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Notice 

The U.S. Environmental Protection Agency through its Office of Research and Development 

funded the research described here. It has been subjected to the Agency’s peer and administrative 

review and has been approved for publication as an EPA document.  

This research was supported in part by an appointment to the Post-Doctoral Research Program at 

the National Risk Management Research Laboratory, administered by the Oak Ridge Institute for 

Science and Education through Interagency Agreement No. DW8992433001 between the U.S. 

Department of Energy and the U.S. Environmental Protection Agency. Mention of trade names or 

commercial products does not constitute endorsement or recommendation for use. 

The Spring River Watershed drains most of the Tri-State Mining District that includes parts of 

southeast Kansas, southwest Missouri, and northeast Oklahoma. The mining activity in the Tri-

State District has resulted in considerable historical and ongoing input of cadmium, lead, and zinc 

to the watershed including Empire Lake in Cherokee County, southeast Kansas. The 

environmental contamination caused by the decades of mining activity resulted in southeast 

Cherokee County being listed on the U.S. Environmental Protection Agency’s National Priority 

List as a superfund hazardous waste site in 1983. The mining activities in the TSMD led to a 

number of health and environmental complications including wide-spread contaminated sediment 

in floodplains and stream beds, elevated blood Pb levels in surrounding residential areas, Zn 

poisoning in livestock and wild birds, and elevated contaminate levels in fish and aquatic macro 

invertebrate.  

A semi-distributed hydrologic model was constructed and calibrated to predict streamflow and 

sediment loading in the Spring River Basin that feeds into Empire Lake, KS. The model was 

calibrated and evaluated using continuous streamflow measurements and biweekly sampled 

suspended sediment concentrations (SSC) collected over the period 2014-2016. Over all, simulated 

flow rates and sediment loadings compared well with the observed values. The calibrated 

watershed model was used to estimate average annual sediment loading from interior sub-basins 

and determine percentage contribution of each sub-basin to the total average annual sediment 

loading to Empire Lake.  With the result obtained from sediment loading simulations, hypothetical 

management scenarios of lake-dredging and sediment filtration were evaluated. This study 

identified interior sub-basins contributing most of the sediment loading to Empire Lake and can 

be used to inform management decisions on remediation of metal contamination in the Spring 

River Watershed and Empire Lake.  

This report has been subjected to QA/QC review. The report presented a mathematical framework 

for modeling hydrology of a watershed and sediment transport processes in the Spring River 

Watershed.  
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Executive Summary 

The Tri-State Mining District (TSMD) encompassing the Kansas, Missouri and Oklahoma 

conjunction was the center of historic mining activity, ceasing in 1970. Although mining activity 

ended almost 50 years ago, its legacy as a source of cadmium, lead, and zinc to the environment 

continues to this day. This mining activity left 165 million tons of improperly contained piles of 

mine waste (chat) across the 2,500 sq. mile region. Chat piles were the dominant geographic 

feature in the TSMD, especially in Short Creek, Center Creek, Turkey Creek, and Shoal Creek, 

among others. These features, along with waste rock and mine tailings, have contributed to metal 

contamination of the waterways of the Spring River Watershed (located in the TSMD), and led to 

the transport of heavy metal-laden (primarily zinc and lead) sediments into the Empire Lake 

Reservoir in Cherokee County, Kansas. Years of sedimentation have reduced the capacity of the 

reservoir, leading to the pass-through of contaminated sediments - affecting downstream 

communities and Indian Tribes.   

The Soil and Water Assessment Tool (SWAT) was used to construct a distributed 

watershed model for streamflow and sediment loading simulations in the Spring River Basin 

watershed that feeds into Empire Lake, KS. The objective of the watershed model simulations is 

to provide information on sediment transport and loading from source areas needed to support 

remediation efforts for the Spring River Watershed and Empire Lake. Geospatial and hydro-

climate input data resolution analysis was conducted to identify optimal input data resolution for 

best model performance in simulating flow and sediment transport within the Spring River 

Watershed. Input data resolution analysis was conducted prior to model calibration to insure 

optimal watershed model performance. The SWAT hydrologic model was successfully calibrated 

and validated both at the monthly and daily time scales using streamflow data downloaded from 

two USGS gauge stations in the watershed. The flow watershed model at the Spring River and 

Shoal Creek gauges met the threshold performance statistics and explained more than 67% of the 

variance in the observed data for both the calibration and validation periods. Wet and relatively 

drier periods were simulated well by the model. The model reproduced observed low and high 

streamflows adequately but deviated from middle range observed values.  
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A sediment transport component of SWAT was constructed and calibrated using three 

years-worth of biweekly flow and suspended sediment concentration data (2014-2016) sampled 

from stations in seven different tributaries upstream from Empire Lake.  Sediment loading was 

calibrated at Spring River and Shoal Creek. The model met the threshold performance statistics 

recommended for sediment and explained 92% of the variance in the observed data at the Spring 

River Watershed. However, sediment calibration at Shoal Creek was not as good as for Spring 

River, with the model explaining only 58% of the variance in the observed data.  Calibration of 

sediment loading at smaller tributaries of mainstem Spring River produced R2 ranging from 0.69 

to 0.99, thus explaining more than about 70% of the variance in the observed data. Average annual 

sediment loading in the watershed were estimated for the period (2010-2016) using the calibrated 

SWAT model, and areas contributing most of the sediments were identified.  The two largest sub-

basins, the Spring River and Shoal Creek Watersheds, contributed most of the annual sediment 

loading (74%), with the former known to be associated with relatively cleaner sediments. While 

tributaries such as Short Creek, Center Creek, and Turkey Creek contributed an estimated 15% of 

annual sediment loading over the study period, they drained areas that are substantially affected 

by historical lead and zinc mining.  

 Dredging of Empire Lake as a potential remedial measure of contaminated sediments was 

investigated. Calculations based on SWAT simulated sediment loadings and observed sediment 

data showed that the time required to fill back the reservoir with a dredged lake sediment mass of 

2640 million ibs may exceed 100 years and could be even much longer. Mass balance analysis 

using suspended sediment concentration data sampled directly downstream from Empire lake 

reservoir and the calibrated SWAT model indicated net sediment accumulation in 2014 and 2016. 

However, the mass balance analysis  pointed toward a substantial amount of sediment being 

mobilized from Empire Lake in 2015.  It remains to be seen if natural weather events and/or 

planned reservoir operation may have contributed to the calculated lake sediment removal in 2015.  

 SWAT computed average annual sediment loading for 2014-2016 and reported studies on 

historical lead and zinc occurrence within the TSMD were used to make qualitative inferences on 

efficacy of hypothetical sediment traps as a potential remedial strategy for mining-affected 

tributaries. While installation of sediment traps in Short, Center, and Turkey Creeks may reduce 
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less than 14% of annual average sediment loading to Empire Lake (based on 2014-2016 data), 

these tributaries historically have been associated with highest concentrations of dissolved and 

sediment-bound zinc and lead. Effectiveness of sediment filtration in reducing heavy metals input 

to Spring River therefore might be limited by the percentage of fine sediment particles and 

percentage of total metals in dissolved phase.  

 These results are useful for identifying critical source areas of sediment and can be used to 

inform management decisions on lake dredging and sediment traps as viable remedial measures 

for metal contamination in heavily contaminated tributaries of Spring River and Empire Lake.   

Keywords: SWAT, Watershed, Modeling, Hydrology, Sediment Transport, Spring River  
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Quality Assurance 
 

The watershed model was developed and calibrated using the database and performance evaluation 

measures as outlined in the QAPP G-LRPCD-0018752-QP-1-2 (Watershed-Scale Hydrologic and 

Contaminated-Sediment Fate and Transport Modeling). For flow calibration and validation, the 

good-of-fit statistics met the thresholds stated in the QAPP and under Section 3.6 in this report for 

the two main USGS gauge stations at the Spring River and Shoal Creek during the period in which 

sediment samples were collected. The sediment data collected according to the QAPP # G-

LRPCD-0019809-QP-1-5 “Filed Sampling Plan for Flow and Water Quality Data Collection in 

the Spring River Watershed” was used alongside the calibrated watershed model to assess two 

potential remedial strategies.  
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1. Introduction   
 

 

1.1 Background  
 

Sediment-based pollutants impact water quality in over 100,000 miles of assessed streams and 

rivers in the United States (USEPA, 2006). Mining-contaminated sediments in particular play a 

significant role in the environmental health and biodiversity of affected areas (Angelo et al., 2007; 

Pope, 2005). The Tri-State Mining District (TSMD), an area of about 2,500 square miles, is a 

historic lead and zinc mining area located in southwestern Missouri, southeastern Kansas, and 

northeastern Oklahoma. The TSMD was one of the world’s leading zinc and lead mining areas, 

producing over 400 million tons of crude ore between about 1850 and 1970.  Although it is now 

inactive, the TSMD provides an ongoing source of heavy metals (lead, zinc, and cadmium) to the 

environment including the US Environmental Protection Agency Superfund site located in 

Cherokee County, southeast Kansas, USA (Juracek and Drake, 2016; and Barks 1986). The lead 

and zinc deposits within the TSMD were associated with the Ozark Plateau, a geological region 

characterized by the presence of Mississippian rocks(Juracek and Drake, 2016; and Brosius and 

Sawin, 2001).  The ore deposits were processed utilizing underground mining systems. The 

recovered ores were commonly crushed on site and concentrated using gravity separation and/or 

flotation. These two ore-concentration processes yielded the production of gravel and sand 

particles called “coarse tailings” or “chat” and sand- and silt-sized particles called “fine tailings”. 

Additional smelting and refining of these ore concentrates were conducted at various locations 

within or outside the TSMD.  These mining activities resulted in contamination of surface water, 

groundwater, sediments, and flood plain soils in the Spring River basin with lead, zinc, and other 

heavy metals. Although much of the surface mine wastes has been removed over the last few 

decades, thousands of acres of wastes (waste rock, chat piles, tailing materials) still remain on the 

ground surface as a source of heavy metals (e.g., lead and zinc). Over time, trace metals were 

dispersed over a large area and beyond the original sites of disturbance, mostly in particulate phase. 

Such areas include streambeds and floodplains in the tributaries and mainstem Spring River 

downstream from mining affected areas, in gravel paved driveways, landscaped lawns, and rural 

roads. Remedial measures of areas affected by mining activities hinges upon an understanding of 
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the magnitude and extent of contamination and the environmental fate and transport of mining-

contaminated sediment and soil. The latter is imperative because most of the mining-related heavy 

metals (e.g., zinc and lead) introduced into the environment is in, or becomes associated with, the 

particulate phase (Juracek and Drake, 2016; Beyer et al. 2004).  

 The fate and transport pathways of naturally occurring and anthropogenically produced 

constituents in a watershed are determined by complex interactions of landscape, climate, 

hydrology, and physical and biochemical processes in the water column and in the sediment bed 

region. Watershed-scale mathematical models are designed to represent and simulate the 

hydrology, transport pathways, and fate of contaminants in surface runoff, stream channels, and 

the subsurface. The models can serve as useful tools in conceptualizing, understanding, and 

differentiating the relative significance of natural processes and anthropogenic activities on 

predicting trends in water quality and aquatic ecosystem resources (USEPA, 1995).   

Several watershed-scale models have been applied to simulate metal fate and transport 

(Johnson and Zhong, 2006; Velleux et al., 2006; England et al., 2007; Galvan et. al., 2009).  For 

example, the Two-dimensional Runoff, Erosion, and eXport (TREX) model is perhaps the most 

comprehensive model for simulating metals transport at the watershed scale; however, it is event-

based and data intensive. The model was applied to the California Gulch, Colorado mining-

impacted watershed (Velleux et. al., 2006).  The study demonstrated the ability of TREX to 

moderately predict total suspended sediment and metals loadings/concentrations. A second 

example, the model Contaminant Transport Transformation and Fate (CTT&F) developed by US 

Army Corp of Engineers, showed a satisfactory agreement between model simulations and 

experimental data (Johnson and Zhong, 2006). The Soil and Water Assessment Tool (SWAT) has 

been successfully implemented all over the world to simulate and inform various environmental 

issues related to water quantity and quality studies (Gassman et al., 2014). The metal loading 

transported by the Meca River to the Sancho Reservoir (Spain) showed satisfactory agreement 

between simulated and observed flow data using SWAT (Galvan et. al., 2009).  

 In recent years, model simulations have become significant in the decision-making process 

with regard to optimal management of sediment at the watershed scale. The SWAT model along 

with other hydrological models were applied by various researchers (Tripathi et al., 2003; 

Phomcha et al., 2012; Mukundan et al., 2015; Liu et al., 2016).  Mukundan et al. (2015) calibrated 
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SWAT using detailed monitoring data to simulate spatial sediment loading in Upper Esopus Creek 

Watershed (UECW) which is part of the New York City water supply. Their study analyzed the 

high frequency suspended sediment loading data to assess the inter-annual variability and 

seasonality in suspended sediment loading in the studied watershed. Identification and 

prioritization of critical sub-watersheds for soil conservation management using the SWAT model 

was investigated by Tripathi et al. (2003).  In that study, the SWAT model was applied to identify 

critical sub-watersheds based on estimated sediment yield and nutrient losses of a small 

agricultural watershed to aid development of an effective management plan. The study established 

that the Soil and Water Assessment Tool (SWAT) model could accurately simulate runoff, 

sediment yield, and nutrient losses from the agricultural watershed. Modeling the impacts of 

alternative soil conservation practices for an agricultural watershed with the SWAT model was 

studied by Phomcha et al. (2012). They applied SWAT model in The Lam-Sonthi watershed (357 

km2) in central Thailand to identify critical areas and suggest effective soil conservation measures 

to minimize sediment yield in an agricultural watershed. Briak et al. (2016) used SWAT for 

sediment yield assessment in Kalaya gauged watershed (Northern Morocco).  

 In this study, we constructed and calibrated a Soil and Water Assessment Tool (SWAT) 

model to simulate hydrology and sediment transport within the portion of the Spring River Basin 

upstream from Empire Lake (Spring River and Shoal Creek Watersheds, Fig. 1). The model was 

applied to calculated annual sediment loading to Empire Lake and evaluate hypothetical strategies 

for remediation of contaminated sediments in the lake and mining-affected tributaries.   

 

1.2 Objectives 
 

The overall objective of this study is to evaluate alternative remedial strategies in mining-affected 

tributaries within the Spring River Basin and Empire Lake using the SWAT model. This report’s 

objectives are threefold: 

1. Develop and calibrate a SWAT model for flow and sediment transport in the Spring River 

Watershed upstream from Empire Lake. 

2. Simulate annual sediment loadings from the Spring River and Shoal Creek to Empire Lake.  
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3. Use the semi-distributed watershed model, observed data, and literature to evaluate two 

potential remedial management scenarios for contaminated sediments: lake sediment 

dredging and sediment traps.    

 

 

 

Figure 1. Study area map and main features of the Spring River Watershed (upstream from 

Empire Lake) and tributaries. The map shows a geographic overview of the watershed 

and the Spring River and Shoal Creek Watersheds. Water quality sampling stations are 

marked with white circles. The two USGS streamflow gauges on the Spring River and 

Shoal Creek are marked with yellow circles. Water quality was also sampled at the two 

USGS gauges. Mining areas are shown in red.       
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2. Hydrology Model  
 

2.1 Study Area 
 

The Spring River Basin is located within the TSMD, mostly in southwest Missouri, and 

encompasses an area of about 2,377 mi2.  The upper portion of the Spring River Basin, which 

drains to Empire Lake, (henceforth, referred to as the Spring River Watershed) covers a portion of 

southeast Kansas and northeast Oklahoma including parts of Crawford and Cherokee Counties 

(Kansas) and Ottawa County (Oklahoma) (Fig. 1) before reaching its confluence with the Neosho 

River.  The Basin also drains Jasper County and portions of Barry, Barton, Lawrence, and Newton 

Counties in Missouri. Climate of the region is considered temperate, with an average annual 

temperature of 59oF and average annual precipitation of 40 inches (Adamski et al., 1995).  A more 

recent estimate from data obtained from ground station PGHCNDUSC00232240 for the period 

(1981-2016) shows an average annual temperature of 58oF and average annual precipitation of 

38.40 inches.   

Cropland occupies the greatest portion (57%) of the Spring River Watershed, followed by 

pasture (24%) and forested lands (13%) (Table 1), with forested land occupying most of the Shoal 

Creek Watershed. The areas in and around cities (e.g., Joplin and Web City) are dominated by 

high and low-density urban land use (6%). This classification was obtained from USGS land cover 

map.  

           

         Table 1. Type, area and % of land use in the Spring River Watershed. 

Land Use Area (mi2) % of Total 

Cropland 1,332 57 

Pasture 561 23.6 

Forest 301 12.6 

Urban 137 5.8 

Water 33 1.4 

Shrub Land 13 0.6 

Total 2,377 100 
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The Spring River Basin is contained within the Springfield Plain of the Ozark Highlands 

physiographic region. This region is underlain mostly by sedimentary bedrock including 

Ordovician-age dolostone and sandstone, Lower Mississippian-age limestone and dolostone, and 

Pennsylvanian-age sandstone and shale ((USDA, 2006)). The study area has a karst landscape 

dominated by carbonated water through which dissolution over time created caves and water 

channels in the Mississippian limestone. Tropical climate caused a massive chemical weathering 

over time and produced a 400-ft thick shale layer covering 20 square miles containing enough 

trace elements to account for the Tri-State Minerals (Smith, 2016).  

The modelled watershed area of 6,156 km2 (2,377 mi2) comprises the majority of the Spring 

River Watershed (i.e., upstream of Empire Lake) and Shoal Creek Watershed. The area is relatively 

flat, and the elevation varies from 230 m to 470 m. The Spring River Watershed has 6 different 

tributaries located within and near the U.S. EPA listed Cherokee County Superfund site (Juracek 

and Drake, 2016):  Center Creek, Turkey Creek, Cow Creek, Shawnee Creek, Shoal Creek, and 

Short Creek. The Spring River and Shoal Creek discharge into Empire Lake. The lake is a reservoir 

that was formed at the confluence of Shoal Creek and Spring River, with the completion of a dam 

on the Spring River at Lowell, Kansas, in 1905 (Jakubauskas, 2008). The surface area is 

approximately 1 square mile, including the back-water area from Spring River and Shoal Creek.  

Published studies have shown the chemical composition of Empire Lake sediments is an 

environmental concern due to high concentration of lead and zin (Jakubauskas, 2008; Juracek and 

Drake, 2016; Pope, 2005; USEPA, 2006). 

 

2.2 Watershed Model Development 
 

SWAT is a process-based, semi-distributed model that simulates streamflow and water quality 

(Arnold et al., 1998). To accurately anticipate transport of sediments and dissolved and sediment-

bound constituents, the hydrologic cycle as simulated by the model must conform to dominant 

processes occurring in the watershed.  Simulation of the hydrology of the watershed can be divided 

into two major parts: the land phase, which controls the amount of water and sediment loading 

into the main channel, and the routing phase, which controls water flow and sediment transport 

through the channel network, from the watershed headwaters to the outlet (Neitsch et al., 2011). 
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SWAT partitions watersheds into sub watersheds using the river network and then into smaller 

units nested within the sub-basins known as Hydrological Response Units (HRUs) (Neitsch et al., 

2005). The HRU is the smallest computational unit in a SWAT model within which all 

combinations of similar land uses, soils, and slopes within a sub-basin are lumped based upon 

user-defined thresholds (Neitsch, 2005).  SWAT’s hydrological routine is comprised of discharge, 

snow melting, and evapotranspiration. For this case study, ArcSWAT version 2012.10.19 was used 

along with ArcGIS Plugin 10.4. 

SWAT model can simulate yearly, monthly, daily and sub daily time steps. Developed 

model was run on a daily time step incorporating the historic meteorological variables of 

precipitation, temperature, wind speed, solar radiation, and relative humidity. The USDA’s SCS 

curve number method (reference) was applied for an estimation of surface runoff volume.  

2.3 Data and Sources 

SWAT uses three types of data: geographic, meteorological, and hydrologic. These data are 

heterogeneous, typically structured according to several main input data, such as tables, 

Geographic Information Systems (GIS) raster, GIS vector or multi-dimensional arrays (e.g., 

NetCDF). Digital Elevation Model (DEM), land use (LU), and soil maps are raster datasets, while 

river geometry comes typically in vector formats, hydrologic and weather data as tables, and 

climatic data as arrays of points. For the weather data, the minimum requirements are precipitation 

and minimum and maximum daily temperatures. Since observed evapotranspiration (ET) was not 

available for input to SWAT, we used build-in functions in the SWAT model for 

evapotranspiration (ET) calculation, and Penman Monteith based energy balance method (Allen 

et al., 1998) was selected among various methods.  Hydrologic data include water flow, water 

quality, and sediment loads. Table 2 presents the data used in developing the watershed model.   

To evaluate the performance of modeled watershed hydrology, we used daily stream 

discharge data from in situ USGS stream gauge stations.  Two-gauge stations were used for model 

calibration and validation: Spring River near Waco, MO (USGS ID: 07186000) and Shoal Creek 

above Joplin, MO (USGS ID: 07187000). The USGS Waco station has a record of 65 years of 

daily data and the Shoal Creek station has 41 years of daily record. These stations were selected 
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for their lengths of record, which is essential for SWAT streamflow calibration and performance 

evaluation.  

 

Table 2: Data used and their sources for the TSMD study. 

Data Type 
Data 

Sources 

        

Scale/Resolution 
Description 

DEM1 USGS 10 m, 30 m, 90 m Elevation 

Land use2 USGS 30 m 
Classified land use such as crop, urban 

forest water etc. 

Soil3[a,b] 
SSURGO 1:12000 

1:250000 

Classified soil and physical properties 

such as sand, silt, clay, bulk density. STATSGO 

Hydrological 

network4 
NHD 1:24000 River network 

River flow5 USGS 
 

Daily  
Observed streamflow 

Weather6[a,b,c] 

NCDC Daily 

Daily 

Daily 

Precipitation, Temperature, Wind Speed, 

Solar radiation  
NOAA 

PRISM 
1. https://lta.cr.usgs.gov/NED 

2. https://www.mrlc.gov/nlcd2011.php  

3[a] https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628  

3[b] https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053629  

4.     https://nhd.usgs.gov/  

5.     https://waterdata.usgs.gov/nwis  

6[a] https://globalweather.tamu.edu/  

6[b] https://www.ncdc.noaa.gov/  

6[c] http://prism.oregonstate.edu/  

 

 To explore the consistency of the streamflow data, 60 years (1956-2016) of annual and 

daily records from the gauge station at the Spring River were plotted in a single graph (Figure 2). 

From this plot, it is evident that Spring River discharge is highest in the spring months (days ~60-

150) from February to May each year due to melting snow. 

 

https://lta.cr.usgs.gov/NED
https://www.mrlc.gov/nlcd2011.php
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053629
https://nhd.usgs.gov/
https://waterdata.usgs.gov/nwis
https://globalweather.tamu.edu/
https://www.ncdc.noaa.gov/
http://prism.oregonstate.edu/
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Figure 2. Data quality check. Spring River daily discharge based on 60 years’ record.  

 

 Rainfall-streamflow relationships were also evaluated in the Spring River and Shoal Creek 

watersheds using flow records at the corresponding USGS gauge stations and concurrent 

precipitation records. Figure 3 shows measured flow at the Spring River gauge on the primary axis 

and measured rainfall depth on the secondary axis.    

 

Figure 3. Relationship between rainfall and streamflow in the upper Spring River watershed. 
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 Although most of the rainfall events coincide with the observed streamflow rates, some 

events do not.  For example, during the first week of September 2014 a rainfall event with 50 mm 

rain was reported, but the concurrent observed flow rate showed little to no response. This 

discrepancy could be caused by errors in precipitation estimation. The nearest rainfall ground 

station is located 3.8 miles from the USGS gauging station upstream from Empire Lake in the 

Spring River Watershed. Six participant precipitation stations were identified in the studied area, 

which can be considered sparse for precise precipitation estimation over the watershed. To increase 

the spatial resolution of precipitation data a combination of satellite measured rainfall events along 

with ground-based measurements were used for this study.   

 Biweekly observations of sediment and metal concentration data were collected at 7 

sampling stations from 2014 to 2016. Table 3 lists the number of samples collected at each site for 

suspended sediment concentration (SSC).   

 

              Table 3. Number of suspended sediment concentration samples used for model 

calibration. 

Year S1 S2 S3 S4 S5 S6 S7 

 SSC [mg/l] 

2014 19 19 19 19 19 15 19 

2015 16 16 16 16 16 17 16 

2016 18 18 19 19 19 17 19 

Total 53 53 54 54 54 49 54 

 

 

 In some events, sediment samples were damaged during shipping. Also, samples were not 

collected during high flow events (for example October 2015 to February 2016). We analyzed the 

quality of the sediment concentration measurement with turbidity. A correlation plot is provided 

in the supplementary section (supplementary figure S12). High correlation with turbidity 

corroborates the quality of suspended sediment concentration data.  
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2.4 Model Performance Statistics 
 

Several studies have proposed standard hydrological model performance criteria (Bennett et al., 

2013; Ritter and Muñoz-Carpena, 2013). In this study, we used Nash Sutcliffe Efficiency (NSE), 

PBIAS and Coefficient of Determination (R2) as goodness-of-fit statistics as reported by Moriasi 

et al. (2007):  

 NSE = 1 −
∑ (Qm,t−Qs,t)

2T
t=1

∑ (Qm,t−Q̅m)
2T

t=1

 (1) 

 PBIAS = [
∑ (Qs,t−Qm,t)
T
t=1

∑ Qm,t
T
t=1

] × 100 (2) 

 R2 = [
∑ (Qm,t−Q̅m)(Qs,t−Q̅s)
T
t=1

∑ [(Qm,t−Q̅m)
2
]
0.5

T
t=1 ∑ [(Qs,t−Q̅s)

2
]
0.5

T
t=1

]

2

 (3) 

 

NSE is the strength of the relationship between observed and simulated values from the model, 

where Qm,t is the observed data value at time t and Qs,t is the simulated data value at time t. NSE 

values vary from -∞ to +1 (Nash and Sutcliffe, 1970). Values of NSE closer to +1 indicate better 

model performance. NSE is indicative of how well the plot of observed versus simulated values 

fit the 1:1 line.  PBIAS specifies the average tendency of the simulated data to be larger or smaller 

than their observed values. PBIAS can be used as an indicator of under- or over-estimation between 

observed and simulated values. Negative PBIAS indicates an underestimation of the observed 

values. The square of Pearson’s product moment correlation R2 represents the proportion of total 

variance of observed data that can be explained by the model.  Values of R2 closer to +1 indicate 

better model performance.  

 Following Moriasi et al. (2007), we considered that model performance was satisfactory 

when NSE  0.6, PBIAS  ± 25% and R2  0.6 for simulated streamflow and NSE  0.5, PBIAS 

 ± 55% and R2  0.6 for sediment in daily time steps.   
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2.5 Pre-Calibration Analysis: Significance of Input Data 
 

Geospatial and climatic inputs are essential for distributed watershed models, and they play a 

significant role in model performance. To increase confidence in the watershed model we 

conducted pre-calibration input data resolution analysis and examined 18 different hydro-climate 

and geospatial data resolution input scenarios. This step is intended to examine soundness of model 

structure and insure an optimal calibrated model using commonly used performance measures. We 

tested three different resolutions of DEM (10m, 30 m, and 90 m) and two soil data sources, state 

soil geographic database (STATSGO) and soil survey geographic database (SSURGO) for soil 

input. Since the land cover did not change much during the simulation period, the USGS land 

cover map for 2011 was used. Three climate data sources were examined, the National Centers for 

Environmental Protection (NCEP) based daily observations, the National Oceanic and 

Atmospheric Administration (NOAA) based ground data, and the reanalysis data from Parameter-

elevation Regressions on Independent Slopes Model’s (PRISM’s) data for climatic input. PRISM 

dataset provides high resolution [4×4 km] weather data by pooling in and interpolating other data 

sets on a grid (Supplementary Figure S1). A description of PRISM is provided as a supplementary 

material. The 18 combinations of input data type and resolution scenarios analyzed are depicted in 

Figure 4.  

 STATSGO within the region lists 24 soil types that cover the study area, whereas with the 

SSURGO dataset there are 377 soil types within the study area. Similarly, there were only 7 

observation points from the NOAA based stations compared to 381 grid points from the PRISM 

dataset. Sub-basin discretization was done to implement all of the small tributaries. For example, 

definition of the Short Creek sub-basin within the model required the higher resolution DEM and 

stream network. The watershed was subdivided into 159 sub watersheds to cover all the tributaries. 

With 159 sub-basins, 2664 Hydrological Response Units (HRU) were modeled for this study.  
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Figure 4.  Different data resolution scenarios of geospatial and climatic inputs for SWAT model 

setup. The circles at the bottom refer to three weather data sources: NOAA, PRISM, and 

NCEP. 

 

2.6 Streamflow Calibration and Validation 
 

The optimal model was selected as the scenario (Figure 4) that produced the best NSE and R2 prior 

to model calibration and using SWAT default parameters. Climate data resolution had greater 

impact on model performance than other data categories (i.e., DEM and soil data). The scenario 

corresponding to SSURGO, DEM 10-meter and PRISM as the input data produced the best model 

performance at the two USGS gauges: NSE= 0.66, R2 = 0.68 and PBIAS = -16% for Spring River 

and NSE = 0.61, R2 = 0.63 and PBIAS = 5.8% for Shoal Creek, both at the daily time scale. It 

should be noted, these goodness-of-fit statistics are based on the use of SWAT default parameter 

values and before attempting to calibrate the model. Note that these values satisfy Moriasi et al. 

(2007) performance threshold values stated above for SWAT flow calibration.  

 We used manual calibration first to understand parameter sensitivity and physical behavior 

of the catchment. Later we used auto calibration using AMALGAM (Vrugt and Robinson, 2007) 

and SWAT-CUP (Abbaspour et al., 2007). The results presented below are based on the best 

simulation from among 10,000 acceptable (behavioral) SWAT-CUP simulations.  
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 SUFI-2, Sequential Uncertainty Fitting Ver. 2 (Abbaspour et al., 2004), which was 

interfaced with SWAT using the generic SWAT-CUP program, was used for calibration. In SUFI-

2, two measures were used to assess the performance of the calibration: (1) the percentage of data 

bracketed by the 95% prediction uncertainty calculated at the 2.5 and 97.5 percentiles of the 

cumulative distribution of the simulated variables, and (2) the d-factor, which is the ratio of the 

average distance between the above percentiles and the standard deviation of the corresponding 

measured variable. 

Streamflow calibration and validation were carried out for the two USGS gauge stations at 

Spring River and Shoal Creek.  We used 7 years of daily data over the period 2010-2016 for model 

calibration and the period 2000-2007 for validation.  2008-2009 was considered as a warmup 

period for the model.  

 The calibration and validation results at the two USGS gauge stations are discussed in the 

following subsections.  

 

2.6.1 Streamflow Calibration (2010-2016) 

 

Table 4 list the default values and optimal parameter values corresponding to the best SUFI-2 

simulation (i.e., calibrated model). Based on the pre-calibration analysis, we considered the input 

data resolution scenario which produced best goodness-of-fit statistics (i.e., DEM 10m, SSURGO, 

and PRISM). Figure 5 compares observed and simulated streamflow in the Spring River 

Watershed at daily and monthly time scales. No major deviations were found between observed 

and simulated values. Goodness-of-fit statistics at the daily time scale are NSE =0.77, R2 =0.78, 

and PBIAS =-12.16%. For the monthly time scale results are: NSE =0.83, R2 =0.84, PBIAS =-

12.20%. The model can explain 78% and 84% of the variance in the observed data at the daily and 

monthly time scales, respectively. 
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Table 4. List of SWAT flow parameters, their ranges and optimized values.  

Parameter Description Range 
Optimal 

value 

SURLAG Surface runoff lag time 1,4 1.2 

CN2 Curve number 10,100 25 

ALPHA_BF Baseflow alpha factor 0,1 0.26 

GW_DELAY Groundwater delay time 0,500 210 

SOL_AWC 
Soil available water storage 

capacity 
0,1 0.21 

CH_N 
Manning’s n value for the main 

channel 
0.01,3 0.121 

 

 

 

Figure 5.  Observed vs. simulated streamflow rates for the calibration period (2010-2016) at Spring 

River (USGS flow gauge station 07186000). Upper panel depicts daily time steps while 

the lower panel depicts monthly time steps.  
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 Goodness-of-fit statistics at the daily time scale for Shoal Creek are NSE = 0.67, R2 = 0.68, 

PBIAS = 4.45, and for the monthly time scale these are: NSE = 0.81, R2 = 0.82, PBIAS = 4.56 

(Figure 6). The model accounted for 68% and 82% of the variance in the observed data at the daily 

and monthly time steps, respectively. 

 

 

Figure 6.  Observed vs. simulated flow rates for the calibration period (2010-2016) at Shoal creek 

(USGS flow gauge station: 07187000) at daily and monthly time scales.  

 

 

2.6.2 Streamflow Validation (2000-2007) 
 

Validation of the model with respect to streamflow was performed to test the robustness of the 

model outside of calibration period (2000-2007). Since suspended sediment concentration was 

sampled from 2014 to 2016, we opted to use this time as a part of the model calibration period 

(2010-2016).  
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 Comparison of SWAT predicted streamflow with observed values for Spring River 

Watershed is shown in Figure 7.  Goodness-of-fit statistics at the daily time scale are NSE = 0.66, 

R2 = 0.67 PBIAS = -21%, and at the monthly time scale, NSE = 0.67, R2 = 0.76, PBIAS = -7.7%. 

As expected, performance at the monthly time scale was better. The model explained 67% and 

76% of the variance in the observed data at the daily and monthly time scales, respectively. 

 

Figure 7. Observed vs. simulated streamflow rates for the validation period (2000-2007) at Spring 

River (USGS flow gauge station 07186000) at daily and monthly time scales. 

 

 

 Figure 8 shows validation results for the Shoal Creek Watershed at both daily and monthly 

time scales. Goodness-of-fit statistics at the daily time scale for Shoal Creek are NSE = 0.67, R2 = 

0.68, PBIAS = 4.45%, and for monthly time steps are: NSE = 0.81, R2 = 0.82, PBIAS = 4.56%. 

The model explained 68% and 82% of the variance (based on NSE) in the observed data at the 

daily and monthly time steps, respectively. Table 5 lists performance statistics for the two 

watersheds. 
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Table 5. Model validation statistics for the two watersheds.  

 Spring River Watershed Shoal Creek 

Parameter Daily Monthly Daily Monthly 

NSE   0.66    0.67    0.67    0.81 

 R2   0.67    0.76    0.68    0.82 

PBIAS -21%   -7.7%    4.45%    4.56% 

 

  

 The calibration and validation goodness-of-fit statistics for both Spring River and Shoal 

Creek met the threshold performance values recommended by Moriasi et al. (2007).  

 

        Figure 8.  Observed vs. simulated streamflow rates for the validation period (2000-2007) at 

Shoal Creek (USGS flow gauge station: 07187000) at daily and monthly time scales.   
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 To further test the robustness of model, the period 2000-2007 was split into two periods 

with distinctive precipitation patterns: October-March (low precipitation) and April-September 

(high rainfall and snowmelt). Figure 9 compares observed to model simulated streamflow values 

for the two periods in the upper Spring River and Shoal Creek. Scatter plots show good agreement 

between observed and model simulated flows for both periods. The coefficient of determination 

R2 ranged from 0.79 to 0.91, which further reinforced robustness of the calibrated model in 

simulating two different weather conditions.   

 

 

Figure 9.  Dry and wet validation for Spring River and Shoal Creek. The left panel for Spring River 

and the right panel for Shoal Creek.  

 

 Further inspection of model performance over the full range of flow rates in the Spring River 

and Shoal Creek Watersheds is depicted in the flow duration curve (FDC) in Figure 10. FDC 

curves are most commonly used to depict the temporal variability of flow (Dingman, 2002). FDC 

is the relation between the magnitudes of streamflow at a gauge (e.g., average daily flow) and the 

frequency (probability) with which those magnitudes are exceeded over an extended time period; 
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it is highly informative way to summarize the difference between model simulated and observed 

flow rates over the full range of the recorded streamflow rates, from low to high flow rates. We 

used rank-based approach described in Chow et al (1988) for computing exceedance probability 

of the model simulated flow and observations for both watersheds. Results show that in both cases 

deviations are mostly in the mid-range flows. Both high and low flow probabilities of exceedance 

match closely, which indicates the model simulates high and low flow events well. Deviations 

between model simulated streamflow rates and observed values occur in the range from 50 m3/sec 

to 350 m3/sec  for Spring River. For Shoal Creek, the deviations are mostly in the flow range from 

20 m3/sec to 250 m3/sec. For both watersheds, probability of exceedance of SWAT simulated flows 

overestimated that generated from the observations.  

 

Figure 10. Flow Duration Curve (FDC) curve for Spring River and Shoal Creek. The upper panel is for 

Spring River and the lower panel is for Shoal Creek.  
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3. Sediment Model  

 

 3.1 Sediment Transport Model Development 
 

The sediment routing model consists of two processes occurring simultaneously: deposition and 

degradation. Deposition in the channel and floodplain from the sub-watershed to the watershed 

outlet is based on the sediment particle settling velocity. The settling velocity is determined using 

Stokes law (Chow et al., 1962) and is calculated as a function of particle diameter squared. The 

depth of fall through a reach is the effect of settling velocity and the reach travel time. The delivery 

ratio is estimated for each particle size as a linear function of fall velocity, travel time, and flow 

depth. Degradation in the channel is based on Bagnold’s stream power concept (Bagnold, 1973).  

 SWAT uses the Modified Universal Soil Loss Equation (MUSLE) (Williams and Berndt, 

1977) to predict sediment generation adopted from FitzHugh and Mackay (2000).  

 SWAT calculates channel sediment transport using the following equation (Neitsch et al., 

2011) :  

 𝑇 = 𝑎 × 𝑉𝑏 (5)  

where T, is the transport capacity (ton/m3); V, is flow velocity (m/s); and a and b, are constants. 

Depending on whether the amount of sediment being carried is above or below the transport 

capacity, SWAT either deposits excess sediment or re-entrains sediment through channel erosion. 

Flow velocity is computed as: 

 𝑉 =
𝐹

𝑤∗𝑑
  (6) 

where F, is the flow volume (m3/s); w, is channel width (m); and d, is depth of flow (m). For flows 

below bankfull depth, depth of flow is calculated using Manning's equation, assuming that channel 

width is much greater than depth:  

 d = (
F∗n

w∗cs0.5
)
0.6

 (7) 
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where n, is the Manning's roughness coefficient for the channel and cs, is channel slope (m/m). 

For flows above bankfull depth, depth of flow is equal to channel depth.  

 The MUSLE equation used to estimate sediment generation is as follows:  

 Y=11.8(Q×pr)0.56K×C×P×LS (8) 

where Y, is the sediment generation (metric tons); Q, is volume of runoff (m3); pr, is peak runoff 

rate (m3/s); K, is soil erodibility factor; C, is cover and management factor; P, is support practice 

factor; and LS, is topographic factor. For each day with rainfall and runoff, sediment generation is 

estimated by applying Eq. (4) for each HRU in the watershed.  

 Peak runoff rate is calculated using a modified version of the “Rational Equation” 

(Boughton, 1989):  

 𝑝𝑟 =
𝛼∗𝑞∗𝐴

360∗𝑡𝑐
 (9) 

where pr, is the peak runoff rate (m3/s); q, is runoff (mm); A, is HRU area (ha); tc, is time to 

concentration (h); and α, is a dimensionless parameter that expresses the proportion of total rainfall 

that occurs during tc. The value of α is calculated as:  

 α = a1 ∗ (
tp6

tp5
) ∗ (

tc

6
)
α2

 (10) 

where a1 is the fraction of rainfall that occurs during 0.5 h; tp6 and tp5 are the 10-year frequencies 

of a 6 and 0.5 h rainfall, respectively, derived from Herschfield (1961) ; and α2 is a constant equal 

to 0.242 for Dane County, Wisconsin.  

 Overland time is computed as:  

 ot =
0.0556(sl∗n)0.6

s0.3
 (11) 
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where ot, is the overland time to concentration (hours); sl, is average subwatershed slope length 

(m); n, is Manning's overland roughness coefficient for the HRU; and s, is overland slope (m/m). 

 

3.2 Sediment Model Calibration 
 

SWAT simulates sediment loading with various temporal scales. For this study we extracted the 

daily loading values from the model to compare them with the available field measurements. The 

loading values were calculated by multiplying suspended sediment concentrations (SSC) in 

milligram per liter (mg/L) with flow rate (m3/sec) and converting the units to ton per day. Similarly, 

we used the automatic calibration tool (SWAT-CUP) for sediment calibration. The parameters 

were selected from published studies in the region and their sensitivities were tested using the 

SUIFI method (Abbaspour et al., 2007).   Five major sediment related parameters were selected in 

addition to the streamflow parameters. Table 6 lists the five most sensitive parameters and range 

of values used during SWAT-CUP calibration, starting with CH_COV as the most sensitive 

parameter and PRF as the least sensitive one among the list.  

 

           Table 6. List of SWAT sediment parameters, their ranges and optimized values. 

 

 

 

 Figure 11[A] shows calibration results for the modelled portion of Spring River Watershed 

(i.e., upstream from Empire Lake). Although SWAT captured most of the events, the comparison 

of the cumulative loadings showed significant differences between observed and simulated values 

at the Spring River sampling station. There was an event in December 2014 where SWAT 

simulated sediment loading rates were higher than corresponding measured values in Spring River. 

Parameter Description Range Value Location

CH_COV Channel Cover Factor 0-1 0.2 *.rte

CH_EROD Channel Erodibility Factor 0-1 0.06-0.8 *.rte

SP_CON Liner Transport Capacity Co efficient 0.0001-0.01 0.005 *.bsn

SP_EXP Exponential Transport Capacity Cofficient 1-2 2.26 *.bsn

PRF Peak Rate Adjustent Factor 1-2 1.44 *.bsn
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A close inspection revealed unexpectedly high rainfall rates apparently artificially inferred by the 

4 km grid based PRISM data during that event.  To remedy this problem, we assimilated ground-

based rainfall measurements to corresponding satellite-based, PRISM data entries for SWAT input 

and obtained an improved calibration as shown in Figure 11[B]. Goodness-of-fit statistics at the 

daily time scale for Spring River before and after the adjustment were (NSE = 0.65, R2 = 0.74, 

PBIAS = 12%) and (NSE = 0.75, R2 = 0.92, PBIAS = -19%), respectively. The model explained 

92% of the variance in the observed data at the daily time scale after the rainfall input data 

adjustment, a significant increase from 74% before the adjustment. The difference between the 

sum of observed loadings and sum of corresponding simulated loadings is substantially reduced, 

comparing panel [a] in both Figures 11[A] and 11[B].    

   

 

       Figure 11[A]. Observed vs. simulated sediment loading in Spring River Watershed before rainfall data 

adjustment. [a] Comparison of cumulative loading from observation and simulation. [b] 

Correlation between observed and simulated sediment loading. [c] Time series of 

observed and simulated sediment loading.  
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        Figure 11 [B].  Observed vs.  simulated sediment loading in the Spring River Watershed after 

calibration. [a] Comparison of sum of observed loadings with sum of 

corresponding simulated loadings. [b] Correlation between observed and 

simulated sediment loading. [c] Time series of observed and simulated 

sediment loading.  

 

 Figure 12 compares SWAT simulated loading to observed values at Shoal Creek after 

calibration and PRISM precipitation data correction. The performance is relatively poorer when 

compared to calibration at Spring River. Goodness-of-fit statistics at the daily time scale for Shoal 

Creek were NSE = 0.45, R2 = 0.58, PBIAS = -50%. The model explained 58% of the variance in 

the observed data at the daily time scale. Although the NSE is slightly lower than recommended 

threshold value of 0.5 (Moriasi et al., 2007), nevertheless, R2 = 0.58 is comparable to the threshold 

value of 0.6 and PBIAS = -50% is within the limit of  55%. Over all, results are satisfactory. The 

cumulative effect of errors in the simulated sediment loading values over the period 2014-2016, 

however, is apparent from large difference between SWAT estimated sum of loadings and that 

based on observations. The 2015 high flow event may have contributed to the significant 

overestimation by SWAT.    
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 Worth noting is the relatively short length of the data and uncertainty associated with it. In 

general, three-year worth of sediment data might be barely enough for model calibration but not 

long enough to produce a robust model. Also, with all likelihood, the measured SSC may not be 

representative of the cross-section area-averaged concentration at the sampling station. The latter 

is what is computed by SWAT rather than sediment concentration at a given point in the sampled 

cross section. The variability of point concentration from area-averaged concentration can produce 

measurement errors and contribute to SWAT model uncertainty due to spatial-scale discrepancy 

between measured SSC and model simulated SSC. Translating a sediment sample to measured 

SSC may also involve errors and thus contributes to the overall model uncertainty.     

 

 

 

       Figure 12. Observed and simulated sediment loading in Shoal Creek after calibration. [A] 

Comparison of cumulative loading from observation and simulation. [B] 

Correlation between observed and simulated sediment loading. [C] Time series of 

observed and simulated sediment loading. 
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Calibration of sediment loading in tributaries to the mainstem Spring River (Shawnee, Turkey, 

Cow, and Short Creeks) were overall good and with R2 values ranging from 0.69 to 0.99 

(supplementary figures S2 to S5), thus explaining 69% - 99% of the variance. It should be noted 

that flow rate in other tributaries was discretely measured and at the same temporal resolution of 

the sediment data. Even then, in some of these tributaries, measured sediment concentrations 

lacked corresponding observed streamflow rates which were computed using SWAT model.             
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4. Scenario Analysis 
 

4.1 Sediment Source Areas and Annual Yield 
 

The average annual sediment loadings from the sub basins in the upper Spring River Watershed 

simulated for the period 2010-2016 is shown in Figures 13 and 14. Figure 13 is a map depicting in 

colored-gradation sediment-loading contributions of the all the sub-basins. The darker the shading, 

the larger the annual loading rate. The magnitude of sediment loading in tons/year averaged over 

the period is shown in a bar-chart format (Figure 14). The upper Spring River Watershed is the 

largest contributor of sediment loading (52%) due to size and land use, followed by Shoal Creek 

(21%), and to a much lesser extent, by Center Creek and Cow Creek, each contributing 12% and 

9% of the total sediment loading, respectively (Figure 14). Suspended sediment loading was 

expected to be higher in Spring River and its tributaries, because of the land use type, which was 

mostly crop land. The lower part of the watershed (Shoal Creek) was smaller in size and mostly 

forested; the erosion rate therefore was relatively lower compared to the mostly agricultural upper 

part of the watershed.    

 



 

30 
 

 

       Figure 13.  SWAT computed average annual sediment loading (ton/year) in Spring River 

Watershed.  

 

 

        Figure 14. Average annual sediment loading (ton/year) and % contribution from individual 

tributaries.  
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Annual sediment loading over the simulation period 2010-2016 from Spring River (upstream of 

Empire Lake) and Shoal Creek is shown in Figure 14. 2015 had the highest SWAT computed 

annual loading due to a high flow event that occurred at the end of that year. 

Figure 15. Annual sediment loading (ton/year) in 2010-2016 from Spring River and Shoal Creek. 

4.2 Assessment of Potential Remedial Strategies 

Two proposed management scenarios were evaluated using SWAT and suspended sediment 

concentration data: Empire Lake sediment dredging and installation of sediment traps at the 

outlet of mining affected tributaries (Short Creek, Turkey Creek, Shoal Creek, Center Creek, 

Cow Creek, and Shawnee Creek). 

4.2.1 Lake Sediment Dredging Scenario 
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Under this scenario, we explored the dredging of Empire Lake as a hypothetical remedial measure 

for contaminated sediments, and calculated the time required for Empire lake to recover the 

dredged lake-bottom sediment mass (refill time). It is hypothesized that after being dredged the 

lake would be filled in time with sediments delivered by Spring River and Shoal Creek. By 

dividing the dredged lake sediment mass M by the annual average depositional rate S, one can 

calculate the refill time: 𝑡𝑟 = 𝑀/𝑆. Estimates of Empire Lake bottom sediment mass and annual

sedimentation rate in the lake, hence, are needed to calculate the refill time.  The annual 

sedimentation rate to Empire Lake can be obtained from Juracek (2006), and can be computed 

from the SWAT model and the sampled suspended sediment concentrations directly downstream 

from the lake. Calculating sediment mass to be dredged, which is key to estimating the refill time, 

is achieved as follows. 

The USGS estimated 44.44 million ft3 of sediment in the lake as of year 2006, deposited 

over a period of 100 years (Juracek, 2006). This is equivalent to a volume depositional rate of 0.44 

million ft3/year. The corresponding estimated total mass of the sediments was 2,400 million ibs 

(Juracek, 2006), which is equivalent to a sedimentation rate of 24 million ibs/year.  According to 

these sedimentation rates, a projection of the total sediment volume and mass in the lake of 48.84 

million ft3 and 2,640 million ibs (1.32 million tons), respectively, can be made by year 2016. This 

is the sediment mass that would have been dredged assuming hypothetical dredging occurred in 

2016 and sediment deposition (retention) at the historic average rate of 24 million ibs/year.  

Using geospatial analysis, we carried out an independent estimate of the total volume and 

the total mass of the bottom sediment in Empire Lake, approximately two miles upstream into 

Shoal Creek, and approximately five miles into Spring River upstream from the entrance to Empire 

Lake.   The sediment mass and volume were calculated from USGS data of 429 sampling locations 

in 66 transects (Juracek, 2006).  A minimum curvature spline with barriers interpolation method 

was used for the calculations. This analysis estimated a volume of 49,336,617 ft3 of sediment in 

Empire Lake and sections of Spring River and Shoal Creek. While the sediment volume calculation 

using the geospatial technique is a more complex method for volume estimation than the USGS 

method, it nevertheless yielded a comparable result: 49.34 million vs. 44.44 million ft3 of sediment 

– a 10% difference. The spline interpolation estimated the mass of bottom sediment to be 2,520
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million ibs, using a 51.08 lbs/ft3 bulk density factor based on the average of 26 sediment cores 

(Juracek, 2006). Between the two methods, there was a difference of 5% in estimated total 

sediment mass. This independent estimate corroborates the 2,400 million ibs value obtained by the 

USGS (Juracek, 2006). 

A calibrated SWAT model was used to compute sediment loading from Spring River and 

Shoal Creek to Empire Lake for the period 2010-2016. Cumulative loading to the lake, assuming 

95% of sediment entering the lake is discharged, is shown in Figure 16 [A], the plot at the lower 

left corner. This estimate based on historical data implies 5% of incoming sediment mass was 

retained during the three-year measurement period. Extrapolation of the cumulative sediment 

loading to years beyond 2016 was achieved by regressing the SWAT simulated values (Figure 

16[A]). The slope of the regression line is the average annual sedimentation rate (27 million 

ibs/year) corresponding to 5% retention of annual loading to the reservoir. The extrapolated 

regression line in Figure 16[A] shows that if the sediment mass dredged is 1.32 million tons, the 

time after dredging required for sediment mass accumulation to recover the dredged mass is about 

131 years. We repeated the regression-extrapolation analysis for different % values of annual 

sediment loading retained, and calculated the sedimentation rate (million ibs/year) for each % 

value from the slope of the associated regression line. The inset panel in Figure 16[A] depicts 

estimates of refill time as a function of % sediment loading retained in the reservoir. 

Figure 16[B] is the inset plot in Figure 16[A], except here the abscissa corresponds to 

average annual sedimentation rates (million ibs/year) obtained from the slopes of the regression 

lines described above. At the historic average sedimentation rate of 24 million ibs/year the refill 

time is 110 years.   
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        Figure 16 [A]. SWAT computed and regressed cumulative sediment accumulation vs. time 

in years. The lower left corner is SWAT computed values for the period 

2010-2016. The inset panel shows refill time as a function of percentage 

sediment loading retained.   

 

 

          Figure 16 [B]. Refill time as a function of sedimentation rate in units of million ibs/year. 

Based on the historic sediment accumulation rate of 24 million ibs/year, it 
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takes 110 years to refill the lake back with a dredged sediment mass. The refill 

time is 98 years based on sediment accumulation rate of 27 million ibs/year 

obtained from sediment data collected in 2014.   

 

 To gain some insight into the effect of inter-annual variability in the lake 

sedimentation/retention rate on the refill time, we implemented two approaches for calculating 

annual sedimentation rate in Empire Lake for the period 2014-2016. In the first approach, we relied 

on the calibrated SWAT model to simulate sediment loading to the lake for the period (2014-2016) 

and measured sediment concentrations at two sampling stations directly downstream from Empire 

Lake (Brush Creek and Baxter Spring, Figure 17). In the second approach, only observed 

suspended sediment concentrations (SSCs) were used. In both approaches, the annual mass of 

sediment deposited (S) was computed as the difference between sediment loading into Empire 

Lake and the sediment loading leaving the lake. The sediment loading into the reservoir is the sum 

of loadings of Spring River (L1) and Shoal Creek (L2). While, sediment loading leaving the 

reservoir can be estimated as the sediment loading of Baxter Spring (L4) minus sediment loading 

of Brush Creek (L3).  Mass balance at the lake requires: 

 𝐿1 + 𝐿2 − 𝑆 = 𝐿4 − 𝐿3 (12) 

where 𝐿1 + 𝐿2 is sediment loading rate to the lake; 𝐿4 − 𝐿3 is sediment loading rate out of the lake; 

and S is defined above.  

The estimated sediment masses retained in the reservoir during the years 2014, 2015, and 

2016 were calculated by SWAT as 27.4 million lbs/year, -1553 million ibs/year, and 162.5 million 

ibs/year, respectively. A negative sedimentation rate means net removal of sediments. The USGS 

(Juracek, 2006) sediment mass estimate of 2,400 million ibs translated into the estimate of lake 

sediment mass left as of 2016: 2,400 + (24×7) + 27.4- 1,553 + 162.5 = 1,205 million ibs, which is 

less than half the calculated 2,640 million ibs in 2016. In obtaining the latter estimate, we 

maintained the assumption that the sedimentation rate for the years 2007-2013 was at the historic 

average rate of 24 million ibs/year. 
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               Figure 17. Location of the sediment sampling stations and Empire Lake 

 

 In the second approach, where only measured SSCs were used, the estimated sediment 

masses retained in the reservoir during the years 2014, 2015, and 2016 were 4.9 million ibs/year, 

-1362.82 million ibs/year, and 66 million ibs/year, respectively. The sediment mass left as of 2016 

in this case is 2400 + (24×7) + 4.9 - 1362.82 + 66 = 1276 million ibs.  
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 The estimated sedimentation rates of 27.4 and 4.9 million ibs/year based on 2014 observed 

data are comparable to the 100-year average of 24 million ibs/year obtained by the USGS (Juracek, 

2006), but reflective of the kind of variability expected in the sedimentation rate from year to year. 

The refill time assuming annual average sedimentation rate of 27.4 million ibs/year is 98 years 

(Figure 16 [B]), compared to 110 years based on the historical average sedimentation rate (24 

million ibs/year).      

 It should be noted that the streamflow and SSC measurement campaign did not cover the 

high flow event at the end of 2015 and beginning of 2016, and the impact of the event on lake 

sediment deposition (or retention), therefore, could not be assessed. The first approach, which is 

based on SWAT computed sediment loading, yielded loading estimates that are not immune from 

errors due to model uncertainty and, as described above, potential errors in the measured SSC data. 

The second approach, while accounting for most of the contributing sub watersheds, did not cover 

the relatively small watershed area between the two USGS gauge stations and the lake, and the 

observed sediment loadings were discrete rather than continuous in time as the case for the first 

approach, wherein continuous daily sediment loading was calculated using SWAT.  

 It remains to be seen if the estimated net sediment removal from Empire Lake reservoir in 

2015, which is reflected by the negative sedimentation rate of magnitude -1553 million ibs and -

1363 million ibs represent the true values. But these removal rates manifest the inter-annual 

variability of the annual lake sediment accumulation caused by climate variability and/or reservoir 

operation. Is it possible the calculated lake sediment removed in 2015 has resulted in clearing 

enough storage for more sedimentation in 2016 than the estimated historical rate of 24 million 

ibs/year? Did the high flow event in 2015 cause substantial removal of sediments from Empire 

Lake? A new survey of existing sediment volume and mass in the lake as well as more sampling 

of suspended sediment concentration data of the lake inflows and outflows from similar events 

may shed light and provide key answers to the above questions.     

 Considering the limited discretely observed sediment data and potential measurement 

errors, we acknowledge the uncertainty in the above analysis and estimates of sedimentation rates.  

As stated above, the estimated values were also subjected to annual variations of hydro-climate 

and flow conditions in the watershed.   
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4.2.2 Sediment Trapping Scenario (qualitative assessment) 

In this section we make qualitative inferences on the efficacy of sediment traps in mining affected 

tributaries within and near the Cherokee County Superfund site. This is a mere hypothetical 

assessment scenario based on SWAT estimated sediment loading and reported historically elevated 

lead and zinc concentrations in tributaries affected by mining, namely, Short Creek, Shoal Creek, 

Turkey Creek, and Center Creek. The underlying hypothesis is that trapping sediment in a mining-

affected tributary can help reduce discharge of metal contaminated sediment to downstream 

channel reaches, ultimately to Empire lake. A more objective assessment requires the design and 

installation of sediment traps and collection of requisite metal data over time. A sediment trap is 

generally a constructed ‘basin’ or depression on a watercourse where sediment settles out and 

accumulates allowing for its removal. The maintenance of the sediment traps (removal of 

accumulated sediment) is necessary to ensure their proper function (Ciccarello, 2011). It is 

expected that sediment traps can only be effective in small catchments with relatively low, 

intermittent flows.  

Although the Spring River upstream of mining (Spring River Watershed) contributed an 

estimated 52% of total sediment loading from 2014-2016 (Figure 14), it historically has 

contributed relatively clean sediment, potentially diluting contaminated sediment from 

downstream mining-affected tributaries (Stratus Consulting Inc., 2006; and Juracek and Drake, 

2016). On the other hand, Shoal Creek contributed about 21% of total sediment loading over the 

same period, but historically has been associated with much higher levels of dissolved and 

sediment bound lead and zinc concentrations than the reported background concentrations (Stratus 

Consulting Inc., 2006; and Juracek and Drake, 2016).  In contrast, Short Creek’s share of sediment 

loading was less than 1%, yet it historically was the largest single source of dissolved zinc to the 

Spring River (Spruill, 1987; and Davis and Schumacher, 1992). While Center Creek and Turkey 

Creek accounted up to 14% of total sediment loading and have relatively small catchment areas, 

these streams drain areas that are substantially affected by historical lead and zinc mining (Juracek 

and Drake, 2016).  

This qualitative assessment shows that for sediment traps to be effective in mitigating zinc 

and/or lead in downstream reaches and Empire Lake, they should be installed within Short Creek, 

Turkey Creek, and Center Creek. But even then, their efficacy would be limited by the amount of 
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zinc in the dissolved phase. For example, historical data for Short, Center, and Turkey Creeks 

indicated relatively high dissolved concentrations of zinc and/or lead (Spruill, 1987; and Davis 

and Schumacher, 1992). Installation of sediment traps at the mouth of relatively large, high flow 

catchments, such as the Spring River Watershed and Shoal Creek Watershed is not feasible.    

 Finally, it may be interesting to see if the installation of sediment traps in the mining-

affected tributaries would affect the time to refill. This can be explored by first noting that sediment 

accumulation in the lake is the product of the average annual sedimentation rate S and time t. One 

can easily obtain the following relationship between refill time (tr) and yearly trapped sediment 

load (L): 

 𝑡𝑟 = 𝑡𝑟0 +
𝑀

𝑆
(

∆𝐿

𝐿

1−
∆𝐿

𝐿

)  (13) 

where, tr is maximum refill time with sediment traps; tr0 is time to refill without sediment traps, M 

is dredged sediment mass; L is annual sediment loading to the lake; and S and L are defined 

above. Note that L is annual sediment loading from sub-watersheds in which sediment traps 

would be installed, assuming (hypothetically) complete filtering of the sediments by each sediment 

trap. ∆𝑡 = 𝑡𝑟 − 𝑡𝑟0 is the maximum increase in refill time due to installation of sediment traps. 

The above relationship is based on quasi steady-state sediment transport through the lake and 

assumes that the sediment mass outflow is proportional to the sediment mass inflow to the lake. 

Since finer sediment particles are likely to pass through traps, complete filtration is not plausible. 

The estimate of actual refill time given by Eq. (13), therefore, should be viewed as an upper limit 

to the calculated refill time. In other words, estimate of actual refill time should be less than the 

value calculated by Eq. (13). 

 As an example, let’s assume sediment traps were installed in Short, Center, and Turkey 

Creeks in 2016; i.e., L/L = 0.14 since the three creeks contribute about 14% of total sediment 

loading. Inserting into Eq. (13) the above data and S = 24 million Ibs/year, and M = 2640 million 

Ibs, ∆𝑡 = (2640/24) ×[14/(100-14)] = 18 years at most as the increase in the time for Empire Lake 

to be filled with sediment back to the pre-dredging level.    
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5. Summary and Conclusion

This report describes the construction and calibration of SWAT flow and sediment model for a 

portion of the Spring River Watersheds upstream from Empire Lake. The modeled watershed, 

comprised of Spring River and the Shoal Creek, is located within the TSMD, which is known for 

its legacy of mining activity performed for about 100 years (1850-1970). The SWAT watershed 

flow model was examined for impact of input data resolution (climate, topography, and soil) on 

its performance prior to calibration. Among the various data categories, climate data resolution 

had the greatest impact when compared to DEM and soil data.  

A combination of 10 m DEM, SSURGO soil data, and PRISM climate data yielded the 

best performance of SWAT in terms of simulated streamflow rate before attempting to calibrate 

the model. This step increased our confidence in the model and insured a proper model calibration. 

A significant change in model performance was observed with the climate data compared to other 

geospatial data inputs. SWAT flow parameter sensitivity analysis was implemented using the 

SUFI-2 algorithm, and the model was successfully calibrated and validated at the two USGS gauge 

stations located upstream from the outlets of the Spring River Watershed and the Shoal Creek 

Watershed, meeting recommended thresholds of commonly used performance measures. In both 

watersheds, the model explained more than 67% of the variance in the observed flow data at the 

daily time scale and more than 76% of the variance in the observed data at the monthly time scale. 

The model performed well during wet and relatively dry periods. FDCs of SWAT simulated 

streamflow rates and the observed data showed that the model performed well at low and high 

flows, with more pronounced deviations in the range 50 to 350 m3/sec in Spring River and 20 to 

250 m3/sec in Shoal Creek.  

A sediment transport model was also constructed and calibrated. Sensitivity analysis and 

calibration were conducted for both streamflow and sediment transport models using SWAT-CUP 

SUFI method. The calibration was achieved using three years-worth of biweekly suspended 

sediment concentration data (2014-2016) sampled from stations in seven different tributaries 

upstream from Empire Lake. Sediment loading was successfully calibrated at the Spring River 

Watershed and most of the tributaries, but the relatively short observed sediment record precluded 
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further evaluation of the model. The model explained 92% and 58% of the variances in the 

observed data at Spring River and Shoal Creek, respectively. Even though overall acceptable, 

model performance at Shoal Creek was less adequate than at Spring River. The model was 

adequately calibrated at mainstem Spring River tributaries, with R2 values ranging from 0.69 and 

0.99, explaining more than 70% of the variance in the observed sediment data.      

Using the calibrated watershed model, annual average sediment loading from the Spring 

River and Shoal Creek to Empire Lake and interior sub watersheds were estimated for the period 

(2010-2016). The two largest sub-watersheds, the Spring River and Shoal Creek, contributed about 

74% of the annual sediment loading, with the former delivering 52% of the sediments and the latter 

contributing 21% of the loading from areas that are substantially affected by historical lead and 

zinc mining (Juracek and Drake, 2016). While tributaries within (or near) the Cherokee County 

Superfund site, namely, Short Creek, Center Creek, and Turkey Creek, have contributed 15% of 

annual sediment loading over the study period, they drain areas that are substantially affected by 

historical lead and zinc mining (Juracek and Drake, 2016).  

Two hypothetical remedial measures of metal contamination were investigated: lake 

sediment dredging and sediment traps. Calculations based on SWAT simulated sediment loadings 

and observed sediment data showed that it may take more than 100 years to fill Empire lake with 

a dredged lake sediment mass of 2640 million ibs. Mass balance analysis using suspended 

sediment concentration data sampled in 2014-2016 directly downstream from Empire Lake 

reservoir and SWAT simulated sediment loading to the lake revealed a substantial amount of the 

sediment being flushed out of the reservoir in 2015, thus, reducing the mass of sediment to be 

dredged and increasing the capacity for sediment storage in year 2016 and perhaps the following 

years.  

Qualitative assessment of efficiency of sediment traps as a potential remedial strategy for 

contaminated sediments was explored using SWAT computed annual average sediment loading 

for 2014-2016 and published literature on historical lead and zinc concentrations in mining-

affected tributaries. While installation of sediment traps in Short, Center, and Turkey Creeks may 

reduce less than 14% of annual average sediment loading to Empire Lake (based on 2014-2016 

data), these tributaries historically have been associated with high concentrations of dissolved and 

sediment-bound zinc and lead. However, efficacy of sediment filtration in reducing metals input 
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to Spring River is limited by the percentage of fine sediment particles and percentage of total lead 

and zinc in dissolved phase.  

 It should be noted that the evaluation of the lake dredging scenario is solely based on the 

2014-2106 sediment data records and estimates of lake sedimentation rates obtained from a 

previous USGS study and the data record at hand. The limitation and uncertainty in the results 

should therefore be recognized. Observed suspended sediment concentrations (SSC) used for 

model calibration are point estimates which are compared to SWAT computed cross-section area-

averaged concentrations during a calibration. This scale discrepancy along with a relatively short 

observed SSC record (3 years) made SWAT sediment calibration more difficult and may have 

contributed to uncertainty in model simulated values as well as less than adequate sediment 

calibration at Shoal Creek. A longer SSC data record (more than 5 years) would be ideal for 

improved calibration and validation of the sediment model.  

 Modeling of lake-wide sediment transport in Empire Lake and mass balance (net 

sedimentation or export) in stream reaches downstream from the mining-affected tributaries, 

although a formidable undertaking, can further benefit the analysis and provide more insights on 

the fate and transport of contaminated sediments in the Spring River Watershed.  However, the 

results of this modeling study identified major contributing areas for sediment and with literature 

reported heavy metal concentrations in the TSMD could be used to inform management decisions 

on potential remedial measures for clean-up of mining-affected areas and contaminated sediments 

dispersed in the floodplains of the Spring River Watershed and Empire Lake.  
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Supplementary Information: 

This section includes the supplementary information related to the main report.  

 

PRISM Dataset 

Parameter-elevation Relationships on Independent Slopes Model (PRISM) data (Daly et al.,2008; Di Luzio 

et al., 2008) available with a grid size of 4 km with a full spatial extent of the U.S. for the period from 1981 

to present (http: //www.prism.oregonstate.edu/). For the TSMD case study   time series of daily precipitation 

and temperature (min and max) from 1981 was extracted and formulated for SWAT input. One of the main 

reasons to use PRISM data for TSMD is because of its availability for the recent days. The National Centers 

for Environmental Prediction (NCEP) based Climate Forecast System Reanalysis (CFSR) data are available 

on the SWAT model website and cover a 36-year period of 1979 through 2014. For suspended sediment 

and chemical concentration, the sampling record extends from 2014 to the present. Therefore, PRISM is 

the alternate option from the ground observations. Figure S1 in the supplementary section displays the 

NOAA based ground observation points against the PRISM grids. 381 grid points covers the entire TSMD 

study area, while there are only 6 observation points available from NOAA.  

PRISM uses a specified interpolation technique called climatologically aided interpolation (CAI). Starting 

on January 1, 2002, a combination of CAI and Doppler radar data is used in the central and eastern U.S. A 

number of observer station network data that adhere to the “PRISM day” criterion is included in the PRISM 

dataset. In PRISM, a climate-elevation regression is calculated for each digital elevation model (DEM) grid 

cell, and stations entering the regression are assigned weights based on the physiographic similarity of the 

station to the grid cell. Factors accounted for PRISM based reanalysis are location, elevation, coastal 

proximity, topographic facet orientation, vertical atmospheric layer, topographic position, and orographic 

effectiveness of the terrain. A full description of PRISM can be found from (Daly et al.,2008). A function 

developed for SWAT input from PRISM using R statistical tool which automates the large number of 

observations to SWAT format.  
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Figure S1: PRISM based 4 km grid points and the NOAA based ground stations.  
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Figure S2: Observed vs. Simulated Sediment loading in the Site 6 (Shawnee Creek).  

 

 

Figure S3: Observed vs. Simulated Sediment loading in the Site 5 (Turkey Creek).  

 



 

50 
 

 

Figure S4: Observed vs. Simulated Sediment loading in the Site 2 (Cow Creek).  

 

 

 

 

Figure S5: Observed vs. Simulated Sediment loading in the Site 7 (Short Creek).  
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Figure S6: 159 Sub watersheds used for this study. Red dot points describe the observation points.   

 

Figure S7 depicts the role of climatic input (for example precipitation) in sediment loading and 

flow generation process. The upper panel represents the suspended sediment concentration 

measurement and the lower panel represents flow in primary axis. In both panels, the y-axis on the 

right shows rainfall depth expressed in units of mm. Blue lines represent PRISM based satellite 

rainfall estimates and yellow lines represents ground data. We can see in some events PRISM 

estimates higher rainfall than observations. But, observed flow and sediment data do not 

corroborate a rainfall event. In another event (07.15.2015), PRISM produces better results than 

ground observations. This is due to the distance of the ground observation data from the 

measurement point.  
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Figure S7: Importance of climatic input on flow and sediment loading.   
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           Figure S8: Cross validation of the flow in Cow Creek. 

 

 

 

            Figure S9: Cross validation of the flow in Center Creek. 
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                Figure S10: Cross validation of the flow in Turkey Creek. 

 

 

 

                Figure S11: Cross validation of the flow in Short Creek. 
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Figure S12. Relationship between turbidity and suspended sediment concentration in upper Spring 

River and Shoal Creek.  

 

Turbidity, measured in Formazan Nephelometric Unit (FNU) has a high correlation with 

suspended sediment concentration. The upper panel describe the correlation between turbidity and 

suspended sediment concentration in upper Spring River and the lower panel describes the 

correlation at Shoal Creek. A higher correlation indicates the strength of the correlation of the 

variables. Usually turbidity and suspended sediment has linear correlation.   
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