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Suffocated spots

Abnormal depletion in dissolved oxygen levels in
oceans have increased during the past 40 years,
leading to about 400 dead zones worldwide
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@ Eutrophic: these zones
have seen a huge increase in
photosynthesising plankton,
which die, and the bacteria
decomposing them consume

axygen, creating a shortage @
@ Hypoxic: oxygen-depleted
zones
@ Zones in recovery 8 @
Source: World Resources Institute . 4 o
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Source: World Resources Institute, 2015

»Eutrophication - enrichment of an ecosystem with chemical nutrients,
typically compounds containing nitrogen (N), phosphorus (P), or both.

»>Clean Water Act (CWA) requires wastewater treatment plants (WWTPs)
to reduce nutrient discharge levels to prevent eutrophication
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Study Objectives and Approach

»Aims to address
1) how regulations drive system changes;

2) how conventional systems can be transitioned to more cost
effective and sustainable alternatives using nutrient management.

»Use emergy to provide system analysis

» Emergy quantifies direct and indirect contributions from the elemental resource flow
to the entire treatment plant operational requirements.

> Influent wastewater flow and nutrient levels, capital, and operational data were collected
from previous nutrient removal studies and for nutrient recovery from Ostara Nutrient
Recovery Technologies, Inc.

»All UEVs used and given hereafter (including those referenced in the text) were normalized
to the 1.20 E25 sejlyr (solar emjoules/year) global emergy baseline (Brown et al., 2016)



Nutrient Recovery and Benefits

> Nutrient recovery - practice of recovering nutrients (N and P) from
wastewater and converting them into an environmental friendly fertilizer

> Industrial phosphate (PO,*) fertilizers - manufactured using PO,3 rock
(non-renewable resource)

>Nutrient recovery provides a self-sustainable solution to WWTPs
— revenue generation from fertilizers
— reduces fouling of equipment with involuntary precipitation of struvite
— helps meet discharge limits

»PQO,3 precipitation from wastewater is less energy intensive and
economical compared to manufacture of phosphate fertilizers
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Struvite Formation and Production

»Recovered from municipal wastewater (MWW)/urine source - slow-
release mineral fertilizer given by the simplified equation

Magnesium Ammonium Phosphate
»Methods of struvite recovery from MWW have been under

development, this study cites WASSTRIP™ and PEARL® process by
Ostara Nutrient Recovery Technologies, Inc.

>Marketed fertilizer - 5% N, 28% PO,%, and 0% potash, with 16.6%
MgO (10% Mg)
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" Nutrient Recovery Technology Considered
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PEARL® process by Ostara Nutrient Recovery Technologies, Inc, 2016

>In addition to P precipitation, partial nitration anammox was considered
B3 for nitrogen reduction in the nutrient recovery alternative.
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Emergy definition and concept

»>Available energy of any kind previously used both directly and indirectly to make another
form of energy, product or service

»Evolution of the theory during the past thirty years was documented by H.T Odum in
Environmental Accounting, 2016

»Emergy (emjoules/yr or emjoules/unit) synthesis strives for understanding by grasping the
wholeness of system.

»>Able to investigate systems that are outside of human activities and evaluate in a
quantitative way (metrics) the quality of resource flows and storages.
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Results of Traditional Fertilizer Vs. Nutrient Recovery

Diammonium Phosphate (DAP)

Chemical formula: (NH,),HPO, Composition: 18% N, 46% P,05 (20% P)

Description

Capital

Materials
Phosphate Rock
Ammonia
Sulfur
Limestone
Energy
Electricity

Fuels

Services

Water

Total EMERGY

Transformity

Data Unit

1.14E+01 $

1.50E+06
1.44E+05
3.97E+05
3.02E+04

Q Q@ @@ Q@

1.16E+08
4.34E+08
5.12E+02
3.56E+01 m3

@« o

w/o capital invest
with capital invest
w/o capital invest

UEV EMERGY
(sej/unit) (E sejlyr)
2.02E+12 2.31E+13
3.61E+09 5.40E+15
6.48E+09 9.35E+14
9.50E+10 3.77TE+16
2.20E+08 6.65E+12
7.26E+05 7.85E+12
6.13E+05 4.01E+13
2.02E+12 1.04E+15
8.22E+11 1.23E+13

5.03E+16
5.03E+10  sej/g DAP
5.03E+10  sej/g DAP |
1.18 E+10 sejigP
D,

Struvite
Chemical Formula: Crystal Green®, NH,MgPO,-6H,0 (5-28-0 +10% Mg)
Data  Unit
Description
Capital 2.47E+02$
Materials
Phosphate, eq. to elemental
phosphorus (PO,-P) 1.40E+05¢g
Ammonia, equivalent to elemental
Nitrogen (NH;3-N) 2.10E+05g
Sodium hydroxide (NaOH) 4.90E+04 g
Magnesium chloride (MgCl,) as Mg 1.47E+05g
Electricity 6.40E+08 J
Services 5.33E+01$
Wastewater 2.63E+02g

Total EMERGY
w/o capital invest
Transformity with capital invest
w/o capital invest

UEV EMERGY
(sej/unit) (E sejlyr)
2.02E+12 5.01E+14

0.00E+00

0.00E+00
4.14E+09 2.03E+14
4.34E+10 6.38E+15
2.21E+05 1.41E+14
2.02E+12 1.08E+14
3.26E+05 8.56E+07

7.10E+15
7.10E+09 sej/lg CG
7.60E+09 sej/g CG
8.96 E+08 sej/g P
v
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Results of Traditional Fertilizer Vs. Nutrient Recovery

Diammonium Phosphate (DAP)
Chemical formula: (NH,),HPO, Composition: 18% N, 46% P,0; (20% P)

Data Unit UEV EMERGY

Description (sej/unit) (E sejlyr)
Capital 1.14E+01 $ 2.02E+12 2.31E+13
Materials
Phosphate Rock 1.50E+06 ¢ 3.61E+09 5.40E+15
Ammonia 1.44E+05 ¢ 6.48E+09 9.35E+14
Sulfur 3.97E+05 g 9.50E+10 3.77E+16
Limestone 3.02E+04 g 2.20E+08 6.65E+12
Energy
Electricity 1.16E+08 J 7.26E+05 7.85E+12
Fuels 4.34E+08 J 6.13E+05 4.01E+13)
Services 5.12E+02 $ 2.02E+12 1.04E+15
Water 3.56E+01 m3 8.22E+11 1.23E+13
Total EMERGY 5.03E+16

w/o capital invest 5.03E+10  sej/g DAP
Transformity with capital invest 5.03E+10  sej/g DAP

w/o capital invest 1.18 E+10 sej/gP
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Results of Traditional Fertilizer Vs. Nutrient Recovery

Struvite
Chemical Formula: Crystal Green®, NH,MgPO,-6H,0 (5-28-0 +10% Mg)
Data  Unit UEV EMERGY
Description (sej/unit) (E sejlyr)
Capital 2.47E+02$ 2.02E+12
Materials
Phosphate, eq. to elemental
phosphorus (PO,-P) 1.40E+05¢g 0.00E+00
Ammonia, equivalent to elemental
Nitrogen (NH;3-N) 2.10E+05¢g
Sodium hydroxide (NaOH) 4 90E+04¢ 4.14E+09 2.03E+14
Magnesium chloride (MgCl,) as Mg 1.47E+05g 4.34E+10 6.38E+15
Electricity 6.40E+08 J 2.21E+05 1.41E+14
Services 5.33E+019% 2.02E+12 1.08E+14
Wastewater 2.63E+02¢g 3.26E+05 8.56E+0
Total EMERGY 7.10E+15
w/o capital invest 7.10E+09 sej/g CG
Transformity with capital invest 7.60E+09 sej/g CG

_ w/o capital invest 8.96 E+08 sej/gP
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»>BNR treatments remove TN and TP from wastewater through the use of chemicals
and microorganisms under different environmental conditions (Metcalf and Eddy,
2003)

»>Levels of nutrient removal processes :

Treatment Level

(Effluent Limits) Removal/Recovery Process Name Processes Chosen for this Study

Recovery Phosphorus Recovery Phosphorus Recovery - Anammox

Level 2 Nitrification or Oxidation Ditch with or without ... .. ..
TN — 8 mgl/L, TN . o Nitrification
TP — 1 mglL Phosphorus Precipitation (chemical addition)

MLE

MLE - High Energy

Bardenpho - No Chemical Addition
Bardenpho - Chemical Addition
Bardenpho - High Energy

MUCT - No Chemical Addition
MUCT - Chemical Addition

MUCT - High Energy

Modified Ludzack Ettinger (MLE)
4 Stage and 5 Stage Bardenpho (Bardenpho),
Level 3 Modified University of Cape Town (MUCT),
TN — 4-8 mg/L, Sequential Batch reactor (SBR)
TP-0.1-0.3 mg/L +
Phosphorus Precipitation (chemical addition)

Level 3 process with either Denitrification Filter Bardenpho - Denitrification Filter
Level 4 Membrane Filter, Membrane Bioreactor (MBR) Bardenpho - Membrane Filter
TN — 3 mg/L, + MUCT - Membrane Filter
TP — 0.1 mg/L Phosphorus Precipitation (chemical addition) Bardenpho - MBR

Level 5 Bardenpho - RO

TN - <2 mgl/L, Iliee\czlr:saeoz);?r:/jsl‘,ii processes with Sidestream Bardenpho - Membrane Filter & RO
TP<0.02 mg/L MUCT - Membrane Filter & RO

13
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Processes Considered for the Study

Treatment Level Nutrient Removal/Recovery Energy Influent Ammonia Influent P
(Effluent Limits) Process (kWh/m3) (mg/L as NH;-N) (mg/L as P)
Recovery z:gfnpr:g;us Recovery - 0.14 20 7
Level 2
(TN — 8 mg/L, Nitrification 0.23 24 10
TP —1 mg/L)
MLE 0.28 23 8
MLE - High Energy 0.59 32 8
ig:ﬁ?npho - No Chemical 0.29 3 8
Level 3 tion
(TN — 4-8 mg/L, Bardenpho - Chemical Addition 0.29 23 8
TP —-0.1-0.3 mg/L) Bardenpho - High Energy 0.58 22 5
MUCT - No Chemical Addition 0.35 23 8
MUCT - Chemical Addition 0.35 23 8
MUCT - High Energy 0.56 22 5
Bardenpho - Denitrification Filter 0.53 22 5
Level 4 Bardenpho - Membrane Filter 0.4 23 8
(TN — 3 mg/L, ]
TP —0.1 mg/L) MUCT - Membrane Filter 0.45 23 8
Bardenpho - MBR 0.53 22 3}
Level 5 Bardenpho - RO 0.60 22 5
(TN - <2 mg/L, E%rdenpho - Membrane Filter & 54 23 8
TP<0.02 mg/L) _
MUCT - Membrane Filter & RO 2.45 23 8




EPA  Total Emergy Comparison between Different

Environmental Protection

Agency n
Nutrient Removal and Recovery Technology
2.5E+12
m Infrastructure
Labor & Service
m Energy — ==

2.0E+12 m Non-Energy/Chemicals
&> 1.5E+12 .
£
:g
§ Same BNR vary due to chemical and energy inputs
5 1.0E+12

5.0E+11

0.0E+00

N 3 eﬁ b( o4 X W ; : ; o
{b V s &
?5\
AQ}*
&
&
&

Level 2 Level 3 Level 4 Level 5



<EPA

United States

Environmental Protection

Agency

2.5E+12

2.0E+12

1.5E+12

1.0E+12

5.0E+11

0.0E+00

Total Emergy Comparison between Different
Nutrient Removal and Recovery Technology

r 100%

- 90%
Infrastructure
Labor & Service - 80%
mmmm Energy
L 0,
= Non-Energy/Chemicals 70%
Total
- 60%
8= % N Removed
=@= P Removed L 509
- 40%
- 30%
- 20%
F 10%

- 0%

Level 2 Level 3 Level 4 Level 5



wEPA Results and Discussions

» Stringent nutrient reduction regulations lead to trade-offs that need further
evaluation to choose the most sustainable treatment alternative

» Emergy analysis justifies nutrient recovery from wastewater sludge and provides
sound economic and ecological comparison of removal and recovery treatment
alternative independent of perceived monetary value

» DAP process depends ~70% on non-renewable energy sources and a scarce
material (phosphate rock), Struvite has potential of utilizing 100% of renewable
sources, making recovery of phosphorus as fertilizer less emergy intensive

» DAP with an order of magnitude higher total emergy relative to struvite, displays a
bigger environmental ‘footprint’.

» Among the nutrient removal treatment alternatives, the study results show that
energy and non-energy (chemicals) inputs can lead to significant variation in

process emergy



<EPA

United States
Environmental Protection

Agency

Selected References

Eastern Research Group, Inc. (2018). Life Cycle and Cost Assessments of Nutrient Removal Technologies in
Wastewater Treatment Plants, Report Prepared for U.S.EPA (draft).

Arden, S., Ma, X. and Brown, M. (2018) Holistic Analysis of Urban Water Systems in the Greater Cincinnati
Region: (2) Resource Use Profiles by Emergy Accounting Approach. Submitted to Environmental Science and
Technology (ES&T).

Rahman, M.S., Eckelman, J.M., Onnis-Hayden, A. and Gu, A.Z.(2016) Life-Cycle Assessment of Advanced
Nutrient Removal Technologies for Wastewater Treatment. Environmental Science and Technology, 50, pp 3020
- 3030

Foley, J., de Haas, D., Hartley, K. and Lant, P. (2010) Comprehensive life cycle inventories of alternative
wastewater treatment systems. Water Research, 44, pp 1654 — 1666.

Odum, H.T. Environmental accounting. John Wiley & Sons: New York, 1996.

Brown, M. T., Campbell, D. E., De Vilbiss, C., Ulgiati, S. (2016) The Geobiosphere Emergy Baseline: A
Synthesis. Ecological Modelling.

Fux, C. and Siegrist, H. (2004). Nitrogen removal from sludge digester liquids by nitrification/denitrification or
partial nitritation/anamox: environmental and economical considerations. Water Science and Technology. 10,
pp. 19-26



<EPA

Eg\gfgysr‘;itr?él Protection F utu re or Contl n ued Wo rk
[ Wastewater Treatment Nutrient Recovery
I . =
| (]
' 4
’ \ [ ] —_— | ] _— n —_— | ] _— n —_— | ] _— n —_— | ] _— n —_— | ] ,
Rain and Deposition
e __ o _____-_ N Fixation via_microbes

——————————— ~
N

\

Human and ==
Animal Waste

—p  RUNOff

— e o e o e e e s ey
— e o - o e o o o o

Account for the benefits of nutrient recovery via efficient use of the struvite fertilizer and the flow of N and

P nutrients in the food system, the economic, environmental and societal benefits of struvite recovery
m would be more perceptible.



<EPA

United States

Environmental Protection

Agency

Acknowledgements

» Research Adviser - Dr. Xin (Cissy) Ma

» Safe and Sustainable Water Resources National Research Program in the EPA's
Office of Research and Development

» National Research Council (NRC) Research Associate Program
» U.S.EPA Graduate Student Program — Sam Arden

» ORISE Research Associate Program (Alejandra M. Gonzélez-Mejia’s appointment)
» This project was supported in part by an appointment to the Internship/Research Participation Program at the NRMRL, U.S.
Environmental Protection Agency, administered by the Oak Ridge Institute for Science and Education through an interagency agreement
between the U.S. Department of Energy and EPA.

» Ostara Nutrient Recovery Technologies, Inc., The Mosaic Company and Agrium, Inc.

Disclaimer:

The opinions expressed in this presentation are those of the author. They do not reflect EPA policy, endorsement, or action, and EPA does
not verify the accuracy or science of the contents of this presentation. Mention of trade names or commercial products does not constitute
endorsement or recommendation for use. Links to non-EPA websites do not imply any official EPA endorsement of or a responsibility for
the opinions, ideas, data, or products presented at those locations or guarantee the validity of the information provided. Links to non-EPA
servers are provided solely as a pointer to information that might be useful to EPA staff and the public.

; SCIENCES
The National RESEARCH ASSOCIATESHIP PROGRAMS
. | ENGINEERING L LOMWSHIP OFFICE

MEDICINE Policy and Global Affairs

Academies of

({ED ST4
N )
. .

w Agenct

7

A



Thank you! Questions?

< NUTRIENT FLOW =

WASTE WATER



ental Protection

Backup Slides



<EPA

United States
Environmental Protection

Struvite vs. DAP
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" Struvite vs. DAP - Major emergy contributors
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