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Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or 
policies of the U.S. EPA
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Exposure in the APCRA Initiative

 Identify available New Approach Methodologies (NAMs) for exposure-relevant 
domains

 Examine the landscape of exposure data (both traditional and NAMs) for an 
inventory of chemicals relevant to APCRA partners

 Identify key information or activities that would enable or enhance fit-for-purpose 
exposure estimates, predictions, or assessments and provide recommendations

 Provide exposure metrics to support the APCRA inventory and hazard-focused 
case study activities
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 Regulatory bodies are tasked with evaluating risks 
associated with 1000s of chemicals in commerce
 For example, as of 2019 there were ~40,000

chemicals on EPA’s TSCA Inventory

 Evaluating chemicals for risk to humans or the 
environment requires information on hazard and 
exposure potential

 Exposure potential quantifies the degree of contact 
between a chemical and a receptor

 Toxicokinetic information is required to bridge hazard 
and exposure (what real-world exposure is required to 
produce an internal concentration consistent with a 
potential hazard?)

Risk is Multifaceted
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Forecasting Exposure is a Systems Problem

Critical Exposure-Relevant Domains
 Chemical use and release. Provides critical 

information for identifying chemical sources, 
exposure pathways, and relevant predictive 
models for a given chemical.

 Media occurrence, environmental surveillance, 
and biomonitoring. Provides exposure data for 
evaluating predictive models.

 Exposure estimates. Predictions of chemical 
intake in mg/kg/day that can be compared with 
hazard information to inform risk.

 Toxicokinetics. Provides real-world exposure 
context to in vitro high-throughput screening 
data and biological receptor monitoring 
information. 
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 Chemical descriptors that provide information on chemicals 
in an exposure context (e.g., how chemicals are used)

 Machine-learning approaches that use these descriptors to 
fill gaps in existing data

 High-throughput exposure models for various pathways

 High-throughput measurements to fill gaps in monitoring 
data

 High-throughput approaches for measuring and predicting 
chemical toxicokinetics

 New evaluation frameworks for integrating models and 
monitoring to provide consensus exposure predictions

 All these pieces together provide the tools for high-
throughput chemical prioritization

Eight Classes of NAMs for Exposure
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Characterizing the Chemical Landscape for 
Exposure NAMs

 “APCRA inventory” - case study chemical list
• 6621 chemical substances compiled by APCRA partners for potential use in 

retrospective or prospective case studies
• Compiled from regulatory lists from EPA, Health Canada, ECHA, EFSA, NICNAS

 Investigated the coverage of this inventory
 “Traditional” exposure data

• Regulatory reporting
• Targeted monitoring data
• Regulatory exposure assessments
• In-vivo toxicokinetic information

 Exposure NAMs across all four domains
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Traditional and NAM Exposure Datasets

Machine learning models for 
chemical function
(Phillips et al. 2017)
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Traditional and NAM Exposure Datasets
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Traditional and NAM Exposure Datasets
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Chemical Use and Release

6621 Inventory Chemicals

APCRA Inventory

Chemical Use
Descriptors Developed Using 

Informatics Approaches

Traditional Use Reporting 
Information

Machine-Learning QSUR Models for 
Function

Traditional Release Reporting 
Information

 The number of chemicals for which release data are available is still 
limitedNAM
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Chemical Use and Release

6621 Inventory Chemicals

APCRA Inventory
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Media Occurrence, Environmental Surveillance, 
and Biomonitoring 

6621 Inventory Chemicals
APCRA Inventory

Non-Targeted Studies in 
Several Media

Positive Prediction of 
Occurrence in Different 

Media from Machine 
Learning Models 

Traditional Targeted 
Monitoring Data

 Traditional monitoring very limitedNAM
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Media Occurrence, Environmental Surveillance, 
and Biomonitoring 

6621 Inventory Chemicals
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Several Media
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 Traditional monitoring very limited

A limited number of non-
targeted studies in media have 
provided data for many 
additional chemicals

NAM
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Exposure Predictions

APCRA Inventory
6621 Inventory Chemicals

 High-throughput exposure models covering different exposure pathway classes 
have generated exposure estimates for large numbers of chemicals compared to 
traditional assessments.

Consensus
Predictions

(Ring et al. 2019)

HT Exposure Models
for Pathways (Ring et al. 2019)

Positive Prediction for Various 
Exposure Pathways 

(Ring et al. 2019)

Traditional
Assessments

NAM
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Exposure Predictions

APCRA Inventory

 High-throughput exposure models covering different exposure pathway classes 
have generated exposure estimates for large numbers of chemicals compared to 
traditional assessments.

Consensus
Predictions

(Ring et al. 2019)

HT Exposure Models
for Pathways (Ring et al. 2019)

Positive Prediction for Various 
Exposure Pathways 

(Ring et al. 2019)

Traditional
Assessments

Chemicals outside domain of 
existing models (inorganics, 
mixtures, UVCBs, or chemicals 
having uncharacterized 
pathways)

NAM

6621 Inventory Chemicals
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Toxicokinetics

APCRA Inventory

ToxCast

Tox21

In Vivo TK Data

High-Throughput In Vitro TK Data

In Silico (QSAR) TK Parameters

NAM

6621 Inventory Chemicals

 High throughput in vitro measurement of toxicokinetics has expanded the 
quantity and domain of chemicals with data, allowing for the development or 
refinement of in silico models 
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Toxicokinetics

APCRA Inventory

ToxCast

Tox21

In Vivo TK Data

High-Throughput In Vitro TK Data

In Silico (QSAR) TK Parameters

NAM

6621 Inventory Chemicals

In silico approaches have 
expanded the availability of 
HTTK parameters to nearly all 
chemicals tested for in vitro 
bioactivity (96% of Tox21 and 
89% of ToxCast) allowing for in 
vitro to in vivo extrapolation of 
bioactive concentrations

 High throughput in vitro measurement of toxicokinetics has expanded the 
quantity and domain of chemicals with data, allowing for the development or 
refinement of in silico models 
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Summary

 In all exposure-relevant domains, high-throughput NAMs have substantially increased the number of 
chemicals for which data are available and improved coverage of chemical inventories.

 Methods for estimating chemical releases (quantitative estimates of emission into different 
environmental compartments) are needed; predictions for releases can reduce uncertainty in HT 
exposure models that currently rely on production volume as surrogates for emission rates.

 Methods should be developed for addressing mixtures or UVCBs. Approaches are needed for 
identifying representative compositions or structures for multicomponent substances, and for making 
use of this information in in silico modeling (i.e., QSAR) frameworks.

 Measurement NAMs (i.e., non-targeted approaches) have the potential to substantially increase the 
scope of evaluation datasets for predictive exposure models.

 Continuing to develop and refine NAMs for exposure and toxicokinetic domains will improve the 
quality of and expand the scope of risk-based metrics available for chemical prioritization.  



23 of 24 Office of Research and Development

Ongoing Exposure NAM Evaluation Activities

 Will aid in assessing fit-for-use of exposure NAMs in various regulatory contexts 
(classification and labelling, prioritization, first-tier versus full assessments) 

 Comparison of Quantitative Use Relationship (QSUR) models for chemical function with 
industry reported data
• EPA’s Chemical Data Reporting for Industrial Uses (Public)

• ECHA Plastics Additives Initiative (PLASI)

• Health Canada Chemicals Management Plan Information Gathering

 Comparison of traditional exposure assessments (Health Canada Chemicals 
Management Plan) to high-throughput model predictions 
• Consumer Assessments

• Environmental media (i.e., ambient/far-field)
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