

From Assessments to Decisions: How to Leverage Bayesian Networks

John F. Carriger

February 17, 2019

Disclaimer

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency

Example Pesticide BN for Risk Assessment

Carriger, J.F. and Newman, M.C., 2012. Influence diagrams as decision-making tools for pesticide risk management. *Integrated environmental assessment and management*, *8*(2), pp.339-350.

Example Pesticide BN

Carriger, J.F. and Newman, M.C., 2012. Influence diagrams as decision-making tools for pesticide risk management. Integrated environmental assessment and management, 8(2), pp.339-350.

Example Pesticide BN

Carriger, J.F. and Newman, M.C., 2012. Influence diagrams as decision-making tools for pesticide risk management. Integrated environmental assessment and management, 8(2), pp.339-350.

Example Pesticide BN

Carriger, J.F. and Newman, M.C., 2012. Influence diagrams as decision-making tools for pesticide risk management. Integrated environmental assessment and management, 8(2), pp.339-350.

Diagnostic inference (effects to causes)

Carriger, J.F. and Newman, M.C., 2012. Influence diagrams as decision-making tools for pesticide risk management. *Integrated environmental assessment and management*, 8(2), pp.339-350.

Quantification- the CPT engine

Carriger, J.F. and Newman, M.C., 2012. Influence diagrams as decision-making tools for pesticide risk management. *Integrated environmental assessment and management*, *8*(2), pp.339-350.

How can causal BNs support RA/DA?

- Knowledge representation
 - Multi-disciplinary expert-developed causal models
 - Rapid "on the fly" development to capture workshop conversations
- Identify and evaluate components
 - Objectives

ironmental Protection

- Performance measures
- Actions/alternatives
- Informative for understanding the causal interactions influencing decision making (Carriger et al. 2018)
- "We think about the world like this" (Pearl & Mackenzie 2018)

For adaptive management (Nyberg et al. 2006)

- Develop Bayesian networks as "testable impact hypotheses"
- Refine hypotheses with new experimental work
- Refinement includes
 - Structure

vironmental Protection

- Remove/add nodes
- Change relationships
- Probabilities
- Node definition
- Use the Bayesian network(s) at each step along the way to communicate the knowledge base and uncertainties

Adaptive management (Nyberg et al. 2006)

1 Assess the problem or opportunity	Develop causal structure, probabilities, sensitivity analysis
2 Design a management experiment	Design and select management experiments to be tested with BN
3 Implement the experiment	Focus implementation based on BN
4 Monitor system responses	Compare with BN predictions, ensure detectability of BN events
5 Evaluate outcomes and learn	Update BN with new understanding
6 Adapt future decisions	Use BN for future decisions and experiments

Assessment network (hypothetical)

Tan nodes- chance nodes, random variables

Assessment network (hypothetical)

Tan nodes- chance nodes, random variables

Assessment network (hypothetical)

Tan nodes- chance nodes, random variables

Time 1

Time 1

Time 2

Time 1

Time 2

Time 3

Inferences

- Quantitative
 - Potential (ecological and human) risks
 - Measurement uncertainty
 - Causal information (Korb et al. 2011)
 - Expected utility
 - Value of information
- Qualitative
 - Causal pathway analysis (Carriger et al. 2018)
 - Intervention design

Carriger, J.F., Dyson, B.E. and Benson, W.H., 2018. Representing causal knowledge in environmental policy interventions: Advantages and opportunities for qualitative influence diagram applications. *Integrated environmental assessment and management*, *14*(3), pp.381-394.

Korb, KB, Nyberg, E & Hope, LR 2011, A new causal power theory. in PM Illari, F Russo & J Williamson (eds), *Causality in the Sciences.* Oxford University Press, Oxford UK, pp. 628 - 652.

Concluding remarks

- Bayesian networks are powerful modeling tools
- They are at the forefront of causal modeling
- Decision making and adaptive management relies on causal understanding
- Bayesian networks are an important asset for environmental management

Thank you!

Questions?