A systematic literature review for the determination of "negative" chemical compounds for developmental neurotoxicity (DNT) assay evaluation Melissa M. Martin¹, Nancy C. Baker², William K. Boyes¹, Kelly E. Carstens³, Megan E. Culbreth¹, Mary E. Gilbert¹, Joshua A. Harrill¹, Johanna Nyffeler³, Stephanie Padilla¹, Katie Paul-Friedman¹, and Timothy J. Shafer¹ Disclaimer: This abstract does not necessarily reflect EPA policy. Mention of trade names is not an endorsement or recommendation for use ¹U.S. Environmental Protection Agency (EPA), Research Triangle Park, North Carolina, USA ² Leidos, Research Triangle Park, North Carolina, USA ³ ORISE Research Participant, Research Triangle Park, North Carolina, USA # Why create a list of "negative" chemical compounds for DNT assay evaluation? #### Screening and prioritizing chemicals with putative DNT hazard #### Development of new approach methodologies (NAMs) High Content Imaging: automated data acquisition of cell size, shape, location, fluorescence intensity Microelectrode Array: Network Formation Assay #### How to evaluate the DNT prediction performance of these assay data? | | | "Truth" (guideline DNT study) | | |-----------------------|----------|-------------------------------|----------------| | | | Negative | Positive | | Predicted using a NAM | Negative | True negative | False negative | | | Positive | False positive | True positive | Sensitivity and specificity Therefore, the aim of this study is to develop a curated list of negative DNT reference chemicals. ### **Workflow Overview** 1. Systematic Literature Search 2. Evaluate Results 3. Expert Panel Review