

Toward a leading indicator of catastrophic shifts in complex systems: Assessing changing conditions in nation states

#### L.Vance<sup>1</sup>, T. Eason<sup>1</sup>, H. Cabezas<sup>1</sup> and M. Gorman<sup>2</sup>

 National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
University of Virginia, Department of Science, Technology and Society, Charlottesville, Virginia

2018 Annual Meeting, American Institute of Chemical Engineers, Pittsburgh, Pennsylvania



Office of Research and Development National Risk Management Research Laboratory, Land and Materials Management Division





#### Sustainability

- Fisher Information
- Data
- Results: Fisher Information
- Results: Bayes' Theorem

#### Summary

Ref: Vance, L., Eason, T., Cabezas, H. and M.E. Gorman, "Toward a leading indicator of catastrophic shifts in complex systems: Assessing changing conditions in nation states," Heliyon 3 (2017) e00465. DOI: 10.1016/j.heliyon.2017.e00465.



## **Sustainability**



### **Historical World Population**

(https://en.wikipedia.org/wiki/World\_population)





### **Real Gross World Product**

(https://en.wikipedia.org/wiki/Gross\_world\_product) (\$US billions, 1990 intl \$US)





## **Fisher Information**



### What is Fisher Information?



#### S

$$I = Fisher Information = \int \frac{ds}{p(s)} \left[ \frac{dp(s)}{ds} \right]^2$$
$$I \alpha \left[ \frac{dp(s)}{ds} \right]^2$$









### Fisher Information: Expressions

$$I = \int \frac{ds}{p(s)} \left[ \frac{dp(s)}{ds} \right]^2 \quad \& \quad q(s) \equiv \sqrt{p(s)}$$

$$I = 4 \int \left[\frac{dq(s)}{ds}\right]^2 ds \approx 4 \sum_{s} \left[\frac{q(s) - q(s+1)}{s - (s+1)}\right]^2$$

$$\blacksquare \qquad I \cong 4 \sum_{s} [q(s) - q(s+1)]^2$$



Data



### Study Variables:1900 – 2000

| COMPONENT      | CATEGORY                | VARIABLES                              |
|----------------|-------------------------|----------------------------------------|
| SOCIAL (SOC)   | Population              | Total Population - Census              |
|                | Labor Force             | Labor - Ag/Forestry/Fishing (000)      |
|                |                         | Labor - Extractive (000)               |
|                |                         | Labor - Manufacturing (000)            |
|                |                         | Labor - Construction (000)             |
|                |                         | Labor - Commerce/Finance/etc. (000)    |
|                |                         | Labor - Transport/Communications (000) |
|                |                         | Labor - Services (000)                 |
|                |                         | Workers Involved (000)                 |
|                | Education               | Pupils in Schools (000)                |
|                |                         | Students in Universities (000)         |
| ECONOMIC (ECO) | Industry                | Coal output Bituminous (000 mt)        |
|                |                         | Crude Steel output (000 mt)            |
|                |                         | Sulphuric Acid (000 mt)                |
|                | External Trade          | Imports (mill \$)                      |
|                | Transport/Communication | Length of open railroad lines (km)     |
|                |                         | RR traffic (mil passenger km)          |
|                | Finance                 | Currency in Circulation (mill)         |
|                |                         | Central govt. revenue total (mill)     |
|                | Prices                  | Consumer price indices                 |



### Study Variables (2): 1900 - 2000

| COMPONENT              | CATEGORY           | VARIABLES                                                                                                                                                                                                                                                          |
|------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ENVIRONMENTAL<br>(ENV) | Agricultural Crops | Arable Cropland (000 ha) - wheat<br>Arable Cropland (000 ha) - barley<br>Arable Cropland (000 ha) - oats<br>Arable Cropland (000 ha) - rye<br>Arable Cropland (000 ha) -<br>potatoes<br>Crops (000 mt) - wheat<br>Crops (000 mt) - barley<br>Crops (000 mt) - oats |
|                        | Livestock          | Crops (000 mt) - rye<br>Crops (000 mt) - potato<br>Horses (000)<br>Cattle (000)<br>Pigs (000)<br>Sheep (000)                                                                                                                                                       |



## Results: Fisher Information





- Regimes shifts are major changes in the observable and stable behavior of dynamic systems.
- Examples:
  - Laminar Flow Turbulent Flow
  - Economic Expansion Economic Recession

 Regime shifts involve a loss of dynamic order and are detectable from Fisher information analysis.



### **Fisher Information: USA**

#### **United States FI**

(μFI = 3.83, σFI = 0.52)





### **Fisher Information: France**

France FI

 $(\mu FI = 3.58, \sigma FI = 0.69)$ 





### **Fisher Information: Germany**



**Germany Fl** 

Annexed



## Results: Bayes' Theorem



**Bayes' Theorem** 

$$p(a|b) = \frac{p(a)p(b|a)}{p(b)}$$

 $p(a|b) \equiv probability of observing event a$ in the presence of event b.

 $p(a) \equiv probability of observing event a.$ 

$$p(RS|D1) = \frac{p(RS)p(D1|RS)}{p(D1)} \quad p(RS|D2) = \frac{p(RS)p(D2|RS)}{p(D2)}$$

 $RS \equiv Regime \ Shift$   $D1 \equiv one \ time \ step \ decline \ in \ FI$  $D2 \equiv two \ consecutive \ time \ step \ declines \ in \ FI$ 



# Statistics for Declines in Fisher Information

| Statistic | Description                                        | France  | Germany | USA     |
|-----------|----------------------------------------------------|---------|---------|---------|
| NumD1     | Number of single declines in FI                    | 14      | 14      | 14      |
| NumD2     | Number of FI declines over two points sequentially | 8       | 8       | 5       |
| μD'       | Mean slope of declines                             | -0.1290 | -0.1360 | -0.0950 |
| σD'       | Standard deviation of decline slopes               | 0.1260  | 0.1230  | 0.0870  |
| P(D1)     | Probability of a single decline:<br>NumD1/PNumD1   | 48.3%   | 48.3%   | 48.3%   |
| P(D2)     | Probability of a double decline:<br>NumD2/PNumD2   | 28.6%   | 28.6%   | 17.9%   |



### Likelihood of Significant Events: Bayes' Theorem

| Probability       | Description                                                                              | France | Germany | USA    |
|-------------------|------------------------------------------------------------------------------------------|--------|---------|--------|
| P(RS@RS_CP1 D1)   | Probability of regime shift at RS_CP1 if there are single declines in FI.                | 20.71% | 13.81%  | 6.90%  |
| P(RS@RS_CP2 D1)   | Probability of regime shift at RS_CP2 if there are single declines in FI.                | 0.00%  | 6.90%   | 0.00%  |
| P(RS@RS_CP1 D2)   | Probability of regime shift at RS_CP1 if there are double declines in FI.                | 35.00% | 23.33%  | 18.67% |
| P(RS@RS_CP2 D2)   | Probability of regime shift at RS_CP2 if there are double declines in FI.                | 0.00%  | 11.67%  | 0.00%  |
| P(SDE@SDE_CP1 D1) | Probability of severe decline event based on SDE_CP1 if there are single declines in FI. | 27.62% | 20.71%  | 13.81% |
| P(SDE@SDE_CP2 D1) | Probability of severe decline event based on SDE_CP2 if there are single declines in FI. | 6.90%  | 6.90%   | 6.90%  |

Note: If a regime shift has been identified, there is a 100% probability that a decline has occurred; hence, P(D1/RS) or P(D2/RS) at any cut-off point = 100%.

Severe declines involve at least one decline event.



## Summary



### Summary

- Why is this important? Because a stable, orderly, and well-functioning social-environmental-economic regime is a prerequisite to sustainability.
- Stable, orderly, and well-functioning socialenvironmental-economic systems can have much variability but rarely regime shifts.
- It is important to know whether the system has had regime shifts and when and under what conditions.
- It is important to have an estimate of the likelihood that the system is moving to a regime shift so plans can be made accordingly.
- Fisher information analysis can give reasonably accurate answers to these and other questions.



### Disclaimer

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.