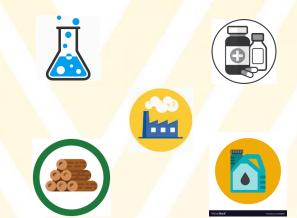
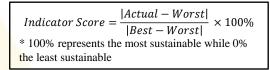
An Integrated Tool for Rapid Assessment of Chemical Manufacture Emissions, Treatment, and Sustainability Performance

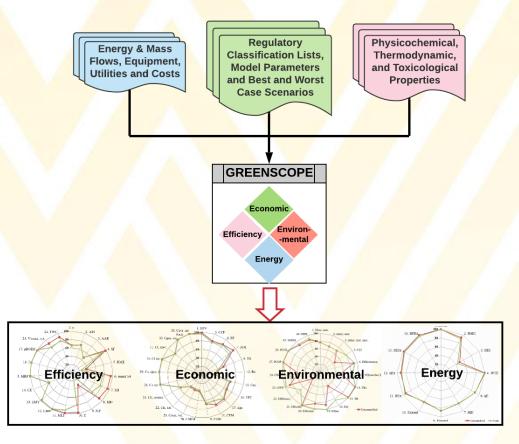
Shuyun Li¹, Selorme Agbleze¹, Gerardo J. Ruiz-Mercado² and Fernando V. Lima¹

¹West Virginia University, Morgantown, WV ²U.S. Environmental Protection Agency, Cincinnati, OH

Motivation

- Several industries rely directly or indirectly on the chemical industry
- Several metrics exist for evaluating efficiency for different applications in chemical industry
- Efficiency measures based on optimization are usually driven by cost
- To assess plant wide performance :
 - (a) Raw material and energy usage (b) Plant productivity
 (c) Operating costs
 (d) Waste/Emission generation and treatment
- The methods available to answer the above involve using the proposed integrated <u>GREENSCOPE</u> and <u>Pollution Control Unit (PCU) Analysis</u> tools


Figure 1: Industry dependence

2

GREENSCOPE FRAMEWORK

- Input data: <u>energy and mass flows</u>, operating and equipment data, properties of addressed component
- GREENSCOPE translates process design and performance data into a set of <u>dimensionless indicator scores</u>
- GREENSCOPE can be used to
 <u>assess new processes or compare</u>
 <u>different technologies</u>
- Data availability in terms of quality and quantity is critical for the assessment of results
- <u>Process simulators</u> have the potential for providing <u>required data</u>, but have limitations in emission estimation and challenges in software data transfer

Figure 2: GREENSCOPE Framework

* Ruiz-Mercado GJ, Smith RL, Gonzalez MA. GREENSCOPE.xlsm User's Guide. Excel Version 1.1 2013

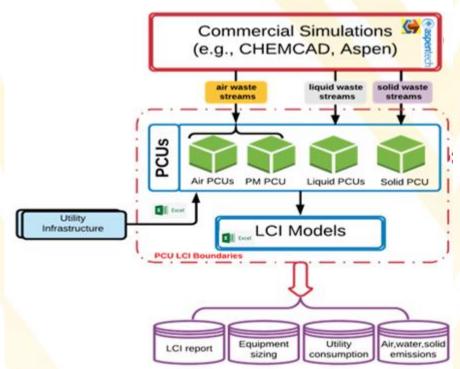
GREENSCOPE APPLICATION

		GREENSCOPE: Import				
	GREENSCOPE: Main Menu	Simulation Search				
	Main Menu ———	Load Simulation				
Main Menu	Import Simulation Stream and Compound Data Equipment and Cost Data Utility Data	All Streams Feed Streams =>				
	Additional Properties	<= Output Streams				
Figure 3: GREENSCOPE-PCU Main Menu	Plot About	=>				
	Figure <mark>4:</mark>					
	GREENSCOPE Main Menu	Import				
-	Users have choices to perform, GREENSCOPE, PCU analysis, or both					

GREENSCOPE APPLICATION

							GREENSCOPE: Plots	oper Soulition Workland			×
							Material Environmental (Environmental Continued) Energy Economic Customize				
							37. WP02 6em 54. ms, 100 38. WP802		Symbol	Indicator Name	Defau Case
					×	1	53. ms, 90 39. W	Phoe	37. WPO2 dem.	Aquatic oxygen demand potential	0
ĸ	EENSCOPE: Utility Data						spec. 80 oth		38. WPIO2 dem.	Aquatic oxygen demand intensity	0
	Utility Costs and Renewability						52 ms, tot. 60	40. WPltos.	39. WPtox. other	Ecotoxicity to aquatic life potential	0
								other	40. WPItox. other	Ecotoxicity to aquatic life intensity	0
		Utility cost, US\$/kg or US\$/kWh	Utility cost, US\$/GJ	Utility flow rate needs, kg/h, m³/h, MJ/h, or	Liquid water type utility in situ produced*		51. RI 29	41. WPtox.	41. WPtox. metal	Ecotoxicity to aquatic life potential by metals	0
	Utility type	US\$/KWN		kg/n, m³/n, MJ/n, or kWh/h (Manual input)*	in situ produced*			metal	42. WPItox. metal 43. EP	Ecotoxicity to aquatic life intensity by metals Eutrophication potential	0
								42.	43. EPI	Eutrophication potential	0
	Medium pressure steam at 10 barg 184°C, 1/kg	0.02959	14.83	0			50. BFM	WPitox. metal	45. SMIM	Specific emergy intensity	
	Moderately low T refrigerated water, Tin = 5 °C Tout = 15°C, 1/kg	0.000185	4.43	0	no				46. MIM	Emergy intensity	
							49. ESI	43. EP	47. ELR	Environmental loading ratio	2
	Water for process use, makeup cooling tower, washing, etc. 1/kg	0.000067		0	no		48. ETR 44. EF	PT	48. EYR	Emergy yield ratio	1
	Boiler feed water, 1/kg	0.00245		0	no		47. ELR 45. SMIM	TA	49. ESI	Emergy sustainability Index	5
		0.00026		0	no		47. ELR 45. SMIM 46. MIM		50. BFM	Breeding factor	10
	Potable (drinking) water, 1/kg								51. RI	Renewability index	1
	Deionized water. 1 / ko	0.001		0	no 💌		55. ma, disp.		52. ms, tot.	Total solid waste mass	0
							66. VI, 100 56. wa,		53. ms, spec.	Specific solid waste mass	•
		Cooling water	Steam generation	Electricity generation			poll 80 recycl		Add		Plot
		generation 0.02		0.01			60			-	
	Total percentage of energy supplied by renewable source, 100%	0.02	2	0.01			65. V1, non-poll	57. ws, non-recycl.			
							40				
					Add						
							64. VI, spec.	58. ws, haz.			
								/			
							63. V1, tot	59. ms,			
							62. ma, n- 60. ma,				
		_					haz spec.				

Figure 6: Utility Entry Window


Figure 7: Indicator Plot Window

- Users are able to enter values for different process utilities
- Users can plot all indicators or customize

PCU FRAMEWORK

- PCU Framework
 - Simulate gas flare calculations
 - Generate results on:
 - Stream composition
 - Equipment size
 - Utility usage
- The current framework has been tailored towards CHEMCAD but this can be extended to Aspen or other process simulators

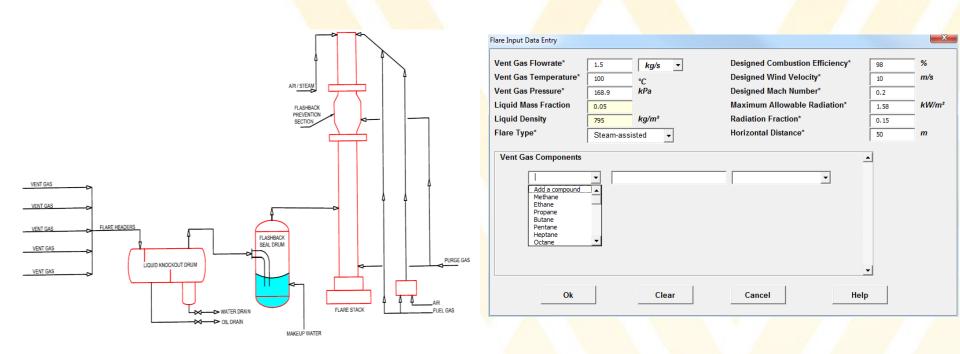
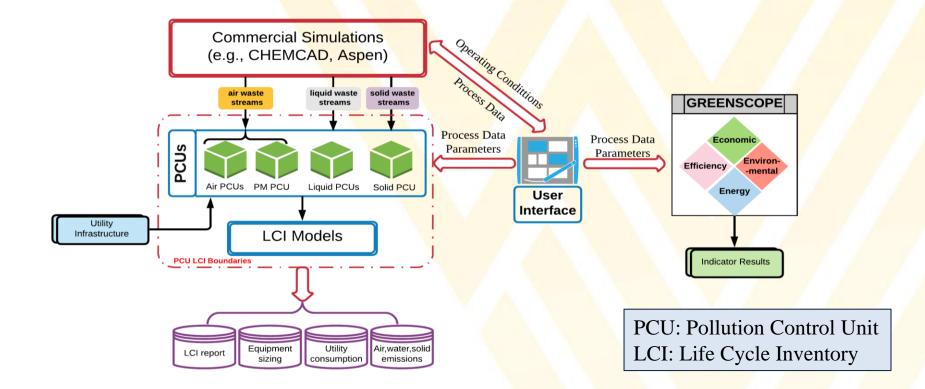


Figure 8: PCU Framework

PCU APPLICATION

Figure 10: Flare Interface


2

 This interface allows the user to design a flare system based on maximum estimated flows

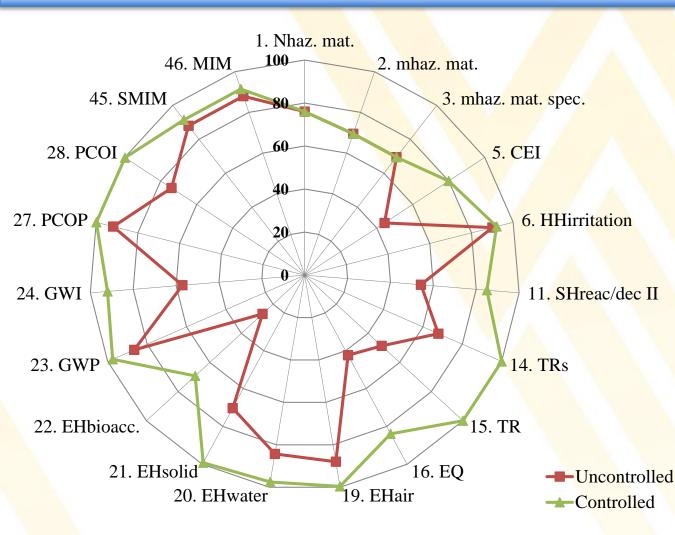
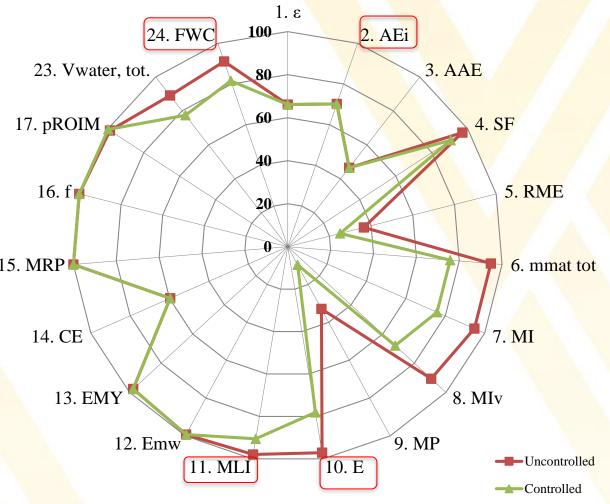

GREENSCOPE-PCU FRAMEWORK

Figure 11: GREENSCOPE-PCU Framework

Results

CEI (Chemical Exposure Index), EQ (Environmental Quotient), GWI (Global Warming Intensity) increased 35.65%, 41.56%, 34.93%, respectively, due to the controlled emissions by PCUs


2

•

Figure 12: GREENSCOPE-PCU Framework

Results

- Radar plot shows that some efficiency indicator scores decrease when pollution treatment units are added to the process
- total material consumption (m_{mat.,tot.}), Mass Intensity (MI), dropped 18.94%, 19.98%, respectively

Figure 13: GREENSCOPE-PCU Framework

WEST VIRGINIA UNIVERSITY DEPARTMENT OF CHEMICAL AND BIOMEDICAL ENGINEERING LIMA RESEARCH GROUP Control, Optimization and Design of Energy Systems (CODES) 2

CONCLUSIONS

- GREENSCOPE was used to estimate indicators and improve plant performance
- The PCU package is a great tool for estimating and simulating treatment operations and designs
- The motivation for the integration of these frameworks is to due to their reliance on the same dataset
- Proposed framework can bridge existing gaps between sustainability assessment, pollution control, and process modeling (commercial simulators)

WEST VIRGINIA UNIVERSITY DEPARTMENT OF CHEMICAL AND BIOMEDICAL ENGINEERING LIMA RESEARCH GROUP Control, Optimization and Design of Energy Systems (CODES) 2

Acknowledgments

- West Virginia University and U.S. Environmental Protection Agency for the financial support through contract Ref. EP-16-C-000049
- Lima research group

Thank you!

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

