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Introduction 

Researchers have examined the impacts of vehicle automation on energy use and environmental 

outcomes (1-5). Energy and emissions changes from vehicle automation have been examined within the 

broader context of what have been called the “Three Revolutions”: automated vehicles (AVs), shared 

vehicles, and electric vehicles (EVs) (6-10). In 2014, Brown, Gonder, and Repac (11) was one of the early 

studies examining changes in energy use and carbon emissions. Given the high range of uncertainty, their 

goal was to estimate the “upper-bound effects” of a range of impacts, both positive and negative. Wadud, 

MacKenzie and Leiby (12) extended this approach by adding ranges of estimates for the same factors 

identified by Brown et al., and by considering additional factors (12).  

While these studies have estimated ranges of impacts on fuel use and emissions, we are not aware 

of modeling studies looking explicitly at the effects of vehicle automation on the broader U.S. energy 

economy. Traditionally, energy system models are adept at developing projections that consider 

alternative assumptions about factors such energy prices and economic growth (e.g., AEO (13) side 

cases), specific policy measures or mitigation strategies (14-16), and technology adoption under varying 

assumptions about cost and performance (17, 18).   

For this paper, the focus is on the broader energy system impacts of AVs. The goal is to assess 

the extent of “knock-on effects” across sectors, focusing on the electric power and petroleum refinery 

sectors (19). Full energy system models are structured to capture these upstream effects on fuel supply 

markets due to changes in demands. We take a scenario-based approach that allows us to scope out a 

range of impacts and identify areas for future work. We apply key outcomes (e.g., net vehicle miles 

traveled (VMT) changes, efficiency) from those studies within a broader energy systems modeling 

framework.     

Methodology 

This study utilizes the MARKAL (MARKet ALlocation) model, an energy system optimization 

model that simulates the evolution of the energy technology and fuel mix over multiple decades (20). For 

this analysis, the focus is on light-duty vehicle (LDV) and heavy-duty vehicle (HDV) travel demands, 

vehicle technology choices, and fuels. One of the benefits of using this model relative to a transportation-

only model is that interactions with non-transportation sectors can be simulated dynamically. This feature 

is particularly important here since vehicle automation has the potential to create revolutionary shifts in 

transportation, making static assumptions about the supply and cost of electricity, petroleum products, 

and other fuel sources problematic.   

For this analysis, we use the EPAUS9r database developed by the U.S. Environmental Protection 

Agency (EPA) to represent the U.S. energy system for a time horizon of 2005-2055 with 5-year time 

steps. Full documentation of the database and data sources for modeling inputs is available at Lenox et al. 

(21). While the EPAUS9r database includes 9 regions (U.S. Census Divisions), results here are shown 

only at the national level. We use version EPAUS9r_v16.1.0 of the database, which is calibrated to the 

2016 Annual Energy Outlook (AEO).     

The model solves endogenously for the use of gasoline, diesel, and alternative fuels such as 

biomass-based fuels, compressed natural gas (CNG), and electricity within the transportation sector, 

considering the projected evolution of vehicle technologies. The HDV and LDV sectors together 

determine the demands for transportation fuels, but also compete with other end-use demand sectors for 

refined petroleum products, natural gas, and electricity. 
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 Given the high level of uncertainty surrounding future transportation demands and technologies, 

an analysis of how vehicle automation will impact the future energy system is best addressed through 

scenario analysis. Wadud et al. (12) reviewed several possible impacts of automated vehicles on the 

transportation system. The scenario definition is structured around the “ASIF” method of estimating 

changes in carbon emissions from transportation (22). This framework is summarized in Equation (1). 

Emissions = Activity Level * Modal Share * Energy Intensity * Fuel Carbon Content          (1) 

These scenarios focus on quantifying Activity Level and Energy Intensity. The energy system 

modeling done here will expand the analysis to include Fuel Carbon Content by allowing the model to 

endogenously choose alternative fuels or EV options. Wadud et al. (12) proposed ASIF multipliers for 

mechanisms that may transform the transportation system. The multipliers for individual mechanisms 

(e.g. car-sharing, congestion, right-sizing) were then aggregated into a demand and an efficiency 

multiplier for each scenario.  Four very different scenarios were developed using these multipliers. The 

narratives and inputs for each scenario are fully documented in Wadud et al.  The scenarios describe a 

wide range of responses to automation. “Cake” reaps nearly all AV emissions benefits without potential 

drawbacks.  “Stuck” has a weaker response as regulations do not allow for higher levels of automation. 

“Strong” represents a scenario in which many of the emissions benefits from Cake are realized, but 

consumer choice also leads to changes with the potential to increase emissions. “Dystopian” represents 

full automation, which leads to significant changes in the transportation system, often in ways that 

increase emissions due to an increase in demand. 

Table 1 shows the values taken from Wadud et al. and implemented in MARKAL. Travel end-use 

demand corresponds to Activity Level, and efficiency corresponds to Energy Intensity. The changes were 

applied as a fractional change multiplied by the values in the business as usual (BAU) future for 

MARKAL, which is calibrated on AEO projections. Multipliers remain constant after 2030. We also 

consider a BAU scenario that does not include vehicle automation. 

TABLE 1: Fractional change in end-use demand (DMD) and fuel efficiency (eff) compared to BAU 

for each of the four scenarios. 

LDV DMD 2020 2025 2030   HDV DMD 2020 2025 2030 

Cake 1.2 1.4 1.67   Cake 1.13 1.26 1.43 

Stuck 1.03 1.07 1.11   Stuck 1.03 1.07 1.11 

Strong 1.2 1.4 1.68   Strong 1.2 1.41 1.68 

Dystopian 1.2 1.4 1.65   Dystopian 1.14 1.27 1.45 

                  

LDV eff 2020 2025 2030   HDV eff 2020 2025 2030 

Cake 1.30 1.86 4.32   Cake 1.09 1.20 1.39 

Stuck 1.06 1.12 1.22   Stuck 1.05 1.11 1.20 

Strong 1.26 1.71 3.27   Strong 1.09 1.20 1.39 

Dystopian 0.91 0.84 0.76   Dystopian 1 1 1 
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Findings 

Our results are similar to the Wadud et al. scenarios, but also model broader energy system 

impacts, through “knock-on” effects due to changes in fuel demand and prices.  In particular, these results 

highlight potential implications for refineries, upstream electric power generation, and fuel switching, 

which are unique contributions of this analysis. 

 Both quantity and type of fuel differ significantly across the scenarios for LDVs. Figure 1 shows 

fuel use and type in 2050.   Even by 2050, Stuck does not diverge substantially from BAU. In Cake and 

Strong, efficiency is the main factor affecting LDV fuel use. Nearly all vehicles run on gasoline, but 

require roughly a third to half of the fuel required for BAU. The Dystopian future is driven by high 

demand and requires much more fuel than any other scenario. This scenario has a much larger adoption 

rate of alternative fuel vehicles, responding to high gasoline prices that are driven up due to high demand. 

This response offsets some of the fuel increase indicated in Wadud et al., which did not consider fuel-

switching.  

 

FIGURE 1 Light-duty and Heavy-duty vehicle fuel use in 2050. The combined impact results are 

shown as well as a BAU result without vehicle automation. E85X represents a fuel blend of ethanol 

and gasoline such that the ethanol can constitute as much as 85% of the total. 

 Total fuel demand varies widely across scenarios. In all scenarios, diesel remains the dominant 

HDV fuel. When demand is large enough, CNG breaks into a larger share of the market.  

Due to large changes in demand for petroleum-based transportation fuel, the output from 

refineries must also undergo changes. Not only are different quantities of oil required from scenario to 

scenario, but the mix of petroleum products produced by refineries also differs. In scenarios where total 

refinery output began to exceed 30,000 PJ, there is a shift toward more EV and CNG use. An increase in 

EV use above this threshold indicates that petroleum-based fuels become sufficiently expensive to 

warrant an increase in vehicle electrification despite the higher capital cost of EVs.   

Figure 2 compares fuel use and emissions results with those predicted by Wadud et al. (12). CO2 

emissions reductions are driven by the large efficiency improvements in Cake and Strong. Conversely, 

expanded demand leads to increases in emissions due to rises in fuel use, such as in Dystopian.  In Wadud 
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et al., the percent change in CO2 was the same as that of fuel use (represented as a single outlined column 

in Figure 2).  This is expected when using the ASIF framework since fuel switching was not included. In 

MARKAL, however, the shift away from petroleum and toward more efficient EVs in scenarios like 

Dystopian leads to lower transportation sector emissions and fuel use compared to the results from 

Wadud et al.    

 

FIGURE 2. A comparison of percentage changes from the BAU to the four vehicle automation 

scenarios. MARKAL-based changes in fuel use (blue) and roadway CO2 emissions (orange) are 

presented for LDV, HDV and both.  MARKAL results are compared against the percent change 

from the original Wadud et al. (12) scenario results, shown as an outline representing both CO2 and 

fuel use. These are comparisons in 2050 assuming full AV penetration. Only tailpipe emissions are 

shown here.  

Conclusion 

As shown in Figure 2 the percent changes in CO2 emissions and fuel use for each scenario in 

Wadud et al. were the same because there was no fuel switching. When implementing the scenarios in a 

full energy system model, the general pattern and the direction of changes match those predicted in 

Wadud et al. However, the magnitude of the shifts tends to be smaller when implemented in MARKAL, 

which captures additional system dynamics. These may include a shift toward purchasing more efficient 

or alternative-fueled vehicles if high fuel demand increases the cost of petroleum-based fuels.  

Differences between these results and those in Wadud et al. may also be due to variations in 

baseline assumptions for HDV versus LDV demands. Additionally, the final net changes are smaller than 

predicted in Dystopian, where price feedback effects mitigated the large increases in fuel use and 

emissions relative to those modeled using the ASIF approach. Being able to capture system-wide effects, 
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including upstream changes in the electric sector, refineries, and natural gas supplies illustrates the 

additional insights that a full energy system modeling framework can provide.  This represents an early 

step in understanding the role of energy system modeling in assessing vehicle automation impacts, by 

using multipliers to model changes in end-use demands and efficiency for both LDVs and HDVs.  Future 

work remains to develop more detailed characterization of automated vehicles (cost, efficiency, 

distribution across vehicles classes) and their associated changes in demands.  
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