

November 3, 2019

Research Project Update:

PM_{2.5} Measurements Inside and Outside of Buildings in Missoula, MT During Summer 2019

Disclaimer: The views expressed in this presentation are those of the authors and so not necessarily represent the views of policies of the U.S. Environmental Protection Agency

Outline

- Project goals
- Approach
- Preliminary Results

Wildfires, smoke and exposure

Broad research questions that MCCHD, EPA Office of Research and Development, and UM School of Public & Community Health Sciences are interested to explore:

- What interventions are effective for reducing wildland fire smoke exposures and risks?
- How is public health impacted by different levels and durations of exposures?
- What science is available to support recommendations for communities to develop clean air spaces in larger buildings (e.g., schools, community centers)?
- How effective are portable air cleaners (PACs) during smoke events?
- Are people in community clean air spaces or who have PACs in their homes reducing their exposure/risks to PM_{2.5}?
- What can we accomplish with the quickly approaching fire season and how can we transfer results to other smoke impacted communities?

Summer 2019 field study research objectives

- 1) Conduct measurements of air pollution indoors and outdoors to characterize the concentration variability during wildfire smoke events.
- 2) Improve understanding of the different drivers of indoor concentrations during wildfire smoke events, including door/window opening, air handling system operation, use of portable air cleaners, and filter maintenance status.

Primary locations for monitoring to be **commercial buildings or community buildings that are anticipated to have high indoor occupancy during wildfire episodes** (e.g., fitness centers, hotels, senior centers).

Approach

- New technology has been developed recently that allows for indicative measurements of PM_{2.5} using very small sensors, which can collect a data point every 2 minutes while operating.
- Research has shown that these sensors typically track the ups and downs of PM_{2.5} well when compared with regulatory-grade monitors, but need correction to give accurate values.
- For this project, a PurpleAir sensor that recorded data to internal memory was utilized (PA-II-SD model sensor).

PA-II-SD relies on an optical detection approach. Particles are pulled into the sensor through a fan, then pass through a light source. Their size and number are then detected based on particles scattering light.

QA/QC

- Sensors were located with regulatory-grade reference monitors at the USFS
 Fire Lab to evaluate their accuracy and develop correction equation; Boyd Park location was used for collocation of two sensors.
 - USFS reference: Teledyne T640
 - Boyd Park reference: MetOne BAM 1020
- The data from the two identical PM sensors inside the device were used for assessment on data quality.
- 5 of 45 sensors were returned to manufacturer after initial assessment.

Two identical PM sensors inside the sensor device ("channel a" and "channel b")

- Prior to correction, sensor was 33.7% off from reference concentrations
- After correction, sensor was within 5.7% of reference monitor
- Very high correlation between sensors and reference mean Pearson's r of 0.96

Sampling study

- Sensors were placed indoors and outdoors in buildings throughout Missoula.
- Building selection factors included:
 - Diversity of air handling systems
 - Low likelihood of indoor PM emissions
 - Interest in participation by building owners
- Siting of sensors within the buildings used these criteria:
 - Ease of access by MCCHD staff
 - Access to land power
 - Representing "well-mixed conditions" –
 avoiding being near doorways/windows;
 air handling system exhaust, etc.
 - Goal of indoor and outdoor sensor per location if feasible

Sampling summary

- Sensor deployment
 - Total # buildings: 18
 - Sensor: 36 (16 outdoor, 20 indoor)
- Sampling period –July 18 to Sept 16, 2019 (with sensor/reference collocation before and after)
 - Different start/stop times per building due to field logistics
 - Major wildfire smoke event did not occur; minor prescribed fire impact on a few days
- Data records (2 min data, 36 sensors): >1 million PM_{2.5} observations over the study period for the entire set of sensors
- Buildings ranged from natural ventilation using windows and fans (e.g., St. Francis) to HVAC systems with MERV 8 filters (many buildings) to more complex systems (e.g., 1 building with MERV 8 + Activated Charcoal + MERV 14)

Example results: AT&T

Sensor readings for PM_{2.5} inside was 26.5% lower than outside.

Diurnal fluctuation evident in inside/outside ratio of PM_{2.5}

Example results:YMCA

Sensor readings for PM_{2.5} inside preschool were 25.8% lower, weight room was 7.6% lower, than outside on average.

Diurnal fluctuation evident in inside/outside ratio of PM_{2.5}

% difference. Inside vs outside

-40

Sensor in preschool vs. outside

Example results: UM Rec Center

Sensor readings for PM_{2.5} inside were 1.5% lower than outside.

Diurnally variable inside/outside ratio of PM_{2.5}, sometimes above and sometimes below outside sensor

Example results: Fort Missoula

Sensor readings for PM_{2.5} inside were 28.3% lower than outside.

Diurnal fluctuation evident in inside/outside ratio of PM_{2.5}

Sensor inside vs. outside

Looking across outdoor network

Hourly concentrations across the sensor network look very similar overall; but there are occasional variation likely due to local emissions or spatial variability in transported smoke (e.g., prescribed fire events)

Next steps

- Data analysis is underway
- Presentation of results to local stakeholders via webinar expected in December-January timeframe and slides available for sharing.
- Partner project in Hoopa, California underway, utilizing the same sensors for indoor/outdoor buildings under wildfire smoke events and other biomass emissions (e.g., outdoor burning, residential wood burning).
- Planning summer 2020 field study in Montana building upon knowledge gained from the summer 2019 field pilot.