodes is reduced by half as shown in Figure 12.16b. Nodes in
red are likely to be contaminated (LY) and nodes in blue are likely to not be contaminated (LN). Again a 60-

minute delay for sample collection and three sample teams were used in the probability-based formulation

in Chapter 10 to identify the optimal grab sample locations at 12:00 PM. The three new and three previous

grab sample locations (dark gray/black) are shown in Figure 12.16b.

12.4.4 Cycle 2

Grab sample measurements are obtained at 12:00 PM from the optimal locations identi1ed in second cycle
of the grabsample subcommand. These are used to perform Bayesian update and an uncertainty quanti1-

cation again. Only seven nodes remain uncertain (UN) as to whether they are contaminated in this cycle. As

the uncertainty is still not small enough, three more sampling locations are identi1ed by solving the prob-

ability based formulation of Chapter 10. The three new grab sample locations plus the six previous (dark

gray/black) are shown in Figure 12.16c.

159

https://wst/packages/pywst/pywst/cycling/signals.py
https://signals.py

12.4.5 Cycle 3

Grab sample measurements are obtained at 1:00 PM from the optimal locations identi1ed in in third cycle
of the grabsample subcommand. With this new information, the Bayesian update and the uncertainty
quanti1cation lead to zero nodes classi1ed as uncertain (all are likely yes or likely no). The three new grab

sample locations plus the nine previous (dark gray/black) are shown in Figure 12.16d. Only 11 grab sample

locations are shown in this cycle since one of the locations was selected to be sampled twice, since di−erent
sampling times can provide di−erent measurement data.

(a) Cycle 0 (b) Cycle 1

(c) Cycle 2 (d) Cycle 3

Figure 12.16: EPANET Example Network 3 with grab sample locations (dark gray/black diamonds), contami-

nated nodes (red circles), uncertain nodes (yellow circles), and clean nodes (blue-gray circles) identi1ed for
each of the cycles in the case study.

160

12.5 Flushing with Source Identi1cation Case Study

When a water utility becomes aware of a water quality issue either through customer complaints or water

quality sensor alarms, they often open a hydrant to 2ush a portion of the distribution network in order to

bring new water into the area and increase the chlorine residual. This case study examines how WST can be

used to identify e−ective 2ushing locations following a water quality sensor alarm using the the flushing,
inversion and grabsample subcommands. All 1les required to run the case study are provided in the
examples/case_studies/flushing folder.

The EPANET input 1le for this example is Net6.inp, which has a simulation duration of seven (7) days start-

ing at midnight. The network is assumed to include a contamination warning system (CWS) with ten op-

timally placed water quality sensors and an event detection system in operation. The 10 sensors are
located at JUNCTION-1617, JUNCTION-199, JUNCTION-2297, JUNCTION-2716, JUNCTION-2930, JUNCTION-

3023, JUNCTION-435, JUNCTION-552, JUNCTION-675 and JUNCTION-831. The sensors were optimally placed
using the sp subcommand. Figure 12.17 shows the water distribution network and the location of the water

quality sensors. The CWS provides binary values every 15 minutes from each sensor location. The binary

value is zero if water quality conditions are normal or one if the conditions are abnormal.

Figure 12.17: Net6 water distribution network with water quality sensors.

161

At 10:15 AM, the CWS alerts water utility sta− to abnormal water quality occurring at water quality sensor
located at JUNCTION-1617 in water distribution network model. Figure 12.18 shows the JUNCTION-1617
highlighted as the sensor location with a positive detection of contamination in the network.

Figure 12.18: Net6 with positive contamination detection at JUNCTION-1617.

The water utility must now decide how to proceed. The sta− checks their consequence management plan

and sends out a team to ensure that the water quality sensor is working properly. The water utility sta− de-

termines that a contamination incident is possible and they would like to identify the source. Source identi1-

cation allows the water utility to determine the extent of contamination (or spread) and possibly shut o− any

continuing injection of contaminants. Using the CWS information from the past 35 hours, provided in the

measurements 1le Net6_CWS_MEASURES.dat, and the Net6 INP 1le, the inversion subcommand is used
to identify the possible sources of the contamination. The inversion con1guration 1le, Net6_inversion.yml,
and the measurements 1le are provided in the examples/case_studies/flushing folder.

The inversion subcommand can be executed using the following command line:

wst inversion Net6_inversion.yml

Figure 12.19 shows the 25 possible contamination sources identi1ed by the inversion subcommand.

Since 2ushing is a common response to abnormal water quality, the water utility sta− decide to open hy-

drants to 2ush the contaminated water out of the network. To determine the most e−ective 2ushing loca-

tions, the sta− simulates contamination incidents from each possible contamination source location using
the TSG 1le produced from the inversion subcommand. From these simulations, the possible extent of

contamination from each source location is identi1ed. The nodes in the water distribution network model
which are calculated to have contaminant concentrations above zero at the starting of 2ushing (12:00 PM,

approximately two hours after detection) are considered as the initial starting points for the network solver

162

Figure 12.19: Net6 with possible contamination sources identi1ed by inversion subcommand.

option in the flushing subcommand. These initial starting points are the 1rst node locations that are going

to be evaluated in terms of the impact metric and then as the process continues, the solver will look at all of

the nodes that are connected to these initial points to determine their impact metrics. Figure 12.20 shows

the nodes impacted by the 25 possible contamination source locations.

The water utility decides to open two hydrants to 2ush the contaminated water out of the network, since

the extent of contamination for the possible 25 contamination sources (as seen in Figure 12.20) is not very

large at the start of 2ushing at 12:00 PM. To identify e−ective 2ushing locations, the flushing subcom-

mand is used. This command requires the following 1les as speci1ed in the 2ushing con1guration 1le,

Net6_2ush_2nodes.yml:

• Net6.inp - Net6 EPANET input (INP) 1le.

• Net6_inv1_pro1le.tsg - The TSG 1le created by the inversion subcommand.

• Net6_bio.tai - The TAI 1le describing the dose-response characteristics for the assumed contaminant.
This 1le is required when using the population exposed (PE) impact metric.

In addition, characteristics of the 2ushing response are also de1ned in the 2ushing con1guration 1le. These
include:

• A list of nodes that can be 2ushed - All non-zero demand (NZD) nodes

• The maximum number of nodes which can be 2ushed simultaneously - 2

• The 2ushing rate - 1100 gallons/min

163

Figure 12.20: Net6 with nodes impacted by the 25 possible contamination sources.

• The 2ushing duration - 8 hours

• The response time delay (time between detection and start of 2ushing) - 1 hour

Other information provided in the 2ushing con1guration 1le include the impact metric that is going to be

minimized (PE), the nodes where water quality sensors are located, the type of solver (network solver), and

the initial starting points for the network solver (JUNCTION-1881 and JUNCTION-1878).

The flushing subcommand can be executed using the following command line:

wst flushing Net6_flush_2nodes.yml

Figure 12.21 shows the 2ushing nodes identi1ed by the flushing subcommand. The 2ushing nodes identi-

1ed are JUNCTION-1881 and JUNCTION-2233.

Since the identi1ed 2ushing nodes were based upon the 25 possible contamination sources, the water
utility sta− evaluate the 2ushing response against each of the possible sources assuming it was the true

source of the contamination. This option is available using EVALUATE as the type under the solver block

of the 2ushing con1guration 1le. An example 2ushing con1guration 1le for the evaluate option is provided
in Net6_2ush_2nodes_eval_JUNC1617.yml in the examples/case_studies/flushing folder. This example
assumes that JUNCTION-1617 is the true source of contamination in the network and it evaluates the e−ec-

tiveness of the identi1ed 2ushing locations in terms of the PE metric. If JUNCTION-1617 is the true source,
2ushing at JUNCTION-1881 and JUNCTION-2233 reduces the PE metric by only two percent (2%).

The flushing subcommand for this example can be executed using the following command line:

wst flushing Net6_flush_2nodes_eval_JUNC1617.yml

164

Figure 12.21: Net6 with the 2ushing nodes identi1ed by the flushing subcommand.

Because the inversion subcommand solvers assume a continuous injection, the created TSG 1le has the
contamination injection durations lasting as long as the simulation duration listed in the network INP 1le.
Thus, the contamination injections start a little before the detection time and stop at the end of the simu-

lation (seven days). Since an important response action would include shutting o− the source of contami-

nation, the TSG 1le is modi1ed to stop the injection 1ve hours after detection. Using the modi1ed TSG 1le,

the 2ushing response is evaluated against each of the 25 possible sources assuming it was the true source

of the contamination. Figure 12.22 shows the percent reduction in the PE metric for each of the 25 possible

contamination sources with 2ushing alone (blue) and 2ushing with shutting o− the contamination source
(green). The percent reduction in the PE metric ranges from 24% to 97% for the 2ushing with source shut-o−
response action, which is an increase from the range of 2% to 45% for the 2ushing alone action. The highest
percent reduction was if the true injection incident occurred at JUNCTION-1881.

165

Figure 12.22: The reduction in the PE metric for each of the 25 possible contamination sources.

166

Chapter 13

File Formats

This chapter describes the di−erent 1le formats used by WST, including a brief description, format, the

associated subcommand(s) and any additional details.

13.1 Con1guration File

• Description: Input con1guration 1le for all WST subcommands.

• Format: YAML

• Created by: Template input con1guration 1les can be created using the –-template option from each
subcommand in WST.

• Used by: WST

• Details: The input con1guration 1les for WST are stored in the YAML 1le format. YAML is a human-

readable 1le format that is well suited for storing hierarchical information. This information can be

easily parsed and stored as common data types such as strings, scalars, lists and dictionaries by a

range of programming languages. WST uses PyYAML to parse YAML 1les into Python data types. Basic
YAML format speci1cations are listed below:

– Each element of a YAML 1le is a key, value pair separated by a colon (key:value).

– The key is the name given to the element, and the value is the data for that element.

– The hierarchy of YAML 1les is maintained by outline indentation.

– The number of spaces used to indent an element in the YAML 1le must be consistent across all
elements at the same hierarchical level.

– Nested data elements must be indented further than their preceding level.

– Using tab for indentation is not recommended.

– Optional blank lines can be added for readability.

– Comments begin with the number sign (#) and must be separated from a key:value pair by space.

Comments can start anywhere but are limited to a single line.

– PyYAML automatically casts data types. For example, [123] is read as a list with a single integer

value, ’123’ is read as a string, 123 is read as an integer, and 123.0 is read as a real number.

– Strings do not require quotation (unless they could be cast as a number) and can contain spaces.

– Lists are indicated with square brackets or hyphens. When using square brackets, the list is

comma separated. When using hyphens, each entry of the list is on a new line.

– Dictionaries are indicated with indentation or curly brackets and are used to de1ne key: value
pairs. Nested dictionaries de1ne the hierarchical levels in the YAML 1le.

167

Additional information on YAML 1les can be found on the oZcial YAML website http://www.yaml.org.

Select aspects of the flushing subcommand template con1guration 1le are used as an example of
the format of a YAML 1le. The full flushing subcommand template con1guration 1le is shown in
Figure 6.2. In the template, the top level key, denoted ’2ushing’, contains the following data:

flushing configuration template
network:

epanet file: Net3.inp # EPANET 2.00.12 network file name
scenario:

location: [NZD] # Injection location: ALL, NZD or EPANET ID
type: MASS # Injection type: MASS, CONCEN, FLOWPACED or SETPOINT
strength: 100.0 # Injection strength [mg/min or mg/L depending on

type]
species: null # Injection species, required for EPANET-MSX
start time: 0 # Injection start time [min]
end time: 1440 # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
signals: null # Signal files, overrides TSG or TSI files
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

impact:
erd file: null # ERD database file name
metric: [PE] # Impact metric
tai file: Net3_bio.tai # Health impact file name, required for public health

metrics
response time: 0 # Time [min] needed to respond
detection limit: [0.0] # Thresholds needed to perform detection
detection confidence: 1 # Number of sensors for detection

flushing:
detection: [111, 127, 179] # Sensor locations to detect contamination scenarios
flush nodes:

feasible nodes: NZD # Feasible flushing nodes
infeasible nodes: NONE # Infeasible flushing nodes
max nodes: 2 # Maximum number of nodes to flush
rate: 800.0 # Flushing rate [gallons/min]
response time: 0.0 # Time [min] between detection and flushing
duration: 480.0 # Flushing duration [min]

close valves:
feasible pipes: ALL # Feasible pipes to close
infeasible pipes: NONE # Infeasible pipes to close
max pipes: 0 # Maximum number of pipes to close
response time: 0.0 # Time [min] between detection and closing pipes

solver:
type: StateMachineLS # Solver type
options: # A dictionary of solver options
threads: 1 # Number of concurrent threads or function evaluations
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
output directory: SIGNALS_DATA_FOLDER # Output directory
debug: 0 # Debugging level, default = 0

This subset of the the flushing subcommand template is refereed to as the 2ushing block. Instead of
a single value assigned to ’2ushing’, the value is a dictionary containing a nested structure of additional
key:value pairs.

The keys ’detection’, ’2ush nodes’ and ’close valves’ are all second level keys inside the 2ushing block.
The location of these keys is often speci1ed using the notation [2ushing][detection], [2ushing][2ush
nodes] and [2ushing][close valves]. The second level keys must be indented using the same number

of spaces and they must have unique names. The key [2ushing][detection] is assigned to a list. Lists

168

http://www.yaml.org

can be speci1ed in one of two ways, using square brackets or using hyphen. The following two formats

(separated by ---) are equivalent.

flushing:
detection: [111, 127, 179] # square bracket notation, comma separated

flushing:
detection: # hyphen notation, new line for each entry
- 111
- 127
- 179

All template con1guration 1les use square brackets to indicate where a list of input values can be
used. If these input values include keywords, like NZD for non-zero demand nodes, this information is
listed in the comment or in the user manual documentation for that speci1c YAML input parameter.

The options [2ushing][2ush nodes] and [2ushing][close valves] are both assigned dictionaries. The
data inside these second level keys contain additional key:value pairs. All keys within these dictionaries

must be indented using the same number of spaces and have unique names. Two key:value pairs in
the 2ushing 2ush nodes option are listed below:

flushing:
flush nodes:

feasible nodes: NZD
max nodes: 2

Here, the [2ushing][2ush nodes][feasible nodes] option is set to the string NZD and the [2ushing][2ush
nodes][max nodes] option is set to the integer 2. Note that there are two third-order keys named
’response time’, however they do not share the same exact hierarchy, as shown below:

flushing:
flush nodes:

response time: 0.0
close valves:

response time: 0.0

YAML 1les can be written in a compact format that uses curly brackets to represent the hierarchical

indentation of the nested dictonary. While this avoids issues with space indentation, this format is
more diZcult for the user to read. For example, the following two examples (separated by ---) are
equivalent:

flushing:
detection: [111, 127, 179]

{’flushing’: {’detection’: [111, 127, 179]}}

13.2 Cost File

• Description: Speci1es the costs for installing sensors at di−erent nodes throughout a network. This
is the cost of installing one sensor at one particular node.

• Format: ASCII

• Created by: WST user

• Used by: sp

• Details: Each line of this 1le has the format:

<EPANET node ID> <cost>

Nodes not explicitly enumerated in this 1le are assumed to have a cost of zero unless the ID __default
is speci1ed. For example to specify that all un-enumerated nodes have a cost of 1.0:

169

__default 1.0

For example, the following cost 1le indicates that a sensor at node 1 has a cost of $100, a sensor at

node 2 has a cost of $200 and sensors at all other nodes have a cost of $50.

1 100
2 200

__default 50

13.3 ERD File

• Description: Provides a compact representation of all contamination scenario simulation results.

• Format: binary

• Created by: tevasim

• Used by: sim2Impact

• Details: The simulation data generator produces four output 1les containing the results of all con-

tamination simulation scenarios. The database 1les include an index 1le (index.erd), a hydraulics 1le
(hyd.erd) and a water quality 1le (qual.erd). The 1les are unformatted binary 1le in order to save disk
space and computation time. They are not readable using an ordinary text editor.

• Note: The ERD 1le format replaced the TSO and SDX 1le formats, created by previous versions of
tevasim, to extend the capability of tevasim for multi-species simulation using EPANET-MSX. While the
tevasim subcommand produces only ERD 1les (even for single species simulation), the sim2Impact
subcommand accepts both ERD and TSO 1le formats.

13.4 Impact File

• Description: For each contamination scenario, the impact 1le contains a list of all the locations
(nodes) in the network where a sensor might detect contamination from a speci1c scenario.

• Format: ASCII

• Created by: sim2Impact

• Used by: sp and evalsensor

• Details: The 1rst line of an impact 1le contains the number of incidents. The second line speci1es the
number of delays (always 1) and the delay time in minutes. Subsequent lines have the format

<scenario-index> <node-index> <time-of-detection> <impact-value>

The scenario index is the index of contamination scenarios that were simulated. A scenario index
maps to a line in the network scenariomap 1le, which is de1ned in Section 13.9. The node index is the
index of a witness location for the incident. A node index maps to a line in the network nodemap 1le,

which is de1ned in Section 13.8. The time of detection is in minutes. The value of the impacts are in
the corresponding units for each impact metric. The di−erent impact metrics in each line correspond
to the di−erent delays that have been computed.

170

13.5 Imperfect Junction Class File

• Description: Provides the mapping from EPANET node IDs to failure classes of di−erent false-negative
probabilities.

• Format: ASCII

• Created by: WST user

• Used by: sp

• Details: The imperfect junction class 1le provides the mapping from EPANET node IDs to failure
classes of di−erent false-negative probabilities as de1ned in a imperfect sensor class 1le (See Sec-

tion 13.6 for information on imperfect sensor class 1les). The format of this 1le is:

<node id> <failure class>
<node id> <failure class>
....

For example, node 1 is of class 2, node 2 is of class 1 and node 3 is of class 1:

1 2
2 1
3 1
....

13.6 Imperfect Sensor Class File

• Description: Contains false-negative probabilities for di−erent types of sensors. The false-negative
probability de1nes the accuracy rate of the sensor (e.g., 50 percent of the time the sensor is providing

a correct reading).

• Format: ASCII

• Created by: WST user

• Used by: sp

• Details: The 1le has format:

<class id> <false-negative probability>
<class id> <false-negative probability>
....

For example, the following 1le de1nes a failure class 1 with a false-negative probability of 25 percent,

and a failure class 2 with a false-negative probability of 50 percent:

1 0.25
2 0.5
....

13.7 Measurements File

• Description: Contains a list of measurements along with their corresponding time and EPANET node
ID. This 1le can contain multiple node IDs and the measurement time is not required to be in order.

• Format: ASCII

• Created by: WST user or a water quality event detection system or a data acquisition system

171

• Used by: inversion

• Details: Each line of this 1le has the format:

<EPANET node ID> <Time from beginning of simulation (sec) > <Binary yes/no measurement>

An example measurements 1le is provided:

Node_name time Cij

149 0 0
149 900 0
149 1800 0
149 2700 0
149 3600 0
149 4500 0
149 5400 0

13.8 Nodemap File

• Description: Provides a mapping from the indices used for sensor placement to the node IDs used
within EPANET.

• Format: ASCII

• Created by: sim2Impact

• Used by: evalsensor and sp

• Details: Each line of this 1le has the format:

<node-index> <EPANET node ID>

This mapping is generated by the sim2Impact subcommand, and all sensor placement solvers subse-

quently use the node indices internally.

13.9 Scenariomap File

• Description: The scenariomap 1le provides auxiliary information about each contamination incident.

• Format: ASCII

• Created by: sim2Impact

• Used by: evalsensor

• Details: Each line of this 1le has the format:

<node-index> <EPANET node ID> <source-type> <source-start-time> ...
<source-stop-time> <source-strength>

The node index maps to the network nodemap 1le as described in Section 13.8, and the EPANET node
ID provides this information. The source type is the injection mode for an scenario, e.g., 2ow-paced
or 1xed-concentration. The scenario source start and stop times are in minutes, and these values are

relative to the start of the EPANET simulation. The source strength is the concentration of contaminant

at the injection source.

172

13.10 Sensor Placement File

• Description: Describes one or more sensor placements.

• Format: ASCII

• Created By: sp

• Used By: evalsensor

• Details: Lines in a sensor placement 1le that begin with the # character are assumed to be comments.
Otherwise, lines of this 1le have the format

<sp-id> <number-of-sensors> <node-index-1> ...

The sensor placement ID is used to identify sensor placements in the 1le. Sensor placements could
have di−ering numbers of sensors, so each line contains this information. The node indices map to

values in the nodemap 1le described in Section 13.8.

13.11 TAI File

• Description: Describes the information needed for assessing health impacts.

• Format: ASCII

• Created by: WST user

• Used by: sim2Impact

• Details: This 1le is required for health impact metrics, such as population exposed, population dosed

and population killed. The following example can be copied directly into a text editor.

.; THREAT ASSESSMENT INPUT (TAI) FILE
; Data items explained below
; UPPERCASE items are non-modifiable keywords
; lowercase items are user-supplied values
; | indicates a selection
;--
; INPUT-OUTPUT
; * TSONAME - The location of the ERD or TSO file containing the results
; to analyze. This value is ignored when used in sim2Impact
; to specify parameters for the pe, pk or pd metrics.
; * TAONAME - Name of threat assessment output (TAO) file. This value
; is ignored when used in sim2Impact to specify parameters
; for the pe, pk, or pd metrics.
; * SPECIES_NAME - The species name to analyze. This is optional - if it is not
; specified, the first species will be used. If the ERD database
; was generated by EPANET-MSX, the value MUST match one of
; the species specified in the MSX input file. If the ERD database
; was generated by EPANET 2.00.12, the value should be "species."
; If the TEVA-SPOT GUI generated the ERD database,
; the value MUST match the name specified in the GUI.
; * THRESHOLD - The concentration threshold. All concentrations below
; value are set to 0. Only used in the the threatassess
; executable, not in sim2Impact
;--
TSONAME charstring
TAONAME charstring
SPECIES_NAME charstring
THRESHOLD value
;--
; DOSE-RESPONSE PARAMETERS
; * A - Function coefficient

173

; * M - Function coefficient
; * N - Function coefficient
; * TAU - Function coefficient
; * BODYMASS - Exposed individual body mass (kg)
; * NORMALIZE - Dose in mg/kg (YES) or mg (NO)
; * BETA - Beta value for probit dose response model
; * LD50 - LD50 or ID50 value for the agent being studied
; * TYPE - Either PROBIT or OLD depending on the dose response equation
; to be used. If it is PROBIT, only the LD50 and BETA values
; need to be specified, and if it is OLD, the A, M, N and TAU
; values need to be specified. The BODYMASS and NORMALIZE
; apply to both equations.
;--
DR:A value
DR:M value
DR:N value
DR:TAU value
BODYMASS value
NORMALIZE YES|NO
DR:BETA value
DR:LD50 value
DR:TYPE probit | old
;--
; DISEASE MODEL
; * LATENCYTIME - Time from exposed to symptoms (hours)
; * FATALITYTIME - Time from symptoms till death (hours)
; * FATALITYRATE - Fraction of exposed population that die
;--
LATENCYTIME value
FATALITYTIME value
FATALITYRATE value
;--
; EXPOSURE MODEL
; * DOSETYPE - TOTAL = Total ingested mass
; * INGESTIONTYPE - DEMAND = Ingestion probability proportional to demand
; ATUS RANDOM = ATUS ingestion model, random volume
; selection from volume curve
; ATUS MEAN = ATUS ingestion model, mean volume of value
; FIXED5 RANDOM = 5 fixed ingestion times (7AM, 9:30AM, Noon, 3PM, 6PM),
; random volume selection from volume curve
; FIXED5 MEAN = 5 fixed ingestion times (7AM, 9:30AM, Noon, 3PM, 6PM),
; mean volume of value
; * INGESTIONRATE - Volumetric ingestion rate (liters/day) - used for DEMAND,
; ATUS MEAN and FIXED5 MEAN
;--
DOSETYPE TOTAL
INGESTIONTYPE DEMAND | ATUS RANDOM | ATUS MEAN | FIXED5 RANDOM | FIXED5 MEAN
INGESTIONRATE value
;--
; POPULATION MODEL
; * POPULATION FILE - File name that contains the node-based
; population. The format of the file is simply
; one line per node with the node ID and the
; population value for that node.
; * POPULATION DEMAND - Per capita usage rate (flow units/person).
; The population will be estimated by demand.
;--
POPULATION FILE | DEMAND value
;--
; DOSE OVER THRESHOLD MODEL
; * DOSE_THRESHOLDS - The dose over each threshold specified will be
; computed and output to the TAO file.
; * DOSE_BINDATA - Specifies the endpoints of bins to tally the number
; of people with a dose between the two endpoints.
; Values can be either dose values or response values -

174

; response values are converted to dose values using the
; dose-response data specified in this file and are indicated
; on this line by the keyword RESPONSE. Dose values are
; IDENTIFIED by the keyword DOSE.
;--
DOSE_THRESHOLDS value1 ... value_n

13.12 TSG File

• Description: Speci1es how an ensemble of EPANET 2.00.12 contamination scenario simulations will
be performed.

• Format: ASCII

• Created by: WST user

• Used by: tevasim

• Details: Each line of a TSG 1le speci1es injection location(s), species (optional), injection mass and the
injection time-frame:

<injection-location> <injection-type> <specie> <injection-mass> <start-time> <end-time>

If <specie> is included, the tevasim subcommand uses EPANET-MSX. The simulation data generator
uses the speci1cations in the TSG 1le to construct a separate threat simulation input (TSI) 1le that
describes each individual contamination scenario in the ensemble. Each line in the TSG 1le uses a
simple language that is expanded to de1ne the ensemble. The entire ensemble is comprised of the
cumulative e−ect of all lines in the TSG 1le. The TSG 1le is an optional 1le, since the ensemble of
contamination scenarios can be speci1ed in the con1guration 1le.

<Src1><SrcN> <SrcType> <SrcSpecie> <SrcStrngth> <Start> <Stop>

<Srci>: A label that describes the ith source location of an N-source ensemble.
This can be either: 1) An EPANET node ID identifying one node
where the contaminant is introduced, 2) ALL, denoting all nodes
(excluding tanks and reservoirs), 3) NZD, denoting all nodes with
non-zero demands. This simple language allows easy specification of
single- or multi-source ensembles. [Character strings]

<SrcType>: The source type, one of: MASS, CONCEN, FLOWPACED, SETPOINT (see EPANET 2.00.12
user manual for information about these types of water quality sources).
[Character string]

<SrcSpecie>: The character ID of the water quality species added by the source. This
parameter must be omitted when using executables built from the standard
EPANET 2.00.12 distribution. [Character string]

<SrcStrngth>: The strength of the contaminant source (see EPANET 2.00.12 documentation for
the various source types).

<Start>: The time, in seconds, measured from the start of simulation, when the
contaminant injection is started. [Integer]

<Stop>: The time, in seconds, measured from the start of simulation, when the
contaminant injection is stopped. [Integer]

Examples:

One scenario with a single injection at node ID 10, mass rate of 5 mg/min of species
SPECIE1, start time of 0, and stop time of 1000:
10 MASS SPECIE1 5 0 1000

Multiple scenarios with single injections at all non-zero demand nodes:
NZD MASS SPECIE1 5 0 1000

Multiple scenarios with two injections, one at node ID 10, and the other at all
non-zero demand nodes (NZD):

175

10 NZD MASS SPECIE1 5 0 1000

Multiple scenarios with three injections, at all combinations of all nodes
(if there are N nodes, this would generate N^3 scenarios for the ensemble):
ALL ALL ALL MASS SPECIE1 5 0 1000

Note: this language will generate scenarios with repeat instances of injection node
locations (e.g., ALL ALL would generate one scenario for node i and j, and another
identical one for node j and i). Also, it will generate multi-source scenarios with
the same node repeated. In this latter case, the source mass rate at the repeated
node is the mass rate specified in <SrcStrngth>.

13.13 TSI File

• Description: Speci1es how an ensemble of EPANET 2.00.12 contamination scenario simulations will
be performed.

• Format: ASCII

• Created by: tevasim or WST user

• Used by: tevasim

• Details: The TSI 1le is generated as output from the tevasim subcommand and would not normally be

used, but it is available after the run for reviewing each scenario that was generated for the ensemble.

The TSG 1le is essentially a short hand for generation of the more cumbersome TSI 1le. Each record
in the TSI 1le speci1es the unique attributes of one contamination scenario. The number of scenarios

does not have a restriction.

<NodeID1> <SrcTypeIDX1> <SrcSpecieIDX1> <SrcStrngth1> <Start1> <Stop1> <NodeIDN>...
<SrcTypeIDXN> <SrcSpecieIDXN> <SrcStrngthN> <StartN> <StopN>

<NodeIDi>: EPANET ID identifying the ith node where the contaminant is
introduced. [Character string]

<SrcTypeIDXi>: The EPANET source type index of the ith contaminant source.
Each EPANET source type is associated with an integer index
(see EPANET 2.00.12 toolkit documentation for reference). [Integer]

<SrcSpecieIDXi>: The EPANET species index of the ith contaminant source. [Integer]
<SrcStrngthi>: The strength of the ith contaminant source (see EPANET 2.00.12

documentation for description of sources). This value
represents the product of contaminant flow rate and
concentration. [Real number]

<Starti>: The time, in seconds, measured from the start of simulation,
when the ith contaminant injection is started. [Integer]

<Stopi>: The time, in seconds, measured from the start of simulation,
when the ith contaminant injection is stopped. [Integer]

One water quality simulation will be run for each scenario specified in the threat
simulation input (TSI) file. For each such simulation, the source associated with each
contaminant location <NodeIDi>, i=1,,N will be activated as the specified type source,
and all other water quality sources disabled. If a source node is specified in the
EPANET 2.00.12 input file, the baseline source strength and source type options will be ignored,

13.14 Weight File

• Description: Speci1es the weights for contamination incidents.

• Format: ASCII

• Created by: WST user

176

• Used by: sp

• Details: Each line of this 1le has the format:

<scenario-ID> <weight>

Scenarios not explicitly enumerated in this 1le are assumed to have a weight of zero unless the ID
__default is speci1ed. For example, to specify that all un-enumerated scenarios have a weight of 1.0:

__default 1.0

177

Chapter 14

Executable Files

This chapter describes the di−erent executable 1les that can be used outside of WST to evaluate di−erent
sensor network designs, and to reduce the size of the sensor placement problem by 1ltering impacts, ag-

gregating impacts or skeletonizing the water distribution network model. In addition, an executable 1le to
create a simulated measurements 1le for sensor locations in a water distribution network model is also
described.

14.1 evalsensor

The evalsensor executable is used to compute information about the impact of contamination incidents

for one or more sensor network designs. The evalsensor executable takes a sensor network design in
a sensor placement 1le (see File Formats Section 13.10 for more detail) and evaluates them using data
from an impact 1le or a list of impact 1les (see File Formats Section 13.4). This executable measures the

performance of each sensor network designs with respect to the set of possible contamination scenarios.

Section 12.2.4 provides more information and an example application of this executable.

14.1.1 Usage

Usage with a speci1c sensor network design:

evalsensor [options...] <sensor-file> <impact-file1> [<impact-file2>...]

Usage without a sensor network design:

evalsensor [options...] none <impact-file1> [<impact-file2>...]
If none, is specified, then evalsensor will evaluate impacts without any sensors.

14.1.2 Options

--all-locs-feasible
A boolean flag to indicate that all locations are treated as feasible.

--costs=<filename>
The name of a file that contains the cost information for each node in the network.

For more details about the cost file, see File Formats Section 13.2.

--debug
A boolean flag to add output information about each incident.

--format=<type>
The type of output that the evaluation will generate:

cout - Generates output that is easily read. (default)
xls - Generates output that is easily imported into a MS Excel spreadsheet.
xml - Generates an XML-formatted output to communicate

178

with the TEVA-SPOT GUI. (not currently supported)

--gamma=<num>
The fraction of the tail distribution used to compute the VaR and TCE

performance measures. (default is 0.05)

-h, --help
A boolean flag to display usage information.

--incident-weights=<filename>
The name of a file that contains the weights of the different contamination incidents.
For more details about the weights file, see File Formats Section 13.14.

--nodemap=<filename>
The name of a file that contains the node map information for translating sensor placement
indices to EPANET node IDs. For more details about the nodemap file, see File Formats
Section 13.8.

-r, --responseTime=<num>
The number of minutes that are needed to respond to the detection of
contamination. As the response time increases, the impact increases
because the contaminant affects the network for a greater length of
time.

--sc-probabilities=<filename>
The name of a file that contains the probability of detection for each sensor category.
For more details about the imperfect sensor class file, see File Formats Section
13.6.

--scs=<filename>
The name of a file that contains the sensor category information for each possible
sensor location in the network. For more details about the imperfect junction class file,
see File Formats Section 13.5.

--version
A boolean flag to display version information.

Note: Options like reponseTime can be specified with the syntax
--responseTime 10.0 or --responseTime=10.0.

14.1.3 Arguments

<sensor-file>
A sensor placement file that contains one or more sensor network designs

that will be evaluated. If none, is specified, then evalsensor will evaluate
impacts without any sensors.

<impact-file>
A impact file that contains the impact data concerning the simulated contamination

incidents. If one or more impact files are specified, then evaluations are
performed for each impact separately.

179

14.2 1lter_impacts

The filter_impacts script 1lters out the low-impact incidents from an impact 1le. The filter_impacts
command reads an impact 1le, 1lters out the low-impact incidents, rescales the impact values and outputs
another impact 1le.

14.2.1 Usage

filter_impacts [options...] <impact-file> <out-file>

14.2.2 Options

--threshold=<val>
The contamination incidents with undetected impacts above a specified threshold should be kept.

--percent=<num>
The percentage of contamination incidents with the worst undetected impact that should be kept.

--num=<num>
The number of contamination incidents with the worst undetected impact that should be kept.

--rescale
Rescale the impacts using a log10 scale.

--round
Round input values to the nearest integer.

14.2.3 Arguments

<impact-file>
The input impact file.

<out-file>
The output impact file.

180

14.3 measuregen

The measuregen executable is used to create a simulated measurements 1le for sensor locations in a water
distribution network model. A node-time-concentration list is obtained by water quality simulations per-

formed in Merlion. The MEASURE.dat 1le contains the node-time-concentration list and can be used to
perform source inversion.

14.3.1 Usage

measuregen [options...] <required network option> <required scenario option> <sensor-file>

14.3.2 Options

Data format option:
--output-prefix=<filename>
The name to add to all output files.

EPANET input file options:
--quality-timestep-minutes=<num>
The size of the water quality time step used by Merlion to perform the water quality simulations.
When this value is specified, it overrides the value in the EPANET 2.00.12 input file.

--simulation-duration-minutes=<num>
The length of water quality simulation used to build the Merlion water quality model.
When this value is specified, it overrides the value in the EPANET 2.00.12 input file. This is useful
when the length of the simulation specified in the EPANET 2.00.12 input file is longer than the time
horizon in which the sensor measurements are needed. For instance, if the simulation duration
in the EPANET 2.00.12 input is seven days, but sensor measurements are only needed for the first three
days of the simulation. This option reduces the memory required to build the Merlion water
quality model.

Label options:
--custom-label-map=<filename>
The name of a file which maps EPANET node names to custom labels. All data files will be written
using these custom labels.

--output-merlion-labels
Node names will be translated into integer node IDs to reduce file sizes for large networks.
A node map is provided to map node IDs back to node names (MERLION_LABEL_MAP.txt). This option
is overridden by the --custom-label-map flag.

Noise options:
--FNR=<num>
The false negative rate to apply to all sensors.

--FPR=<num>
The false positive rate to apply to all sensors.

--scale=<num>
The scaling value to add noise to the base demand.

--seed=<num>
The seed to generate the random number used at the moment of adding noise.

Other options:
--disable-warnings
A boolean flag to disables printing of warning statements to stderr.

--enable-logging
A boolean flag to generate a log file with verbose runtime information.

-h, --help
A boolean flag to display usage information.

181

--ignore-merlion-warnings
A boolean flag to ignore warnings about unsupported features of Merlion.

-v, --version
A boolean flag to display version information.

Save options:
--epanet-rpt-file
A boolean flag to save output file generated by EPANET 2.00.12 during hydraulic simulations.

--merlion-save-file
A boolean flag to save the text file defining the Merlion water quality model.

Time options:
--concentrations
The concentration values will be printed in the measurement file.

--decay-const=<num>
The value for the first-order decay coefficient(1/min). The default value is taken from EPANET 2.00.12
input file.

--measures-per-hour=<num>
The number of measurements to take per hour. The default value is 60.

--start-sensing-time=<num>
The time to start taking measurements. This value is in minutes.

--stop-sensing-time=<num>
The time to stop taking measurements. This value is in minutes.

--threshold=<num>
The value of concentrations above which the measurements are positive. The default value is 0.0.

14.3.3 Arguments

<required network option>
--inp=<filename>
The name of the EPANET 2.00.12 network file.

--wqm=<filename>
The name of the Merlion water quality model (wqm) file.

<required scenario option>
This argument defines the injection incidents to simulate in order
to obtain measurements at the sensor locations. Three options are
available to define the injection incidents.

--scn=<filename>
The name of the SCN file for specifying the injection incidents.

--tsg=<filename>
The name of the TSG file for specifying the injection incidents.

--tsi=<filename>
The name of the TSI file for specifying the injection incidents.

--tsi-species-id=<name>
(*optional) The single TSI species id to use in each scenario by Merlion. All other species
will be ignored. If this option is not used and multiple species ids are in the TSI
file, an error will occur.

<sensor node file>
A file with a list of sensor node names.

182

14.4 scenarioAggr

The scenarioAggr executable takes an impact 1le and produces an aggregated impact 1le. The
scenarioAggr executable reads an impact 1le, 1nds similar incidents, combines them and writes out an-

other impact 1le. The convention is to append the string aggr to the output.

The following 1les are generated during the execution of scenarioAggr, assuming that the input was named
network.impact:

• aggrnetwork.impact - The new impact 1le.

• aggrnetwork.impact.prob - The probabilities of the aggregated incidents. These are non-uniform, so

any solver must recognize incident probabilities.

Not all of the solvers available in the sp command can perform optimization with aggregated impact 1les.
In particular, the heuristic GRASP solver does not currently support aggregation because it does not use

contamination incident probabilities. The Lagrangian and PICO solvers support contamination incident ag-

gregation. However, initial results suggest that although the number of contamination incidents is reduced

signi1cantly, the number of impacts might not be, and solvers might not run much faster.

14.4.1 Usage

scenarioAggr --numEvents=<num_incidents> <impact file>

14.4.2 Options

--numEvents=<number>
The number of contamination incidents that should be aggregated.

14.4.3 Arguments

<impact-file>
The input impact file.

183

14.5 spotSkeleton

The skeletonizer, spotSkeleton, reduces the size of a network model by grouping neighboring nodes based

on the topology of the network and pipe diameter threshold. Nodes that are grouped together form a new

node, often referred to as a supernode. The spotSkeleton executable requires an EPANET 2.00.12 INP
network 1le and a pipe diameter threshold. The executable creates a skeletonized EPANET 2.00.12 INP
network 1le and map 1le. The map 1le de1nes the nodes that belong to each supernode.

The spotSkeleton executable includes branch trimming, series pipe merging and parallel pipe merging.

A pipe diameter threshold determines candidate pipes for skeleton steps. The spotSkeleton executable
maintains pipes and nodes with hydraulic controls as it creates the skeletonized network. It performs series

and parallel pipe merges if both pipes are below the pipe diameter threshold, calculating hydraulic equiv-

alency for each merge based on the average pipe roughness of the joining pipes. For all merge steps, the

larger diameter pipe is retained. For a series pipe merge, demands (and associated demand patterns) are

redistributed to the nearest node. Branch trimming removes deadend pipes smaller than the pipe diame-

ter threshold and redistributes demands (and associated demand patterns) to the remaining junction. The
spotSkeleton executable repeats these steps until no further pipes can be removed from the network. The
spotSkeleton executable creates an EPANET-compatible skeletonized 2.00.12 network INP 1le and a map
1le that contains the mapping of original network model nodes into skeletonized supernodes.

Under these skeletonization steps, there is a limit to how much a network can be reduced based on its

topology, e.g., number of deadend pipes, or pipes in series and parallel. For example, sections of the

network with a loop, or grid, structure will not reduce under these skeleton steps. Additionally, the number

of hydraulic controls in2uences skeletonization, as all pipes and nodes associated with these features are
preserved.

Commercial skeletonization codes include Haestad Skelebrator, MWHSoft H2OMAP and MWHSoft InfoWa-

ter. To validate the spotSkeleton executable, its output was compared to the output of MWHSoft H2OMAP
and Infowater. Input parameters were chosen to match spotSkeleton options. Pipe diameter thresholds

of 8 inches, 12 inches and 16 inches were tested using two large networks. MWHSoft and WST skeletonizers

were compared using the Jaccard index. The Jaccard index measures similarity between two sets by dividing

the intersection of the two sets by the union of the two sets. In this case, the intersection is the number of

pipes that are either both removed or not removed by the two skeletonizers, and the union is the number

of all pipes in the original network. If the two skeletonizers de1ne the same supernodes, the Jaccard index

equals 1. Skeletonized networks from the MWHSoft and WST skeletonizers resulted in a Jaccard index be-

tween 0.93 and 0.95. Thus, the spotSkeleton executable is believed to be a good substitute for commercial
skeletonizers.

14.5.1 Usage

spotSkeleton <input inp file> <pipe diameter threshold> <output inp file> <output map file>

14.5.2 Arguments

<input inp file>
The input EPANET 2.00.12 INP file to be skeletonized.

<pipe diameter threshold>
The pipe diameter threshold that determines which pipes might be skeletonized.

<output inp file>
The output EPANET 2.00.12 INP file created after skeletonization.

<output map file>
The output map file that contains the mapping of original network nodes to
skeletonized supernodes.

184

References

Adams, B. M., Ebeida, M. S., Eldred, M. S., Jakeman, J. D., Swiler, L. P., Bohnho−, W. J., Dalbey, K. R.,
Eddy, J. P., Hu, K. T., and Vigil, D. M. (2013). Dakota, a multilevel parallel object-oriented framework

for design optimization, parameter estimation, uncertainty quantifcation, and sensitivity analysis. Tech-

nical Report SAND2010-2183, Sandia National Laboratories. Available at http://dakota.sandia.gov/
documentation.html.

Berry, J., Hart, W. E., Phillips, C. E., Uber, J. G., and Watson, J.-P. (2006). Sensor placement in municipal
water networks with temporal integer programming models. J. Water Resources Planning and Management,
132(4):218–224.

Bureau of Labor Statistics and U.S. Census Bureau (2005). American time use survey user’s guide 2003
to 2004. Technical report, Washington DC. Available at http://www.bls.gov/news.release/archives/
atus_09142004.pdf.

Daskin, M. (1995). Wiley, New York.

Davis, M. and Janke, R. (2008). Importance of exposure model in estimating impacts when a water distribu-

tion system is contaminated. J. Water Resources Planning and Management, 134(5):449–456.

De Sanctis, A., Shang, F., and Uber, J. (2009). Real-time identi1cation of possible contamination sources
using network backtracking methods. Journal of Water Resources Planning and Management, 136:444–453.

Elloumi, S., Labbé, M., and Pochet, Y. (2004). INFORMS Journal on Computing, 16:83–94.

EPA, U. S. (2004). Response protocol toolbox: planning for and responding to drinking water contami-

nation threats and incidents. Technical report, U.S. Environmental Protection Agency, OZce of Water,
OZce of Ground Water and Drinking Water, Washington, D.C. Available at http://water.epa.gov/
infrastructure/watersecurity/upload/2004_11_24_rptb_response_guidelines.pdf.

EPA, U. S. (2011). Teva-spot toolkit and user’s manual. Technical report, U.S. Environmental Protec-

tion Agency. Available at http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=
514412.

EPA, U. S. (2013a). Epanet-rtx, real-time extension for the epanet toolkit, at open water analytics. Technical

report, U.S. Environmental Protection Agency. Available at http://openwateranalytics.github.io/
epanet-rtx/index.html.

EPA, U. S. (2013b). Water security initiative. Technical report, U.S. Environmental Protection Agency. Available

at http://water.epa.gov/infrastructure/watersecurity/lawregs/initiative.cfm.

Fourer, R., Gay, D. M., and Kernighan, B. W. (2002). AMPL: A Modeling Language for Mathematical Programming.
Brooks/Cole, Paci1c Grove, CA, 2nd edition.

Geib, C., Taxon, T., and Hatchett, S. (2011). Epanet results database (erd), user’s guide, version 1.00.00.
Technical report.

185

http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://www.bls.gov/news.release/archives/atus_09142004.pdf
http://www.bls.gov/news.release/archives/atus_09142004.pdf
http://water.epa.gov/infrastructure/watersecurity/upload/2004_11_24_rptb_response_guidelines.pdf
http://water.epa.gov/infrastructure/watersecurity/upload/2004_11_24_rptb_response_guidelines.pdf
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=514412
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=514412
http://openwateranalytics.github.io/epanet-rtx/index.html
http://openwateranalytics.github.io/epanet-rtx/index.html
http://water.epa.gov/infrastructure/watersecurity/lawregs/initiative.cfm

Hart, D. B. and McKenna, S. A. (2012). Canary user’s manual, version 4.3.2. Technical Report

EPA/600/R/08/040B, Washington, D,C.: U.S. Environmental Protection Agency. Available at http://cfpub.
epa.gov/si/si_public_file_download.cfm?p_download_id=513254.

Hart, W. E., Laird, C., Watson, J., and Woodru−, D. (2012). Pyomo - Optimization Modeling in Python. Springer,

1st edition.

Hatchett, S., Uber, J., Boccelli, D., Haxton, T., Janke, R., Kramer, A., Matracia, A., and Panguluri, S. (2011).

Real-time distribution system modeling: development, application, and insights. In In Proc. Eleventh Inter-
national Conference on Computing and Control for the Water Industry, Sept. 2011, Exeter, UK.

Janke, R., Morley, K., Uber, J., and Haxton, T. (2011). Real-time modeling for water distribution system oper-

ation: Integrating security developed technologies with normal operations. In In Proc. AWWA Distribution
Systems Symposium and Water Security Conference, Sept. 2011, Nashville, TN.

Klise, K., Phillips, C., and Janke, R. (2013). Two-tiered sensor placement using skeletonized water distribution

network models. Journal of Infrastructure Systems, (10.1061/(ASCE)IS.1943-555X.0000156).

Klise, K., Siirola, J., Hart, D., Hart, W., Phillips, C., Haxton, T., Murray, R., Janke, R., Taxon, T., Laird, C., Seth, A.,

Hackebeil, G., McGee, S., and Mann, A. (2015). Water security toolkit user manual version 1.3. Technical

Report SAND2015-9735, Sandia National Laboratories.

Mann, A., Hackebeil, G., and Laird, C. (2012a). Explicit water quality model generation and rapid
multi-scenario simulation. J. Water Resources Planning and Management, (10.1061/(ASCE)WR.1943-

5452.0000278).

Mann, A., McKenna, S., Hart, W., and Laird, C. (2012b). Real-time inversion in large-scale water networks
using discrete measurements. Computers & Chemical Engineering, 37:143–151.

Mirchandani, P. and Francis, R., editors (1990). Discrete Location Theory. John Wiley and Sons, Toronto,
Canada.

Murray, R., Adcock, N., Rice, G., Uber, J., and Hatchett, S. (2011). Predicting pathogen survival when intro-

duced into a water distribution system with growth medium. In Proc. Water Quality Technology Conference,
Nov. 2011, Phoenix, AZ.

Murray, R., Haxton, T., Janke, R., Hart, W. E., Berry, J., and Phillips, C. (2010). Sensor network design for

drinking water contamination warning systems: A compendium of research results and case studies us-

ing the teva-spot software. Technical Report EPA/600/R-09/141, Cincinnati, OH OZce of Research and
Development, National Homeland Security Research Center, Water Infrastructure Protection. Available at
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=498251.

Murray, R., Uber, J., and Janke, R. (2006). Model for estimating acute health impacts from consumption of

contaminated drinking water. J. Water Resources Planning and Management: Special Issue on Drinking Water
Distribution Systems Security, 132(4):293–299.

Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. J. of Banking
and Finance, 26(7):1443–1471.

Rossman, L. A. (2000). Epanet 2 users manual. Technical report, Environmental Protection Agency. Available
at http://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf.

Shang, F., Uber, J., and Polycarpou, M. (2002). Particle backtracking algorithm for water distribution system

analysis. Journal of Environmental Engineering, 128:441–450.

Shang, F., Uber, J., and Rossman, L. (2011). Epanet mutli-species extension user’s manual. Technical Report
EPA/600/S-07/021, USEPA. Available at http://cfpub.epa.gov/si/si_public_file_download.cfm?p_
download_id=500759.

186

http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=513254
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=513254
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=498251
http://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=500759
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=500759

Topaloglou, N., Vladimirou, H., and Zenios, S. (2002). CVaR models with selective hedging for international

asset allocation. J. of Banking and Finance, (26):1535–1561.

U.S. Geological Survey (2004). Estimated use of water in the united states in 2000. Technical report, U.S.
Geological Survey. Available at http://pubs.usgs.gov/circ/2004/circ1268/pdf/circular1268.pdf.

Watson, J.-P., Hart, W. E., and Murray, R. (2006). Formulation and optimization of robust sensor placement

problems for contaminant warning systems. In In Proc. Water Distribution System Symposium.

Watson, J.-P., Murray, R., and Hart, W. E. (2009). Formulation and optimization of robust sensor placement

problems for drinking water contamination warning systems. Jour. Infrastructure Systems, 15(4):330–339.

187

http://pubs.usgs.gov/circ/2004/circ1268/pdf/circular1268.pdf

Offi ce of Research and Development (8101R)
Washington, DC 20460

Offi cial Business
Penalty for Private Use
$300

PRESORTED STANDARD
POSTAGE & FEES PAID

EPA
PERMIT NO. G-35

	Introduction
	Getting Started
	Obtaining the Water Security Toolkit
	Dependencies of the Water Security Toolkit
	Installing the Water Security Toolkit Binary Distributions
	Compiling the Water Security Toolkit Source Code
	Obtaining the Water Security Toolkit Source Code
	Configuring the Python Virtual Environment
	Building the C++ Executable Files

	Basic Usage of the Water Security Toolkit
	Verifying Installation of the Water Security Toolkit
	Uninstalling the Water Security Toolkit

	Contaminant Transport
	Hydraulic and Water Quality Analysis
	EPANET and EPANET-MSX
	Merlion

	Contaminant Transport Scenarios
	tevasim Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Contaminant Transport Examples
	Example 1
	Example 2

	Impact Assessment
	Impact Metrics
	Human Health Impact Model
	Population
	Cumulative Dose
	Response
	Disease Progression Model

	sim2Impact Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Impact Assessment Examples
	Example 1
	Example 2
	Example 3

	Sensor Placement
	Sensor Placement Formulations
	Expected-Impact Formulation
	Robust Formulations
	Side-Constrained Formulation
	Min-Cost Formulation

	Sensor Placement Solvers
	sp Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Sensor Placement Examples
	Example 1: Solving eSP with a MIP Solver
	Example 2: Evaluating Solutions to eSP with Multiple Impact Files
	Example 3: Solving eSP with a GRASP Solver
	Example 4: Solving wSP with a MIP Solver
	Example 5: Solving cvarSP with a MIP Solver
	Example 6: Solving scSP with a MIP Solver
	Example 7: Solving mcSP with a MIP Solver

	Hydrant Flushing
	Flushing Formulation
	Flushing Solvers
	Evolutionary Algorithm
	Network Solver
	Flushing Optimization for Large Problems
	Parallelization
	Stop time criteria
	Skeletonization

	flushing Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Flushing Response Examples
	Example 1
	Example 2
	Example 3
	Example 4

	Booster Station Placement
	Booster Placement Using Multi-species Reaction
	Booster MSX Solvers
	Evolutionary Algorithm
	Network Solver

	booster_msx Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Booster Placement Using Neutralization or Limiting Reagent Reaction
	Neutralization NEUTRAL Formulation
	Limiting Reagent LIMIT Formulation
	Booster MIP Solvers
	booster_mip Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Booster Placement Subcommand Comparison
	Booster Placement Examples
	Example 1
	Example 2

	Source Identification
	Source Identification Formulations
	MIP Formulations
	Bayesian Probability Based Formulation
	Contaminant Status Algorithm (CSA)

	Source Identification Solvers
	inversion Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Source Identification Examples
	Example 1
	Example 2
	Example 3

	Uncertainty Quantification
	Uncertainty Quantification Method
	uq Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Uncertainty Quantification Example

	Grab Sampling
	Grab Sample Formulations
	Distinguishability Formulation
	Probability-based Formulations
	Maximization of expected number of scenarios that disagree with measurements
	Maximization of scenario with least number of measurement disagreements

	Grab Sample Solvers
	grabsample Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Grab Sample Examples
	Example 1
	Example 2

	Visualization
	Color and Shape Options
	Data from YAML Files
	visualization Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Visualization Examples
	Example 1
	Example 2

	Advanced Topics and Case Studies
	Merlion Water Quality Model
	Average-case Sensor Placement
	Computing a Bound on the Best Sensor Placement Value
	Managing Sensor Placement Locations
	Limited-Memory Sensor Placement Techniques
	Scenario Aggregation:
	Filtering Impacts:
	Feasible Locations:
	Witness Aggregation:
	Skeletonization:
	Explicit Memory Management:

	Evaluating a Sensor Placement

	Source Identification with Grab Samples Case Study
	Case Study
	Cycle 1
	Cycle 2
	Cycle 3

	Uncertainty Reduction with Grab Samples Case Study
	Case Study
	Cycle 0
	Cycle 1
	Cycle 2
	Cycle 3

	Flushing with Source Identification Case Study

	File Formats
	Configuration File
	Cost File
	ERD File
	Impact File
	Imperfect Junction Class File
	Imperfect Sensor Class File
	Measurements File
	Nodemap File
	Scenariomap File
	Sensor Placement File
	TAI File
	TSG File
	TSI File
	Weight File

	Executable Files
	evalsensor
	Usage
	Options
	Arguments

	filter_impacts
	Usage
	Options
	Arguments

	measuregen
	Usage
	Options
	Arguments

	scenarioAggr
	Usage
	Options
	Arguments

	spotSkeleton
	Usage
	Arguments

	References

