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Introduction
 Narragansett Bay (NB) is a coastal plain estuary with an area of 378.6 km2 and an

average depth of 7.6 m (Figure 1)
• Several rivers discharge over 45 m3/s of freshwater on average
• Watershed consists of two HUC8 regions (01090003 & 01090004)

with an area of 4,799 km2

• 12 waste water treatment plants (WWTPs) discharge directly
to NB, with 35 total within the watershed

 Most studies to date in NB have not used statistically based
sampling designs

 Statistically based study designs are less susceptible to bias
• Stations are often chosen based on local knowledge or

precedent, introducing bias
• Easier to compare between regions/nationally when

studies share same design principle
 Determination of optimal station numbers to maximize results

while minimizing costs is hard
• Too few stations result in high errors in spatial predictions
• Too many stations wastes limited resources

 Here a statistically based sampling design coupled to a
probabilistic spatial model was developed using pseudo-
persistent compounds discharged in WWTP effluents

Methods
 Prior measurements of salinity (n = 92) in upper NB were used to evaluate spatial models

• Models evaluated by cross-validation to the observations (Figure 2)
− Empirical Bayesian kriging (EBK)
− Diffusion interpolation with barriers (DIB)
− Ordinary kriging (OK)
− Log transformed ordinary kriging (LOK)
− Universal kriging (UK)

 Samples (0.5 L) were extracted by Oasis HLB (Waters Corp) and analyzed by UPLC-MS/MS
 Results modeled at varying spatial densities to test and determine optimal station number
 When optimum station number was determined, stations chosen randomly within tessellated hexagonal grid (Figure 3)
 Spatial model error results from cross validation calculations for each compound analyzed by desirability index

• Desirability index parameters were between 0–1 and calculated from generalized functions with
target values and/or upper and lower limits when applicable:
− Root mean square standardized error (RMSSE) closest to 1
− Minimum root mean squared error (RMSE)
− Average standard error (ASE) close to RMSE
− R2 closest to 1

• The desirability index was calculated from the geometric mean of the individual parameters

 Desirability (D) as defined by Derringer and Suich (1980)
• Routinely across industries when optimizing several different variables to select the most optimal conditions
• Apply the same logic to evaluate modeling performed at varying spatial densities
• Assess tradeoffs between high and low density sampling designs represented in cross-validation error analysis
• Root Mean Squared Standardized Error (RMSSE) closest to one (d1).  Where T1=1, L1 = 0.8, U1 = 1.2,

and s=t=2 (Figure 4a)
• Minimal Root Mean Squared Error (RMSE, d2).  Where T2=0.01, U2 = 1, and r=1 (Figure 4b)
• Average Standard Error (ASE) close to Root Mean Square Error (RMSE) (d3).  Where T3 = RMSE, L3

= (RMSE-0.1), U3=(RMSE+0.1), s=t=1 (Figure 4c)
• R2 closest to one (d4).  Where T4=1, L4 = 0.60, and r=1 (Figure 4d)
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Results
 EBK model clearly out-performed all other models (Figure 2)
 Optimum station number (n = 67) was estimated from this data and sampling stations were

chosen (Figure 3)
 Prediction error statistics calculated from cross-validation of the spatial model to the data,

examples for sucralose and caffeine shown (Tables 1 and 2)
 Carbamazepine concentration ranges were quite different from data collected the previous year

(Figure 5)

 A desirability index used to interpret the error statistics (Table 3)
showed peak performance of the model is approximately 34
stations, with 6 of 11 compounds having the highest desirability
index values

 Sucralose, the most recalcitrant of the compounds used, showed
the best model behavior (Figures 6-9)

 Labile compounds, i.e. caffeine, performed less well (Table 3
and Figure 10)

Figure 2

Table 1. Sucralose cross validation errors and desirability index parameters

# 
stations

Root Mean Square 
Standardized 

prediction error 
(RMSSE)

Root 
Mean 

Squared 
(RMSE)

Average 
Standard 

error 
(ASE) R2

RMSSE 
closest to 

One 
Minimal 

RMSE 
ASE close to 

RMSE 

R2

closest 
to 1

Desirability 
Geo Mean

67 1.037 0.282 0.263 0.892 0.66 0.73 0.81 0.73 0.73
50 1.071 0.219 0.181 0.928 0.42 0.79 0.62 0.82 0.64
34 0.973 0.183 0.188 0.951 0.75 0.83 0.95 0.88 0.85
25 1.115 0.511 0.444 0.679 0.18 0.49 0.33 0.20 0.28
17 1.002 0.297 0.322 0.829 0.98 0.71 0.75 0.57 0.74
10 0.958 0.46 0.431 0.82 0.62 0.55 0.71 0.55 0.60

Table 2. Caffeine cross validation errors and desirability index parameters
Root Mean Square Root Average 

Standardized Mean Standard RMSSE R2

# prediction error Squared error closest to Minimal ASE close to closest Desirability 
stations (RMSSE) (RMSE) (ASE) R2 One RMSE RMSE to 1 Geo Mean

67 0.968 0.508 0.531 0.467 0.71 0.50 0.77 0.00 0.00
34 0.957 0.352 0.376 0.612 0.62 0.65 0.76 0.03 0.31
17 0.981 0.561 0.57 0.081 0.82 0.44 0.91 0.00 0.00
10 0.973 0.581 0.599 0.001 0.75 0.42 0.82 0.00 0.00
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Table 3. Desirability index for all compoundsta
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67 0.66 0.73 0.00 0.67 0.90 0.79 0.64 0.41 0.69 0.59 0.81

34 0.69 0.85 0.31 0.79 0.83 0.72 0.51 0.63 0.64 0.66 0.60

17 0.47 0.74 0.00 0.35 0.51 0.63 0.38 0.48 0.54 0.00 0.66

10 0.49 0.60 0.00 0.00 0.18 0.24 0.00 0.54 0.00 0.00 0.66

Conclusions
 EBK was the best performing spatial model.
 Optimum station numbers for all of NB was approximately 34 for

sucralose, the recalcitrant example compound used.
 Decrease is spatial accuracy minimal for recalcitrant compounds

with fewer than 34 stations.
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