Urban green and built infrastructure as a tool to mitigate local air pollution

Rich Baldauf, U.S. Environmental Protection Agency

CANUE Webinar Series
April 10, 2018
Presentation Overview

Background
- Near-road health concerns
- Air quality mitigation options

Research on vegetation and noise barriers
- Impacts on near-road pollutant concentrations
- Implications for human exposures

Summary and Recommendations

Resources

Current Projects

Conclusions
Near-Road Health Concerns

People living, working and going to school near highways and large transportation facilities face increased health risks:

- Asthma and other respiratory diseases
- Cardiovascular effects
- Birth and developmental effects
- Premature mortality
- Cancer

Near-Road Health Concerns

Air pollution and exposures often highly elevated near large transportation sources, especially within first 200-300 meters.

Karner et al. 2010, Environ Science & Tech, 44(14), pp.5334-5344
Near-Road Health Concerns

Large portion of the world’s population exposed to near-road traffic emissions

In the US:

• Over 50 million people estimated to live within 100 m of a large highway or other transportation facility (e.g. airport, rail yard)

• Over 4 million school children attend classes within 150 m of a major highway
 • 1 in 11 schools
 • 1 in 5 new schools
Mitigating these traffic emission exposures and health effects can be achieved by:

- Reducing vehicle emissions
- Reducing vehicle activity
 - Public transit
 - Walk/bike options
 - Congestion pricing
- Creating development exclusion zones
- Using urban and transportation planning
 - Road location and configuration
 - Walk/bike options
 - Site design and layout
 - **Roadside barriers**
Roadside Barriers

Public wants to know what can be done now when concerned about near-road health impacts

Few “short-term” mitigation options exist

- Emission standards can take long to implement
- Planning, zoning and large investments often needed for activity reduction programs
- Development exclusion zones may not feasible in urban areas
Roadside barriers have other positive attributes with air quality only one of many potential benefits

- Noise barriers reduce noise and can improve aesthetics
- Roadside vegetation can:
 - Reduce stormwater runoff/flooding
 - Improve water quality
 - Increase carbon sequestration
 - Reduce urban heat island effects
 - Improve aesthetics/property values
 - Enhance community livability
 - Generally improve public health

"Exposure to green space has been associated with better physical and mental health"

Dadvand et al. 2015, Proc. Nat Acad Sciences, 112(26), pp.7937-7942
Vegetation and Noise Barrier Research
Roadside Vegetation Effects

- Particulate matter generally reduced downwind of a vegetation stand
- Higher reductions occurred closer to ground-level
- Variable winds altered effects

Steffens et al 2012, Atmospheric Environment, 50, pp.120-128
Roadside Vegetation Effects

- Smaller size PM have higher removal rates
- Removal increases at lower wind velocities
- Branch/leaf shape and size affects removal

Lin et al., 2012, Aerosol Science and Technology, 46(4), pp.465-472
Plant conditions affect downwind pollution

• Thick, tall and full coverage reduced pollution

• Gaps and porous vegetation led to higher levels
Computational Fluid Dynamics (CFD) modeling suggests:

- Decreased concentrations downwind of barrier
- Increased concentrations on-road due to upwind trapping
- The higher the barrier, the greater the downwind reduction and on-road increase

Hagler et al. 2011, Atmos. Environ, 45(15), pp.2522-2530
Tracer gas studies highlight downwind pollutant reductions from solid noise barriers.

Higher variability experienced during lower, stable winds.
Noise Barrier Effects

NO\textsubscript{2} concentrations

East Section (Afternoon)

West Section (Morning)

Baldauf et al., 2016, Atmos. Environ, 129, pp.265-276
- Noise barriers reduced concentrations of PM compared with a clearing
- Vegetation with noise barriers provided further reductions of PM concentrations and gradients

Baldauf et al., 2008, J. Air & Waste Manage Assoc., 58(7), pp.865-878
Baldauf et al., 2008, Atmospheric Environment, 42(32), pp.7502-7507
EPA has released recommendations for planting and maintaining roadside vegetation

- Used to design planting projects in Oakland and Detroit
- Includes vegetation alone and combined with solid barriers
- Provides designs intended to:
 - maximize the potential for near-road air pollution reduction
 - avoid unintended consequences and designs that may increase downwind concentrations and exposures

Vegetative Barrier Recommendations

Areas desired for reduced pollutant concentrations should avoid gaps and edge effects
 • Complete coverage from the ground to the top of the canopy
 • Thickness adequate to reduce porosity and avoid gaps

Pine/coniferous trees and thick bushes may be good choices
 • No seasonal effects
 • Complex, rough, waxy surfaces

Mix of species (bushes/trees) may increase coverage and robustness

Examples of full coverage, pine and bush barriers
Vegetative Barrier Recommendations

Pollutants can meander around edges or through gaps

- No spaces between or under trees
- No gaps from dead or dying plants; maintenance important

Examples of inadequate barriers due to gaps
Research shows noise barrier design characteristics that can reduce downwind pollutant levels

- The higher the barrier, the higher the downwind pollution reduction
 - Most studies conducted with barriers > 4m
 - Pollutants can meander around edges
 - Sensitive areas should be ≥ 50m from edges
 - Sensitive areas should be below barrier top
 - Pollutants can be trapped on the upwind side of the barrier
 - “Upwind” sources need to be considered
 - May lead to increased levels on the road
- Barrier should be close to the road
 - Most studies had barriers ≤5m of travel lane
Combination of solid noise and vegetative barriers may have the most benefit

- Increases air pollutant dispersion and removal
- May be solid noise barrier with vegetation behind and/or in front
- Use of climbing vegetation on solid surfaces still uncertain

Examples of solid/vegetation barriers
Other Considerations

Vegetation characteristics:

- Species (e.g. native vs. non-native)
- Appropriateness for site
 - Drought/flood resistant
 - Road treatment tolerant (e.g. salt, sand)

Physical characteristics the barrier needs:

- Height, thickness, length and porosity
- Non-seasonal vegetation (conifers, bushes, etc.)
- Waxy leaf and branch surfaces for pollutant removal
- Low pollution/pollen emissions
Other Resources
Urban Trees and Air Quality

Urban trees can have positive and negative effects on urban and regional air quality as well.

- Trees can remove pollutants through deposition and absorption.
- Some vegetation species emit volatile organic compounds (VOCs), precursors for ozone.
- The U.S. Forest Service’s i-Tree model estimates pollutant loss and emissions.

https://www.itreetools.org/
Best Practices for Reducing Near-Road Pollution Exposure at Schools

Developed to provide schools and parents with practical solutions to mitigate traffic-related pollution

Types of solutions provided:
- Building Design and Operation Strategies
 - Ventilation, Filtration, and Indoor Air
 - Building Occupant Behavior
- Site-Related Strategies
 - Transportation Policies
 - Anti-Idling and Idle Reduction Policies
 - Upgrade Bus Fleets
 - Encourage Active Transport
 - Site Location and Design
 - Roadside Barriers
 - Noise Barriers
 - Vegetation

https://www.epa.gov/schools/best-practices-reducing-near-road-air-pollution-exposure-schools
EPA OTAQ maintains a Q&A document on near-road issues related to:

- Emissions
- Air Quality
- Exposure
- Adverse Health Effects

In the form of “Frequently asked questions”

Links to research and outreach materials

Discuss roadside features

http://epa.gov/otaq/nearroadway.htm
Best Practices for Planners

- EPA drafting recommendations for Near-Road development
 - Encompasses Corridor Management, Building Design and Operations, Site Design and Layout, and Barrier Use
 - Site Layout: Development can be implemented so that sensitive land uses are farthest from the road
 - Barriers can provide added benefits

Note: Drawing not to scale
Current Projects
EPA Roadside Vegetation Projects

- Roadside vegetation planting in Detroit and Oakland
- Collecting air quality, meteorology, and noise (Detroit only) measurements before and after roadside vegetation planting
- Assessing benefits for air quality and water runoff control

Detroit, MI
EPA Roadside Vegetation Projects

Oakland, CA
International Projects

Improving the Smart Control of Air Pollution in Europe

Instrument: Research and Innovation Action (RIA)

Call: H2020-SC5-04-2015 “Improving the air quality and reducing the carbon footprint of European cities”

Mexico City

Singapore
Acknowledgements

Academia/NGO
- K. Max Zhang
- Andrey Khlystov
- Tom Cahill
- Akula Venkatram
- Ye Wu
- Tom Whitlow
- Doug Eisinger
- Kori Titus

EPA
- Vlad Isakov
- Sue Kimbrough
- Gayle Hagler
- Laura Jackson
- David Heist
- Richard Shores
- Nealson Watkins
- Chad Bailey
- Rich Cook
- Steve Perry
- Bill Mitchell
- James Faircloth
- Richard Snow
- Thomas Long

FHWA
- Victoria Martinez
- Kevin Black
- April Marchese
- Mark Ferroni
- Adam Alexander

USFS
- Greg McPherson
- David Nowak

NOAA
- Dennis Finn
- Kirk Clawson

California Gov’t
- Linda Wheaton
- Earl Withycombe
- Elizabeth Baca
Conclusions

• Health concerns from transportation emissions have raised the importance of understanding how urban infrastructure affects human exposures and can be used for mitigation.

• Roadside green and built infrastructure can provide air quality benefits when designed properly.

For More Information:

Rich Baldauf
U.S. Environmental Protection Agency
919-541-4386
Baldauf.Richard@epa.gov

This presentation has been subjected to the Agency’s review process, and has been approved for publication. These are the views of the authors and do not necessarily reflect official policy of the EPA. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.