

#### Factors Affecting Exfiltration Rate from a Subsurface Infiltration Stormwater Control Measure

Jiayu Liu, PhD, EIT<sup>1</sup>, Michael Borst<sup>2</sup>,

<sup>1</sup>ORISE Postdoctoral Research Fellow at U.S. EPA, Edison, NJ

<sup>2</sup>U.S. EPA, Edison, NJ

August 15, 2018

Office of Research and Development National Risk Management Research Laboratory Water Supply and Water Resources Division Urban Watershed Management Branch



### CSO 130

- Location: Louisville, KY
- Area:17.3 acre



#### 14 Paver strips

#### 28 Tree boxes

**4** Planters

THEFT



# We monitored three stormwater control measures distributed throughout the basin.





#### Monitored strips had 5 to 10 shafts along length.









#### **Design Characteristics of Study Strips**

| Site design characteristics                            | 10D  | 14D  | 17D  |
|--------------------------------------------------------|------|------|------|
| Drainage area (m <sup>2</sup> )                        | 1540 | 2310 | 3930 |
| Impervious area (m <sup>2</sup> )                      | 1050 | 1500 | 2550 |
| Impervious percentage                                  | 68%  | 65%  | 65%  |
| Length (m)                                             | 21.3 | 24.4 | 29   |
| # of shafts                                            | 5    | 7    | 10   |
| Bottom infiltration area (m <sup>2</sup> )             | 0.82 | 1.15 | 1.64 |
| Permeable pavement area (m <sup>2</sup> )              | 52.6 | 60.3 | 71.6 |
|                                                        |      |      |      |
| Permeable pavement area (m) : Bottom infiltration area | 64.2 | 52.4 | 43.7 |
| Drainage area : Permeable pavement area                | 29.3 | 38.3 | 54.9 |
| Impervious area : Permeable pavement area              | 20.0 | 24.9 | 35.6 |
| Impervious area : Bottom infiltration area             | 1280 | 1304 | 1555 |

Example shows the water level in Shaft1 in Strip 10D on April 11, 2013



Time



#### Summary statistics of exfiltration rates at variable water levels

|                       | Exfiltration Rate (cm/min) |                   |        |      |                |        |     |                   |        |  |  |
|-----------------------|----------------------------|-------------------|--------|------|----------------|--------|-----|-------------------|--------|--|--|
| Hydraulic             | 10D                        |                   |        | 14D  |                |        | 17D |                   |        |  |  |
| head<br>(cm)          | Ν                          | Geometric<br>mean | Median | Ν    | Geometric mean | Median | Ν   | Geometric<br>mean | Median |  |  |
| 10 - 20               | 3584                       | 0.05              | 0.04   | 5793 | 0.05           | 0.04   | 815 | 0.33              | 0.38   |  |  |
| 20 - 40               | 2238                       | 0.10              | 0.07   | 4378 | 0.09           | 0.07   | 838 | 0.38              | 0.40   |  |  |
| 40 - 60               | 1646                       | 0.13              | 0.08   | 1837 | 0.22           | 0.25   | 304 | 0.54              | 0.58   |  |  |
| 60 - 100              | 1791                       | 0.15              | 0.09   | 1392 | 0.52           | 0.62   | 151 | 1.62              | 1.76   |  |  |
| 100 - 150             | 980                        | 0.45              | 0.48   | 896  | 1.01           | 1.20   |     |                   |        |  |  |
| 150 - 200             | 686                        | 0.78              | 0.72   | 638  | 1.39           | 1.72   |     |                   |        |  |  |
| 200 - 250             | 583                        | 0.79              | 0.71   | 453  | 1.66           | 1.95   |     |                   |        |  |  |
| 250 - 350             | 584                        | 1.19              | 1.16   | 531  | 2.08           | 2.94   | 91  | 5.87              | 6.83   |  |  |
| 350 – 450             | 568                        | 0.80              | 0.72   | 348  | 3.36           | 4.03   |     |                   |        |  |  |
| 450 – 650             | 257                        | 3.03              | 3.86   | 488  | 2.27           | 3.53   |     |                   |        |  |  |
| Note: N = sample size |                            |                   |        |      |                |        |     |                   |        |  |  |

8



#### The exfiltration rate increased with water level.



9



10

## The exfiltration rate increased with water temperature.





## The exfiltration rate decreased with cumulative rainfall depth.



### The exfiltration pathway changes as the shaft clogs.





Does exfiltration from a shaft interfere with flow from adjacent shafts?



- J 1 J J +1
- 1) "**None**":  $h_{j-1} < h_{cr}$  and  $h_{j+1} < h_{cr}$ ;
- 2) "**One**":  $(h_{j-1} > h_{cr} \text{ and } h_{j+1} < h_{cr})$  or  $(h_{j-1} > h_{cr} \text{ and } h_{j+1} < h_{cr})$ ;
- 3) "**Both**":  $h_{j-1} > h_{cr}$  and  $h_{j+1} > h_{cr}$ .





1

H

1

۱

``

a) Lower Water Level

b) Higher Water Level

None



1X



One



11

×



Both





### Conclusions

- The exfiltration rates generally increased with water level and temperature, but decreased with cumulative rainfall depth (as time progressed).
- The bottom clogging process can be divided into two stages: 1) quick clogging stage; 2) slow clogging stage.
- "Edge effect" was only found in strip 10D.







# Questions? Thank you!

Jiayu Liu, Ph.D, EIT | liu.jiayu@epa.gov | 732-321-6636

Office of Research and Development National Risk Management Research Laboratory Water Supply and Water Resources Division Urban Watershed Management Branch