

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Overview of ISO 19867-1 Laboratory Testing

Jim Jetter

Kathmandu, Nepal; Dhaka, Bangladesh; December 2018

Office of Research and Development National Risk Management Research Laboratory, Air and Energy Management Division

Outline

- How was the ISO standard developed?
- How are emissions and efficiency tests conducted?
- How are safety tests conducted?
- How are durability tests conducted?

ISO (International Organization for Standardization)

TC (Technical Committee) 285 Clean Cookstoves and Clean Cooking Solutions Ranyee Chiang, Chair

- -Secretariat: KEBS (Kenya Bureau of Standards)
- -27 participating member countries
- -18 observing member countries

ISO Technical Committee 285

- 3 standards published
 - -ISO 19867-1:2018, Laboratory testing
 - -ISO TR 19867-3:2018, Voluntary performance targets
 - -ISO TR 21276:2018, Terms and definitions
- 2 standards under development
 - -ISO DIS 19869, Guidance on field testing
 - -ISO NP 19915, Guidelines for social impact assessment

ISO TC 285

- -Working Group 1 Conceptual Framework
- -Working Group 2 Laboratory Testing
- -Working Group 3 Field Testing
- -Working Group 4 Social Impact Assessment
- -Task Group 1 Communications
- -Task Group 2 Fuels
- -Task Group 3 Title and Scope

Working Group 2 – laboratory testing

- Richard Ebong, Convenor, ISO 19867-1 and -3
- Jim Jetter, Project Leader, ISO 19867-1 and -3
- Michael Johnson, Expert ISO 19867-1 and Team Leader ISO 19867-3
- >100 members from 18 countries and 5 liaison organizations

ISO Lab and Field Testing Protocols

Based on

-Best practices from existing protocols

-Knowledge/experience of Working Group experts

-Methodology in related sectors

Trade-offs

- -Cost
- -Reflection of actual use
- -Statistical power

Best practices from existing laboratory testing protocols

	China	India	НТР	CSI- Indo	WBT	IWA
3 cooking power levels			\checkmark	\checkmark		
2 cooking power levels					\checkmark	\checkmark
1 cooking power level	\checkmark	\checkmark				
Efficiency	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PM (particulate matter), gravimetric (filter) method	✓	✓		✓	✓	✓
CO (carbon monoxide)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Emissions factors based on useful energy (MJ _{delivered})	✓	✓	✓	✓	✓	✓
Emission rates (per time)					\checkmark	\checkmark

How to test a stove for emissions and efficiency with ISO 19867-1

Determine Fuel

- Either use fuel specified by manufacturer
- Or use fuel identified in the field

Determine Cooking Vessel

- Either use cooking vessel (e.g., pot) specified by manufacturer
- Or use cooking vessel identified in the field

Determine Operating Procedure

- Either use operating procedure specified by manufacturer
- Or use operating procedure identified in the field

Determine fuel load

- Test stove to determine amount (mass) of fuel required for ~30 minutes of operation at:
 - High power
 - Medium power (if applicable)
 - Low power (if applicable)

Test the stove

- At high power for 30 minutes
- At medium power for 30 minutes (if applicable)
- At low power for 30 minutes (if applicable)

Measure

- Water temperature and mass
- Fuel mass, moisture, and energy content
- Char (if applicable) mass and energy content
- Time
- Emissions of PM_{2.5}, gravimetric (filter) method
- Emissions of CO and CO₂

Solar cookers

• Test for cooking power per ASAE S580.1 – *Testing* and Reporting Solar Cooker Performance

Report

- Cookstove system tested
 - Cookstove
 - Fuel
 - Cooking vessel
 - Operating procedure
- Test conditions
 - Fuel burning rates at high, medium, and low power
- Performance (at high, medium, and low power)
 - Cooking power (kW)
 - Efficiency
 - Emission factors (g/MJ_{delivered}) and emission rates (g/min) for PM_{2.5}, CO, and CO₂

Example results

Cookstove	Acme Model X-9876
Fuel	Wood, eucalyptus, 2 x 2 x 36 cm, 11% moisture (wet basis)
Cooking vessel	Pot, stainless steel, flat bottom, 5 liter, 20 x 22 cm dia.
Operating Procedure	Per manufacturer's written instructions

Power Level	High	Medium	Low
Fuel burning rate (g/h)	720	547	355
Cooking Power (W)	1690	1513	960
Efficiency Metric 1 (%)	37.7	40.4	41.9
Efficiency Metric 2 (%)	39.3	43.6	46.7
PM _{2.5} per useful energy (mg/MJ _d)	68.9	47.2	56.5
CO per useful energy (g/MJ _d)	3.76	1.88	2.15
PM _{2.5} emission rate (mg/h)	532	257	195
CO emission rate (g/h)	22.9	10.2	7.4

Safety testing

- Test 1: Sharp edges and points
- Test 2: Cookstove tipping
- Test 3: Containment of fuel
- Test 4: Obstructions near cooking surface
- Test 5: Surface temperature
- Test 6: Heat transfer to the environment
- Test 7: Handle temperature
- Test 8: Chimney shielding
- Test 9: Flames surrounding cooking vessel
- Test 10: Flames exiting fuel chamber

Example safety test results

Safety test component	Sub-score	Sub-score range	Weight
1. Sharp edges and points	3	0 - 4	1,5
2. Tipping	4	0 - 4	3
3. Containment of fuel	3	0 - 4	2,5
4. Obstructions near cooking surface	4	0 - 4	2
5. Surface temperature	4	0 - 4	2
6. Heat transfer to environment	4	0 - 4	2,5
7. Handle temperature	4	0 - 4	2
8. Chimney shielding	2	0 - 4	2,5
9. Flames surrounding cooking vessel	4	0 - 4	3
10. Flames exiting fuel chamber	4	0 - 4	4
Total safety factor score			91
Tier Rating (if applicable)			4

Example durability test results

Durahility tast component	Risk factor sub-	Risk factor sub-	
Durability test component	score	score range	
1. Extended run	0	0 - 5	
2. External impact	2	0 - 6	
3. Internal impact	1	0 - 6	
4. Corrosion	5	0 - 5	
5. Coating adhesion	4	0 - 5	
6. Quenching	0	0 - 5	
7. Material failure	0	0 - 5	
Total risk factor score		12	
Tier Rating (if applicable)		4	

Questions & Discussion