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Abstract

Understanding how background levels of dissolved minerals vary in streams temporally and 

spatially is needed to assess salinization of fresh water, establish reasonable thresholds and 

restoration goals, and determine vulnerability to extreme climate events like drought. We 

developed a random forest model that predicts natural background specific conductivity (SC), a 

measure of total dissolved ions, for all stream segments in the contiguous United States at monthly 

time steps between the years 2001 to 2015. Models were trained using 11,796 observations made 

at 1,785 minimally impaired stream segments and validated with observations from an additional 

92 segments. Static predictors of SC included geology, soils, and vegetation parameters. Temporal 

predictors were related to climate and enabled the model to make predictions for different dates. 

The model explained 95% of the variation in SC among validation observations (mean absolute 

error = 29 μS/cm, Nash-Sutcliffe efficiency = 0.85). The model performed well across the period 

of interest but exhibited bias in Coastal Plain and Xeric regions (26 and 30%, respectively). 

National model predictions showed large spatial variation with the greatest SC predicted to occur 

in the desert southwest and plains. Model predictions also reflected changes at individual streams 

during drought.
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INTRODUCTION

Total dissolved solid (TDS) concentration (measured as specific conductivity [SC] 

normalized to 25°C) is an important water quality parameter that affects aquatic ecosystems. 

Although upper limits vary, water with SC above 1000 μS/cm is unsuitable for many 

industrial or human uses (e.g., boiler water needs to be <5000 μS/cm1) and SC values over 

3000 μS/cm are unsuitable for irrigation.2 Smaller increases in SC increases can also 

negatively affect aquatic life3, including algae4–6, invertebrates7–9, and vertebrates10–12.

Many human activities can increase SC13, including agriculture, industry, and resource 

extraction resulting in the loss of water resources and decreased biological integrity.3,14 

However, it is often difficult to identify where human activities increase SC compared to 

natural background, because of spatial and temporal variation in SC due to natural factors.
15–17 Spatially, SC naturally varies over two orders of magnitude among freshwater systems 

with variations in geology, soils, climate, and vegetation.18 SC also responds to temporal 

changes in precipitation, temperature, and evapotranspiration (ET) 17,19–20, especially to 

extreme weather as may occur in a prolonged drought21–24. Modeling variability in 

background SC is challenging due to complex interactions among these climatically variable 

and static, nonclimate factors.25–26

A model predicting natural background would be valuable for assessing stream condition 

and setting restoration goals. The ability to predict natural background SC for individual 

streams would allow comparisons with current SC and assessment of the degree of change in 

SC due to human activities. Knowing the magnitude to which SC has been altered will help 

determine if and to what degree ecological degradation might be caused by increased 

salinity or changes in dissolved minerals. For example, Vander Laan et al.27 applied natural 

background SC models to estimate how much SC had been altered by human activities, and 

quantitatively linked this alteration to changes in biological conditions. Jones and van 

Vliet24 identified water availability and increased salinity as key contributors to water 

scarcity to drought in the southern United States.
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Understanding how SC naturally varies spatially and temporally could help inform where 

field-based benchmark threshold values (e.g., U.S. EPA14) are either under protective or 

overly stringent. Background SC models that reflect the effects of different climates on SC 

may be able to project where increased levels of dissolved ions could threaten freshwater 

biota during periods of drought. Drought can decrease flows and concentrate minerals 

potentially exacerbating effects from altered temperatures and flows.

Previous models of SC were not designed to predict both spatial and temporal variation in 

natural SC as is desired for robust and accurate estimates of SC over space and time. For 

example, Olson and Hawkins18 modeled natural background SC for the western United 

States but did not account for temporal variation. Anning and Flynn28 modeled TDS loads 

and concentrations for the contiguous United States but did not account for temporal 

variation. Furthermore, the model developed by Anning and Flynn28 included both human 

and natural factors, and its ability to predict natural background has not been assessed. 

Recently developed spatially and temporally extensive data on climate are now available 

(i.e., Parameter-elevation Relationships on Independent Slopes Model [PRISM]29 and 

Moderate Resolution Imaging Spectroradiometer [MODIS] estimates of ET30) which allow 

dynamic spatial and temporal factors influencing SC to be incorporated into empirical 

models.

Our objective was to develop a statistical model of the natural spatial and temporal variation 

in SC for the contiguous United States. This model is intended to provide predicted natural 

background SC for each stream segment defined by the National Hydrography Dataset Plus 

Version 2 (NHD+)31 at monthly time steps for 2001–2015. Using these predictions, we then 

examine how SC varies from normal conditions during prolonged droughts.

MATERIALS AND METHODS

General Approach.

To develop models that make stream-specific predictions across the contiguous United 

States, we used the newly developed StreamCat data set32 and process (https://github.com/

USEPA/StreamCat). The StreamCat data set is based on a network of stream segments from 

NHD+.31 These stream segments drain an average area of 3.1 km2 and thus define our 

spatial grain size. These small drainages are an appropriate scale for modeling because SC 

varies little at finer spatial scales.

The empirical background conductivity model was developed in several steps.

1. Create training and validation data sets of SC observations from minimally 

altered stream segments.

2. Characterize temporally and spatially specific watershed environments for each 

observation, including antecedent conditions.

3. Relate observed SC to environmental predictors using a machine learning 

technique (random forests [RF]).
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4. Assess model performance and validate using multiple observations made at 

randomly chosen stream segments.

Create training and validation data sets of SC observations from minimally altered stream 
segments.

Developing an empirical model of natural background SC required SC observations from 

minimally disturbed sites representing the breadth of variation in environmental conditions 

that occur in an area of interest (see supplemental materials for details of how these data sets 

were developed). We first obtained over 2.4 million SC observations from across the 

continental United States from STORET33, state natural resource agencies, the U.S. 

Geological Survey (USGS) National Water Information System34, and data used in Olson 

and Hawkins18 (Table S1). Although not an exhaustive collection of SC observation data, 

these data represent a substantial proportion of what is publicly available. We limited data to 

observations made between 1 January 2001 and 31 December 2015 so that MODIS satellite 

data (https://modis.gsfc.nasa.gov/data/) could be used as predictors in our models. Each 

observation was related to the nearest stream segment in the NHD+. Because our dynamic 

predictors used a monthly time step, we limited the data to one observation per stream 

segment per month. SC observations with ambiguous locations and repeat measurements 

along a stream segment in the same month were discarded. Using estimates of 

anthropogenic stress derived from the StreamCat database32, we selected segments with 

minimal amounts of human activity35 as training data for our models. Segments with 

minimal human activity were selected using criteria developed for each Level II 

Ecoregion36, but in all cases, segments deemed minimally stressed had watersheds with 0–

0.5% impervious surface, 0–5% urban, 0–10% agriculture, and population densities from 

0.8–30 people/km2 (Table S3). We also identified observations with large residuals in initial 

models and inspected these watersheds for evidence of other human activities not 

represented in StreamCat (e.g., mining, logging, grazing, or oil/gas extraction). Observations 

from disturbed watersheds were removed, as were observations that were tidally influenced 

or due to unusual geologic conditions like hot springs, which cause naturally high SC 

conditions. About 5% of SC observations in each National Rivers and Stream Assessment 

(NRSA) region were then randomly selected as independent validation data. The remaining 

observations became the large training data set for model calibration.

The final training data set used for modeling had 1785 stream segments with 11,796 

observations, and the validation data set had 92 segments with 581 observations. The 

majority of segments had a single observation but ranged up to 165 observations per 

segment (Figure S1A). Reference observations were reasonably dispersed in both time 

(Figure S1B) and space (Figure S1C), although the Midwest had few reference segments, 

especially in the Corn Belt in Iowa and Illinois.

Characterize temporally and spatially specific watershed environments for each 
observation, including antecedent conditions.

We derived 27 static watershed predictors from StreamCat (Table S5). These predictors 

focused on characterizing the naturally occurring spatial variation in geology, soils, 

hydrology, vegetation, topography, and atmospheric deposition among watersheds. Although 
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acid deposition has been shown to influence chemical weathering rates and stream alkalinity 

in the past37, deposition has been decreasing and by 2009 variation in acid deposition across 

the U.S. was minimal38. Therefore, we did not include this environmental factor as a 

potential predictor. Temporal variation was incorporated into our models using watershed 

averages of four dynamic predictors available at monthly time steps for the period of 

interest. The four dynamic predictors were monthly average precipitation, average 

temperature, maximum temperature (from PRISM model29) and MODIS-derived 

evapotranspiration30,39. Following the same procedures used to create the StreamCat data set 

(https://github.com/USEPA/StreamCat), we calculated watershed averages for each NHD+ 

segment in the contiguous United States for each month during the period of interest (2000–

2015). We then extracted the temporally and spatially specific observations of each of the 

four dynamic predictors (extracted precipitation, mean temperature, maximum temperature, 

and mean ET) that matched the time (month and year) and location (NHD+ segment) of 

each SC observation. In addition, we characterized conditions antecedent to each 

observation using estimates of each dynamic predictor from the month prior, 2 months prior, 

and averages of the preceding 3, 6, and 12 months. For example, an SC observation made in 

December 2005 was matched with watershed precipitation, temperature, and mean ET 

observed that month, the previous month (e.g., November), 2 months prior (e.g., October), 

and the averages over the previous 3 months (e.g., October–December), 6 months (e.g., 

July–December) and 12 months (e.g., January–December). In this way, preceding conditions 

were considered as well as near-term events.

Develop Random Forest Models to Relate Observed SC to Predictors.

We developed RF models40 to predict natural background stream SC. RF is a nonparametric 

regression and classification modeling approach that has been applied to a wide array of 

disciplines, including genetics, ecology, and remote sensing.41 RF models have significant 

advantages over other statistical methods, including their ability to fit nonlinear relationships 

and high-order interactions between predictor variables without a priori specification of the 

shape of relationships or the presence of interactions. RF models combine predictions from 

numerous regression or classification trees based on bootstrapped samples of predictor and 

response data to produce robust models resistant to overfitting. Data not included in 

individual regression trees (i.e., out-of-bag training observations) are used to assess model 

accuracy and precision, similar to cross-validation. Models were built with the 

“randomForests” package in R42 using all default settings except that we built 1,500 trees 

and applied a bias correction feature.43

We selected predictors using a principal component analysis (PCA) approach that identifies 

uncorrelated predictors44 with the strongest associations with SC (following a method 

suggested by R. A. Hill and E. W. Fox, personal communication). A PCA was constructed 

using centered and rescaled predictors, the number of axes needed to explain 95% of the 

variation was determined, and then Varimax rotation was performed on those axes. For each 

rotated axis, we determined which predictor had the greatest loadings and which predictor 

had the greatest univariate association with SC. Univariate associations were determined by 

fitting a classification and regression tree between SC and each predictor loading on a given 

axis and extracting the deviance. For axes where the greatest loading predictor was different 
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from the predictor with the greatest association with SC, we chose the more interpretable 

parameter of the two. For each potential predictor, we examined the partial dependence plots 

showing how SC responds to that predictor while holding all other potential predictors 

constant. Predictors that had inconsistent or otherwise uninterpretable responses were 

removed. Fox et al.45 found that variable selection only improved model performance when 

the majority of predictors were irrelevant. However, a parsimonious model is desirable that 

limits the number of required predictor variables. Therefore, the importance of different 

predictors was assessed as the reduction in mean square error occurring when the variable is 

permuted. Mathematical permutation reorders the sequence of introduction of a predictor 

into the regression trees while holding the other predictors constant. Individual response-

predictor relations were visualized with partial dependence plots.

RF models do not distinguish between spatial and temporal variation, and do not account for 

temporal patterns in the data. RF models make individual predictions based only on the 

values of predictors associated with an observation, so spatial variation in the environment is 

reflected by using averages for each environmental factor for the entire upstream watershed. 

To account for temporal variation, we used temporally specific and antecedent observations 

of the four dynamic predictors (i.e., climate observations in the same month as the SC 

observation; Table S5) as potential predictors in our models.

Assess Model Performance and Validate Using Multiple Observations Made at Randomly 
Chosen Stream Segments.

We assessed model performance by comparing model SC predictions for out-of-the bag 

observations from the training data and the external validation data to actual observations. 

Predictions for out-of-the bag observations were made by averaging predictions for all trees 

that did not use that particular observation in the creation of the tree.46

Measurements of model fit were calculated using the R package hydro-GOF47 and 

summarized using the following four measurements of goodness-of-fit. (1) The mean 

absolute error (MAE) is a measure of difference between two variables that allows 

comparisons of predicted versus observed SC. The MAE is similar to the root mean square 

error (RMSE), except the MAE calculation does not square the errors, making interpretation 

of the MAE more straightforward (because it is in the same units as the model) and the 

statistic less sensitive to outliers.48 Like the RMSE, the smaller the MAE value the greater 

the confidence in model predictions. (2) The Nash-Sutcliffe efficiency (NSE) estimates the 

correspondence between predicted and observed data.49–50 An efficiency of 1 indicates 

equality between the predicted and observed data. (3) A coefficient of determination (R2) 

describes the proportion of the variance in the observations explained by the model. R2 

ranges from 0 to 1, with higher values indicating greater explanatory power and less error. 

(4) Percent bias is low when over and under predictions occur randomly around the 

regression model.

Three sites were also hand-picked for validation with a larger than average temporal 

coverage from three areas affected by severe droughts during the time period covered by the 

model. We graphically assessed the ability of the model to predict the temporal patterns of 

SC at these three sites.

Olson and Cormier Page 6

Environ Sci Technol. Author manuscript; available in PMC 2020 April 13.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



RESULTS AND DISCUSSION

Empirical Conductivity Model.

Nineteen predictors were included in the final model, representing influences of geology, 

climate, soils, and vegetation on SC (Figure 1). Geology had the greatest effect on variation 

in SC, with SC being specifically influenced by variation in calcium and sulfur rock content 

(first- and second-most important predictors) as well as rock strength, which reflects 

resistance to physical weathering (7th most important predictor). Atmospheric deposition of 

calcium was also a strong predictor (3rd most important predictor), indicating its importance 

as a source of solutes in certain circumstances. Several vegetation types (grasses, shrubs, and 

mixed forests) and soils properties (water table depth, erodibility, and percent clay) were 

positively related to SC. Precipitation-related dynamic predictors were all negatively related 

to SC as expected due to dilution, but of lower importance than other factors due to 

spreading the signal over three separate measures of precipitation. Precipitation in the 

proceeding 1, 3, and 6 months was related to SC. Increasing maximum temperatures at 

month of measurement and 2 months prior were positively related to SC, likely reflecting the 

combined effects of evapo-concentration and increased weathering rates. There is general 

agreement of the importance of predictors used in this spatial/temporal model to those in a 

similar model that only used spatial predictors.51 However, the long-term averages of 

temperature and precipitation were more important as predictors than the temporally specific 

versions used in the current model. Our variable selection process also indicated that runoff 

and watershed area were potentially important predictors. We chose not to include runoff 

because it reflected only spatial variation and was correlated with our temporal estimates of 

precipitation. Although, watershed area was not included in the final model because it 

accounted for little variation and had an inconsistent relationship to SC; however, spatial 

variation in the environment is reflected by using averages for each environmental factor for 

the entire upstream watershed.

Model Performance and Validation.

The model explained most of the variation in SC and produced reasonably accurate 

predictions for both training data (assessed with out-of-bag predictions, MAE = 22 μS/cm, 

NSE = 0.92, and R2 = 0.92) and external validation data (MAE = 29 μS/cm, NSE = 0.87, 

and R2 = 0.87; Figure 2).

The model had 0 bias when applied to out-of-bag data from the training data set and 1% bias 

when applied to the external validation data. Model performance remained constant across 

months, except for a small decrease in performance in May–July (R2 range = 0.76 – 0.82) in 

the validation data (Table 1). However, predictions of validation data measured in December 

were negatively biased by 15%. This may be due to the influence of a single poor prediction 

among a relatively small number of validation samples collected in December (n = 7).

Model performance within individual regions was comparable to model performance across 

the contiguous United States, except for decreased performance in the Southern Plains (SPL) 

and Temperate Plains (TPL) regions (Table 2). We evaluated variation in model performance 

spatially using aggregated National Rivers and Stream Assessment ecoregions (following52). 
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We aggregated level II ecoregions to approximate the regions used in the National Rivers 

and Stream Assessment because level II ecoregions often had too few sites to reliably 

estimate model performance. Performance assessed with out-of-bag training observations 

showed some variance in performance across regions, with fourfold increase in MAE in the 

SPL (MAE = 87 μS/cm) and a drop in both NSE and R2 by over half in the TPL (NSE = 

0.40, R2 = 0.41). Bias in out-of-bag predictions was <2% for in all regions except Southern 

Appalachia.

Model performance among regions assessed with external validation data showed greater 

variability in performance than regional model performance assessed with out-of-bag 

training observations, perhaps a result of the smaller sample sizes from external validation 

data. MAE for external validation data did not differ much from that calculated for the 

training data, except in Xeric (XER) regions where MAE increased from 62 to 117 μS/cm. 

The NSE and R2 of both the SPL and TPL indicate that the model performed very poorly 

when applied to the external validation data in these areas. Most of the external validation 

observations used in these two regions were from a single site in each region (15 of 21 

observations in SPL, all 81 observations in TPL). The plots of validation versus model 

predictions for these regions (Figure S2) show these sites had greater temporal variability 

than predicted by the model, which may have been caused by greater environmental 

heterogeneity within these watersheds resulting in greater temporal variability than expected.
53 The Coastal Plain (CPL) and Xeric regions both showed high amounts of bias in 

predictions of validation observation (32 and 33%, respectively). The high bias in both cases 

was caused by outliers and removing two sites from each validation set improved percent 

bias to 13.6% CPL and 10.8% XER. Removing the two outlier sites also improved the NSE 

of the Xeric region validation to 0.34 and R2 to 0.43.

Spatial and Temporal Patterns of SC.

The desert Southwest, southern and northern plains, and parts of southern California 

exhibited the greatest mean SC, likely caused by the calcareous, evaporitic, and marine 

geologies interacting with high ET and low dilution from precipitation in these areas (Figure 

3A). Spatial patterns of mean SC in summer and winter showed the same patterns as the 

annual mean (data not shown). Streams in the southern and northern plains, Midwest, and 

most of California had the greatest amount of temporal variation measured as standard 

deviation across the time period (Figure 3B).

We compared temporal predictions to observed SC at three sites chosen because the SC 

measurements were made during drought and nondrought times (Figure 4). Although 

predictions at each site showed similar temporal patterns with observed SC (e.g., decreasing 

during wet years and seasons), there were periods in which the predictions did not agree 

with the observed data. For example, in the Sisquoc River, CA, almost monthly monitoring 

indicated a wider range of changes in SC than the SC predicted by the model (Figure 4A). 

Model predictions at this site were also consistently 25% lower than observed. In periods 

leading up to the drought (2011–2012), predicted SC is lower than but generally parallel to 

the observed SC. At the end of the drought (2015), predicted SC was 16% below observed 

SC adjusted for the underprediction. Model predictions of SC appear to underestimate 
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climatic effects during prolonged and severe drought (43 months of flows averaging 5% of 

the 10-year average) and where inputs from upstream reaches might be variable due to 

intermittent flows. In the Sisquoc River, CA, the departure of observed SC from predicted 

may have been due to the river drying just above the measurement point, so most or all flow 

measured at the end of the drought was likely from deep ground water. SC in the closest well 

(USGS 345034120131301, c. 3 miles away) was 1,240 μS/cm. The long contact time of 

deep ground water results in increased weathering.54 Flow completely dominated by deep 

ground water is an uncommon situation not well represented by the model.

In Hondo Creek, TX, model predictions were comparable to empirical measurements except 

during the 2009 drought (Figure 4B), where observed SC during this drought was 

approximately 200 μS/cm below both the predicted and the long-term average. Empirical SC 

measurements may have been lower than modeled SC estimates due to water being added to 

the system from ground water withdrawal. Hondo Creek draws groundwater from the 

Edwards Aquifer with SC <460 μS/cm, which is similar and at times less than the average 

stream SC (USGS https://www.edwardsaquifer.org/documents/2006_Green-

etal_KinneyUvaldeEvaluation.pdf).

Predictions from Satilpa Creek, AL were primarily between 70 and 120 μS/cm, which 

generally followed a seasonal pattern. During droughts in 2006, 2007, and 2010–2011, sharp 

peaks predicted increased SC during drought years (Figure 4C). However, observed SC was 

more variable than average predictions during both drought and nondrought periods, 

suggesting there may have been other sources of salts not detected by our screening for 

anthropogenic effects. Also, Satilpa Creek has a relatively low SC regime and may reflect 

the temporal discriminatory precision of the model in low SC streams during drought.

We also used our model to identify and examine areas predicted to have the largest potential 

SC increases during the extended drought in California between 2012–2017 (Figure 5). We 

compared the predicted natural background SC expected in July during a wet year (2005) to 

the SC predicted in 2015 during the drought in California. Some parts of California were 

predicted to have >125 μS/cm SC increases during the drought. Areas susceptible to 

increases are those that depend on dilution from snowmelt compared to Xeric areas that 

were predicted to have little or no change in SC during drought. The model only predicts the 

effects of drought on natural background SC, but streams with SC regimes altered by 

anthropogenic activity may experience compounding increases in SC than is predicted for 

minimally disturbed streams given minimal dilution and continuing discharge inputs, which 

commonly contain elevated ion concentrations.

The empirical model presented here provides both temporal and spatial estimates of the 

natural background SC of streams in the contiguous United States. At the national level, the 

model was strong (R2 = 0.92), validated (R2 = 0.95), and mirrored trends of observed stream 

SC over the long term (Figure 2). This model improves on a previous model published by 

Olson and Hawkins (2012) in a few ways. First, this new model was developed to improve 

predictions in the natural background range of SC for most freshwaters (i.e., <1000 μS/cm).
15 Second, by including precipitation variables with different time lags, the model is now 

capable of predicting SC over time when precipitation data is available. Lastly, although this 
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model is empirical, it is coherent with factors expected to mechanistically influence the 

availability and mobility of ion delivery to stream networks.55–56 Therefore, on this large 

scale, this empirical model output along with real world data may help to improve 

mechanistic understanding of geophysical processes influencing stream SC.

Although the predictions of natural background SC made by this model have many uses, 

several limitations should be considered. First, because the model relies on the NHD+ and 

StreamCat data sets, streams without this data (i.e., some headwater systems and buried 

urban streams) will not have predictions. Second, predictions in places where SC is driven 

by factors not included in the model will be inaccurate. Examples include coastal areas 

influenced by tidal salinity and salt water intrusion or geothermally active areas. Predictions 

in areas with few minimally disturbed streams, especially the Temperate Plains represented 

by only eight streams segments, will be less accurate than the model as a whole. Because the 

model relies on current vegetation as a predictor (Figure 1), predictions for streams where 

humans have shifted vegetation between forests and either grasses or shrubs over significant 

portions of a watershed may not be truly representative of natural background conditions.

Despite these limitations, the model output is useful for depicting the patterns of natural 

background SC (Figures 3 and 4). The model is also useful for identifying potential sources 

of pristine fresh waters and informing the investigations regarding the vulnerability of 

pristine freshwaters to rainfall variability. For example, the comparison of wet and dry years 

in California (Figure 5) showed areas with naturally lower SC were more variable than areas 

with higher SC, suggesting dilution by precipitation was a key factor in seasonal changes in 

SC. Although we did not attempt to make predictions for scenarios during an ongoing 

drought or estimate the amount of rainfall required to achieve drought relief thereby 

lowering stream SC, the model parameters for precipitation could be varied to estimate the 

dilution needed to reduce SC to a desired level.

To enable the widest possible accessibility of the underlying data, model, and model outputs 

are all made available on the U.S. Environmental Protection Agency (EPA) Environmental 

Dataset Gateway (https://edg.epa.gov/metadata/catalog/main/home.page). The predicted 

background conductivity for individual stream segments in the contiguous U.S.A. and 

metadata are accessible from the ArcGIS platform Predicted Background Conductivity Data 

(Olson and Wharton 2019). Data are available in table format (Data Tab at top of page) or by 

pointing and clicking on a stream segment from the Visualization Tab. Access the Predicted 

Background Conductivity Data from https://epa.maps.arcgis.com/home/item.html?

id=540abb1d015b4bd2b87d30f4c28a58cb&view=table#overview. For access to the 

Freshwater Explorer contact cormier.susan@epa.gov for password access.

Conclusions

The development of a national model for predicting stream SC was possible because 

calibration data were available through state and federal sampling efforts in addition to large 

digital data sets for geology, climate, and remotely sensed vegetative cover. The modeled 

results may be compared with measured data to quantify changes in stream SC for individual 

reaches or for larger regions, particularly in areas affected by anthropogenic disturbances. 
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For example, many state and federal agencies and stakeholder groups have empirical SC 

data from sites with anthropogenic inputs, which may be compared to the modeled natural 

background SC in those same areas. This information may be used to estimate the 

proportion and magnitude of stream salinization in the contiguous United States. The 

differential between predicted background and observed SC may also be used to estimate 

extirpation of aquatic life.57 Model results and additional analyses have the potential to 

enable planning and management of freshwater conditions in catchments from small streams 

to large river basins.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Partial dependence plots and importance (IMP) of selected model predictors. Partial 

dependence plots show how SC (μS/cm) varies in response to individual predictors while 

holding all other variables constant. Importance is calculated as the mean increase in error 

when that predictor is permuted within the model. The higher the value the greater the 

importance. The steeper the response curve, the more influential the variable is within that 

specific conductivity (SC) and variable range. Plots are color-coded by parameter type: 

Geological (gray), Atmospheric (white), Soil (tan), Vegetation (green), Temperature (pink), 
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Evapotranspiration, and Precipitation (blue). Atmospheric Ca Deposition y-axis is truncated 

at 300 μS/cm to allow comparison with other predictors. SC response to Atmospheric Ca 

deposition plateaus at 550 μS/cm above 0.6 mg/L.
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Figure 2. 
Plots of log10 observed specific conductivity (SC) vs log10 predicted values for out-of-bag 

training observations (black circles) and external validation data (red circles).
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Figure 3. 
Maps of (A) the predicted mean monthly specific conductivity (SC) for streams in the 

contiguous United States between 2001–2015, and (B) the standard deviation of predicted 

SC across the same time period. Note different SC scales. SC, specific conductivity; and Std 

Dev, standard deviation.
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Figure 4. 
Observed and predicted changes in specific conductivity (SC) over time at 3 stream 

segments during droughts. (A) Sisquoc River, CA (Unique ID: 17625379); (B) Hondo 

Creek, TX (10654651); and (C) Satilpa Creek, AL (21640642). For each graph, the black 

squares indicate the predicted SC, the green diamonds represent observed SC, the percentage 

of the hydrologic unit code 8 not in drought (i.e., wet periods) are indicated by blue areas 

and the percentage in extreme drought (dry periods, i.e., areas classified D4 (Exceptional 

Drought) by the U.S. Drought Monitor) by red areas. Note that SC scales differ for each plot 
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and illustrate how well the model estimates the SC range for each stream segment. Adjusted 

SC predictions are included for the Sisquoc River to account for the underprediction of SC 

for that site.
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Figure 5. 
Difference in predicted specific conductivity between a wet year (July 2005) and a drought 

year (July 2015) assuming streams are unaffected by anthropogenic inputs.
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Table 2.

Model performance by NRSA regions

CPL NAP NPL SAP SPL TPL UMW WMT XER

n (segments) TNG 315 228 49 354 56 8 48 438 289

VAL 18 12 3 17 3 1 3 22 13

n (obs) TNG 2295 588 241 3459 314 32 542 3198 1127

VAL 145 36 13 172 21 81 8 75 30

MAE TNG 17 15 60 9 87 31 33 16 62

VAL 18 9 67 8 97 36 41 42 117

NSE TNG 0.88 0.64 0.63 0.84 0.81 0.40 0.78 0.85 0.92

VAL 0.66 0.27 0.68 0.79 −0.53 −0.46 0.62 0.75 0.02

R2 TNG 0.88 0.64 0.63 0.85 0.81 0.41 0.78 0.85 0.92

VAL 0.78 0.52 0.80 0.81 0.11 0.11 0.70 0.76 0.32

Percent Bias TNG 0.1 −1.1 −1.4 −6.6 −0.3 1.1 0.7 0.9 1.4

VAL 32.0 19.1 −7.8 6.5 15.4 −9.7 5.7 −8.6 32.7

CPL, Coastal Plain; MAE, mean absolute error; NSE, Nash-Sutcliffe efficiency; NAP, Northern Appalachia; NPL, Northern Plains; NRSA, 

National Rivers and Stream Assessment; R2, coefficient of determination; SAP, Southern Appalachia; SPL, Southern Plains; TNG, out-of-the-bag 
training observations; TPL, Temperate Plains; UMW, = Upper Midwest; WMT, Western Mountains; VAL, external validation observations; XER, 
Xeric.
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