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Introduction

O Narragansett Bay (NB) is a coastal plain estuary with an area of 378.6 km? and an
average depth of 7.6 m (Figure 1)

Sucralose (ng/L) O EBK model clearly out-performed all other models (Figure 2) Table 1. Sucralose cross validation errors and desirability index parameters
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Most studies to date in NB have not used statistically based -
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Determination of optimal station numbers to maximize results SR 0 Y Y e ,. Bay ' Sucralose (ng/l.)
while minimizing costs is hard Pt g ¢ i A - N 17 Samples

Statistically based study designs are less susceptible to bias
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Prior measurements of salinity (n = 92) in upper NB were used to evaluate spatial models MEsuECiaslnny(ps)

Carbamazepine (ng/L)
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* Models evaluated by cross-validation to the observations (Figure 2) | @ Diffusion Interpolation with Barriers &  Universal Kriging
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. <500 - 1,000 O A desirability index used to interpret the error statistics (Table 3) & 201415 Avg
Samples (0.5 L) were extracted by Oasis HLB (Waters Corp) and analyzed by UPLC-MS/MS 7 250 - 500 showed peak performance of the model is approximately 34

Results modeled at varying spatial densities to test and determine optimal station number @ 100 - 250 stations, with 6 of 11 compounds having the highest desirability
When optimum station number was determined, stations chosen randomly within tessellated hexagonal grid (Figure 3) ’ index values
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Spatial model error results from cross validation calculations for each compound analyzed by desirability index Rhode g QO Sucralose, the most recalcitrant of the compounds used, showed
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target values and/or upper and lower limits when applicable: ¢ Wisngissenugsns O Labile compounds, i.e. caffeine, performed less well (Table 3
' and Figure 10)

— Root mean square standardized error (RMSSE) closest to 1
— Minimum root mean squared error (RMSE)
— Average standard error (ASE) close to RMSE
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* The desirability index was calculated from the geometric mean of the individual parameters 67 \
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» Apply the same logic to evaluate modeling performed at varying spatial densities 7~ & R ¢ @ 250 - 500 N @ 1214
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Sulfamethoxazole
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 Assess tradeoffs between high and low density sampling designs represented in cross-validation error analysis \ . el 3] ) @ 100-250 j’ i C 10-12
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Minimal Root Mean Squared Error (RMSE, d,). Where T,=0.01, U, = 1, and r=1 (Figure 4b) ‘;""ﬂ s | ol [ e '\ e O EBK was the best performing spatial model.
Average Standard Error (ASE) close to Root Mean Square Error (RMSE) (d;). Where T; =RMSE, L, ‘ | )y ‘
— (RMSE-0.1), U;=(RMSE+0.1), s=t=1 (Figure 4c)
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R? closest to one (d,). Where T,=1, L, =0.60, and r=1 (Flg;"'e 4d) | LR L N 4 | | O Decrease is spatial accuracy minimal for recalcitrant compounds
D = (dydydsd,) /4 [ P |7 e with fewer than 34 stations.

O Optimum station numbers for all of NB was approximately 34 for
sucralose, the recalcitrant example compound used.
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