

Microbial Source Tracking with qPCR: Applications and Technology Transfer

Orin C. Shanks

Office of Research and Development National Risk Management Research Laboratory, Water Supply and Water Resources Division

Presentation Overview

- 1. Microbial Source Tracking Background
- 2. MST qPCR in Action
- 3. EPA MST qPCR Technology Transfer Activities

Disclaimer: The views expressed in this presentation are those of the author[s] and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Fecal Pollution is a Nationwide Challenge

Top10 Causes of Impairment in U.S. Rivers and Streams

- Fecal microbes are most common biological contaminant in storm and surface waters
- Public health, economic, and ecological impacts

Miles of Impaired Water

https://ofmpub.epa.gov/waters10/attains_nation_cy.control#causes

EPA Responsibilities

Protect and Restore Waters for Recreational Use

- Clean Water Act 1972

Risk Assessment of Beach Contaminants

- BEACH Act (2000)
- Development of new or revised ambient water quality criteria (AWQC)

Management of Point and Non-Point Pollution Sources

- Total Maximum Daily Load (TMDL) programs
- National Pollutant Discharge Elimination System (NPDES) programs
- National Estuary Program (NEP)
- Combined Sewer Overflow (CSO) consent decrees

Current Fecal Pollution Management Tools

- Based on general fecal indicators
- Measure of total fecal pollution
- Presence in water is a warning signal of public health risk
- Do not discriminate between sources

Source of Fecal Pollution is Important

- Public health risk can vary by source
- Mitigation strategies can vary by source
- Source information improves management and public safety

A Microbial Source Tracking Solution

SOLUTION ... Method designed to collect, isolate, identify, and measure a **host-associated identifier** from an environmental sample

The Science Behind a Host-Associated Identifier

• Gut Condition Differences

- Diet
- Digestive physiology
- Temperature

Resource Competition

- Space
- Nutrients

Many Microbial Source Tracking Technologies Available

- Microarray
- Next generation sequencing
- End-point PCR
- Quantitative real-time PCR
- Digital PCR
- Terminal restriction fragment length polymorphism
- Antibiotic resistance analysis
- Chemical detection
- Canine scent detection

Technology Selection by Expert Consensus

Source Identification Protocol Project

- 5 organizations formed technical lead team
- Public challenge via blinded study
- 27 expert laboratories
- 41 methods
- Majority of experts (>90%) favor a qPCR-based technology

Identification of top methods for pollution sources

Boehm et al. (2013) Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. Water Research 47: 6812-6828.
 Layton et al. (2013) Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. Water Research 47: 6897-6908.
 Stewart et al. (2013) Recommendations following a multi-laboratory comparison of MST methods. Water Research 47: 6829-6838.

Benefits of MST with qPCR

- Mainstream scientific technology
- "Gold standard" for many applications
- No cultivation requirement
- Sensitive and specific in complex systems
- Highly reproducible when standardized
- Established quality control guidelines (Bustin et al. 2010)

THE

Specialized reagents for environmental testing

Many Water Quality Management qPCR MST Applications

- Urban stormwater management
- Impaired site prioritization for remediation
- Evaluation of a best management practices
- Total Maximum Daily Load planning
- Hazardous event response
- Waterborne disease outbreak response

Importance of Field Studies

One MST qPCR procedure will not work for all applications

- Sampling strategies
- > Ancillary data requirements
- > Data analysis procedures

Real-world examples are crucial

- Application tailored methodology
- Peer-reviewed

Implementation Strategy

- Develop core procedure
- Conduct field studies
- > Provide tailored methods to public

MST in Action:

Identification of Septic Pollution with MST qPCR

Question: Does human fecal pollution originate from leaky sewer lines or failing septic systems in my watershed?

East Fork Little Miami Watershed

- 1,295 km² Southeastern Ohio watershed
- Range of septic/sewer use intensity
- 9 catchment areas
- Small stream sampling
- 24-month sampling period
- 3 human-associated qPCR methods
- Unsafe levels of fecal pollution > 40% of time
 - (E. coli and enterococci MPN cell counts)

Quantifying Catchment Land Use with GIS

- Estimate sewer and septic densities
- Normalized by catchment area

Experimental Design to Address Question

- Catchments represent gradient of sewer and septic use
- Negative correlation between septic and sewer densities (R² = -0.69)
- Does human pollution trend with sewage, septic, or neither?

Identifying Human Fecal Pollution Trends

 Human fecal pollution increases with septic density (wet weather events only)

 Trend supported by all 3 humanassociated qPCR methods

 Potential Actionable Outcome: septic site inspections

MST in Action:

Agriculture and Wildlife Impacts with MST qPCR

Question: Does wildlife and agricultural practices contribute to chronic fecal pollution in my watershed?

<u>Tillamook Basin</u>

- 1,500 km² northern Oregon coast
- Active dairy industry
- 29 catchment areas
- 12-month sampling period
- 8 host-associated qPCR methods
- Chronic fecal pollution

Water Quality Management with E. coli

Avian Pollution Spatial and Temporal Trends

Potential bird migration water quality impact

20

Spatial and Temporal Trends in Other Fecal Sources

Human Source (HF183/BacR287)

Spatial trends

Land use

Waste management practices

Temporal trends

- > Agricultural practices
- > Wildlife activities

Varies by source

Ruminant Source (Rum2Bac)

Dog Source (DG3)

- E. coli exceedance (80%)
- Seasonal dog pollution, target local breeding facility
- Possible bird migration impact
- Possible rain event human impact
- Ruminant in spring, likely beef cattle AFO
- Potential actionable outcomes:
 - Site inspection in survey in Spring
 - Target AFO, septic system, and dog facility

Sampling Site Fecal Pollution Profile

Recreational Beach Management with MST qPCR

- Recreational activity annual public health and economic impacts
 - About 90 million illnesses¹
 - Approx. \$2.9 billion medical expense¹
- Managed with general fecal indicators
 - (E. coli or enterococci)
 - Identifies problem
 - No source information
- Control strategies can vary by source
- MST qPCR applications
 - Linking pollution source to general indicator
 - Site prioritization by pollution source

¹ DeFlorio-Barker et al. (2018) Environmental Health 17:3

MST in Action: Recreational Beach Management with MST qPCR

Question: Are there any links between my MST qPCR and general indicator measurements?

University of Illinois at Chicago School of Public Health study

Sam Dorevitch (Principal Investigator)
Abhilasha Shrestha (PhD Candidate)

9 beaches sampled 5 days/week over beach season *E. coli* and enterococci general indicator testing
MST qPCR testing for human, bird, and dog sources

Linking General Indicator and MST Findings

Enterococci qPCR Weighted-Averages

Group #1: ≥ 1,000 CCE (US EPA recommended BAV) Group #2: < 100 CCE

¹ Shrestha et al. manuscript in preparation

- Group samples based on local recreation criteria
- Calculate weighted-average for each group
- Compare differences between groups:
 - Bird 8.4x higher
 - > Dog 4.2x higher
 - Human similar
- Potential actionable outcomes:
 - Minimize bird activity
 - Restrict dog access

MST in Action: Recreational Beach Management with MST qPCR

Question: How do I prioritize sites based on human fecal pollution levels?

- Partners:
 - City of Racine Health Department
 - Northeast Ohio Regional Sewer District
 - Scientific Methods, Inc.
- 6 sampling sites
- Potential pollution sources (human, bird and dog)
- Sampled 5 days/week over beach season
- 16 water quality and beach area parameters

Urban Stormwater Management with MST qPCR

- > 80% of U.S. population live in communities with MS4 discharges
- 7,550 regulated communities
- MS4 permittees required to develop, implement, and mitigate stormwater management programs
- MS4 discharges can contain fecal waste
- Control strategies can vary by source

Growing Interest in MST qPCR and Urban Stormwater Management

- Charles River and Boston Harbor (Boston Water and Sewer Commission)
- City of Santa Barbara
 (State Clean Beach Initiative)
- Hampton Roads Sanitation District
 (Virginia Beach, VA)
- Oklahoma Stormwater Quality Program (City of Tulsa Streets and Stormwater Dept)
- Colorado *E. coli* Toolbox: A Practical Guide for Colorado MS4s (Urban Drainage & Flood Control District City and County of Denver)

MST in Action:

Urban Stormwater Management with MST qPCR

Question:

What are the sources of fecal pollution in my MS4 outfalls?

Partners:

- > Department of Energy & Environment
- > ORISE
- EPA Region 3 Laboratory
- 7 first order catchments
- 32 MS4 outfalls
- Routine and event sampling
- Potential pollution sources (human, ruminant, bird and dog)

MST qPCR: Implementation Status

- Many examples in scientific literature
- No nationally standardized methods or application guidance yet
- Some qPCR MST methods closer to "prime time" than others
 - > Human > Ruminant, cattle > swine > dog > avian
- Recommend confirming performance with local reference samples
- Ideal to consult expert for assay selection, experiment design, and result interpretation
- Need for improved data visualization and communication tools

EPA qPCR MST Technology Transfer Activities

- National validation of two human-associated qPCR methods
- Towards standardized EPA Methods
- Development of implementation tools
- EPA outreach activities

EPA Multiple Laboratory Validation - Overview

- Formal study conducted by EPA
 - > Office of Water
 - > Office of Research & Development
- Two qPCR Methods
- 14 Laboratory Participants
 - Fresh and marine water matrices
- Supplied with:
 - Standard protocols
 - Reference DNA materials
 - Sewage spike material
 - Blinded filter set (n = 18)
 - > All reagents and consumables

Assay

F

Draft EPA Methods 1696 and 1697: Content Overview

Separation United States Environmental Protection Agency	
Office of Water www.epa.gov	EPA 821-8- X00X 2018X00X 2018
Method 1696: Characterization of	
Human Fecal Pollution in Water by	
HF183/BacR287 TaqMan [®] Quantitative	
Polymerase Chain Reaction (qPCR)	

Safety

- Laboratory organization
- Equipment, reagents, and supplies
- Sample collection, handling and storage
- Standardized laboratory procedures
- Quality controls
- Data analysis and calculations

qPCR Automated Data Analysis Tool

- Simplify complex calculations
- Ensure standardized analysis
- Implement data acceptance metrics
- Concentration estimates with error

Self-Administered Method Proficiency Test

Successfully complete:

- > Prior to environmental sample testing
- > After new reference material preparations

Six metrics based on:

- National laboratory validation
- Reagent manufacturer recommendations
- qPCR experts
- Training and management tool

F

Reference DNA Material Development

- National implementation requires a high quality reference DNA material
- Centralized and standardized source
- Not feasible for EPA to manufacture and distribute
- Interagency Agreement with National Institute of Standards and Technology

National Institute of Standards and Technology

EPA Outreach Activities

- Building a support network
- Communication
- Training opportunities
- Cooperative partnerships
 - States, tribes, and other local labs
 - Association of Pubic Health Laboratories MOU
 - Federal agencies

=

Acknowledgements

Septic Study:

- · Lindsay Peed (EPA)
- Chris Nietch (EPA)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)
- Mark Meckes (EPA)
- Thomas Mooney (EPA)

Tillamook Study:

- Xiang Li (EPA)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)
- Amity Zimmer-Faust (SCCWRP)
- Pat Clinton (EPA)
- Jay Reichman (EPA)
- York Johnson (ODEQ)
- Wym Matthews (ODA)
- Stephanie Bailey (EPA Region 10)

MS4 Study:

- Amir Sharifi (DOEE)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)

Chicago Beach Study:

- Abhilasha Shrestha (UIC)
- Sam Dorevitch (UIC)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)

Great Lakes MST Study:

- Xiang LI (EPA)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)
- Mike Cyterski (EPA)
- Kevin Oshima (EPA)

MST Technology Transfer:

- Lem Walker (EPA)
- Robin Oshiro (EPA)
- Mano Sivaganesan (EPA)
- Cathy Kelty (EPA)
- Richard Haugland (EPA)
- Sally Gutierrez (EPA)
- Scott Jackson (NIST)
- Validation Study Volunteer Labs

QUESTIONS?

Orin C. Shanks, Ph.D. Senior Research Geneticist

Email: shanks.orin@epa.gov Phone: (513) 569-7314

U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268