EPA/600/B-18/240 | September 2018 www.epa.gov/homeland-security-research

The Use of Combustion Process Modification to Capture Cesium from Combustion of Contaminated Biomass

Office of Research and Development Homeland Security Research Program This page left intentionally blank

The Use of Combustion Process Modification to Capture Cesium from Combustion of Contaminated Biomass

by

Paul M. Lemieux Sang Don Lee William P. Linak U.S. Environmental Protection Agency Research Triangle Park, NC 27711

Project Officer: Paul M. Lemieux Office of Research and Development Homeland Security Research Program Research Triangle Park, NC 27711

Disclaimer

The U.S. Environmental Protection Agency (EPA) through its Office of Research and Development funded and managed the research described herein under contract EP-C-09-027 with ARCADIS and contract EP-C-15-008 with Jacobs. It has been subjected to the Agency's review and has been approved for publication. Note that approval does not signify that the contents necessarily reflect the views of the Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or EPA. The EPA does not endorse any commercial products, services, or enterprises. The contractor role did not include establishing Agency policy.

For questions, contact

Paul M Lemieux US EPA Office of Research and Development National Homeland Security Research Center 109 TW Alexander Drive E343-06 Research Triangle Park, NC 27711 919-541-0962 lemieux.paul@epa.gov

Table of Contents

Disclaimer	ii
List of Tables	v
List of Figures	vi
Acronyms and Abbreviations	vii
Acknowledgments	<i>x</i>
Executive Summary	xi
1.0 Introduction	1
2.0 Experimental	
2.1 Powderized Biomass Tests in Down-Fired Vertical Tunnel Combustor	3
2.1.1 Combustor Description	3
2.1.2 Biomass Description	4
2.1.3 Sorbent Description	
2.1.4 Instrumentation	
2.1.5 Experimental Approach	
2.1.6 Doped Biomass and Sorbent Preparation	
2.1.7 Sampling and Analytical Procedures	
2.1.8 Test Description	
2.2 Pelletized Biomass Tests in Rotary Kiln Incinerator Simulator	
2.2.1 Combustor Description	
2.2.2 Biomass Description	
2.2.3 Sorbent Description	
2.2.4 Gas Analysis Equipment	
2.2.5 Experimental Approach	12
3.0 Results	15
3.1 Results from Powderized Biomass Tests in Down-Fired Vertical Tunnel Combustor	15
3.2 Results from Pelletized Biomass Tests in Rotary Kiln Incinerator Simulator	17
4.0 Discussion	
5.0 Quality Control Report	
5.1 Quality Control	21
5.2 Calibrations	21
5.3 QA Assessments and Corrective Action	22
5.3.1 Elemental Analysis of MOUDI substrates	
5.3.2 CEM Calibrations	
5.3.3 Rotary Kiln Incinerator Simulator	
5.3.3 Biomass Feeder	
5.3.4 Sorbent Injection	23

6.0 Conclusions	. 24
7.0 References	. 24
Appendix A: Analysis of Corncob Flour	. 26
Appendix B. Analysis of Pine Flour	. 30
Appendix C. Analysis of Biomass Pellets	. 33
Appendix D. Particle Size Analysis of Sorbent for Rotary Kiln Tests	. 36
Appendix E: ICP-MS Results for MOUDI Filters	. 38

List of Tables

Table 1. Properties of Biomass Flour Used in Tests (as received)	5
Table 2. Properties of Kaolinite Powder Sorbent	6
Table 3. Test Matrix and Samples to be Acquired	7
Table 4. Properties of Biomass Pellets Used in Tests (as received)	
Table 5. Test Matrix	14
Table 6. CEM Results	
Table 7. ICP-MS Analysis Results from Pelletized Biomass/Sorbent Tests in RKIS	
Table 8. Particle Size Fractions Caught on MOUDI Stages	19
Table 9. CEM Calibration Criteria	22

List of Figures

4
5
6
9
11
14
15
16
17
19

Acronyms and Abbreviations

°C	Degrees Celsius	
°F	Degrees Fahrenheit	
μm	Micrometer(s)	
Al	Aluminum	
Ва	Barium	
Br	Bromine	
Btu	British thermal unit(s)	
C	Carbon	
Са	Calcium	
CEM	Continuous Emission Monitor	
Cl	Chlorine	
cm	Centimeter(s)	
CMAD	EPA CBRN Consequence Management Advisory Division	
Cs	Cesium	
CsCl	Cesium chloride	
D	Diameter	
DAS	Data acquisition system	
EPA	United States Environmental Protection Agency	
ESP	Electrostatic Precipitator	
Fe	Iron	
FGCS	Flue gas cleaning system	
g	Gram(s)	
GE	General Electric	
GLI	Galbraith Laboratories, Inc.	
h	Hour(s)	

н	Hydrogen		
ICP-MS	Inductively Coupled Plasma – Mass Spectrometry		
IFRF	International Flame Research Foundation		
ITI	Jacobs Technology, Inc.		
К	Potassium		
kg	Kilogram(s)		
kW	Kilowatt(s)		
L	Length		
L	Liter(s)		
LPM	Liters per minute		
lb	Pound(s)		
m	Meter(s)		
mg	Milligram(s)		
Mg	Magnesium		
min	Minute(s)		
Mn	Manganese		
MOUDI	Micro-Orifice Uniform Deposit Impactor		
Na	Sodium		
ng	Nanogram(s)		
nm	Nanometer(s)		
NHSRC	EPA National Homeland Security Research Center		
NRMRL	EPA National Risk Management Research Laboratory		
0	Oxygen		
OEM	EPA Office of Emergency Management		
OLEM	EPA Office of Land and Emergency Management		
ORD	EPA Office of Research and Development		
Р	Phosphorus		

PM	Particulate matter	
ppm	Part(s) per million	
PSD	Particle size distribution	
QA	Quality Assurance	
QC	Quality Control	
RDD	Radiological Dispersal Device	
RKIS	Rotary Kiln Incinerator Simulator	
S	Sulfur	
s scc	Sulfur Secondary Combustion Chamber	
-		
SCC	Secondary Combustion Chamber	
SCC scfm	Secondary Combustion Chamber Standard cubic feet per minute	
SCC scfm Si	Secondary Combustion Chamber Standard cubic feet per minute Silicon	

Acknowledgments

The authors would like to specially acknowledge Larry Virtaranta, Preston Burnette and Daniel Janek of Jacobs Technology, Inc. (JTI). Larry oversaw the project operations, Preston assisted with troubleshooting the rotary kiln incinerator simulator (RKIS)/flue gas cleaning system (FGCS) and was the predominant person assisting with testing (biomass feeder, sorbent injection, micro-orifice uniform deposit impactor (MOUDI) recovery). Daniel operated the FGCS and prepped/weighed MOUDI substrates. Jacob Cansler of JTI assisted with biomass feeder and temperature profile. Dean Smith of ARCADIS supervised the X-ray Fluorescence (XRF) laboratory and advised on data reduction for the powderized biomass experiments. The authors would also like to acknowledge Eric Morris of ARCADIS who operated the XRF analytical equipment and Garrett Wiley of ARCADIS who operated the sorbent injection system for the powderized biomass tests.

EPA Product Team

Paul Lemieux (EPA/ORD/NHSRC)

Sang Don Lee (EPA/ORDNHSRC)

Paul Kudarauskas (EPA/OLEM/OEM/CMAD)

The authors would also like to acknowledge the following individuals for performing the technical editing, technical reviews, and the quality assurance review:

Joan Bursey (EPA/NHSRC Senior Environmental Employee)

Ramona Sherman (EPA/ORD/NHSRC)

Peter Kariher (EPA/ORD/NRMRL)

Shannon Serre (EPA/OLEM/OEM/CMAD)

Executive Summary

In the aftermath of a wide-area radiological contamination incident in an urban setting, there is the potential for the generation of significant quantities of contaminated biomass waste. For example, the 2011 nuclear power plant accident at the Fukushima Daiichi plant in Japan resulted in an estimated 7.8 million cubic meters of combustible waste, most of which was biomass (Osako, 2015). These wastes are likely candidates for incineration as a means of volume reduction, due to the costs associated with disposal of low-level radioactive waste. Cesium (Cs), an alkali metal element, is a radionuclide that might possibly be used in a radiological dispersal device or may be the predominant long-term radionuclide contaminant from a nuclear power plant accident. Cs presents problematic behavior in combustion systems due to its volatility and solubility in water. Many wastes and fossil fuels contain trace metallic constituents. Although high-temperature combustion or incineration systems cannot destroy the elemental metal constituents, these environments may induce metal transformations. These transformations may exacerbate difficulties in controlling the radionuclides of interest because many of the metal species, including Cs, vaporize readily within the combustion environments. This saturated vapor will subsequently nucleate and condense downstream of the flame, forming a fume of submicron (i.e., aerodynamic diameter < 1 micrometer $[\mu m]$) aerosol with a mean volume aerodynamic diameter between 100 and 200 nanometers (nm). These condensed particles, because of their small size, are difficult to collect in pollution control systems, particularly those using an electrostatic precipitator. Emissions of particulate-bound radioactive isotopes such as ¹³⁷Cs from combustion systems are highly undesirable (Parajuli et al., 2013). Chlorinated metal species that are collected often exhibit increased volatility (Yang et al., 2002). Moreover, chlorinated and sulfated metals may exhibit increased water solubility and subsequent leachability with disposal in landfill environments.

The objective of this research was to:

- Examine the behavior and transformations of biomass-bound Cs in an incinerator environment; and
- Determine whether combustion modifications, including sorbent injection into the post-combustion zone of practical incinerators and combustors, could be used to convert biomass-bound Cs into easily collected forms.

1.0 Introduction

In the aftermath of a wide-area radiological contamination incident in an urban setting, there is the potential for the generation of significant quantities of contaminated biomass waste. For example, the 2011 nuclear power plant accident at the Fukushima Daiichi plant in Japan resulted in an estimated 7.8 million cubic meters of combustible waste, most of which was biomass (Osako, 2015). These wastes are likely candidates for incineration as a means of volume reduction, due to the costs associated with disposal of low-level radioactive waste. Cesium (Cs), an alkali metal element, is a radionuclide that might possibly be used in a radiological dispersal device (RDD) or may be the predominant long-term radionuclide contaminant from a nuclear power plant accident, and Cs presents problematic behavior in combustion systems due to its volatility and solubility in water. Many wastes and fossil fuels contain trace metallic constituents. Although high-temperature combustion or incineration systems cannot destroy the elemental metal constituents, these environments may induce metal transformations. These transformations may exacerbate difficulties in controlling the radionuclides of interest because many of the metal species, including Cs, vaporize readily within the combustion environments. This saturated vapor will subsequently nucleate and condense downstream of the flame, forming a fume of submicron (i.e., aerodynamic diameter < 1 micrometer $[\mu m]$) aerosol with a mean volume aerodynamic diameter between 100 and 200 nanometers (nm). These condensed particles, because of their small size, are difficult to collect in pollution control systems, particularly those using an electrostatic precipitator (ESP). Emissions of particulate-bound radioactive isotopes such as ¹³⁷Cs from combustion systems are highly undesirable (Parajuli et al., 2013). Chlorinated metal species that are collected often exhibit increased volatility (Yang et al., 2002). Moreover, chlorinated and sulfated metals may exhibit increased water solubility and subsequent leachability after disposal in landfill environments.

Past work examining the behavior of Cs in natural gas-fired combustion systems has shown that Cs could be reactively scavenged onto dispersed kaolinite powders (Yoo et al., 2005). By adsorbing Cs onto larger (2-10 μ m) kaolinite sorbent particles, the Cs can be captured much more effectively by conventional particulate control devices such as ESPs or fabric filters, which are very effective at capturing particulate matter (PM) with sizes greater than 1 μ m. Further, Cs chemisorbed onto kaolinite may well resist leaching in landfill environments. This initial work found that there was an optimal temperature between 1400 and 1500 kelvins (K) where maximum sorption (approaching 80%) on the kaolinite occurs. The presence of chlorine (Cl) was found to inhibit Cs sorption.

Subsequent work showed that this mechanism was still valid in a combustion environment using biomass as the fuel (Lemieux et al., 2013). In these tests, corncob flour was used as 50% of the fuel load in the same pilot-scale combustor used in previous studies (Yoo et al., 2005), operating under the same conditions using a similar kaolinite sorbent material. Approximately 65% of the Cs was captured onto the sorbent particles in spite of the elevated chlorine (Cl), sodium (Na) and potassium (K) present in a biomass combustion environment (Jenkins et al., 1998). Na and K, as alkali metals, behave similarly to Cs and could potentially compete with Cs for active sites on the sorbent particles. In addition, cesium chloride (CsCl) is a common Cs species that could be used in an RDD (Musolino et al., 2011; Nuclear Regulatory Commission, 2010; U.S. Department of Homeland Security, 2007), and some biomass may contain varying levels of Cl (Jenkins et al., 1998), which may inhibit sorption of Cs onto the sorbent particles.

The objective of this research was to:

- Examine the behavior and transformations of biomass-bound Cs in an incinerator environment; and
- Determine whether combustion modifications, including sorbent injection into the post-combustion zone of practical incinerators and combustors, could be used to convert biomass-bound Cs into easily collected forms.

Pertinent mechanisms were inferred by:

- Examining metal aerosol properties (particle size distribution [PSD] and chemistry) as a function of fuel/waste composition and incinerator operating parameters;
- Determining how sorbent injection modifies the submicron size distribution of the metal aerosol in the exhaust; and
- Interpreting detailed morphological and chemical analyses of size-segregated particulate matter extracted from the exhaust.

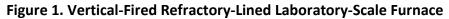
The successful demonstration of the Cs capture in a biomass combustion environment led to the question of whether this degree of success would be maintained when other biomass types were being burned due to the variation in the amounts of different alkali metals and chlorine. Due to the prevalence of pine as a common type of tree found in many urban areas, a similar set of tests was performed in a combustion system that used finely ground pine wood (pine flour) as the biomass fuel. After those experiments, another set of experiments was performed using pelletized hardwood biomass in a pilot-scale rotary kiln incinerator simulator (RKIS) system. This report presents those results.

2.0 Experimental

The experiments were performed in two distinct series:

- Experiments on a down-fired vertical tunnel combustor burning a mixture of natural gas and powderized biomass while injecting kaolinite sorbent near the combustor exit;
 - o with powderized corncob as the biomass;
 - o with powderized pine as the biomass; and
- Experiments on a rotary kiln incinerator simulator (RKIS) burning a mixture of natural gas and pelletized oak biomass while injecting kaolinite sorbent in the secondary combustion chamber.

2.1 Powderized Biomass Tests in Down-Fired Vertical Tunnel Combustor


2.1.1 Combustor Description

The first set of experiments was performed using a vertical-fired refractory-lined laboratory-scale furnace, located at EPA's research facility in Research Triangle Park, NC. This experimental system was used previously (Yoo et al., 2005) (see Figure 1). Normally, this furnace operates solely on a natural gas flame. The natural gas fuel was supplemented with very finely ground biomass to utilize the same combustion system and combustion conditions similar to the conditions that successfully demonstrated sorbent injection to control Cs from a natural gas combustion system. The furnace is currently configured with the following components, which are described below:

- Combustion chamber;
- Flame safety interlock system;
- Natural gas supply system;
- Biomass supply system;
- Sorbent injection system; and
- Data acquisition system.

The furnace is an 82 kilowatt (kW) (280,000 British thermal units/hour [Btu/h]) rated vertically-fired combustor equipped with an International Flame Research Foundation (IFRF)-type variable-air swirl burner and is discussed elsewhere (Linak et al., 2004; Linak et al., 1994). The furnace is designed to simulate the time and temperature characteristics of a variety of incineration devices. The primary use of the furnace is to examine hazardous air pollutants like those produced in boilers and waste incinerators. The vertical part of the furnace spans 457 centimeters (cm) (15 feet) and consists of a burner section with a 52 cm (20.5-inch) inside diameter that simulates the near-burner zone aerodynamics of a variety of natural gas and fuel oil flames, and a 26.7 cm (10.5-inch) inside diameter section that extends 305 cm (10 feet). The furnace then turns into a 26.7 cm (10.5-inch) inside diameter horizontal duct to allow for additional sampling locations. The furnace is refractory-lined and has evenly spaced sampling ports that span the full length of the furnace to facilitate gas and aerosol sampling as well as temperature measurements. The exhaust exits the furnace vertically with additional sampling ports located along the insulated 21 cm (8.25-inch) diameter stainless steel duct.

2.1.2 Biomass Description

The furnace was designed to operate on natural gas and liquid fuels but was modified for powdered biomass. Normally, a biomass-fired combustor would burn biomass that had undergone only moderate size reduction. However, since the combustor used for these experiments normally operated on natural gas only, the experiments required the biomass to be very finely ground to minimize the need for major equipment retrofits. For these experiments, approximately 50% of the fuel load (by heating value) was natural gas and 50% of the fuel load was powdered biomass material. The biomass used for the initial set of tests was corncob flour (Mt. Pulaski #100; The Andersons, Inc., Maumee, OH, predominantly < 150 µm in particle diameter), and the biomass used for the second set of tests was pine flour (#70 Pine Wood Flour; Composition Materials Company, Milford, CT, predominantly < 212 μ m in particle diameter). The pine flour was evaluated for feedability and combustibility by Galbraith Laboratories (GLI) (Knoxville, TN) and the presence of potentially confounding elements (e.g., Na, K) (Jenkins et al., 1998) via X-ray fluorescence (XRF) in the EPA's X-Ray Laboratory in Research Triangle Park, NC, prior to initiation of the tests. Table 1 lists the properties of the corncob and pine flour used in the experiments. Of particular note is the lower amount of Cl and K in the softwood flour. The material was cofired into the IFRF burner using a screw-type feeder with a loss-in-mass controller (see Figure 2) (K-Tron Model # KT926; Pitman, NJ) with a nominal feed rate of 4.5 kilograms/hour (kg/h) (10 pounds/hour [lb/h]). The powderized biomass was fed through a custom injection nozzle fabricated from two concentric tubes and installed in the center of the burner. Biomass, transported by air, was blown through the center tube with natural gas supplied through the annulus between the inner and outer tubes.

able 1. Properties of Biolinass Flour Osed in Tests (as received				
WD-XRF Analysis	Pine Flour	#100 Corncob Flour		
Cellulose	99.815%	98.436%		
Hydrogen (H)	6.205%	6.119%		
Carbon (C)	44.364%	43.751%		
Oxygen (O)	49.246%	48.566%		
Sodium (Na)	ND	ND		
Magnesium (Mg)	0.017%	0.036%		
Aluminum (Al)	ND	0.008%		
Silicon (Si)	0.005%	0.101%		
Phosphorus (P)	0.001%	0.047%		
Sulfur (S)	0.005%	0.030%		
Chlorine (Cl)	0.036%	0.363%		
Potassium (K)	0.032%	0.950%		
Calcium (Ca)	0.077%	0.021%		
Iron (Fe)	ND	0.005%		
Manganese (Mn)	0.007%	ND		
Zinc (Zn)	0.001%	0.001%		
Bromine (Br)	ND	0.001%		
Strontium (Sr)	0.001%	ND		
Barium (Ba)	ND	ND		

Table 1. Properties of Biomass Flour Used in Tests (as received)

ND - Not Detected

Figure 2. Biomass Feed System

2.1.3 Sorbent Description

Previous testing (Yoo et al., 2005) used kaolinite sorbent, and the kaolinite was effective at capturing Cs in a solely natural gas-fired system. Kaolinite is also widely available and inexpensive, averaging approximately \$160/ton (Statistica.com, 2017). Kaolinite powder (Burgess No. 40; Burgess Pigment, Sandersville, GA; see Table 2) was injected into a port of the furnace using a K-Tron Model KCLKT20 Twin Screw Compact Loss-In-Weight Feeder (Pitman, NJ) with a 12-liter (L) (3.2-gallon) hopper (Figure 3). Sorbent was metered from the hopper by

the rotation of the screws for a given set point. The feeder was equipped with a horizontal agitator and a vertical discharge with a flexible discharge boot. The sorbent metered from the screws entered a conical section where compressed air transported the powdered sorbent through a water-cooled probe into the furnace approximately two meters (m) downstream of the flame.

Typical Physical Properties		Typical Chemical Properties		
GE Brightness	85.0 %	Loss on Ignition	13.7-14.1 %	
325 Mesh Residue	0.15 %	Silica (SiO ₂)	44.8 – 45.3 %	
Average Particle Diameter	1.3 μm	Alumina (Al ₂ O ₃)	37.5 – 39.7 %	
(SediGraph)				
Free Moisture	1.0 %	Iron Oxide (Fe ₂ O ₃)	Trace	
Specific Gravity	2.63	Titanium Dioxide (TiO ₂)	1.35 – 2.27 %	
Refractive Index	1.56			
pH (20% Solids)	5.3			

Table 2. Properties of Kaolinite Powder Sorbent

Figure 3. Sorbent Injection System

2.1.4 Instrumentation

The furnace was equipped with instrumentation to monitor combustor operating conditions. Temperature was measured at several locations inside the furnace using ceramic-shielded Type R thermocouples (for detailed temperature profile measurements) or unshielded Type K thermocouples (for routine monitoring of operating conditions). Continuous emission monitors (CEMs) recorded O₂, CO₂ (U.S. EPA, 1989), CO (U.S. EPA, 1996b), and NO_x (U.S. EPA, 1990) levels in the transition duct between the furnace and the facility's Flue Gas Cleaning System (FGCS). Air and gas mass flow meters measured combustion air and natural gas flow rates.

Temperature, air and gas flow rates, and CEM measurements were recorded by the furnace's data acquisition system (DAS). The DAS was comprised of Measurement Computing's (Norton, MA) Personal Daq hardware interfaced with a desktop PC running Measurement Computing's Personal DaqView software. Analog voltage signals from the air and gas mass flow meters, thermocouples, and CEM monitors were digitized by the DAS, displayed to the desktop monitor in real time, and recorded in text format, which was later read into an MS

Excel spreadsheet for post-processing and data analysis.

2.1.5 Experimental Approach

During the tests, the firing rate was determined by the combination of natural gas and biomass feed and was set for a nominal firing rate of 51.1 kW (175,000 Btu/h). For all tests, the furnace was operated with a nominal 20% excess air and a stack O_2 target of 3.5%. The test matrix and samples that were acquired are shown in Table 3.

Table 5. Test Matrix and Samples to be Acquired						
Test Condition	Natural Gas	Biomass Feed	Cs Doping	Sorbent Feeding	Gas Species Concentrations	Particle Analysis
1	On	Off*	Off	Off	CEMs	NA
2	On	On	Off	Off	CEMs	MOUDI
3	On	On	On	Off	CEMs	MOUDI
4	On	On	On	On	CEMs	MOUDI

NA – not applicable

* -- natural gas was increased to maintain 51.1 kW firing rate MOUDI - Micro-Orifice Uniform Deposit Impactor

The effect of sorbent injection on the behavior and transformation of Cs-bound biomass waste was determined by doping the biomass with aqueous cesium chloride prior to feeding the biomass into the furnace operating at a constant load of approximately 51.1 kW (175,000 Btu/h), with a feed rate of corncob flour of 4.4 kg/h (10 lb/h). The natural gas and combustion air feed rates were adjusted to maintain the desired level of excess air and the desired temperature profile. Figure 1 shows the temperature profile of the furnace for these tests.

2.1.6 Doped Biomass and Sorbent Preparation

The concentration of the Cs that was artificially placed onto the biomass was initially based on evaluation of instrument detection limits of XRF and Cs deposition on different impactor stages and sampling times used in the previous work (Yoo et al., 2005). This analysis suggested a minimum Cs target concentration in the combustion gas effluent of 844 ng/L. The biomass was prepared by spraying a small amount of an aqueous solution of CsCl onto the material while it was being agitated in a portable cement mixer. Based on the desired Cs concentration in the flue gases, the target concentration of Cs in the biomass was 55.6 mg Cs per kg of biomass flour (55.6 ppm). The doped biomass flour was prepared by mixing 641 mg of CsCl with 1 L of deionized water and pouring 0.5 L of this solution into 0.45 kg (1 lb) of biomass flour, then adding that mixture to the remaining portion of a 4.5 kg (10 lb) bucket of biomass flour and mixing thoroughly using a cement mixer. The concentration of stable ¹³³Cs used in this study may be significantly higher (perhaps by orders of magnitude) than the contamination level expected in an actual RDD incident. However, the chemical properties of ¹³³Cs are identical to the chemical properties of radioactive ^{134/137}Cs. Hence, the results from using ¹³³Cs are sufficient to assess the concept of using kaolinite powders as Cs sorbents during biomass incineration. The higher concentrations are necessary to overcome detection limitations associated with using the less sensitive XRF method as opposed to using highly sensitive gamma detectors that could be used to detect radioactive Cs isotopes.

The primary variables of interest were: 1) the molar ratio of kaolinite in the sorbent to the Cs in the biomass; 2) the molar ratio of Cs in the biomass to the other alkali metals and trace constituents (i.e., Na, K, Cl) in the biomass; and 3) the concentration of Cs in the biomass. The sorbent injection temperature was set at the optimal temperature for Cs capture as observed in previous testing on the furnace with Cs (Yoo et al., 2005).

For these initial tests, high kaolinite feed rates exceeding the levels of K in the corncob flour were chosen. To accomplish this high feed rate, 50 g/min of kaolinite was injected into the furnace, which represented a 10:1

molar ratio of kaolinite to K. The large excess of K relative to Cs resulted in a molar ratio of kaolinite to cesium of approximately 6700:1.

2.1.7 Sampling and Analytical Procedures

Metal speciation was determined by XRF analysis of size-segregated PM extracted from the exhaust. Sizesegregated samples were taken using a Micro-Orifice Uniform Deposit Impactor (MOUDI) (MSP Corporation, Shoreview, MN)(Applied Physics, 2013). The MOUDI is a cascade impactor designed for high concentration aerosols and provides very sharp cut points, very low bounce response, digital on/off timer controls, and flow meters. Triplicate MOUDI samples were collected for each experimental condition except when otherwise noted.

The furnace is equipped with several sampling ports located along the axis of the combustor for emissions sampling (see Figure 1). All sampling locations are sufficient in length and free of flow disturbances so that PM can be sampled. There was approximately 2 m of distance between the injection port and the sampling port, representing approximately 1.3 seconds (s) of residence time. The flue gas velocity was measured with a pitot tube and a micromanometer (U.S. EPA, 1996a). This flue gas velocity value was used to determine the sample flows required to maintain isokinetic conditions at the end of the probe.

The MOUDI samples were acquired from the main duct using an air-cooled stainless-steel dilution probe. Nitrogen dilution of the sample using a dilution probe was performed to quench aerosol growth and prevent water condensation. The dilution flow was controlled by a mass flow controller, and the total sample flow was measured with a dry gas meter and an orifice plate. The mass flow controller was calibrated by the EPA Metrology Laboratory with a Gilibrator bubble flow meter (Sensidyne, St. Petersburg, FL), and the dry gas meter was calibrated with a wet test meter. All tubing from the probe to the impactor was of minimal length and constructed of conductive silicon tubing to minimize particle loss due to electrostatic deposition.

The MOUDI Model 110 is a 10-stage, 30 L/min (1.06 standard cubic feet per minute [scfm]) inertial cascade impactor capable of measuring PSDs between 0.056 and 10 μ m. The impactor is housed inside a cabinet that continuously rotates the impactor nozzle plates relative to the impaction surfaces. The nozzles are staggered in a pattern that produces a uniform layer of particulate when rotated. The uniform deposition allows more particulate to be collected without adversely affecting the critical distance between the nozzles and impaction surface and allows the impactor substrates to be analyzed using XRF.

Substrates used in the MOUDI were 47 mm polycarbonate membrane material. To help deter particle bounce, the substrates were coated with Apiezon Type-L vacuum grease (M&I Materials, Manchester, UK) diluted 20 to 1 with hexane and applied with an airbrush. The airbrush used nitrogen from a cylinder. After coating, the substrates were placed in an 85-degree Centigrade (°C) (185 degrees Fahrenheit (°F)) oven for one hour. After cooling, the substrates were placed in a vacuum desiccator for 24 hours. After collection, the polycarbonate membranes were placed on Petri slides and stored in a desiccator until they were analyzed by XRF for Al, Na, K, Cl, and Cs in the EPA's X-Ray Laboratory in Research Triangle Park, NC.

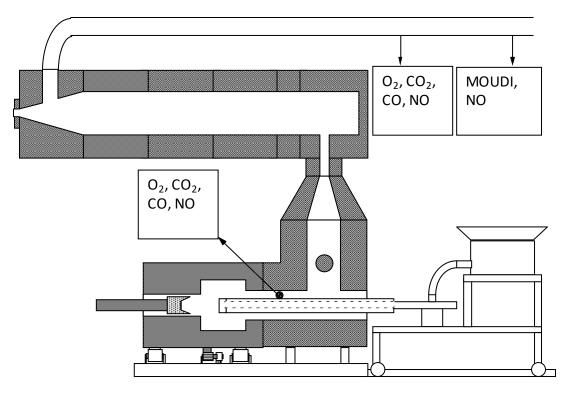
2.1.8 Test Description

Once the optimal biomass/natural gas combination was determined, the furnace was operated until temperatures stabilized and a temperature profile of the furnace was acquired using a ceramic shielded R-type thermocouple (Omega, Norwalk, CT). A location with temperatures between 1400 and 1500 kelvins (K) (2060 – 2240 °F) was identified to be used later to inject the kaolinite sorbent (see Figure 1).

A background experiment firing only natural gas was performed (Test Condition 1). The particulate sample was taken from the duct with an air-cooled stainless-steel nozzle/tube and was diluted with nitrogen to dilute the

sample and quench aerosol growth. The MOUDI was used to collect size-classified samples and determine particle distributions. All substrates from the MOUDI were analyzed using XRF. Elements of interest included Na, K, and Cs to characterize the alkali metals, Cl to examine possible interference, and Al to track the kaolinite sorbent.

The next set of experiments involved undoped powderized biomass combustion without sorbent injection (Test Condition 2). Using the firing rate that was previously determined, an experiment was performed feeding powderized biomass and natural gas without sorbent injection. The furnace was operated for at least a day on natural gas prior to running these tests.


Test Conditions 1 and 2 were largely designed as baseline conditions to verify operation of the combustor and sampling devices. Comparison of Test Conditions 3 and 4 is the core of the experimental study, where the impact of the sorbent injection on Cs from doped powderized biomass combustion is examined.

Test Condition 3 involved combustion of Cs-doped powderized biomass without sorbent injection, and Test Condition 4 involved combustion of Cs-doped powderized biomass with sorbent injection. Comparison of the PSDs between these two test conditions will illustrate whether the partitioning of Cs between different size fractions can be altered using sorbent injection.

2.2 Pelletized Biomass Tests in Rotary Kiln Incinerator Simulator

2.2.1 Combustor Description

The RKIS is a 73 kW (250,000 Btu/h) primary chamber, 73 kW (250,000 Btu/h) secondary chamber rotary kiln thermal destruction unit that was designed to possess the salient features of full-scale units with thermal ratings 20 to 40 times larger. The RKIS matches the volumetric heat release, gas-phase residence time, and temperature profile of many full-scale units and yet is flexible enough to enable parametric testing. A schematic drawing of the RKIS is presented in Figure 4.

The general dimensions of the RKIS are:

- Inside diameters: 0.762 m in the kiln recess to 0.457 m in the transition and tower sections
- Outside diameters: 1.168-1.219 m
- Internal axial dimensions: 6.096 m from the front burner wall to the solids charging port

The rotating kiln section contains a recess in which solid waste is contained during incineration. The recess area was designed with a length-to-diameter (L/D) ratio of 0.8, which is 20-25 percent of a full-scale system. An Eclipse Model No. 82MVTA burner provides the heat to the primary combustion chamber, and an IFRF variable swirl burner provides heat to the secondary combustion chamber (SCC). The primary fuel for the RKIS is natural gas, but the unit can also fire on fuel oil or liquid wastes. The kiln body rests on two trunnion assemblies and is driven by a motor and variable speed gear drive allowing the drum to rotate at selectable speeds. Rotary leaf spring seals between the kiln and the transition/afterburner section and main burner extension are constructed of Teflon-gasketed rotary leaf springs.

The draft damper affects the system combustion chamber pressure, which can affect in-leakage in areas that are not leak-tight such as the seals around the main burner, charging port, and the rotary leaf spring seals. A pneumatic ram has been installed on the charging port sliding door to minimize in-leakage. Due to drift issues with the pressure transducers displaying the draft settings, 0 to 0.25 inches water Dwyer Instruments Magnehelic pressure gauges (Dwyer, Michigan City, IN) were placed in-line for the PCC, SCC, and exhaust to verify readings and allow for repeatability of firing conditions.

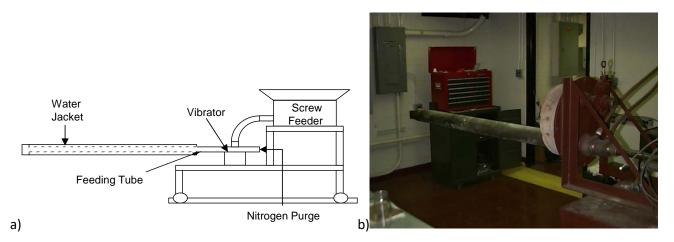
From the kiln, combustion gases enter the transition section. The gases make a 90° bend upwards at that point. Just above the 90° bend, an injection port is positioned where liquid surrogate wastes can be sprayed into the transition section.

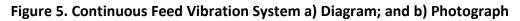
Upon leaving the transition section, the combustion gases enter the SCC. The SCC consists of the following regions:

- A 0.610-m diameter mixing chamber,
- A 0.610-m diameter plug flow section, and
- A stack transition section.

2.2.2 Biomass Description

The biomass material used for these experiments was hardwood biomass pellets (Fiber Energy Products, Mountain View, Arkansas), like those used in household smokers. The biomass was analyzed by Galbraith Laboratories (Knoxville, TN) (see Appendix C for laboratory report including the methods used for each analysis) for elements of interest and heat of combustion using a proximate and ultimate analysis.


Measurement	Value	
Carbon	45.95%	
Hydrogen	6.18%	
Nitrogen	< 0.5%	
Oxygen	42.71%	
Chlorine	20 ppm	
Sulfur	0.042%	
Fixed Carbon	12.62%	
Loss on Drying	6.00%	
Volatile Matter	84.60%	
Ash	1.97%	
Heat of	7778 Btu/lb	
Combustion		


Table 4. Properties of Biomass Pellets Used in Tests (as received)

The Continuous Feed Vibration System (Figure 5) was used to feed hardwood pellets to the kiln. The entire feeding system, including the volumetric feeder (K-Tron 6300 Series, Coperion, Weingarten, Germany), was removed from the kiln and calibrated using a known quantity of hardwood pellets.

The pneumatic vibrators attached to the feeder were unable to prevent the system from plugging during operation, even after maximal tilt of the feeder was achieved. Rubber mallets were used to beat on the base of the feeder at regular intervals while monitoring CEM instruments to avoid large fluctuations in fuel rate (observed by increases/decreases in oxygen levels).

Introduction of biomass to the RKIS was documented in the laboratory notebook, as well as adjustments to the natural gas firing rate at the Main Burner. Biomass pellets were fed by a volumetric feeder through a vertical chute of flexible hose into a water-cooled tube. The water-cooled tube extended into the rotating drum of the kiln section. The duct is at a slight incline from horizontal and is vibrated by a motor to keep the biomass pellets traveling into the drum. The flange provides a seal during testing.

2.2.3 Sorbent Description

The sorbent for these tests was a kaolinite sorbent (Mattex Pro, BASF, Inc, Ludwigshafen, Germany). The sorbent particle size analysis can be found in Appendix D. The sorbent had a mean particle diameter of 2.5 μ m. This sorbent had a larger average particle size than the sorbent used in the previous powderized biomass tests,

although chemically it is the same material.

A K-Tron Soder twin screw compact weigh feeder (Model KCL24KT20, Coperion, Weingarten, Germany) was used to feed the sorbent (kaolinite) at a specified location (in the afterburner section) in the SCC based on the temperature profile measurements. Several calibrations were recorded in the laboratory notebook to verify feed rate of sorbent. Difficulties in calibrations were occasionally encountered due to the rapid build-up of moisture from the air in the kaolinite. The feeder had to be cleaned, and the sorbent replaced with a new, dry batch.

2.2.4 Gas Analysis Equipment

2.2.4.1 Continuous Emission Monitors

Several CEM instruments were used to monitor the combustion gases at the exit of the PCC and exhaust, adjacent to the MOUDI sampling location. An additional NO/NO_x instrument was plumbed into the MOUDI sample system to calculate the actual dilution ratio for the impactor. CEM instruments used during operation of the RKIS and MOUDI consisted of the following analyzers:

- California Analytical Instruments (CAI) (Orange, CA) Model ZRE-CBJZ, serial number: A2M7217T CO₂/CO/O₂ Analyzer; Analyzer ranges: CO₂, 0 to 20%; CO, 0-100 ppm; O₂, 0 to 25%.
- Horiba (Kyoto, Japan) model VIA-510 CO analyzer, MFG No. 57814 1023; Analyzer Range: 0 to 1,000 ppm.
- Teledyne (Teledyne Scientific Co., Thousand Oaks, CA) Chemiluminescence Model 200EH NO_x analyzer, serial number 242; Analyzer Range: 0 to 1,000 ppm.
- Teledyne Chemiluminescence Model 200EH (Converted to Model 200EM) NO_x analyzer, serial number 243; Analyzer Range: 0 to 30 ppm.

Calibrations of CEM instruments were recorded in the laboratory notebook as well as electronic data logged by the data acquisition system (Daqview software version 9.1.11). Raw data from Daqview were incorporated into a Microsoft Excel spreadsheet to determine run averages and calculate/display calibrations.

2.2.4.2 MOUDI Impactors

The dilution ratio of nitrogen to flue gas was determined with the intent of remaining close to the isokinetic sampling rate while also ensuring that a large enough concentration of NO was present at the exhaust of the MOUDI to be accurately measured by the NO analyzer (Teledyne 200EM). The calculated target dilution ratio was approximately 14 to 1 to prevent water condensation.

The actual dilution rate for the MOUDI sampling system was monitored and calculated by introducing nitrogen gas through a calibrated mass flow controller (Sierra Instruments [Sierra Instruments, Inc., Monterey, CA], C100L), verifying the total flow of the system using a Dry-Cal gas flow calibrator (Bios International (MesaLab [Mesa Laboratories, Inc., Lakewood, CO]), model: DC-1HC (High Flow Cell)), and by comparing nitric oxide (NO) emissions inside the exhaust duct and at the outlet of the MOUDI.

2.2.5 Experimental Approach

The effect of sorbent injection on the behavior and transformation of Cs-bound biomass waste was determined by doping the biomass with aqueous cesium chloride, prior to feeding into the RKIS operating at a constant load of approximately 175,000 Btu/h. The concentration of Cs artificially placed onto the biomass was based on evaluation of the XRF (Philips, Almelo, The Netherlands, Model PW2404 Spectrometer) instrument detection limits. The biomass was prepared by spraying a small amount of an aqueous solution of cesium chloride (CsCl) onto the material while it was being agitated in a cement mixer. The mixture was agitated for approximately 1 minute in the cement mixer. Target concentrations of Cs were approximately 31 milligrams of Cs per pound of biomass.

Metal speciation was determined by chemical composition analysis of size-segregated particulate matter extracted from the exhaust. Size-segregated samples were collected using a MOUDI from Applied Physics, Inc. (www.appliedphysicsusa.com/cascade_impactors.html). The MOUDI is a cascade impactor designed for high concentration aerosols and provides very sharp cut points between particle sizes, digital on/off timer controls, and flow meters. Analysis of the MOUDI filters was performed by DHL Analytical (Round Rock, TX) using Inductively-Coupled Plasma-Mass Spectrometry (ICP-MS).

In addition to particulate sampling, operational data recorded on the RKIS included feed rates of the fuel, combustion air flow, and injection rates of sorbents. Temperatures were measured within the combustion chamber and at predetermined critical locations in the duct. The continuous emission monitoring of O_2 , CO_2 , CO_3 , and NO_X was recorded during all tests.

The primary variables of interest were: 1) the molar ratio of kaolinite in the sorbent to the Cs in the biomass; 2) the molar ratio of Cs in the biomass to the other alkali metals and trace constituents (i.e., sodium, potassium, chlorine) in the biomass; and 3) the concentration of Cs in the biomass. The sorbent injection temperature was set at the optimal temperature (2060 - 2240 °F) for Cs capture as observed in Yoo et al. (2005). The experimental tests were performed in the following order.

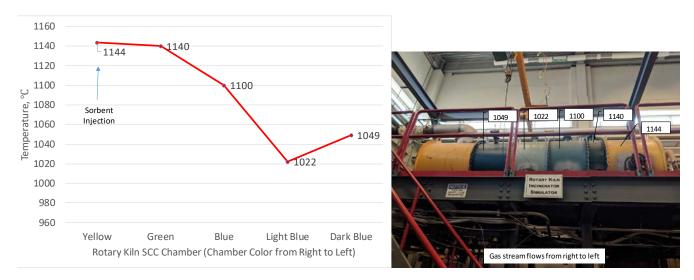
2.2.5.1 RKIS background check

Two sets of background runs firing only natural gas were performed, once prior to beginning any of the biomass combustion tests and once just prior to introducing Cs to the system. The sample was taken from the duct with a naked quartz nozzle/tube and was diluted with nitrogen as required to maintain isokinetic sampling. A MOUDI rotating cascade impactor was used to collect filter samples and determine particle distributions. Nitrogen dilution was used with the MOUDI sample probe to attempt to maintain isokinetic conditions at the sample point, although there were difficulties maintaining isokinetic conditions (see Section 5). All filters from the MOUDI were analyzed using ICP-MS. Elements of interest were Na, K, Cl, Al, Si, and Cs.

2.2.5.2 Un-doped Biomass Combustion

The next pair of experiments involved un-doped biomass incineration with and without sorbent injection. An experiment was run feeding biomass nominally at a rate of 8 lb/h without sorbent injection. The experiment was repeated with kaolinite sorbent added at the position in the burner section of the SCC of the RKIS. For both experiments, the MOUDI was used to collect filter samples for analysis.

2.2.5.3 Doped Biomass Combustion


The final experiments involved doped biomass incineration with and without sorbent injection. Using the same firing rate as used previously, an experiment was run feeding biomass without sorbent injection. The experiment was repeated with kaolinite sorbent added at the injection position in the afterburner section of the SCC. For both experiments, the MOUDI was used to collect filter samples for analysis. Table 5 describes the test matrix and samples acquired.

Test Condition #	Cs Conc., mg/lb Biomass	Biomass Feed Rate, lb/h	Sorbent Feed Rate, g/h					
1 – Natural Gas	NA	NA	NA					
Background								
2 – Biomass	NA	8	NA					
3 – Biomass +	NA	8	33.3					
Sorbent								
4 – Natural Gas	NA	NA	NA					
Background								
5 – Biomass + Cs	31.0	8	NA					
6 – Biomass + Cs +	31.0	8	33.3					
Sorbent								

Table 5. Test Matrix

2.2.4.4 Temperature Profile

A temperature profile was measured using a suction pyrometer (a thermocouple with a ceramic shroud on a water-cooled probe that pulls furnace gas samples across the thermocouple, yielding temperature measurements that are accurate despite radiative heat transfer from the walls to the thermocouple). This temperature profile was intended to identify the location in the SCC for the optimal temperature at which to inject the kaolinite sorbent (approximately 1150 °C). Figure 6 shows the results of the temperature profile in graphic and photographic form. Based on desired sorbent injection temperatures, the sorbent was injected at the port in the afterburner chamber (first yellow chamber) of the SCC.

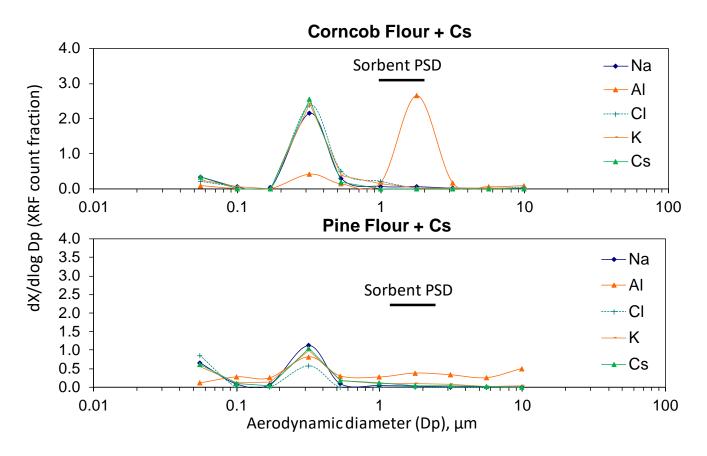


Figure 6. SCC Temperature Profile Results

3.0 Results

3.1 Results from Powderized Biomass Tests in Down-Fired Vertical Tunnel Combustor

Figure 7 depicts the PSDs of Na, Al, Cl, K, and Cs for the Cs-doped biomass flour (corn and pine) with no sorbent injection. Note that the Si data are not presented for clarity of presentation since Si might have been introduced into the system by abrasion from the RKIS refractory walls. Data are reported in terms of normalized XRF counts (dX/dlog Dp) versus particle aerodynamic diameter for each element. This normalization (XRF counts on a given stage divided by the total counts on all stages) is related to species mass and reports the relative distribution of an element across the particle size distribution. Figure 7 indicates that all the biomass alkali metals form a well-established accumulation mode aerosol with a mean diameter of approximately 0.3 μ m, indicative of elemental vaporization, nucleation, and growth. Cl is associated with these particles. Particles in this size range exhibit reduced collection efficiencies in common particulate control devices.

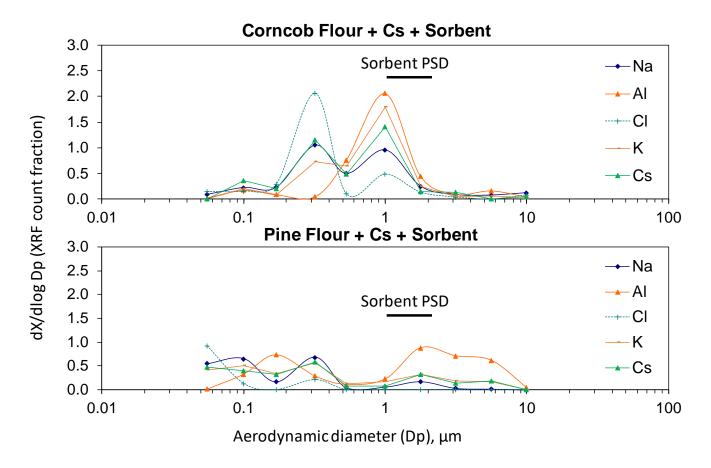
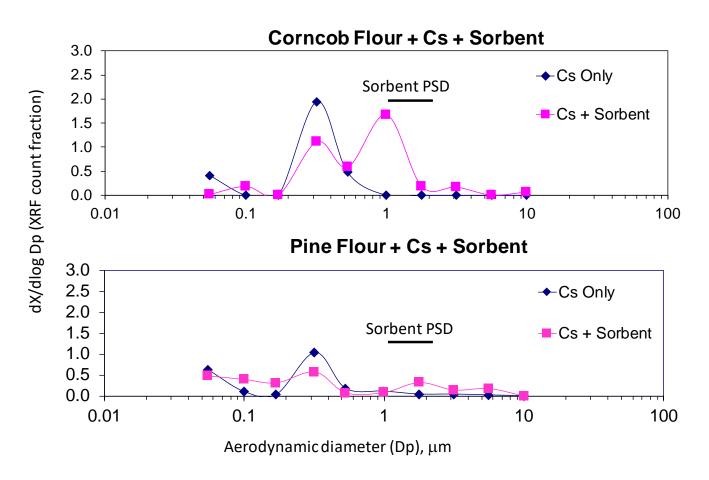


Figure 7. Particle Size Distributions of Cs-Doped Biomass Flour

Figure 8 presents the results from Test Condition #4 (natural gas + powderized biomass + Cs dopant + sorbent). This condition is identical to Test Condition #3 except for added kaolinite sorbent.

Although the sorbent did capture the Cs in the case of both types of biomass, there were some anomalous results with the pine flour. First, the pine flour was somewhat sticky, which made feeding at a constant rate very difficult, since the material agglomerated on the screw feeder parts and then broke off at periodic intervals despite having undergone a drying process. These feeding difficulties may, however, not need to be addressed,


since the next logical step in this research is to test the Cs capture ability of kaolinite sorbent in a system burning chunks of solid biomass fuel, which is a more likely operational scenario than feeding biomass as a finely-ground flour. Second, there was a relatively large Al and Si presence in the furnace under the test conditions where no sorbent was being fed. This presence is potentially due to accumulation of kaolinite sorbent particles in the combustor in places that were difficult to remove as part of the furnace cleanout process. For this reason, there was an approximately 47% capture of Cs in the furnace when no sorbent was being fed. This capture increased to approximately 88% with the addition of sorbent, suggesting that there was an incremental increase in capture by 41% with the addition of the kaolinite sorbent.

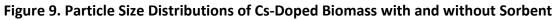


Figure 8. Particle Size Distributions of Cs-Doped Biomass Flour + Sorbent

Figure 9 summarizes the results, showing that the partitioning of the Cs was moved to the supermicron (i.e., aerodynamic diameter > 1 μ m) fraction by the addition of the sorbent in the case of both types of biomass. As mentioned previously, it is possible that residual sorbent material had accumulated in the combustor, resulting in the pine flour tests exhibiting approximately a 47% capture of the Cs without any sorbent present, based on a ratio of the mass of Cs found above and below the 1 μ m cut.

Even with the experimental difficulties that occurred due to the stickiness of the pine flour, it appears that kaolinite sorbents can capture Cs from combustion systems burning a wide range of biomass types.

3.2 Results from Pelletized Biomass Tests in Rotary Kiln Incinerator Simulator

The results from the CEMs are presented in Table 6. It should be noted that the variations in the dilution ratio of the MOUDI are somewhat due to the variability in the flow rate within the RKIS exit duct. The static pressure within the rotating chamber of the RKIS needed to be maintained at slightly negative conditions to prevent harmful gases from venting into the laboratory, but the transient changes in air in-leakage due to biomass feed rate fluctuations and the impact of the kiln rotation on the rotary seals resulted in variations in the flue gas flow rate.

The results from the pelletized biomass tests in the EPA RKIS facility are listed in Table 7 in terms of μ g Cs/filter. These results were then averaged and normalized to reflect the percentage of Cs on the different MOUDI stages. Table 8 lists the particle size ranges caught by the various MOUDI stages. Note that MOUDI stage 10 is the backing filter that catches all the particulate matter that passed through the other impactor stages uncaptured. These results are graphically presented in Figure 10. None of the Cs was found in the larger particle sizes in the runs when no sorbent was being injected. Approximately 91% of the Cs was captured in the larger particulate fractions with the sorbent injection.

Conditions		O 2 %	CO 2 %	CO Low	CO High	NO Low	NO High	Dilution Ratio	
				ppm	ppm	ppm	ppm		
NG Bkg1	Run1	3.0	10.2	0.5	0.0	2.8	50.0	17.8 to 1	
NG Bkg1	Run2	3.0	10.2	0.2	0.0	3.1	49.9	15.9 to 1	
NG Bkg1	Run3	3.0	10.1	0.0	0.0	2.7	50.0	18.5 to 1	
NG Bkg1	Avg	3.0	10.2	0.2	0.0	2.9	50.0	17.4 to 1	
В	Run2	1.6	11.6	12.4	38.4	3.1	53.5	17.5 to 1	
В	Run3	2.5	11.2	6.0	3.3	3.8	59.6	15.9 to 1	
В	Run4	2.8	11.0	0.9	0.0	3.9	60.4	15.5 to 1	
В	Avg	2.3	11.3	6.4	13.9	3.6	57.8	16.3 to 1	
B+S	Run1	4.1	10.2	0.0	0.0	5.8	71.3	12.2 to 1	
B+S	Run2	4.4	9.9	0.0	0.0	4.7	70.7	15.2 to 1	
B+S	Run3	4.4	9.9	0.0	0.0	4.3	70.4	16.4 to 1	
B+S	Avg	4.3	10.0	0.0	0.0	4.9	70.8	14.6 to 1	
NG Bkg2	Run1	3.3	9.9	2.6	0.0	3.7	59.0	15.8 to 1	
NG Bkg2	Run2	3.3	10.1	1.9	0.0	6.1	59.4	9.7 to 1	
NG Bkg2	Run3	3.2	10.2	1.5	0.0	6.0	59.3	9.9 to 1	
NG Bkg2	Avg	3.3	10.1	2.0	0.0	5.3	59.3	11.8 to 1	
B+Cs	Run2	3.5	10.4	-1.3	-3.0	7.0	72.0	10.3 to 1	
B+Cs	Run3	3.1	10.8	-1.7	-3.0	7.0	68.4	9.8 to 1	
B+Cs	Run4	3.2	10.7	-2.1	-2.8	7.7	67.9	8.8 to 1	
B+Cs	Avg	3.3	10.6	-1.7	-3.0	7.3	69.4	9.6 to 1	
B+Cs+S	Run1	3.3	10.5	1.1	-3.2	4.7	65.3	14.0 to 1	
B+Cs+S	Run2	3.1	10.8	-0.3	-3.2	6.2	63.2	10.2 to 1	
B+Cs+S	Run3	3.2	10.7	-1.2	-3.2	6.8	64.2	9.4 to 1	
B+Cs+S	Avg	3.2	10.7	-0.1	-3.2	5.9	64.2	11.2 to 1	

Table 6. CEM Results

The first run of the experiments with cesium-doped biomass and sorbent did not have cesium present in any stage of the impactor. It is unknown why this occurred. Potential explanations include the possibility that the Cs-dosed hardwood pellets may not have had enough time to achieve steady-state incineration conditions in the kiln and flow through the SCC and exhaust duct to the MOUDI sampling point. There were residual coarse particles in the bottom of the rotating chamber of the RKIS, which possibly might have caused some capture. Cesium was present in subsequent runs. Cs was present in all three runs when feeding Cs-doped biomass without sorbent. The residence time of the biomass was longer during these experiments since the first run had to be discarded due to issues with the feeder. This anomalous run is included in Table 7 although it is not included in the averaging and subsequent reporting.

Table 7. ICP-MS Analysis Results from Pelletized Biomass/Sorbent Tests in RKIS	S
--	---

MOUDI	Biomass Only (μg Biomass + Cs (μ			g	Biomass + Sorbent (µg				Biomass + Cs + Sorbent							
Stage		Cs/f	ilter)			Cs/filter)			Cs/filter)			(μg Cs/filter)				
	Run	Run	Run	Avg	Run	Run	Run	Avg	Run	Run	Run	Avg	Run	Run	Run	Avg
	1	2	3		1	2	3		1	2	3		1*	2	3	
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.07	0.07
4	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.10	0.11
5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.12	0.11	0.12
10	0.00	0.00	0.00	0.00	0.27	0.29	0.39	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.03

* Run 1 with sorbent and Cs did not result in any Cs in the sampling train. It was unknown why this happened, therefore this run is not included in the averaging although the data are presented.

Stage	Dp Min (μm)	Dp Max (μm)
10 (after-filter)	0.01	0.18
8	0.18	0.32
7	0.32	0.56
6	0.56	1
5	1	1.8
4	1.8	3.2
3	3.2	5.6
2	5.6	10
1	10	15.7
0 (Inlet)	15.7	>15.7

Table 8. Particle Size Fractions Caught on MOUDI Stages

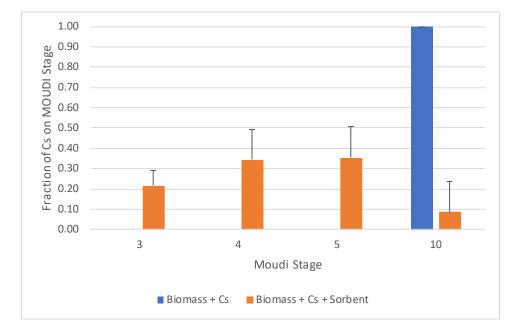


Figure 10. Cesium Particle Partitioning with and without Sorbent Injection

4.0 Discussion

A series of experiments was performed on a laboratory-scale vertically-fired furnace, using various combinations of corncob flour and pine flour (as idealized biomass materials), a cesium chloride dopant (to simulate Cs contamination on the biomass), and in-furnace injection of kaolinite sorbent, in a temperature regime that had previously been shown to successfully capture Cs in a natural gas-only combustion environment. Without sorbent injection, Cs was almost totally associated with the particle size fraction around 200 nm. With sorbent addition, the Cs was successfully shifted into supermicron particle sizes associated with the sorbent, resulting in 65% capture of the Cs onto the sorbent while combusting corncob flour and from 47 to 88% capture while combusting pine flour, suggesting that kaolinite sorbent injection may be a useful combustion modification that could be used in practical-scale combustion systems while burning Cs-contaminated biomass. By shifting the particle sizes associated with the Cs emissions to supermicron-sized particles, the ease of capturing Cs in particulate control devices is greatly enhanced. Previous work (Yoo et al., 2005) showed that, in a natural gas-only system, up to 85% capture was achieved. It may be possible to optimize this process further to achieve greater degrees of capture. The apparent stickiness of the pine flour made it difficult to feed at a constant rate, unlike the corncob flour could be fed reproducibly at a constant rate.

Given the success at capturing Cs from a natural gas-fired system (Yoo et al., 2005) and from a combustion system burning finely pulverized biomass (Lemieux et al., 2013), follow-on work was performed using a combustion system more representative of the type of biomass waste that would be generated from a radiological contamination incident, in a pilot-scale rotary kiln incinerator simulator with an experimental secondary combustion chamber. The sorbent injection was performed in the secondary combustion chamber at a similar temperature that showed successful Cs capture in the natural gas-fired system and the powderized biomass system.

Approximately 91% capture of the Cs was achieved in the pilot-scale RKIS experiments. The capture percentage that was achieved was equal to or greater than the capture achieved in the previous experiments.

Data gaps still exist regarding the effect of the presence of Cl, Na, and K on Cs capture, on the Cs solubility and leachability once captured on the sorbent, and to optimize the amount of sorbent that is injected into the furnace, but this appears to be a viable technique for minimizing Cs emissions from combustion of radionuclide-contaminated biomass.

5.0 Quality Control Report

The Quality Control (QC) evaluation report presented here reflects only the most recent tests that were performed at the RKIS facility since the previously published results all had their own QC writeups associated with them.

All test activities were documented in laboratory notebooks, data sheets, and digital photographs. The documentation included, but was not limited to, records for calibration of equipment, operating conditions of RKIS, and calculation spreadsheets to determine feed/injection rates, Cs concentrations, and dilution ratios of the MOUDI sampler.

In general, the critical data elements all fell within targeted data quality indicator goals. Any deviations are mentioned in this section. The QC deviations were mostly related to Si being present in the field blanks (possibly due to Si contamination present in the RKIS system prior to initiation of any testing) and fluctuations in the flue gas flow rate due to system transients related to having to operate the rotating part of the RKIS at static pressure conditions just barely on the negative side (for safety reasons), and the impact that those transients in the rotating section had on air in-leakage volumes throughout the system.

The following sections discuss the criteria for the quality control (QC), calibrations, and quality assurance (QA) assessments and corrective action taken.

5.1 Quality Control

Field blanks were conducted during each day of testing. Nitrogen and air were drawn through the MOUDI sampling system with the probe disconnected for 20 minutes. House air was run across the probe sheathe (did not come in contact with the flue gas) to maintain the temperature of the flue gas entering the MOUDI. This was done to detect and quantify any residual contamination that might be present in the testing vessel. All the field blanks had silicon concentrations around 100 μ g/filter in the after filter of the MOUDI (<0.18 μ m aerodynamic diameter). These were consistent with the concentrations of Si found in the after filter during each test condition. This could be from residual Si in the RKIS (refractory, Kaowool, etc.), or could indicate contamination of the MOUDI sampling system; possibly the anti-static tubing running from the probe to the MOUDI inlet. The last field blank taken on the same date as the test runs burning cesium-doped biomass while injecting sorbent also had Si present at approximately 40 μ g/filter in the 0.18 to 0.32 μ m (#8).

Spike samples and spike duplicates were prepared at the end of testing in various concentrations to verify that a known amount of cesium chloride (CsCl) could be extracted from the filters with accuracy. Analysis of the spike and spike duplicates determined the analytical results were all within 3.5% of the expected value.

5.2 Calibrations

Instruments calibrated included the mass air flow controller used to monitor the nitrogen used as the diluent for the MOUDI sampling system, thermocouples used on the RKIS (brand new thermocouples were not calibrated), the balance used to weigh sorbent and biomass, and the Dry-Cal meter used by the Metrology Laboratory to verify the total flow of the MOUDI sampling system. Calibration criteria are listed in Table 9.

Calibration of the Continuous Feed Vibration System was done by feeding wood pellets through the entire system into a 5-gallon bucket for 15 minutes. The contents of the bucket were weighed to calculate a feed rate. This experiment was done in triplicate to verify that the targeted feed rate could be achieved (8 lb/h). The sorbent injection feeder (K-Tron) was calibrated in a similar fashion to verify a feed rate of approximately 33.3 grams/min.

The required flow rate (30 liters per minute [LPM]) through the MOUDI sampling system was verified by the EPA/NRMRL/AEMD Metrology Laboratory using a Dry-Cal gas flow calibrator.

Daily calibrations were performed on the CEM instruments monitoring combustion gases in the RKIS exhaust and MOUDI dilution ratio. A direct calibration to each analyzer was recorded at the beginning of each test day using a zero and span gas. This calibration was followed by a system bias check, where calibration gas was introduced into the measurement system at the probe, upstream of the filter and all sample condition components. A two-point calibration drift check was made daily (through the measurement system) at the end of each day using the same gases. A system bias could not be performed on the NO analyzer sampling from the outlet of the MOUDI. All gas cylinders used for calibration were certified by the suppliers (AirGas, Durham, NC) that they are traceable to National Institute of Standards and Technology (NIST) standards. Calibrations were recorded in a laboratory notebook as well as on the Daqview software.

Parameter	Measurement	QA/QC Check	Frequency	Acceptance Criteria
CEMs	O ₂ , CO ₂ , CO, NO	2-point direct	Pre-test	± 5% of calibration
		calibration		span
CEMs	O ₂ , CO ₂ , CO, NO	2-point system	Pre- and post-test	± 10% of calibration
		calibration		span
CEMs	O ₂ , CO ₂ , CO, NO	2-point drift check	Pre- and post-test	± 5% of full scale

5.3 QA Assessments and Corrective Action

5.3.1 Elemental Analysis of MOUDI substrates

Elemental analysis of MOUDI substrates was performed by DHL Analytical in Round Rock, Texas. No traces of potassium or sodium were found on any of the substrates, although the elemental analysis of the hardwood pellets done by Galbraith Laboratories showed occurrences of both. A majority of the potassium and sodium may have remained in the ash at the bottom of the kiln. Any traces in the flue gas may have been below the minimum detection limits for the ICP-MS analysis, especially the sodium which is present in the biomass at very small concentrations.

Silicon was detected on nearly every stage on the first run of the second set of natural gas background experiments (NG Bkg2-R1). Detection of silicon could potentially be from residual kaolinite left in the MOUDI sampling system, although silicon was also present in stages that did not have any detects when kaolinite was injected. The silicon did not appear in subsequent runs, aside from the after filter. Si could also be present due to entrainment of refractory material that got abraded off the walls of the rotating section of the kiln. For this reason, Si was not included in the presented results.

The first run of the experiments with cesium-doped biomass and sorbent did not have cesium present in any stage of the impactor. It is unknown why this occurred. Potential explanations include the possibility that the Cs-dosed hardwood pellets may not have had enough time to achieve steady-state incineration conditions in the kiln and flow through the SCC and exhaust duct to the MOUDI sampling point. There were residual coarse particles in the bottom of the rotating chamber of the RKIS, which possibly might have caused some capture. Cesium was present in subsequent runs. Cs was present in all three runs when feeding Cs-doped biomass without sorbent. The residence time of the biomass was longer during these experiments since the first run had to be discarded due to issues with the feeder.

Silicon was present in the after filter of every field blank as well as the 0.18 to 0.32 μ m stage for the field blank associated with the Cs-doped biomass and sorbent run (B+Cs+S). Si was not presented in the results due to these anomalies.

5.3.2 CEM Calibrations

All CEM values were corrected for bias according to equation 12-6 from EPA Method 7E (Instrumental Analyzer Procedure) (U.S. EPA, 1990).

Discrepancies between the analyzer readout on the Teledyne 200EM NO analyzer and data recorded in DaqView were observed during testing of biomass (no Cs and no sorbent) and biomass and sorbent (no Cs). The value on the analyzer was within scope for the direct calibration criteria, however, values recorded by the data acquisition system were outside the acceptance criteria. Since we were unable to perform an initial and final system bias, these NO readings were corrected using the direct calibration value instead of initial and final system bias. The issue was determined to be a faulty connection in the data acquisition module, which was repaired prior to subsequent runs.

The low CO analyzer (CAI ZRE) failed the final bias and drift check for the second set of natural gas background tests, biomass and Cs (no sorbent) runs, and Cs-doped biomass with sorbent runs. After correcting these values, the CO remained between -2.09 and 2.57 parts per million (ppm). These measurements were consistent with absence of CO in previous runs under similar firing conditions.

5.3.3 Rotary Kiln Incinerator Simulator

Due to drift issues with the pressure transducers displaying the draft settings, 0 to 0.25 inches water Dwyer Instruments Magnehelic pressure gauges were placed in-line for the Main Burner, After Burner, and exhaust to verify readings and allow for repeatability of firing conditions.

5.3.3 Biomass Feeder

The Continuous Feed Vibration System was used to feed hardwood pellets to the kiln. The entire feeding system, including the volumetric feeder (K-Tron 6300 Series), was removed from the kiln and calibrated using a known quantity of hardwood pellets.

The pneumatic vibrators attached to the feeder were unable to prevent the system from plugging during operation, even after maximal tilt of the feeder was achieved. Rubber mallets were used to beat on the base of the feeder at regular intervals while monitoring Continuous Emissions Monitoring (CEM) instruments to avoid large fluctuations in fuel rate (observed by increases/decreases in oxygen levels).

Introduction of biomass to the RKIS was documented in the laboratory notebook, as well as adjustments to the natural gas firing rate at the Main Burner.

5.3.4 Sorbent Injection

Several calibrations were recorded in the laboratory notebook to verify feed rate of sorbent. Difficulties in calibrations were encountered due to the rapid build-up of moisture in the kaolinite. The feeder had to be cleaned, and the sorbent replaced with a new, dry batch.

6.0 Conclusions

A series of experiments was performed to investigate how well the use of in-furnace kaolinite sorbent injection captured cesium emissions from combustors, a process that worked very effectively in a natural-gas combustion system and worked in a biomass combustion system. The experiments were performed initially on a vertically-fired combustor firing two types of powderized biomass, then subsequently on a rotary kiln incinerator simulator firing pelletized biomass fed into the rotating drum section of the combustor. In both cases, the biomass material was doped with non-radioactive cesium in the form of aqueous cesium chloride. A MOUDI impactor was used as the primary sampling device, where success of capture was assessed by whether the cesium predominated in the lower particle size impactor stages or whether the cesium was caught on the impactor stages corresponding to the sorbent particle size, an indication that the cesium was associated with the sorbent particles.

Without sorbent injection, Cs was almost totally associated with the particle size fraction around 200 nm. With injection of the sorbent, approximately 91% of the Cs was captured in the supermicron particle size fraction in the pilot-scale RKIS experiments. The capture percentage that was achieved was equal to or greater than the capture achieved in the previous experiments and was similar in capture efficiency to the initial natural-gas-only experiments.

Data gaps still exist regarding the effect of the presence of Cl, Na, and K on Cs capture, on the Cs solubility and leachability once captured on the sorbent, and to optimize the amount of sorbent that is injected into the furnace, but this appears to be a viable technique for minimizing Cs emissions from combustion of radionuclide-contaminated biomass.

7.0 References

Applied Physics, I., 2013. Micro-Orifice Uniform Deposit Impactor (MOUDI).

Jenkins, B.M., Baxter, L.L., T.R., M.J., Miles, T.R., 1998. Combustion Properties of Biomass. Fuel Processing Technology 54, 17-46.

Lemieux, P., Lee, S., W., L., Winterrowd, C., 2013. Capture of Cesium During Biomass Combustion Using In-Furnace Sorbent Injection, 2013 International Conference on Thermal Treatment Technologies and Hazardous Waste Combustors (IT3/HWC), San Antonio, TX.

Linak, W.P., Miller, C.A., Wood, J.P., Shinagawa, T., Yoo, J.I., Santoianni, D.A., King, C.J., Wendt, J.O.L., Seo, Y., 2004. High Temperature Interactions Between Residual Oil Ash and Dispersed Kaolinite Powders. Aerosol Science and Technology 38, 900-913.

Linak, W.P., Srivastava, R.K., Wendt, J.O.L., 1994. Metal Aerosol Formation in a Laboratory Swirl Flame Incinerator. Combustion Science and Technology 101, 7-27.

Musolino, S., Coulter, D.T., Tedla, H., 2011. Cesium Chloride: Dispersibility or Security?, Editorial. Health Physics 100, 459.

Nuclear Regulatory Commission, 2010. Request for Comments on the Draft Policy Statement on the Protection of Cesium-137 Chloride Sources and Notice of Public Meeting.

Osako, M., 2015. Appropriate Management Technologies for Radioactively Contaminated Soil and Waste, in: Presentation at International Symposium on Radiological Issues for Fukushima's Revitalized Future (Ed.),

Fukushima City, Japan.

Parajuli, D., Tanaka, H., Hakuta, Y., Minami, K., Fukuda, S., Umeoka, K., Kamimura, R., Hayashi, Y., Ouchi, M., Kawamoto, T., 2013. Dealing with the Aftermath of Fukushima Daiichi Nuclear Accident: Decontamination of Radioactive Cesium Enriched Ash. Environmental Science & Technology 47, 3800-3806.

Statistica.com, 2017. Average price of kaolin in the U.S. from 2007 to 2017 (in U.S. dollars per ton).

U.S. Department of Homeland Security, 2007. National Preparedness Guidelines.

U.S. EPA, 1989. EPA Test Method 3A, Determination of Oxygen and Carbon Dioxide Concentration in Emissions from Stationary Sources (Instrument Analyzer Procedure), Washington, DC.

U.S. EPA, 1990. EPA Test Method 7E, Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrument Analyzer Procedure), Washington, DC.

U.S. EPA, 1996a. EPA Test Method 1A, Sample and Velocity Traverses for Stationary Sources with Small Stacks or Ducts.

U.S. EPA, 1996b. EPA Test Method 10, Determination of Carbon Monoxide Emissions from Stationary Sources, Washington, DC.

Yang, H., Lee, J., Kim, J., Yoo, J., Kim, J., 2002. Behavior of Radioactive Metal Surrogates Under Various Waste Combustion Conditions. Journal of the Korean Nuclear Society 34, 80-89.

Yoo, J.I., Shinagawa, T., Wood, J.P., Linak, W.P., Santoianni, D.A., King, C.J., Seo, Y., Wendt, J.O.L., 2005. High-Temperature Sorption of Cesium and Strontium on Dispersed Kaolinite Powders. Environmental Science & Technology 39, 5087-5094.

Appendix A: Analysis of Corncob Flour

GALBRAITH.

Report Date: 2010-02-22

Laboratory Report

Report prepared for: Bobby Sharpe Arcadis 4915-F Prospectus Dr Durham, NC 27713 Phone: 919-544-4535 Fax: 919-544-5690 Email: bsharpe@arcadis-us.com

Report prepared by: Pat B Delozier

Purchase Order: RB66612

For further assistance, contact: Pat B Delozier Report Coordinator PO Box 51610 Knoxville, TN 37950-1610 (865) 546-1335 patdelozier@galbraith.com

Sample:	Granville Milling 1/8" com cob bedding material				
Lab ID:	2010-К-0716	Received:	2010-02-09		
Analysis	Method	Result	Basis	Amount	Date (Time)
114: Heat of	f Combustion (BTU)				
	ASTM D5865-07 (mod.)	7688 BTU/lb	As Received	0.57366 g	2010-02-17
Al : Aluminu	m				
	GLI Procedure ME-70	< 0.03 %	As Received	110.58 mg	2010-02-19
Cs : Cesium	1				
	GLI Procedure ME-71	< 0.04 %	As Received	142.36 mg	2010-02-16
K : Potassiu	m				
	GLI Procedure ME-70	0.543 %	As Received	110.58 mg	2010-02-19
Na : Sodium	1				
	GLI Procedure ME-70	517 ppm	As Received	110.58 mg	2010-02-19
Si : Silicon					
	GLI Procedure ME-70	0.136 %	As Received	110.58 mg	2010-02-19
X3T: Total H	Halogens as Cl				
	GLI Procedure ME-13	0.15 %	As Received	11.03 mg	2010-02-16

Signatures:

Published By:

pat.b.delozier

2010-02-22T20:23:27.947-05:00

Copyright 2010 Galbraith Laboratories, Inc. Reported results are only applicable to the item tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

G GALBRAITH.

Report Date: 2011-01-24

Laboratory Report

Report prepared for: Chris Winterrowd Arcadis US Inc Suite F 4915 Prospectus Dr Durham, NC 27713 Phone: 919-541-1847 Fax: 919-541-0082 Fax: 919-541-0082 Email: chris.winterrowd@arcadis-us.com

Report prepared by: Pat B Delozier

Purchase Order: RB68311

For further assistance, contact: Pot B Delozier Report Production Coordinator PO Box 51610 Knoxville, TN 37950-1610 (865) 546-1335 patdelozier@galbraith.com

Sample: (Corncob Flour #100				
Lab ID: 2	2011-M-9842	Received:	2011-01-06		
Analysis	Method	Result	Basis	Amount	Date (Time)
114: Heat of C	combustion (BTU)				
	ASTM D5865-10a (mod.)	7670 BTU/lb	As Received	0.59537 g	2011-01-07
	Calculation	8499 BTU/lb	Dried	Calculation	2011-01-24
115: Ash					
	ASTM D3174-04	1.44 %	Dried	1192.73 mg	2011-01-18
	Calculation	1.30 %	As Received	Calculation	2011-01-24
302: Loss on [Drying (LOD)				
	ASTM D3173-03	9.75 %	As Received	1488.33 mg	2011-01-17
810: Volatile N	latter				
	ASTM D3175-07	81.19 %	Dried	1192.73 mg	2011-01-18
	Calculation	73.27 %	As Received	Calculation	2011-01-24
811: Fixed Ca	rbon (Calculated)				
	Calculation	15.68 %	As Received	Calculation	2011-01-24
	Calculation	17.37 %	Dried	Calculation	2011-01-24
C : Carbon					
	GLI Procedure ME-3	45.58 %	As Received	1.844 mg	2011-01-13
	Calculation	50.50 %	Dried	Calculation	2011-01-24
Cl : Chlorine					
	GLI Procedure ME-4A	0.17 %	As Received	507.41 mg	2011-01-14
	Calculation	0.188 %	Dried	Calculation	2011-01-24
d08: Oxygen b	by difference				
	Calculation	46.88 %	As Received	Calculation	2011-01-24
	Calculation	42.35 %	Dried	Calculation	2011-01-24
H : Hydrogen					
	GLI Procedure ME-3	6.07 %	As Received	1.844 mg	2011-01-13
	Calculation	5.52 %	Dried	Calculation	2011-01-24
N : Nitrogen					
-	GLI Procedure ME-3	< 0.5 %	As Received	1.844 mg	2011-01-13
	Calculation	< 0.5 %	Dried	Calculation	2011-01-24
S : Sulfur					
	GLI Procedure E16-2	< 0.5 %	As Received	43.81 mg	2011-01-19
	Calculation	< 0.5 %	Dried	Calculation	2011-01-24

Copyright 2011 Galbraith Laboratories, Inc. Reported results are only applicable to the item tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

Report Date: 2011-01-24

Signatures: Published By:

: pat.b.delozier

2011-01-24T17:40:07.677-05:00

Copyright 2011 Galbraith Laboratories, Inc. Reported results are only applicable to the item tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

Page 2 of 2

Appendix B. Analysis of Pine Flour

G GALBRAITH.

Report Date: 2015-09-30

Laboratory Report

Report prepared for: Chris Winterrowd Jacobs Technology Inc Mail Drop H137-04 U S EPA RTP, NC 27711 Phone: 919-541-1847 Email: winterrowd.chris@epa.gov

Report prepared by: Debbie S Robertson

Purchase Order: Visa,Medley,9/11/15

For further assistance, contact: Por further assistance, Debbie S Robertson Report Production Coordinator PO Box 51610 Knoxville, TN 37950 -1610 (865) 546-1335 debbierobertson@galbraith.com

-	#70 Pine Wood Flour				
Lab ID: 2	2015-A-0709	Received:	2015-09-11		
Analysis	Method	Result	Basis	Sample Arnount Used	Date (Time)
114: Heat of C	Combustion (BTU)				
	GLI Procedure S-231	8640 BTU/Ib	As Received	0.45124 g	2015-09-16
	Calculation	9191 BTU/Ib	Dried	Calculation	2015-09-30
115: Ash					
	ASTM D3174-12	0.800 %	As Received	1006.59 mg	2015-09-24
	Calculation	0.85 %	Dried	Calculation	2015-09-30
302: Loss on E	Drying (LOD)				
	GLI Procedure S-200	6.00 %	As Received	1024.35 mg	2015-09-29
810: Volatile M	1atter				
	ASTM D3175-11	87.78 %	As Received	1006.59 mg	2015-09-23
	Calculation	93.38 %	Dried	Calculation	2015-09-30
811: Fixed Car	rbon (Calculated)				
	Calculation	5.77 %	Dried	Calculation	2015-09-30
	Calculation	5.42 %	As Received	Calculation	2015-09-30
C : Carbon					
	GLI Procedure ME-14	48.28 %	As Received	2.086 mg	2015-09-21
	Calculation	51.36 %	Dried	Calculation	2015-09-30
Cl : Chlorine					
	GLI Procedure ME-4A	11 ppm	As Received	481.40 mg	2015-09-18
	Calculation	12 ppm	Dried	Calculation	2015-09-30
d08: Oxygen b					
	Calculation	44.51 %	As Received	Calculation	2015-09-30
	Calculation	41.68 %	Dried	Calculation	2015-09-30
H : Hydrogen		····-			
	GLI Procedure ME-14	6.39 %	As Received	2.086 mg	2015-09-21
	Calculation	6.08 %	Dried	Calculation	2015-09-30
N : Nitrogen					
gen	GLI Procedure ME-14	< 0.50 %	As Received	2.086 mg	2015-09-21
	Calculation	< 0.50 %	Dried	Calculation	2015-09-30
S : Sulfur					
	GLI Procedure E16-2	0.0185 %	As Received	167.844 mg	2015-09-15

Copyright 2015 Galbraith Laboratories, Inc. Reported results are only applicable to the item tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

Report Number: 83688			Report Date: 2015-09-30		
	Calculation	0.020 %	Dried	Calculation	2015-09-30
Signatures: Published By:	Debbie.S.Robertson			2015 -0 9-30T	18:46:50.053-04:00

Published By:	Debbie.S.Robertson
Created By:	Debbie.S.Robertson

Physical signatures are on file.
"Published By" signature indicates authorized release of data.

2015-09-30T18:46:50.053-04:00 2015-09-30T18:46:23.33-04:00

Page 2 of 2

Appendix C. Analysis of Biomass Pellets

G GALBRAITH.

Report Date: 2017-05-31

Laboratory Report

Report prepared for: Lary Virtaranta Jacobs Technology Inc Mail Drop H137-04 109 TW Alexander Dr Durham, NC 27709 Phone: 919-541-0529 Email: virtaranta Jary@ena

Email: virtaranta.larry@epa.gov

Report prepared by: Debbie S Robertson

Purchase Order: EPATP-0000001844

For further assistance, contact: Por further assistance, Debbie S Robertson Report Production Coordinator PO Box 51610 Knoxville, TN 37950 -1610 (865) 546-1335 debbierobertson@galbraith.com

•	Nood Pellets 2017-E-2300	Received:	2017-05-16		
Analysis	Method	Result	Basis	Sample Amount Used	Date (Time)
114: Heat of C	ombustion (BTU)				
	ASTM D5865	7778 BTU/lb	As Received	0.94603 g	2017-05-19
	Calculation	8274 BTU/lb	Dried	Calculation	2017-05-31
115: Ash					
	ASTM D3174	1.97 %	Dried and Ground	948.62 mg	2017-05-30
	Calculation	1.85 %	As Received	Calculation	2017-05-31
302: Loss on [Drying (LOD)				
	ASTM D3173	6.00 %	Ground	1015.10 mg	2017-05-18
810: Volatile M	latter			Ť	
	ASTM D3175	84.60 %	Dried and Ground	948.62 mg	2017-05-30
	Calculation	79.52 %	As Received	Calculation	2017-05-31
811: Fixed Car	bon (Calculated)				
	Calculation	12.62 %	As Received	Calculation	2017-05-31
	Calculation	13.43 %	Dried	Calculation	2017-05-31
C : Carbon					
	GLI Procedure ME-14	45.95 %	Ground	3.179 mg	2017-05-24
	Calculation	48.88 %	Dried	Calculation	2017-05-31
Cl : Chlorine					
	GLI Procedure ME-4A	20 ppm	Ground	605.54 mg	2017-05-26
	Calculation	21 ppm	Dried	Calculation	2017-05-31
d08: Oxygen b	y difference				
	Calculation	42.71 %	Dried	Calculation	2017-05-31
	Calculation	45.47 %	As Received	Calculation	2017-05-31
Grn: Grind					
	GLI Procedure G-8	Completed	As Received	Direct	2017-05-17
H : Hydrogen					
.,	GLI Procedure ME-14	6.18 %	Ground	3.179 mg	2017-05-24
	Calculation	5.86 %	Dried	Calculation	2017-05-31

Copyright 2017 Galbraith Laboratories, Inc. Reported results are only applicable to the item tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

G GALBRAITH

Report Date: 2017-05-31

	GLI Procedure ME-14	< 0.5 %	Ground	3.179 mg	2017-05-24
	Calculation	< 0.53 %	Dried	Calculation	2017-05-31
S : Sulfur					
	GLI Procedure E16-3	0.042 %	Ground	30.639 mg	2017-05-18
	Calculation	0.044 %	Dried	Calculation	2017-05-31

Signatures:

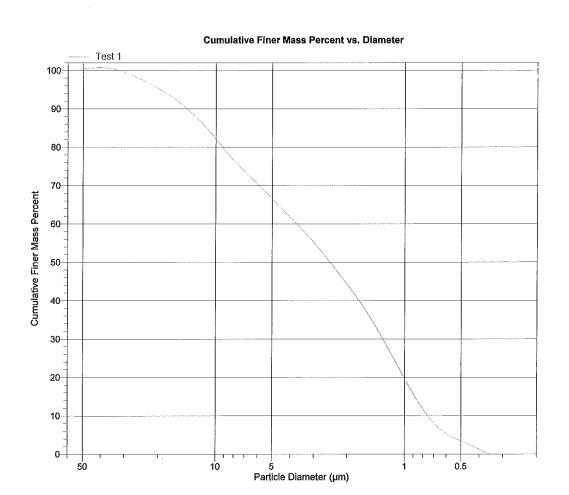
Published By: Created By: Debbie.S.Robertson Debbie.S.Robertson 2017-05-31T18:01:49.453-04:00 2017-05-31T18:00:44.293-04:00

Physical signatures are on file.
"Published By" signature indicates authorized release of data.

Copyright 2017 Galbraith Laboratories, Inc. Reported results are only applicable to the item tested. This report shall not be reproduced, except in full, without the written approval of the laboratory.

Page 2 of 2

Appendix D. Particle Size Analysis of Sorbent for Rotary Kiln Tests


BASF Corporation SediGraph III V1.07 Unit 1 Serial Number: 1045 Page 1 Sample: #2 SAMPLE Operator: Submitter: File: C:\5120\DATA\001-796.SMP Material/Liquid: Kaolin / Water Measurement Principle: X-Ray monitored gravity sedimentation Calculation Method: Stokes sedimentation and Beer's law of extinction Analysis Type: Standard Run Time: 0:33 hrs:min Sample Density: 2.730 g/cm³ Liquid Density: 0.9943 g/cm³ Base/Full Scale: 140 / 99 kCnts/s burnelde humber: 0.22 Test Number: 1 Analyzed: 4/27/2017 12:54:37PM Reported: 4/27/2017 1:33:00PM Liquid Visc: 0.7296 mPa·s Analysis Temp: 35.0 °C Full Scale Mass: 100.0 % Reynolds Number: 0.22

Combined Report

			Report by	Size Table			
Low Diameter (µm)	Cumulative Mass Finer (Percent)	Low Diameter (µm)	Cumulative Mass Finer (Percent)	Low Diameter (µm)	Cumulative Mass Finer (Percent)	Low Diameter (µm)	Cumulative Mass Finer (Percent)
10.00	82.2	2.000	44.2	0.500	3.4	0.300	-0.7
5.000	66.6	1.000	19.7	0.400	1.3	0.200	-0.7
			Report by N	lass Percent			
			Low Diameter (µm)	Cumulative Mass Finer (Percent)			
			2.467	50.0			

BASF Corporation

SediGraph III V1.07	Unit 1	Serial N	lumber: 1045	Page 2
Operator: Submitter: File: Material/Liquid: Measurement Principle:	# 2 SAMPLE C:\5120\DATA\001-796.SMP Kaolin / Water X-Ray monitored gravity sedimen Stokes sedimentation and Beer's			
	.0 °C	Sample Density: Liquid Density:	0:33 hrs:min 2.730 g/cm ³ 0.9943 g/cm ³ 140 / 99 kCnts/s	

Appendix E: ICP-MS Results for MOUDI Filters

March 19, 2018

Paul Lemieux
US EPA
4930 Old Page Rd Rm E311G
Durham, NC 27703
TEL: (919) 541-0962
FAX
RE: Thermal Destruction of CBR Contaminants

Order No.: 1802197

Dear Paul Lemieux:

DHL Analytical, Inc. received 60 sample(s) on 2/26/2018 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-17-19

2300 Double Creek Drive • Round Rock, TX 78664 • Phone (512) 388-8222 • FAX (512) 388-8229 www.dhlanalytical.com

Table of Contents

Miscellaneous Documents	
CaseNarrative 1802197	10
WorkOrderSampleSummary 1802197	12
PrepDatesReport 1802197	
AnalyticalDatesReport 1802197	17
Analytical Report 1802197	20
AnalyticalQCSummaryReport 1802197	80
MQLSummaryReport 1802197	92

JACOI	35 °	•	. *		ļ	Repo	rt to:	Bill to: Not Applicable	
109 T.W. Alexander 1 RTP, NC 27709	Drive	·			L V	. 0.	# 1802197	I	
Page 1			Chain of C	Custody	y Record				
PROJECT NUMBER WA-2-068	PO# Not Applical	le					LABORATORY: H106, E-485		
PROJECT NAME Thermal Destruction of CBR		•		ainers	Analysis Requir	LAB ADDRESS EPA / RTP NC			
COLLECTED BY (SIGNAT	URE)		•	No. of Containers	tridutloid sandarii	PH	REPORT FORMAT ELECTRONIC/VER	<i>(CIRCLE ALL REQUIRED)</i> BAL/FAX/HARDCOPY	
FIELD SAMPLE ID	RUSH FACTOR	SAMPLE Matrix	DATE/ TIME				REMARKS	LAB ID NO. (for lab use only)	
1. Sample Substrates	ASAP	Polycarbon	01/23/2018	162	ICP-MS		- <u></u>		
2. Sample Substrates	46	Quartz	01/23/2018	18	"				
3. Field Blanks	6L	Polycarbon	01/23/2018	45	"				
4. Field Blanks	4¢	Quartz	01/23/2018	5	46		- <u></u>		
5. Spiked Samples	¢¢	Polycarbon	02/13/2018	10	£¢	·			
-									
		·		·					
					·				
		· · ·		<u> </u>					
				1		<u></u>			
		· · · · · ·	L	Ļ.			· · · · · · · · · · · · · · · · · · ·		
REMARKS 240 total substrates (217 polyc		23 quarte filters)	Temp: 21.5 Them: 78	no	Cust. Seal		RELINQUISHED BY	C: DATE TIME	
RECEIVED BY:	DATE 2/23/18	TIME 6:46	RELINQUIS	HED	DATE 2/26/18	TH1	E RECEIVED BY:	DATE TIME 2/26/18 10:10	

Please sign here.

3

.

V. O. # 1802197

,

+

DHL #

				D H L
121	184	B + Ce	R2	0 01
122	185	B + Ce	Ř2	1 02
123	186	B + Ce	R2	2 03
124	187	B + Ce	R2	3 04
125	188	B + Ce	R2	4 05
126	189	B + Ce	R2	506
127	190	8 + Ce	R2	607
128	191	B + Ce	R2	708
129	192	B+Ce	R2	809
130	NA	B+Ce	R2	10 (0
131	193	B + Ce	R3	0 11
132	194	B + Ce	R3	1 12
133	195	8 + Ce	R3	2 13
134	1.96	B + Ce	R3	3 14
135	197	B + Ce	R3	4 15
136	198	B + Ce	R3	516
137	199	B + Ce	- R3	6 1¥
138	200	B+Ce	R3	718
139	200	B + Ce	R3	819
140	NA	B + Ce	R3	10 2.0
140	229	B + Ce	R4	0 21
141 142				
	230	B + Ce	R4	1 22
143	231	B + Ce	R4	2 23
144	232	B+Ce	. R4	3 24
145	234	B+Ce	R4	4 25
146	235	B + Ce	R4	5 26
147	236	B + Ce	R4	627
148	237	B + Ce	R4	7 2.8
149	238	B + Ce	R4	829
150	NA	B + Ce	R4	10 30
151	202	B + Ce + S	R1	0 31
152	203	B + Ce + S	R1	1 32
153	204	B + Ce + S	R1	2 33
154	205	B + Ce + S	R1	3 3 Y
155	206	B + Ce + S	R1	435
156	207	B + Ce + S	R1	536
157	208	B + Ce + S	R1	637
158	209	8 + Ce + 5	R1	7 38
159	210	B + Ce + 5	R1	8 39
160	NA	B + Ce + S	R1	10 YO
161	211	B + Ce + S	R2	0 41
162	212	B + Ce + S	R2	1 42
163	213	B + Ce + S	R2	2 43
164	214	B + Ce + S	R2	3 44
165	215	8 + Ce + S	R2	4 45
166	216	B + Ce + S	R2	5 YL
167	217	B + Ce + S	R2	647
168	218	B + Ce + S	R2	7 48
169	219	B + Ce + S	R2	849
170	NA	B + Ce + S	R2	10 52
171	220	B + Ce + S	R3	0 21
172	221	B + Ce + S	R3	1 52
173	222	B + Ce + S	R3	2 53
174	223	B + Ce + S	R3	2 JJ 3 JY
175	223	B + Ce + S		
176	224	B + Ce + S	R3	4 55
			R3	556
177	226	B + Ce + S	R3	657
178	227	B + Ce + S	R3	7 58
179	228	B + Ce + S	R3	8 59 10 60
180	NA	B + Ce + S	R3	10 60

S: BLUE4 1.804 Brd 1004 X 1.804 Brd 2344 X 1030

CREEK DR

'8664

UPS CampusShip

1.12

and the second second

5

.

5	Sample	Receipt Che	ecklist			
Client Name US EPA			Date Receiv	red: 2/2	28/2018	
Work Order Number 1802197			Received by	EL		
· · ·						
Checklist completed by:	2/28/201	18	Reviewed by	B	2/28/2018	
Signature	Date			Initials	Date	
Carrie	er name	UPS Blue				
Shipping container/cooler in good condition?		Yes 🗹	No 🗔	Not Present	_	
Custody seals intact on shippping container/cooler?		Yes 🗌	No 🗌	Not Present		
Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present		
Chain of custody present?		Yes 🗹	No 🗌			
Chain of custody signed when relinquished and received?		Yes 🗋	No 🗹			
Chain of custody agrees with sample labels?		Yes 🗹	No 🗌	·		
Samples in proper container/bottle?		Yes 🗹	No 🗌			
Sample containers intact?		Yes 🗹	No 🗔			
Sufficient sample volume for indicated test?		Yes 🗹	No 🗌			
All samples received within holding time?		Yes 🗹	No 🗌			
Container/Temp Blank temperature in compliance?		Yes 🗹	No 🗔	21.5 °C		
Water - VOA vials have zero headspace?		Yes 🗌	No 🗌	No VOA vials su	bmitted 🗹	
Water - pH<2 acceptable upon receipt?		Yes	No 🗌	NA 🗹 🛛 LOT	·#	
		Adjusted?	<u> </u>	Checked by		_
Water - ph>9 (S) or ph>10 (CN) acceptable upon receipt?		Yes	No 🗌	NA 🗹 🛛 LOT	' #	
		Adjusted?		Checked by	. <u></u>	-
Any No response must be detailed in the comments section	n below.					· .
Client contacted Date conta	 acted:		Pers	son contacted		
				<u> </u>		
Comments: Co (received VI	0 C	lient s	ignature	:		<u> </u>
·			<u></u>		/ .	
Corrective Action Client e-maile	el .	Signel	CoC	on 2/	27/18.	
		0				
Page 1 of 1						

		tory Name: DHL Analytical, Inc. tory Review Checklist: Reportable Data					
Proje	ect Na	me: Thermal Destruction of CBR Contaminants LRC D	ate: 3/19/18				
Revie	ewer l	Name: Carlos Castro Labora	tory Work Order: 1802197				
Pren	Batcl		atch: See Analytical Dates Report				
#1	A ²	Description	ten bee marytear Duces report	Yes	No. I	NA ³ N	R ⁴ ER# ⁵
"	71	Chain-of-Custody (C-O-C)		103	110 1		
R1	OI	1) Did samples meet the laboratory's standard conditions of sample	acceptability upon receipt?	X			R1-01
	-	2) Were all departures from standard conditions described in an exc				X	
R2	OI	Sample and Quality Control (QC) Identification					
		1) Are all field sample ID numbers cross-referenced to the laborato	ry ID numbers?	Χ			
		2) Are all laboratory ID numbers cross-referenced to the correspond	ling QC data?	Χ			
R3	OI	Test Reports					
		1) Were all samples prepared and analyzed within holding times?		Χ			
		2) Other than those results < MQL, were all other raw values brack	eted by calibration standards?	X			
		3) Were calculations checked by a peer or supervisor?		X			
		4) Were all analyte identifications checked by a peer or supervisor?		X X			
		5) Were sample detection limits reported for all analytes not detected 6) Were all results for soil and sediment samples reported on a dry		Λ		X	
		7) Were % moisture (or solids) reported for all soil and sediment samples reported on a dry				A X	
		8) Were bulk soils/solids samples for volatile analysis extracted with				A X	
		9) If required for the project, TICs reported?	in methanor per Er 74 method 5055 :			X	
R4	0	Surrogate Recovery Data				21	
	0	1) Were surrogates added prior to extraction?				X	
		2) Were surrogate percent recoveries in all samples within the labor	atory QC limits?			Χ	
R5	OI	Test Reports/Summary Forms for Blank Samples					
		1) Were appropriate type(s) of blanks analyzed?		Χ			
		2) Were blanks analyzed at the appropriate frequency?		Χ			
		3) Where method blanks taken through the entire analytical process	, including preparation and, if	x			
		applicable, cleanup procedures?					
		4) Were blank concentrations < MDL?		Χ			
		5) For analyte(s) detected in a blank sample, was the concentration,		X			
R6	OI	factors, in all associated field samples, greater than 10 times the co Laboratory Control Samples (LCS):	incentration in the brank sample?				
NU	01	1) Were all COCs included in the LCS?		X			
		2) Was each LCS taken through the entire analytical procedure, inc	luding prep and cleanup steps?	X			
		3) Were LCSs analyzed at the required frequency?	fulling prop and creating stops.	X			
		4) Were LCS (and LCSD, if applicable) %Rs within the laboratory	OC limits?	X			
		5) Does the detectability data document the laboratory's capability to calculate the SDLs?		X			
		6) Was the LCSD RPD within QC limits (if applicable)?		Χ			
R7	OI	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Data					
		1) Were the project/method specified analytes included in the MS a	nd MSD?			Χ	
		2) Were MS/MSD analyzed at the appropriate frequency?				Χ	
		3) Were MS (and MSD, if applicable) %Rs within the laboratory Q	C limits?			Χ	
		4) Were MS/MSD RPDs within laboratory QC limits?				Χ	
R8	OI	Analytical Duplicate Data					
		1) Were appropriate analytical duplicates analyzed for each matrix				X	
		2) Were analytical duplicates analyzed at the appropriate frequency				X	
DO	01	3) Were RPDs or relative standard deviations within the laboratory	QC limits?		_	Χ	
R9	OI	Method Quantitation Limits (MQLs): 1) Are the MQLs for each method analyte included in the laborator	v data package?	v			
		 Are the MQLs for each method analyte included in the laborator Do the MQLs correspond to the concentration of the lowest non- 		X X	-+		
		3) Are unadjusted MQLs and DCSs included in the laboratory data		A X			
R10	OI	Other Problems/Anomalies	puentize:	Λ			
	01	1) Are all known problems/anomalies/special conditions noted in th	is LRC and ER?	X			
		2) Was applicable and available technology used to lower the SDL affects on the sample results?		X			
		 3) Is the laboratory NELAC-accredited under the Texas Laboratory analytes, matrices and methods associated with this laboratory data 		X			

l ,ah	ora	tory Review Checklist (continued): Supporting 1	Data					
			Date: 3/19/18					
			atory Work Order: 1802197					
			atch: See Analytical Dates Report		r			
$\#^{1}$	A^2	Description		Yes	No	NA ³	NR ⁴	ER# ⁵
S1	OI	Initial Calibration (ICAL)						
		1) Were response factors and/or relative response factors for each at	nalyte within QC limits?	X				
		2) Were percent RSDs or correlation coefficient criteria met?		Χ				
		3) Was the number of standards recommended in the method used f	for all analytes?	Х				
		4) Were all points generated between the lowest and highest standar		Х				
		5) Are ICAL data available for all instruments used?		Х				
		6) Has the initial calibration curve been verified using an appropriat	e second source standard?	Χ				
S2	OI	Initial and Continuing calibration Verification (ICCV and CCV) and Continuing Calibration					
		blank (CCB):	,					
		1) Was the CCV analyzed at the method-required frequency?		Χ				
		2) Were percent differences for each analyte within the method-requ	uired OC limits?	Х				
		3) Was the ICAL curve verified for each analyte?		X		1		
		4) Was the absolute value of the analyte concentration in the inorga	nic CCB < MDL?	X				
S 3	0	Mass Spectral Tuning:						
		1) Was the appropriate compound for the method used for tuning?		Х				
		2) Were ion abundance data within the method-required QC limits?		X				
S4	0	Internal Standards (IS):						
	-	1) Were IS area counts and retention times within the method-requi	red OC limits?	X				
S 5	OI	Raw Data (NELAC Section 5.5.10)						
50	01	1) Were the raw data (for example, chromatograms, spectral data) re	eviewed by an analyst?	Х				
		2) Were data associated with manual integrations flagged on the ray		X				
S6	0	Dual Column Confirmation	- data -					
	Ū	1) Did dual column confirmation results meet the method-required	DC?			X		
S7	0	Tentatively Identified Compounds (TICs):	201					
57	Ŭ	1) If TICs were requested, were the mass spectra and TIC data subjectively and the spectra and TIC data subjectively and the spectra and the s	ect to appropriate checks?			X		
S8	I	Interference Check Sample (ICS) Results:						
50	-	1) Were percent recoveries within method QC limits?		X				
S9	Ι	Serial Dilutions, Post Digestion Spikes, and Method of Standard	Additions					
	-	1) Were percent differences, recoveries, and the linearity within						
		method?	i the QC minits specified in the		Х			S9-01
~				_				
S10	OI	Method Detection Limit (MDL) Studies						
		1) Was a MDL study performed for each reported analyte?	-	X				
		2) Is the MDL either adjusted or supported by the analysis of DCSs	?	_		Χ		
S11	OI	Proficiency Test Reports:						
		1) Was the lab's performance acceptable on the applicable proficien	cy tests or evaluation studies?	X				
S12	OI	Standards Documentation						
		1) Are all standards used in the analyses NIST-traceable or obtained	I from other appropriate sources?	X				
S13	OI	Compound/Analyte Identification Procedures						
		1) Are the procedures for compound/analyte identification documer	ited?	X				
S14	OI	Demonstration of Analyst Competency (DOC)						
		1) Was DOC conducted consistent with NELAC Chapter 5 – Apper		Х				
		2) Is documentation of the analyst's competency up-to-date and on a		Χ				
S15	OI	Verification/Validation Documentation for Methods (NELAC C	hapter 5)					
		1) Are all the methods used to generate the data documented applicable?	l, verified, and validated, where	X				
617	OT							
<u>S16</u>	01	Laboratory Standard Operating Procedures (SOPs):						
	1	1) Are laboratory SOPs current and on file for each method perform	ned?	Х		1		

Items identified by the letter "R" should be included in the laboratory data package submitted to the TCEQ in the TRRP-required report(s). Items identified by 1 the letter "S" should be retained and made available upon request for the appropriate retention period. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable).

²

NA = Not applicable.NR = Not Reviewed.3 4

⁵ ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Data Package Signature Page – RG-366/TRRP-13

This data package consists of:

R4

This signature page, the laboratory review checklist, and the following reportable data:

- R1 Field chain-of-custody documentation;
- R2 Sample identification cross-reference;
- R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a) Items consistent with NELAC Chapter 5,
 - b) dilution factors,
 - c) preparation methods,
 - d) cleanup methods, and
 - e) if required for the project, tentatively identified compounds (TICs).
 - Surrogate recovery data including:
 - a) Calculated recovery (%R), and
 - b) The laboratory's surrogate QC limits.
- R5 Test reports/summary forms for blank samples;
- R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a) LCS spiking amounts,
 - b) Calculated %R for each analyte, and
 - c) The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a) Samples associated with the MS/MSD clearly identified,
 - b) MS/MSD spiking amounts,
 - c) Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d) Calculated %Rs and relative percent differences (RPDs), and
 - e) The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a) The amount of analyte measured in the duplicate,
 - b) The calculated RPD, and
 - c) The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix;
- R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in the Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory is not accredited under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge that all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information or data affecting the quality of the data has been knowingly withheld.

This laboratory was last inspected by TCEQ on March 27, 2017. Any findings affecting the data in this laboratory data package are noted in the Exception Reports herein. The official signing the cover page of the report in which these data are used is responsible for releasing this data package and is by signature affirming the above release statement is true.

Name: John DuPont Official Title: General Manager

Name: Dr. Derhsing Luu Official Title: Technical Director

depart at

03/19/18 Date

CLIENT:US EPAProject:Thermal Destruction of CBR ContaminantsLab Order:1802197

CASE NARRATIVE

Samples were analyzed using the methods outlined in the following references:

Method SW6020A - Metals Analysis (The analytes Cesium and Silicon are not NELAC Certified)

PROJECT SPECIFICATIONS

As per the project Statement of Work, DHL Analytical performed the analyses of the Moudi filter samples for Aluminum, Potassium, Sodium, Silicon and Cesium according to the published EPA Method 6020a, prepared according to EPA Method 3050C and reported in accordance with relevant National Environmental Laboratory Accreditation Program (NELAP). All incidental exceptions to NELAP requirements are noted in the report narrative. DHL Analytical is NELAP accredited by Texas Commission on Environmental Quality (TCEQ) and this agency does not offer accreditation for Cesium or Silicon by Method 6020A. Results for this project are reported in units of µg/filter.

All 240 samples received were filter samples and they were prepared according to EPA Method 3050C and in accordance with DHL Analytical's SOP. The filters were transferred from the plastic planchet holder to the digestion vessel by using tweezers to fold the filter once, then transferring the filter into the digestion vessel, and then rinsing the interior of the planchet with a small volume of DI water; the water was then transferred to the digestion vessel. Acid digestion of the samples plus batch QC (Method Blank, LCS and LCSD) then followed DHL Analytical's SOP and as per the SOP, each batch contains a maximum of 20 samples. After digestion was completed, each sample was analyzed to achieve the lowest possible reporting limit within the constraints of DHL Analytical's SOP for Method 6020A. For Cesium the method detection limit (MDL) was determined via EPA protocol to be 0.05 μ g/filter and for all other target analytes the MDL is 12.5 μ g/filter. All analyses were performed in accordance with established laboratory standard operating procedures (SOPs) that incorporate QA/QC procedures described in the method.

Exception Report R1-01

The samples were received and log-in performed on 2/26/2018. A total of 240 samples were received and 60 samples were logged in under this work order and analyzed. The Chain-of-Custody (COC) was not signed by the client upon arrival at DHL Analytical. The client sent a signed COC and sample ID summary to DHL Analytical via email on 2/27/2018. The samples arrived in good condition and were properly packaged.

Exception Report S9-01

For Metals analysis performed on 3/14/18 (batch 84655) the RPD for the serial dilution was above control limits for Silicon. This is flagged accordingly in the QC summary report. The PDS was within

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Lab Order:	1802197

CASE NARRATIVE

control limits for this analyte. No further corrective actions were taken.

_

Date: 19-Mar-18

CLIENT: Project: Lab Order:	US EPA Thermal Destruction 1802197	n of CBR Contaminants	Work Order Samp	r Sample Summary		
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved		
1802197-01	B+Ce - R2 - 0	184	01/23/18	2/26/2018		
1802197-02	B+Ce - R2 - 1	185	01/23/18	2/26/2018		
1802197-03	B+Ce - R2 - 2	186	01/23/18	2/26/2018		
1802197-04	B+Ce - R2 - 3	187	01/23/18	2/26/2018		
1802197-05	B+Ce - R2 - 4	188	01/23/18	2/26/2018		
1802197-06	B+Ce - R2 - 5	189	01/23/18	2/26/2018		
1802197-07	B+Ce - R2 - 6	190	01/23/18	2/26/2018		
1802197-08	B+Ce - R2 - 7	191	01/23/18	2/26/2018		
1802197-09	B+Ce - R2 - 8	192	01/23/18	2/26/2018		
1802197-10	B+Ce - R2 - 10	NA	01/23/18	2/26/2018		
1802197-11	B+Ce - R3 - 0	193	01/23/18	2/26/2018		
1802197-12	B+Ce - R3 - 1	194	01/23/18	2/26/2018		
1802197-13	B+Ce - R3 - 2	195	01/23/18	2/26/2018		
1802197-14	B+Ce - R3 - 3	196	01/23/18	2/26/2018		
1802197-15	B+Ce - R3 - 4	197	01/23/18	2/26/2018		
1802197-16	B+Ce - R3 - 5	198	01/23/18	2/26/2018		
1802197-17	B+Ce - R3 - 6	199	01/23/18	2/26/2018		
1802197-18	B+Ce - R3 - 7	200	01/23/18	2/26/2018		
1802197-19	B+Ce - R3 - 8	201	01/23/18	2/26/2018		
1802197-20	B+Ce - R3 - 10	NA	01/23/18	2/26/2018		
1802197-21	B+Ce - R4 - 0	229	01/23/18	2/26/2018		
1802197-22	B+Ce - R4 - 1	230	01/23/18	2/26/2018		
1802197-23	B+Ce - R4 - 2	231	01/23/18	2/26/2018		
1802197-24	B+Ce - R4 - 3	232	01/23/18	2/26/2018		
1802197-25	B+Ce - R4 - 4	234	01/23/18	2/26/2018		
1802197-26	B+Ce - R4 - 5	235	01/23/18	2/26/2018		
1802197-27	B+Ce - R4 - 6	236	01/23/18	2/26/2018		
1802197-28	B+Ce - R4 - 7	237	01/23/18	2/26/2018		
1802197-29	B+Ce - R4 - 8	238	01/23/18	2/26/2018		
1802197-30	B+Ce - R4 - 10	NA	01/23/18	2/26/2018		
1802197-31	B+Ce+S - R1 - 0	202	01/23/18	2/26/2018		
1802197-32	B+Ce+S - R1 - 1	203	01/23/18	2/26/2018		
1802197-33	B+Ce+S - R1 - 2	204	01/23/18	2/26/2018		
1802197-34	B+Ce+S - R1 - 3	205	01/23/18	2/26/2018		
	B+Ce+S - R1 - 4	206	01/23/18	2/26/2018		
1802197-36	B+Ce+S - R1 - 5	207	01/23/18	2/26/2018		
1802197-37	B+Ce+S - R1 - 6	208	01/23/18	2/26/2018		
	B+Ce+S - R1 - 7	209	01/23/18	2/26/2018		

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Lab Order:	1802197

Work Order Sample Summary

Lab Smp ID Client Sample ID	Tag Number	Date Collected	Date Recved
1802197-39 B+Ce+S - R1 - 8	210	01/23/18	2/26/2018
1802197-40 B+Ce+S - R1 - 10	NA	01/23/18	2/26/2018
1802197-41 B+Ce+S - R2 - 0	211	01/23/18	2/26/2018
1802197-42 B+Ce+S - R2 - 1	212	01/23/18	2/26/2018
1802197-43 B+Ce+S - R2 - 2	213	01/23/18	2/26/2018
1802197-44 B+Ce+S - R2 - 3	214	01/23/18	2/26/2018
1802197-45 B+Ce+S - R2 - 4	215	01/23/18	2/26/2018
1802197-46 B+Ce+S - R2 - 5	216	01/23/18	2/26/2018
1802197-47 B+Ce+S - R2 - 6	217	01/23/18	2/26/2018
1802197-48 B+Ce+S - R2 - 7	218	01/23/18	2/26/2018
1802197-49 B+Ce+S - R2 - 8	219	01/23/18	2/26/2018
1802197-50 B+Ce+S - R2 - 10	NA	01/23/18	2/26/2018
1802197-51 B+Ce+S - R3 - 0	220	01/23/18	2/26/2018
1802197-52 B+Ce+S - R3 - 1	221	01/23/18	2/26/2018
1802197-53 B+Ce+S - R3 - 2	222	01/23/18	2/26/2018
1802197-54 B+Ce+S - R3 - 3	223	01/23/18	2/26/2018
1802197-55 B+Ce+S - R3 - 4	224	01/23/18	2/26/2018
1802197-56 B+Ce+S - R3 - 5	225	01/23/18	2/26/2018
1802197-57 B+Ce+S - R3 - 6	226	01/23/18	2/26/2018
1802197-58 B+Ce+S - R3 - 7	227	01/23/18	2/26/2018
1802197-59 B+Ce+S - R3 - 8	228	01/23/18	2/26/2018
1802197-60 B+Ce+S - R3 - 10	NA	01/23/18	2/26/2018

 Lab Order:
 1802197

 Client:
 US EPA

Project: Thermal Destruction of CBR Cont

PREP DATES REPORT

ample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
802197-01A	B+Ce - R2 - 0	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-02A	B+Ce - R2 - 1	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-03A	B+Ce - R2 - 2	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-04A	B+Ce - R2 - 3	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-05A	B+Ce - R2 - 4	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-06A	B+Ce - R2 - 5	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-07A	B+Ce - R2 - 6	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-08A	B+Ce - R2 - 7	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-09A	B+Ce - R2 - 8	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-10A	B+Ce - R2 - 10	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-11A	B+Ce - R3 - 0	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-12A	B+Ce - R3 - 1	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-13A	B+Ce - R3 - 2	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-14A	B+Ce - R3 - 3	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-15A	B+Ce - R3 - 4	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-16A	B+Ce - R3 - 5	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-17A	B+Ce - R3 - 6	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-18A	B+Ce - R3 - 7	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-19A	B+Ce - R3 - 8	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-20A	B+Ce - R3 - 10	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/12/18 08:11 AM	84655
802197-21A	B+Ce - R4 - 0	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-22A	B+Ce - R4 - 1	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-23A	B+Ce - R4 - 2	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-24A	B+Ce - R4 - 3	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-25A	B+Ce - R4 - 4	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-26A	B+Ce - R4 - 5	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-27A	B+Ce - R4 - 6	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
302197-28A	B+Ce - R4 - 7	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699

 Lab Order:
 1802197

 Client:
 US EPA

Project: Thermal Destruction of CBR Cont

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1802197-29A	B+Ce - R4 - 8	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
1802197-30A	B+Ce - R4 - 10	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
1802197-31A	B+Ce+S - R1 - 0	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
1802197-32A	B+Ce+S - R1 - 1	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-33A	B+Ce+S - R1 - 2	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-34A	B+Ce+S - R1 - 3	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-35A	B+Ce+S - R1 - 4	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-36A	B+Ce+S - R1 - 5	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-37A	B+Ce+S - R1 - 6	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-38A	B+Ce+S - R1 - 7	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-39A	B+Ce+S - R1 - 8	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-40A	B+Ce+S - R1 - 10	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:23 AM	84699
802197-41A	B+Ce+S - R2 - 0	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-42A	B+Ce+S - R2 - 1	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
302197-43A	B+Ce+S - R2 - 2	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-44A	B+Ce+S - R2 - 3	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-45A	B+Ce+S - R2 - 4	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-46A	B+Ce+S - R2 - 5	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-47A	B+Ce+S - R2 - 6	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-48A	B+Ce+S - R2 - 7	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-49A	B+Ce+S - R2 - 8	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-50A	B+Ce+S - R2 - 10	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-51A	B+Ce+S - R3 - 0	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-52A	B+Ce+S - R3 - 1	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-53A	B+Ce+S - R3 - 2	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-54A	B+Ce+S - R3 - 3	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
802197-55A	B+Ce+S - R3 - 4	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
302197-56A	B+Ce+S - R3 - 5	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700

Page 2 of 3

 Lab Order:
 1802197

 Client:
 US EPA

Project: Thermal Destruction of CBR Cont

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1802197-57A	B+Ce+S - R3 - 6	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
1802197-58A	B+Ce+S - R3 - 7	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
1802197-59A	B+Ce+S - R3 - 8	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700
1802197-60A	B+Ce+S - R3 - 10	01/23/18	Filter	SW3050B	Soil Prep Total Metals: ICP-MS	03/14/18 09:25 AM	84700

Lab Order: 1802197 **Client:**

US EPA

Project: Thermal Destruction of CBR Cont

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1802197-01A	B+Ce - R2 - 0	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:37 PM	ICP-MS4_180314B
1802197-02A	B+Ce - R2 - 1	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:39 PM	ICP-MS4_180314B
1802197-03A	B+Ce - R2 - 2	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:41 PM	ICP-MS4_180314B
1802197-04A	B+Ce - R2 - 3	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:43 PM	ICP-MS4_180314B
1802197-05A	B+Ce - R2 - 4	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:45 PM	ICP-MS4_180314B
1802197-06A	B+Ce - R2 - 5	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:47 PM	ICP-MS4_180314B
1802197-07A	B+Ce - R2 - 6	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:49 PM	ICP-MS4_180314B
1802197-08A	B+Ce - R2 - 7	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:51 PM	ICP-MS4_180314B
1802197-09A	B+Ce - R2 - 8	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:53 PM	ICP-MS4_180314B
1802197-10A	B+Ce - R2 - 10	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 04:33 PM	ICP-MS4_180314B
1802197-11A	B+Ce - R3 - 0	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:07 PM	ICP-MS4_180314B
1802197-12A	B+Ce - R3 - 1	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:09 PM	ICP-MS4_180314B
1802197-13A	B+Ce - R3 - 2	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:11 PM	ICP-MS4_180314B
1802197-14A	B+Ce - R3 - 3	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:13 PM	ICP-MS4_180314B
1802197-15A	B+Ce - R3 - 4	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:15 PM	ICP-MS4_180314B
1802197-16A	B+Ce - R3 - 5	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:17 PM	ICP-MS4_180314B
1802197-17A	B+Ce - R3 - 6	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:19 PM	ICP-MS4_180314B
1802197-18A	B+Ce - R3 - 7	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:21 PM	ICP-MS4_180314B
1802197-19A	B+Ce - R3 - 8	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:23 PM	ICP-MS4_180314B
1802197-20A	B+Ce - R3 - 10	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84655	5	03/14/18 05:25 PM	ICP-MS4_180314B
1802197-21A	B+Ce - R4 - 0	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 12:46 PM	ICP-MS4_180315A
1802197-22A	B+Ce - R4 - 1	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 12:48 PM	ICP-MS4_180315A
1802197-23A	B+Ce - R4 - 2	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 12:50 PM	ICP-MS4_180315A
1802197-24A	B+Ce - R4 - 3	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 12:52 PM	ICP-MS4_180315A
1802197-25A	B+Ce - R4 - 4	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 12:54 PM	ICP-MS4_180315A
1802197-26A	B+Ce - R4 - 5	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 12:56 PM	ICP-MS4_180315A
1802197-27A	B+Ce - R4 - 6	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 12:42 PM	ICP-MS4_180315A
1802197-28A	B+Ce - R4 - 7	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 12:58 PM	ICP-MS4_180315A

Lab Order: 1802197 **Client:**

US EPA

Project: Thermal Destruction of CBR Cont

ANALYTICAL DATES REPORT

1802197-29A	B+Ce - R4 - 8	Filter						
			SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:00 PM	ICP-MS4_180315A
1802197-30A	B+Ce - R4 - 10	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:02 PM	ICP-MS4_180315A
1802197-31A	B+Ce+S - R1 - 0	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:15 PM	ICP-MS4_180315A
1802197-32A	B+Ce+S - R1 - 1	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:17 PM	ICP-MS4_180315A
1802197-33A	B+Ce+S - R1 - 2	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:19 PM	ICP-MS4_180315A
1802197-34A	B+Ce+S - R1 - 3	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:21 PM	ICP-MS4_180315A
1802197-35A	B+Ce+S - R1 - 4	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:23 PM	ICP-MS4_180315A
1802197-36A	B+Ce+S - R1 - 5	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:25 PM	ICP-MS4_180315A
1802197-37A	B+Ce+S - R1 - 6	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:27 PM	ICP-MS4_180315A
1802197-38A	B+Ce+S - R1 - 7	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:29 PM	ICP-MS4_180315A
1802197-39A	B+Ce+S - R1 - 8	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:31 PM	ICP-MS4_180315A
1802197-40A	B+Ce+S - R1 - 10	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84699	5	03/15/18 01:34 PM	ICP-MS4_180315A
1802197-41A	B+Ce+S - R2 - 0	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 01:54 PM	ICP-MS4_180315A
1802197-42A	B+Ce+S - R2 - 1	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 01:58 PM	ICP-MS4_180315A
1802197-43A	B+Ce+S - R2 - 2	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:00 PM	ICP-MS4_180315A
1802197-44A	B+Ce+S - R2 - 3	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:02 PM	ICP-MS4_180315A
1802197-45A	B+Ce+S - R2 - 4	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:04 PM	ICP-MS4_180315A
1802197-46A	B+Ce+S - R2 - 5	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:06 PM	ICP-MS4_180315A
1802197-47A	B+Ce+S - R2 - 6	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:08 PM	ICP-MS4_180315A
1802197-48A	B+Ce+S - R2 - 7	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:10 PM	ICP-MS4_180315A
1802197-49A	B+Ce+S - R2 - 8	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:13 PM	ICP-MS4_180315A
1802197-50A	B+Ce+S - R2 - 10	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:15 PM	ICP-MS4_180315A
1802197-51A	B+Ce+S - R3 - 0	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:29 PM	ICP-MS4_180315A
1802197-52A	B+Ce+S - R3 - 1	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:31 PM	ICP-MS4_180315A
1802197-53A	B+Ce+S - R3 - 2	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:33 PM	ICP-MS4_180315A
1802197-54A	B+Ce+S - R3 - 3	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:35 PM	ICP-MS4_180315A
1802197-55A	B+Ce+S - R3 - 4	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:37 PM	ICP-MS4_180315A
1802197-56A	B+Ce+S - R3 - 5	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:39 PM	ICP-MS4_180315A

Page 2 of 3

 Lab Order:
 1802197

 Client:
 US EPA

Project: Thermal Destruction of CBR Cont

ANALYTICAL DATES REPORT

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1802197-57A	B+Ce+S - R3 - 6	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:41 PM	ICP-MS4_180315A
1802197-58A	B+Ce+S - R3 - 7	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:43 PM	ICP-MS4_180315A
1802197-59A	B+Ce+S - R3 - 8	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:45 PM	ICP-MS4_180315A
1802197-60A	B+Ce+S - R3 - 10	Filter	SW6020A	Trace Metals: ICP-MS - Moudi Filter	84700	5	03/15/18 02:47 PM	ICP-MS4_180315A

Date:	19-Mar-18
Dates	17 11101 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R2 - 0

 Lab ID:
 1802197-01

 Alternate ID:
 184

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A						Analyst: SP	
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:37 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:37 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:37 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:37 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:37 PM
IS: Indium	98.4	0	70-200		%REC	5	03/14/18 04:37 PM
IS: Scandium(1)	96.2	0	70-200		%REC	5	03/14/18 04:37 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 1 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce - R2 - 1 Lab ID: 1802197-02 Alternate ID: 185 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A						Analyst: SP		
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:39 PM	
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:39 PM	
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:39 PM	
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:39 PM	
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:39 PM	
IS: Indium	98.9	0	70-200		%REC	5	03/14/18 04:39 PM	
IS: Scandium(1)	94.5	0	70-200		%REC	5	03/14/18 04:39 PM	

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 2 of 60

Date:	19-Mar-18
Dates	17 11101 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R2 - 2

 Lab ID:
 1802197-03

 Alternate ID:
 186

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUD	I FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:41 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:41 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:41 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:41 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:41 PM
IS: Indium	99.6	0	70-200		%REC	5	03/14/18 04:41 PM
IS: Scandium(1)	96.0	0	70-200		%REC	5	03/14/18 04:41 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 3 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R2 - 3

 Lab ID:
 1802197-04

 Alternate ID:
 187

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:43 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:43 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:43 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:43 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:43 PM
IS: Indium	98.7	0	70-200		%REC	5	03/14/18 04:43 PM
IS: Scandium(1)	95.0	0	70-200		%REC	5	03/14/18 04:43 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 4 of 60

Date:	19-Mar-18
Dates	1 11100 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R2 - 4

 Lab ID:
 1802197-05

 Alternate ID:
 188

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	DI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:45 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:45 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:45 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:45 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:45 PM
IS: Indium	97.1	0	70-200		%REC	5	03/14/18 04:45 PM
IS: Scandium(1)	93.8	0	70-200		%REC	5	03/14/18 04:45 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 5 of 60

Date:	19-Mar-18
Date:	1) mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce - R2 - 5 Lab ID: 1802197-06 Alternate ID: 189 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUI	DI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:47 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:47 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:47 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:47 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:47 PM
IS: Indium	97.6	0	70-200		%REC	5	03/14/18 04:47 PM
IS: Scandium(1)	94.0	0	70-200		%REC	5	03/14/18 04:47 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 6 of 60

Date:	19-Mar-18
Dates	17 11101 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R2 - 6

 Lab ID:
 1802197-07

 Alternate ID:
 190

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:49 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:49 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:49 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:49 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:49 PM
IS: Indium	99.4	0	70-200		%REC	5	03/14/18 04:49 PM
IS: Scandium(1)	96.0	0	70-200		%REC	5	03/14/18 04:49 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 7 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R2 - 7

 Lab ID:
 1802197-08

 Alternate ID:
 191

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:51 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:51 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:51 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:51 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:51 PM
IS: Indium	98.9	0	70-200		%REC	5	03/14/18 04:51 PM
IS: Scandium(1)	96.2	0	70-200		%REC	5	03/14/18 04:51 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 8 of 60

Date:	19-Mar-18
Dates	1 11100 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R2 - 8

 Lab ID:
 1802197-09

 Alternate ID:
 192

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI	FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:53 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 04:53 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:53 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:53 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:53 PM
IS: Indium	99.6	0	70-200		%REC	5	03/14/18 04:53 PM
IS: Scandium(1)	96.4	0	70-200		%REC	5	03/14/18 04:53 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 9 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R2 - 10

 Lab ID:
 1802197-10

 Alternate ID:
 NA

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:33 PM
Cesium	0.274	0.0500	2.00	JN	µg/Filter	5	03/14/18 04:33 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:33 PM
Silicon	89.4	12.5	37.5	Ν	µg/Filter	5	03/14/18 04:33 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 04:33 PM
IS: Indium	98.2	0	70-200		%REC	5	03/14/18 04:33 PM
IS: Scandium(1)	95.7	0	70-200		%REC	5	03/14/18 04:33 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 10 of 60

Date:	19-Mar-18
Dates	17 11101 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R3 - 0

 Lab ID:
 1802197-11

 Alternate ID:
 193

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A							Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:07 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:07 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:07 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:07 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:07 PM
IS: Indium	98.0	0	70-200		%REC	5	03/14/18 05:07 PM
IS: Scandium(1)	94.8	0	70-200		%REC	5	03/14/18 05:07 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 11 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce - R3 - 1 Lab ID: 1802197-12 Alternate ID: 194 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:09 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:09 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:09 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:09 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:09 PM
IS: Indium	98.9	0	70-200		%REC	5	03/14/18 05:09 PM
IS: Scandium(1)	95.3	0	70-200		%REC	5	03/14/18 05:09 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 12 of 60

Date:	19-Mar-18
Dates	17 mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R3 - 2

 Lab ID:
 1802197-13

 Alternate ID:
 195

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	DI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:11 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:11 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:11 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:11 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:11 PM
IS: Indium	98.2	0	70-200		%REC	5	03/14/18 05:11 PM
IS: Scandium(1)	95.8	0	70-200		%REC	5	03/14/18 05:11 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 13 of 60

Date:	19-Mar-18
Date:	1) mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R3 - 3

 Lab ID:
 1802197-14

 Alternate ID:
 196

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A							Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:13 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:13 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:13 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:13 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:13 PM
IS: Indium	98.6	0	70-200		%REC	5	03/14/18 05:13 PM
IS: Scandium(1)	95.4	0	70-200		%REC	5	03/14/18 05:13 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 14 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R3 - 4

 Lab ID:
 1802197-15

 Alternate ID:
 197

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI	FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:15 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:15 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:15 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:15 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:15 PM
IS: Indium	99.1	0	70-200		%REC	5	03/14/18 05:15 PM
IS: Scandium(1)	94.3	0	70-200		%REC	5	03/14/18 05:15 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 15 of 60

Date:	19-Mar-18
Date:	1) mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R3 - 5

 Lab ID:
 1802197-16

 Alternate ID:
 198

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOL	JDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:17 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:17 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:17 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:17 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:17 PM
IS: Indium	97.4	0	70-200		%REC	5	03/14/18 05:17 PM
IS: Scandium(1)	98.1	0	70-200		%REC	5	03/14/18 05:17 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 16 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce - R3 - 6 Lab ID: 1802197-17 Alternate ID: 199 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MO	UDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:19 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:19 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:19 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:19 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:19 PM
IS: Indium	98.5	0	70-200		%REC	5	03/14/18 05:19 PM
IS: Scandium(1)	95.7	0	70-200		%REC	5	03/14/18 05:19 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 17 of 60

Date:	19-Mar-18
Dates	17 mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R3 - 7

 Lab ID:
 1802197-18

 Alternate ID:
 200

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI	FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:21 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:21 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:21 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:21 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:21 PM
IS: Indium	99.2	0	70-200		%REC	5	03/14/18 05:21 PM
IS: Scandium(1)	94.5	0	70-200		%REC	5	03/14/18 05:21 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 18 of 60

Date:	19-Mar-18
Dates	1 11100 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R3 - 8

 Lab ID:
 1802197-19

 Alternate ID:
 201

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MO	UDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:23 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/14/18 05:23 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:23 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:23 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:23 PM
IS: Indium	99.5	0	70-200		%REC	5	03/14/18 05:23 PM
IS: Scandium(1)	96.2	0	70-200		%REC	5	03/14/18 05:23 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 19 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R3 - 10

 Lab ID:
 1802197-20

 Alternate ID:
 NA

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU		Analyst: SP					
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:25 PM
Cesium	0.290	0.0500	2.00	JN	µg/Filter	5	03/14/18 05:25 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:25 PM
Silicon	87.0	12.5	37.5	Ν	µg/Filter	5	03/14/18 05:25 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/14/18 05:25 PM
IS: Indium	98.7	0	70-200		%REC	5	03/14/18 05:25 PM
IS: Scandium(1)	93.3	0	70-200		%REC	5	03/14/18 05:25 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 20 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 0

 Lab ID:
 1802197-21

 Alternate ID:
 229

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOI	JDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:46 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 12:46 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:46 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 12:46 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:46 PM
IS: Indium	104	0	70-200		%REC	5	03/15/18 12:46 PM
IS: Scandium(1)	99.6	0	70-200		%REC	5	03/15/18 12:46 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 21 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce - R4 - 1 Lab ID: 1802197-22 Alternate ID: 230 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI	FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:48 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 12:48 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:48 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 12:48 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:48 PM
IS: Indium	103	0	70-200		%REC	5	03/15/18 12:48 PM
IS: Scandium(1)	100	0	70-200		%REC	5	03/15/18 12:48 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 22 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 2

 Lab ID:
 1802197-23

 Alternate ID:
 231

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A							Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:50 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 12:50 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:50 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 12:50 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:50 PM
IS: Indium	104	0	70-200		%REC	5	03/15/18 12:50 PM
IS: Scandium(1)	100	0	70-200		%REC	5	03/15/18 12:50 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 23 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 3

 Lab ID:
 1802197-24

 Alternate ID:
 232

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	DI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:52 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 12:52 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:52 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 12:52 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:52 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 12:52 PM
IS: Scandium(1)	99.8	0	70-200		%REC	5	03/15/18 12:52 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 24 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 4

 Lab ID:
 1802197-25

 Alternate ID:
 234

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUE		SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:54 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 12:54 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:54 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 12:54 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:54 PM
IS: Indium	104	0	70-200		%REC	5	03/15/18 12:54 PM
IS: Scandium(1)	100	0	70-200		%REC	5	03/15/18 12:54 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 25 of 60

Date:	19-Mar-18
Dates	17 mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 5

 Lab ID:
 1802197-26

 Alternate ID:
 235

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MO	TRACE METALS: ICP-MS - MOUDI FILTER SW6020A						Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:56 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 12:56 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:56 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 12:56 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:56 PM
IS: Indium	103	0	70-200		%REC	5	03/15/18 12:56 PM
IS: Scandium(1)	99.5	0	70-200		%REC	5	03/15/18 12:56 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 26 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 6

 Lab ID:
 1802197-27

 Alternate ID:
 236

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI	FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:42 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 12:42 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:42 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 12:42 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:42 PM
IS: Indium	103	0	70-200		%REC	5	03/15/18 12:42 PM
IS: Scandium(1)	100	0	70-200		%REC	5	03/15/18 12:42 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 27 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 7

 Lab ID:
 1802197-28

 Alternate ID:
 237

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI F	TRACE METALS: ICP-MS - MOUDI FILTER SW6020A						Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:58 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 12:58 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:58 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 12:58 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 12:58 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 12:58 PM
IS: Scandium(1)	100	0	70-200		%REC	5	03/15/18 12:58 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 28 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 8

 Lab ID:
 1802197-29

 Alternate ID:
 238

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A							Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:00 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:00 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:00 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:00 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:00 PM
IS: Indium	103	0	70-200		%REC	5	03/15/18 01:00 PM
IS: Scandium(1)	100	0	70-200		%REC	5	03/15/18 01:00 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 29 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce - R4 - 10

 Lab ID:
 1802197-30

 Alternate ID:
 NA

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:02 PM
Cesium	0.394	0.0500	2.00	JN	µg/Filter	5	03/15/18 01:02 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:02 PM
Silicon	123	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:02 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:02 PM
IS: Indium	103	0	70-200		%REC	5	03/15/18 01:02 PM
IS: Scandium(1)	97.5	0	70-200		%REC	5	03/15/18 01:02 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 30 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce+S - R1 - 0 Lab ID: 1802197-31 Alternate ID: 202 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUL	TRACE METALS: ICP-MS - MOUDI FILTER SW6020A						Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:15 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:15 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:15 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:15 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:15 PM
IS: Indium	103	0	70-200		%REC	5	03/15/18 01:15 PM
IS: Scandium(1)	97.7	0	70-200		%REC	5	03/15/18 01:15 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 31 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R1 - 1

 Lab ID:
 1802197-32

 Alternate ID:
 203

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A							Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:17 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:17 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:17 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:17 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:17 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:17 PM
IS: Scandium(1)	97.5	0	70-200		%REC	5	03/15/18 01:17 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 32 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R1 - 2

 Lab ID:
 1802197-33

 Alternate ID:
 204

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU		Analyst: SP					
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:19 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:19 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:19 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:19 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:19 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:19 PM
IS: Scandium(1)	98.2	0	70-200		%REC	5	03/15/18 01:19 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 33 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R1 - 3

 Lab ID:
 1802197-34

 Alternate ID:
 205

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	22.5	12.5	37.5	J	µg/Filter	5	03/15/18 01:21 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:21 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:21 PM
Silicon	24.0	12.5	37.5	JN	µg/Filter	5	03/15/18 01:21 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:21 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:21 PM
IS: Scandium(1)	99.3	0	70-200		%REC	5	03/15/18 01:21 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 34 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R1 - 4

 Lab ID:
 1802197-35

 Alternate ID:
 206

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOL	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	28.6	12.5	37.5	J	µg/Filter	5	03/15/18 01:23 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:23 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:23 PM
Silicon	35.9	12.5	37.5	JN	µg/Filter	5	03/15/18 01:23 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:23 PM
IS: Indium	103	0	70-200		%REC	5	03/15/18 01:23 PM
IS: Scandium(1)	98.7	0	70-200		%REC	5	03/15/18 01:23 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 35 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R1 - 5

 Lab ID:
 1802197-36

 Alternate ID:
 207

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	30.5	12.5	37.5	J	µg/Filter	5	03/15/18 01:25 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:25 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:25 PM
Silicon	41.3	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:25 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:25 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:25 PM
IS: Scandium(1)	98.4	0	70-200		%REC	5	03/15/18 01:25 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 36 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R1 - 6

 Lab ID:
 1802197-37

 Alternate ID:
 208

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A						Analyst: SP	
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:27 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:27 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:27 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:27 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:27 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:27 PM
IS: Scandium(1)	99.8	0	70-200		%REC	5	03/15/18 01:27 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 37 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R1 - 7

 Lab ID:
 1802197-38

 Alternate ID:
 209

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A					Analyst: SP		
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:29 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:29 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:29 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:29 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:29 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:29 PM
IS: Scandium(1)	98.2	0	70-200		%REC	5	03/15/18 01:29 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 38 of 60

Date:	19-Mar-18
Date:	1) mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R1 - 8

 Lab ID:
 1802197-39

 Alternate ID:
 210

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:31 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:31 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:31 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:31 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:31 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:31 PM
IS: Scandium(1)	98.7	0	70-200		%REC	5	03/15/18 01:31 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 39 of 60

Date: 19-Mar-18

CLIENT:US EPAProject:Thermal Destruction of CBR ContaminantsProject No:PR-ORD-17-02372Lab Order:1802197

 Client Sample ID:
 B+Ce+S - R1 - 10

 Lab ID:
 1802197-40

 Alternate ID:
 NA

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOL	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	29.2	12.5	37.5	J	µg/Filter	5	03/15/18 01:34 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:34 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:34 PM
Silicon	116	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:34 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:34 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:34 PM
IS: Scandium(1)	97.1	0	70-200		%REC	5	03/15/18 01:34 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 40 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R2 - 0

 Lab ID:
 1802197-41

 Alternate ID:
 211

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	JDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:54 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:54 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:54 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:54 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:54 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 01:54 PM
IS: Scandium(1)	97.7	0	70-200		%REC	5	03/15/18 01:54 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 41 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce+S - R2 - 1 Lab ID: 1802197-42 Alternate ID: 212 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOL	JDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:58 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 01:58 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:58 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 01:58 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 01:58 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 01:58 PM
IS: Scandium(1)	96.5	0	70-200		%REC	5	03/15/18 01:58 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 42 of 60

Date	19-Mar-18
Date.	1 9- Mur-10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce+S - R2 - 2 Lab ID: 1802197-43 Alternate ID: 213 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MO	UDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:00 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:00 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:00 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:00 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:00 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 02:00 PM
IS: Scandium(1)	95.6	0	70-200		%REC	5	03/15/18 02:00 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 43 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce+S - R2 - 3 Lab ID: 1802197-44 Alternate ID: 214 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	28.7	12.5	37.5	J	µg/Filter	5	03/15/18 02:02 PM
Cesium	0.0695	0.0500	2.00	JN	µg/Filter	5	03/15/18 02:02 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:02 PM
Silicon	36.5	12.5	37.5	JN	µg/Filter	5	03/15/18 02:02 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:02 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 02:02 PM
IS: Scandium(1)	96.2	0	70-200		%REC	5	03/15/18 02:02 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 44 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R2 - 4

 Lab ID:
 1802197-45

 Alternate ID:
 215

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	46.5	12.5	37.5		µg/Filter	5	03/15/18 02:04 PM
Cesium	0.120	0.0500	2.00	JN	µg/Filter	5	03/15/18 02:04 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:04 PM
Silicon	56.9	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:04 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:04 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:04 PM
IS: Scandium(1)	96.9	0	70-200		%REC	5	03/15/18 02:04 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 45 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R2 - 5

 Lab ID:
 1802197-46

 Alternate ID:
 216

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	42.3	12.5	37.5		µg/Filter	5	03/15/18 02:06 PM
Cesium	0.124	0.0500	2.00	JN	µg/Filter	5	03/15/18 02:06 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:06 PM
Silicon	47.1	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:06 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:06 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:06 PM
IS: Scandium(1)	97.0	0	70-200		%REC	5	03/15/18 02:06 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 46 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R2 - 6

 Lab ID:
 1802197-47

 Alternate ID:
 217

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MO	UDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:08 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:08 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:08 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:08 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:08 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:08 PM
IS: Scandium(1)	97.0	0	70-200		%REC	5	03/15/18 02:08 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 47 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R2 - 7

 Lab ID:
 1802197-48

 Alternate ID:
 218

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MO	UDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:10 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:10 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:10 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:10 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:10 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:10 PM
IS: Scandium(1)	98.9	0	70-200		%REC	5	03/15/18 02:10 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 48 of 60

Date:	19-Mar-18
Date:	1) mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R2 - 8

 Lab ID:
 1802197-49

 Alternate ID:
 219

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A						Analyst: SP	
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:13 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:13 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:13 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:13 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:13 PM
IS: Indium	102	0	70-200		%REC	5	03/15/18 02:13 PM
IS: Scandium(1)	97.4	0	70-200		%REC	5	03/15/18 02:13 PM

Qualifiers:

* Value exceeds TCLP Maximum Concentration Level

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit

S Spike Recovery outside control limits Page 49 of 60

Date: 19-Mar-18

CLIENT:US EPAProject:Thermal Destruction of CBR ContaminantsProject No:PR-ORD-17-02372Lab Order:1802197

 Client Sample ID:
 B+Ce+S - R2 - 10

 Lab ID:
 1802197-50

 Alternate ID:
 NA

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	20.2	12.5	37.5	J	µg/Filter	5	03/15/18 02:15 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:15 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:15 PM
Silicon	124	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:15 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:15 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:15 PM
IS: Scandium(1)	95.9	0	70-200		%REC	5	03/15/18 02:15 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 50 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R3 - 0

 Lab ID:
 1802197-51

 Alternate ID:
 220

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	DI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:29 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:29 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:29 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:29 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:29 PM
IS: Indium	99.8	0	70-200		%REC	5	03/15/18 02:29 PM
IS: Scandium(1)	94.8	0	70-200		%REC	5	03/15/18 02:29 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 51 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R3 - 1

 Lab ID:
 1802197-52

 Alternate ID:
 221

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MO	UDI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:31 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:31 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:31 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:31 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:31 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:31 PM
IS: Scandium(1)	96.3	0	70-200		%REC	5	03/15/18 02:31 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 52 of 60

Date:	19-Mar-18
Date.	17 Mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R3 - 2

 Lab ID:
 1802197-53

 Alternate ID:
 222

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A							Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:33 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:33 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:33 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:33 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:33 PM
IS: Indium	100	0	70-200		%REC	5	03/15/18 02:33 PM
IS: Scandium(1)	95.1	0	70-200		%REC	5	03/15/18 02:33 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 53 of 60

Date: 19-Mar-18

CLIENT:US EPAProject:Thermal Destruction of CBR ContaminantsProject No:PR-ORD-17-02372Lab Order:1802197

Client Sample ID: B+Ce+S - R3 - 3 Lab ID: 1802197-54 Alternate ID: 223 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	33.1	12.5	37.5	J	µg/Filter	5	03/15/18 02:35 PM
Cesium	0.0710	0.0500	2.00	JN	µg/Filter	5	03/15/18 02:35 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:35 PM
Silicon	32.9	12.5	37.5	JN	µg/Filter	5	03/15/18 02:35 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:35 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:35 PM
IS: Scandium(1)	94.9	0	70-200		%REC	5	03/15/18 02:35 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 54 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R3 - 4

 Lab ID:
 1802197-55

 Alternate ID:
 224

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	IDI FILTER	SW60	20A				Analyst: SP
Aluminum	41.6	12.5	37.5		µg/Filter	5	03/15/18 02:37 PM
Cesium	0.104	0.0500	2.00	JN	µg/Filter	5	03/15/18 02:37 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:37 PM
Silicon	43.0	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:37 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:37 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:37 PM
IS: Scandium(1)	96.0	0	70-200		%REC	5	03/15/18 02:37 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 55 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

Client Sample ID: B+Ce+S - R3 - 5 Lab ID: 1802197-56 Alternate ID: 225 Collection Date: 01/23/18 Matrix: FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	DI FILTER	SW60	20A				Analyst: SP
Aluminum	42.8	12.5	37.5		µg/Filter	5	03/15/18 02:39 PM
Cesium	0.107	0.0500	2.00	JN	µg/Filter	5	03/15/18 02:39 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:39 PM
Silicon	43.8	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:39 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:39 PM
IS: Indium	100	0	70-200		%REC	5	03/15/18 02:39 PM
IS: Scandium(1)	95.8	0	70-200		%REC	5	03/15/18 02:39 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 56 of 60

Date: 19-Mar-18

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R3 - 6

 Lab ID:
 1802197-57

 Alternate ID:
 226

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	DI FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:41 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:41 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:41 PM
Silicon	14.1	12.5	37.5	JN	µg/Filter	5	03/15/18 02:41 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:41 PM
IS: Indium	99.7	0	70-200		%REC	5	03/15/18 02:41 PM
IS: Scandium(1)	94.4	0	70-200		%REC	5	03/15/18 02:41 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 57 of 60

Date:	19-Mar-18
Date.	17 Mai 10

ntaminants

 Client Sample ID:
 B+Ce+S - R3 - 7

 Lab ID:
 1802197-58

 Alternate ID:
 227

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUDI FILTER SW6020A							Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:43 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:43 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:43 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:43 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:43 PM
IS: Indium	99.3	0	70-200		%REC	5	03/15/18 02:43 PM
IS: Scandium(1)	98.1	0	70-200		%REC	5	03/15/18 02:43 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 58 of 60

Date:	19-Mar-18
Date:	1) mai 10

CLIENT:	US EPA
Project:	Thermal Destruction of CBR Contaminants
Project No:	PR-ORD-17-02372
Lab Order:	1802197

 Client Sample ID:
 B+Ce+S - R3 - 8

 Lab ID:
 1802197-59

 Alternate ID:
 228

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOUD	I FILTER	SW60	20A				Analyst: SP
Aluminum	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:45 PM
Cesium	<2.00	0.0500	2.00	Ν	µg/Filter	5	03/15/18 02:45 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:45 PM
Silicon	<37.5	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:45 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:45 PM
IS: Indium	99.7	0	70-200		%REC	5	03/15/18 02:45 PM
IS: Scandium(1)	96.7	0	70-200		%REC	5	03/15/18 02:45 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 59 of 60

Date: 19-Mar-18

CLIENT:US EPAProject:Thermal Destruction of CBR ContaminantsProject No:PR-ORD-17-02372Lab Order:1802197

 Client Sample ID:
 B+Ce+S - R3 - 10

 Lab ID:
 1802197-60

 Alternate ID:
 NA

 Collection Date:
 01/23/18

 Matrix:
 FILTER

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRACE METALS: ICP-MS - MOU	JDI FILTER	SW60	20A				Analyst: SP
Aluminum	20.9	12.5	37.5	J	µg/Filter	5	03/15/18 02:47 PM
Cesium	0.0560	0.0500	2.00	JN	µg/Filter	5	03/15/18 02:47 PM
Potassium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:47 PM
Silicon	150	12.5	37.5	Ν	µg/Filter	5	03/15/18 02:47 PM
Sodium	<37.5	12.5	37.5		µg/Filter	5	03/15/18 02:47 PM
IS: Indium	101	0	70-200		%REC	5	03/15/18 02:47 PM
IS: Scandium(1)	94.9	0	70-200		%REC	5	03/15/18 02:47 PM

Qualifiers:

- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits Page 60 of 60

CLIENT: US EPA

Work Order: 180

Project:

1802197

ANALYTICAL QC SUMMARY REPORT

Thermal Destruction of CBR Contaminants

RunID:

: ICP-MS4_180314B

The QC data in batch 84655 applies to the following samples: 1802197-01A, 1802197-02A, 1802197-03A, 1802197-04A, 1802197-05A, 1802197-06A, 1802197-07A, 1802197-08A, 1802197-09A, 1802197-10A, 1802197-11A, 1802197-12A, 1802197-13A, 1802197-14A, 1802197-15A, 1802197-16A, 1802197-17A, 1802197-13A, 1802197-14A, 1802197-15A, 1802197-16A, 1802197-17A, 1802197-18A, 1802197-19A, 1802197-20A

Sample ID MB-84	655	Batch ID:	84655		TestN	o: SW	6020A		Units:	µg/Filte	er	
SampType: MBLK		Run ID:	ICP-MS4	_180314B	Analy	sis Date: 3/14	/2018 4:24:	00 PM	Prep Date:	3/12/20	18	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit	Qua
Aluminum			<37.5	37.5								
Cesium			<2.00	2.00								Ν
Potassium			<37.5	37.5								
Silicon			<37.5	37.5								Ν
Sodium			<37.5	37.5								
IS: Indium			50.0		200.0		100	70	200			
IS: Scandium(1)			50.0		200.0		95.3	70	200			
Sample ID LCS-84	4655	Batch ID:	84655		TestN	o: SW	6020A		Units:	µg/Filte	er	
SampType: LCS		Run ID:	ICP-MS4	_180314B	Analy	sis Date: 3/14	/2018 4:27:	00 PM	Prep Date:	3/12/20	18	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit	Qual
Aluminum			251	37.5	250.0	0	100	80	120			
Cesium			50.5	2.00	50.00	0	101	80	120			Ν
Potassium			1290	37.5	1250	0	103	80	120			
Silicon			251	37.5	250.0	0	100	80	120			Ν
Sodium			1290	37.5	1250	0	103	80	120			
IS: Indium			50.0		200.0		96.9	70	200			
IS: Scandium(1)			50.0		200.0		94.4	70	200			
Sample ID LCSD-	84655	Batch ID:	84655		TestN	o: SW	6020A		Units:	µg/Filte	er	
SampType: LCSD		Run ID:	ICP-MS4	_180314B	Analy	sis Date: 3/14	/2018 4:29:	00 PM	Prep Date:	3/12/20	18	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit	Qual
Aluminum			253	37.5	250.0	0	101	80	120	0.841	25	
Cesium			50.2	2.00	50.00	0	100	80	120	0.591	25	Ν
Potassium			1310	37.5	1250	0	105	80	120	1.25	25	
Silicon			253	37.5	250.0	0	101	80	120	0.943	25	Ν
Sodium			1290	37.5	1250	0	103	80	120	0.016	25	
IS: Indium			50.0		200.0		96.5	70	200	0	0	
IS: Scandium(1)			50.0		200.0		93.1	70	200	0	0	
Sample ID 180219	97-10A SD	Batch ID:	84655		TestN	o: SW (6020A		Units:	µg/Filte	er	
SampType: SD		Run ID:	ICP-MS4	_180314B	Analy	sis Date: 3/14	/2018 4:35:	00 PM	Prep Date:	3/12/20	18	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RF	DLimit	Qual
Aluminum			<188	188	0	0				0	10	
Qualifiers: B J ND	Analyte dete	ected in the a ected betwee d at the Meth	n MDL and	RL	DF MDL R	Dilution Facto Method Detec RPD outside a	ction Limit			Pag	ge 1 of	12

RL Reporting Limit

J Analyte detected between SDL and RL

S Spike Recovery outside control limits

N Parameter not NELAC certified

CLIENT: US EPA

_

Work Order: 1802197

ANALYTICAL QC SUMMARY REPORT

Project:

Thermal Destruction of CBR Contaminants	
---	--

RunID: ICP-MS4_180314B

Sample ID 1802197-10A SD	Batch ID:	84655		TestNo	: SWe	6020A		Units:	µg/Fi	lter	
SampType: SD	Run ID: ICP-MS4_180314B			Analysi	Analysis Date: 3/14/2018 4:35:00 PM				3/12/2018		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimi	t Qual
Cesium		0.266	10.0	0	0.2735				2.69	10	Ν
Potassium		<188	188	0	0				0	10	
Silicon		72.8	188	0	89.41				20.5	10	RN
Sodium		<188	188	0	0				0	10	
IS: Indium		250		200.0		98.3	70	200	0	0	
IS: Scandium(1)		250		200.0		95.2	70	200	0	0	
Sample ID 1802197-10A PDS	Batch ID:	84655		TestNo	: SW	6020A		Units: µg/Filter			
SampType: PDS	Run ID:	ICP-MS4	_180314B	Analysis Date: 3/14/2018 4		/2018 4:55:	5:00 PM Prep Date		3/12/2018		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimi	t Qual
Aluminum		1220	37.5	1250	0	97.6	80	120			
Cesium		50.1	2.00	50.00	0.2735	99.6	80	120			Ν
Potassium		1270	37.5	1250	0	102	80	120			
Silicon		1360	37.5	1250	89.41	101	80	120			Ν
Sodium		1280	37.5	1250	0	103	80	120			
IS: Indium		50.0		1000		95.5	70	200			
IS: Scandium(1)		50.0		1000		92.4	70	200			

Quali	ifiers:
-------	---------

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits Page 2 of 12

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

CLIENT: US EPA

Work Order: 1802197

ANALYTICAL OC SUMMARY REPORT

RunID:

ICP-MS4 180314B

Project:

Thermal Destruction	of CBR	Contaminants
---------------------	--------	--------------

Sample ID ICV-180314 Batch ID: R96908 TestNo: SW6020A Units: mg/L SampType: ICV Run ID: ICP-MS4_180314B Analysis Date: 3/14/2018 11:57:00 AM Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 2.36 0.0300 2.50 0 94.4 90 110 Aluminum Cesium 0.0992 0.00500 0.100 0 99.2 90 110 Ν Potassium 2.54 0.300 2.50 0 102 90 110 0.100 2.50 0 98.0 Silicon 2.45 90 110 Ν Sodium 2.58 0.300 2.50 0 103 90 110 0.200 200 IS: Indium 0.200 99.0 70 IS: Scandium(1) 0.200 0.200 96.1 200 70 Sample ID LCVL-180314 Batch ID: R96908 TestNo: SW6020A Units: mg/L SampType: LCVL Run ID: ICP-MS4_180314B Analysis Date: 3/14/2018 12:04:00 PM Prep Date: LowLimit HighLimit %RPD RPDLimit Qual Analyte Result RL SPK value Ref Val %REC 0.0937 0.0300 0.100 0 93.7 70 130 Aluminum 0.00189 0.00500 0.00200 0 94.4 70 Cesium 130 Ν Potassium 0.100 0.300 0.100 0 100 70 130 0.100 0 0.0936 0.100 93.6 70 Ν Silicon 130 Sodium 0.105 0.300 0.100 0 105 70 130 70 IS: Indium 0.200 0.200 102 200 IS: Scandium(1) 0.200 0.200 98.6 70 200 Sample ID CCV7-180314 SW6020A Batch ID: R96908 TestNo: Units: mg/L Run ID: Prep Date: SampType: CCV ICP-MS4_180314B Analysis Date: 3/14/2018 4:15:00 PM Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 5.05 0 Aluminum 0.0300 5.00 101 90 110 Cesium 0.205 0.00500 0.200 0 102 90 110 Ν 5.25 5.00 0 105 90 Potassium 0.300 110 Silicon 5.13 0.100 5.00 0 103 90 110 Ν Sodium 5.24 0.300 5.00 0 105 90 110 IS: Indium 0.200 0.200 70 200 94.2 IS: Scandium(1) 0.200 0.200 70 200 91.2 Sample ID LCVL7-180314 Batch ID: R96908 TestNo: SW6020A Units: mg/L SampType: LCVL Run ID: ICP-MS4 180314B Analysis Date: 3/14/2018 4:20:00 PM Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 0.0926 0.100 70 Aluminum 0.0300 0 92.6 130 Cesium 0.00194 0.00500 0.00200 0 97.2 70 130 Ν Potassium 0.105 0.300 0.100 0 105 70 130 Silicon 0.0889 0.100 0.100 0 88.9 70 130 Ν Sodium 0.104 0.300 0.100 0 104 70 130 **Qualifiers:** В Analyte detected in the associated Method Blank DF **Dilution Factor** Analyte detected between MDL and RL J MDL Method Detection Limit Page 3 of 12 ND Not Detected at the Method Detection Limit R

> RL Reporting Limit

J Analyte detected between SDL and RL RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAC certified Ν

CLIENT: Work Order: Project:	US EPA 1802197 Thermal I	Destructior	n of CBR C	Contaminar		ALYT	ICAL (RunII	-	UMMAI	RY REP(180314B	ORT
Sample ID LCVL7	7-180314	Batch ID:	R96908		TestNo:	SW	6020A		Units:	mg/L	
SampType: LCVL		Run ID:	ICP-MS4	_180314B	Analysis	Date: 3/14	/2018 4:20:	00 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLir	mit Qua
IS: Indium			0.200		0.200		98.0	70	200		
IS: Scandium(1)			0.200		0.200		94.9	70	200		
Sample ID CCV8-	180314	Batch ID:	R96908		TestNo:	SW	6020A		Units:	mg/L	
SampType: CCV		Run ID:	ICP-MS4	_180314B	Analysis	Date: 3/14	/2018 4:57:	00 PM	Prep Date:	-	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLir	mit Qua
Aluminum			5.09	0.0300	5.00	0	102	90	110		
Cesium			0.203	0.00500	0.200	0	102	90	110		Ν
Potassium			5.27	0.300	5.00	0	105	90	110		
Silicon			5.18	0.100	5.00	0	104	90	110		Ν
Sodium			5.26	0.300	5.00	0	105	90	110		
IS: Indium			0.200		0.200		94.4	70	200		
IS: Scandium(1)			0.200		0.200		90.2	70	200		
Sample ID LCVL8	3-180314	Batch ID:	R96908		TestNo:	SW	6020A		Units:	mg/L	
SampType: LCVL		Run ID:	ICP-MS4	_180314B	Analysis	Date: 3/14	/2018 5:02:	00 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLir	mit Qua
Aluminum			0.0953	0.0300	0.100	0	95.3	70	130		
Cesium			0.00192	0.00500	0.00200	0	96.2	70	130		Ν
Potassium			0.102	0.300	0.100	0	102	70	130		
Silicon			0.0919	0.100	0.100	0	91.9	70	130		Ν
Sodium			0.101	0.300	0.100	0	101	70	130		
IS: Indium			0.200		0.200		97.7	70	200		
IS: Scandium(1)			0.200		0.200		95.2	70	200		
Sample ID CCV9-	180314	Batch ID:	R96908		TestNo:	SW	6020A		Units:	mg/L	
SampType: CCV		Run ID:	ICP-MS4	_180314B	Analysis	Date: 3/14	/2018 5:27:	00 PM	Prep Date:		
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLir	mit Qua
Aluminum			5.03	0.0300	5.00	0	101	90	110		
Cesium			0.206	0.00500	0.200	0	103	90	110		Ν
Potassium			5.26	0.300	5.00	0	105	90	110		
Silicon			5.14	0.100	5.00	0	103	90	110		Ν
Sodium			5.24	0.300	5.00	0	105	90	110		
IS: Indium			0.200		0.200		92.9	70	200		
			0.200		0.200		89.9	70	200		

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 4 of 12 Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAC certified

CLIENT: US EPA Work Order:

1802197

ANALYTICAL QC SUMMARY REPORT

Project: Thermal Destruction of CBR Contaminants **RunID:**

ICP-MS4_180314B

Sample ID LCVL9-180314	Batch ID: R96908		TestNo	: swe	6020A		Units:	mg/L	
SampType: LCVL	Run ID: ICP-MS	4_180314B	Analysis Date: 3/14/2018 5:31:00 PM				Prep Date:		
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qua	
Aluminum	0.0948	0.0300	0.100	0	94.8	70	130		
Cesium	0.00196	0.00500	0.00200	0	97.8	70	130	N	
Potassium	0.102	0.300	0.100	0	102	70	130		
Silicon	0.0888	0.100	0.100	0	88.8	70	130	Ν	
Sodium	0.104	0.300	0.100	0	104	70	130		
IS: Indium	0.200		0.200		95.3	70	200		
IS: Scandium(1)	0.200		0.200		92.2	70	200		

Qualifiers:

В Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit

Page 5 of 12

- R RPD outside accepted control limits
- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

CLIENT:

US EPA Work Order: 1802197

ANALYTICAL QC SUMMARY REPORT

Project:

Thermal Destruction of CBR Contaminants

RunID:

ICP-MS4_180315A

The QC data in batch 84699 applies to the following samples: 1802197-21A, 1802197-22A, 1802197-23A, 1802197-24A, 1802197-25A, 1802197-26A, 1802197-27A, 1802197-28A, 1802197-29A, 1802197-30A, 1802197-31A, 1802197-32A, 1802197-33A, 1802197-34A, 1802197-35A, 1802197-36A, 1802197-37A, 1802197-38A, 1802197-39A, 1802197-40A

Sample ID	MB-846	99	Batch ID:	84699		TestNo	b: SWO	6020A		Units:	µg/Filt	er	
SampType:	MBLK		Run ID:	ICP-MS4	_180315A	Analys	is Date: 3/15	/2018 12:33	3:00 PM	Prep Date:	3/14/2	018	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit	Qua
Aluminum				<37.5	37.5								
Cesium				<2.00	2.00								Ν
Potassium				<37.5	37.5								
Silicon				<37.5	37.5								Ν
Sodium				<37.5	37.5								
IS: Indium	ı			50.0		200.0		102	70	200			
IS: Scandi	ium(1)			50.0		200.0		98.8	70	200			
Sample ID	LCS-84	699	Batch ID:	84699		TestNo	: SWO	6020A		Units:	µg/Filt	er	
SampType:	LCS		Run ID:	ICP-MS4	_180315A	Analys	is Date: 3/15	/2018 12:36	6:00 PM	Prep Date:	3/14/2	018	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit	Qual
Aluminum				252	37.5	250.0	0	101	80	120			
Cesium				50.2	2.00	50.00	0	100	80	120			Ν
Potassium				1290	37.5	1250	0	103	80	120			
Silicon				251	37.5	250.0	0	101	80	120			Ν
Sodium				1300	37.5	1250	0	104	80	120			
IS: Indium	n			50.0		200.0		100	70	200			
IS: Scandi	ium(1)			50.0		200.0		97.4	70	200			
Sample ID	LCSD-8	4699	Batch ID:	84699		TestNo	o: SWO	6020A		Units:	µg/Filt	er	
SampType:	LCSD		Run ID:	ICP-MS4	_180315A	Analys	is Date: 3/15	/2018 12:38	8:00 PM	Prep Date:	3/14/2	018	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit	Qua
Aluminum				257	37.5	250.0	0	103	80	120	2.26	25	
Cesium				50.2	2.00	50.00	0	100	80	120	0.005	25	Ν
Potassium				1330	37.5	1250	0	106	80	120	2.56	25	
Silicon				258	37.5	250.0	0	103	80	120	2.46	25	Ν
Sodium				1320	37.5							25	
Journ				1320	37.5	1250	0	105	80	120	1.44		
IS: Indium	n			50.0	57.5	1250 200.0	0	105 101	80 70	120 200	1.44 0	0	
					57.5		0						
IS: Indium	ium(1)	7-27A SD	Batch ID:	50.0	57.5	200.0		101	70	200	0	0 0	
IS: Indium IS: Scandi	ium(1) 1802197	7-27A SD	Batch ID: Run ID:	50.0 50.0 84699	_180315A	200.0 200.0 TestNo		101 97.2	70 70	200 200	0 0 µg/Filt	0 0 er	
IS: Indium IS: Scandi Sample ID	ium(1) 1802197	7-27A SD	Run ID:	50.0 50.0 84699		200.0 200.0 TestNo	o: SW(101 97.2	70 70	200 200 Units:	0 0 µg/Filt 3/14/2	0 0 er 018	Qual
IS: Indium IS: Scandi Sample ID SampType:	ium(1) 1802197	7-27A SD	Run ID:	50.0 50.0 84699 ICP-MS4	_180315A	200.0 200.0 TestNo Analys	b: SW(bis Date: 3/15	101 97.2 6020A /2018 12:44	70 70	200 200 Units: Prep Date:	0 0 µg/Filt 3/14/2	0 0 er 018	Qual
IS: Indium IS: Scandi Sample ID SampType: Analyte	ium(1) 1802197	7-27A SD	Run ID:	50.0 50.0 84699 ICP-MS4 Result	_ 180315A RL	200.0 200.0 TestNo Analys SPK value	o: SW0 iis Date: 3/15 Ref Val	101 97.2 6020A /2018 12:44	70 70	200 200 Units: Prep Date:	0 0 µg/Filt 3/14/2 6RPD R	0 0 er 018 PDLimit	Qual
IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum	ium(1) 1802197	7-27A SD	Run ID:	50.0 50.0 84699 ICP-MS4 Result <188	_ 180315A RL 188	200.0 200.0 TestNo Analys SPK value 0	o: SW (iis Date: 3/15 Ref Val 0	101 97.2 6020A /2018 12:44	70 70	200 200 Units: Prep Date:	0 0 µg/Filt 3/14/2 %RPD R	0 0 er 018 PDLimit	
IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum Cesium	ium(1) 1802197		Run ID:	50.0 50.0 84699 ICP-MS4 Result <188 <10.0 <188	_ 180315A RL 188 10.0 188	200.0 200.0 TestNo Analys SPK value 0 0 0 0	o: SW (iis Date: 3/15 Ref Val 0 0	101 97.2 5020A /2018 12:44 %REC	70 70	200 200 Units: Prep Date:	0 0 µg/Filt 3/14/2 6RPD R 0 0	0 0 er 018 PDLimit 10 10	
IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum Cesium Potassium	ium(1) 1802197 SD	Analyte det	Run ID:	50.0 50.0 84699 ICP-MS4 Result <188 <10.0 <188 ssociated Me	_ 180315A RL 188 10.0 188 ethod Blank	200.0 200.0 TestNo Analys SPK value 0 0 0 0 0 DF	o: SW (iis Date: 3/15 Ref Val 0 0 0	101 97.2 5020A /2018 12:44 %REC	70 70	200 200 Units: Prep Date:	0 0 µg/Filt 3/14/2 6RPD R 0 0	0 0 er 018 PDLimit 10 10	N
IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum Cesium Potassium	ium(1) 1802197 SD	Analyte det Analyte det	Run ID:	50.0 50.0 84699 ICP-MS4 Result <188 <10.0 <188 ssociated Me n MDL and B	_180315A RL 188 10.0 188 ethod Blank RL	200.0 200.0 TestNo Analys SPK value 0 0 0 0 DF MDL	o: SW(iis Date: 3/15 Ref Val 0 0 0 0 Dilution Factor	101 97.2 5020A /2018 12:44 %REC	70 70	200 200 Units: Prep Date:	0 0 µg/Filt 3/14/2 6RPD R 0 0	0 0 er 018 PDLimit 10 10	N
IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum Cesium Potassium	ium(1) 1802193 SD B J	Analyte det Analyte det	Run ID: rected in the a rected betwee ed at the Meth	50.0 50.0 84699 ICP-MS4 Result <188 <10.0 <188 ssociated Me n MDL and B	_180315A RL 188 10.0 188 ethod Blank RL	200.0 200.0 TestNo Analys SPK value 0 0 0 0 DF MDL R	o: SW(bis Date: 3/15 Ref Val 0 0 0 Dilution Factor Method Detect	101 97.2 5020A /2018 12:44 %REC or tion Limit accepted cont	70 70 LowLimi	200 200 Units: Prep Date: t HighLimit ?	0 0 µg/Filt 3/14/2 6RPD R 0 0	0 0 er 018 PDLimit 10 10	N

Work Order:	1802197				AP		ICAL (in si	JIVIIVIAI		(EPU)	KI
Project:	Thermal I	Destruction	of CBR	Contaminar	nts		RunII): 1	CP-MS4_	1803	15A	
Sample ID 18021	97-27A SD	Batch ID:	84699		TestNo	: SW(6020A		Units:	μg/F	ilter	
SampType: SD		Run ID:	ICP-MS	4_180315A	Analys	is Date: 3/15	/2018 12:44	4:00 PM	Prep Date:	3/14	/2018	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimi	t Qual
Silicon			<188	188	0	0				0	10	Ν
Sodium			<188	188	0	0				0	10	
IS: Indium			250		200.0		103	70	200	0	0	
IS: Scandium(1)			250		200.0		100	70	200	0	0	
Sample ID 180219	97-27A PDS	Batch ID:	84699		TestNo	: SWe	6020A		Units:	μg/F	ilter	
SampType: PDS		Run ID:	ICP-MS	4_180315A	Analys	is Date: 3/15	/2018 1:04:	00 PM	Prep Date:	3/14	/2018	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimi	t Qual
Aluminum			1220	37.5	1250	0	97.4	80	120			
Cesium			49.1	2.00	50.00	0	98.1	80	120			Ν
Potassium			1260	37.5	1250	0	101	80	120			
Silicon			1250	37.5	1250	0	99.8	80	120			Ν
Childon												
Sodium			1280	37.5	1250	0	103	80	120			
			1280 50.0	37.5	1250 1000	0	103 98.9	80 70	120 200			

Qualifiers:

В

CLIENT:

US EPA

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

- DF MDL Method Detection Limit
 - R RPD outside accepted control limits

Dilution Factor

- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

ANALYTICAL OC SUMMARY REPORT

Page 7 of 12

CLIENT: US EPA

1802197

Work Order:

ANALYTICAL QC SUMMARY REPORT

Project:

Thermal Destruction of CBR Contaminants

RunID: ICP

ICP-MS4_180315A

The QC data in batch 84700 applies to the following samples: 1802197-41A, 1802197-42A, 1802197-43A, 1802197-44A, 1802197-45A, 1802197-46A, 1802197-47A, 1802197-48A, 1802197-49A, 1802197-50A, 1802197-51A, 1802197-52A, 1802197-53A, 1802197-54A, 1802197-55A, 1802197-56A, 1802197-57A, 1802197-58A, 1802197-59A, 1802197-60A

Sample ID	MB-847	00	Batch ID:	84700		TestNo	: SW	6020A		Units:	µg/Fil	ter	
SampType:	MBLK		Run ID:	ICP-MS4	_180315A	Analys	sis Date: 3/15	/2018 1:46:	00 PM	Prep Date:	3/14/2	2018	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit	Qual
Aluminum				<37.5	37.5								
Cesium				<2.00	2.00								Ν
Potassium				<37.5	37.5								
Silicon				<37.5	37.5								Ν
Sodium				<37.5	37.5								
IS: Indium				50.0		200.0		99.9	70	200			
IS: Scandi	ium(1)			50.0		200.0		96.1	70	200			
Sample ID	LCS-84	700	Batch ID:	84700		TestNo	o: SW6	6020A		Units:	µg/Fil	ter	
SampType:	LCS		Run ID:	ICP-MS4	_180315A	Analys	sis Date: 3/15	/2018 1:48:	00 PM	Prep Date:	3/14/2	2018	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit	Qual
Aluminum				255	37.5	250.0	0	102	80	120			
Cesium				48.7	2.00	50.00	0	97.5	80	120			Ν
Potassium				1290	37.5	1250	0	103	80	120			
Silicon				251	37.5	250.0	0	100	80	120			Ν
Sodium				1290	37.5	1250	0	103	80	120			
IS: Indium				50.0		200.0		98.9	70	200			
IS: Scandi	ium(1)			50.0		200.0		95.6	70	200			
Sample ID	LCSD-8	4700	Batch ID:	84700		TestNo	D: SW6	6020A		Units:	µg/Fil	ter	
SampType:	LCSD		Run ID:	ICP-MS4	_180315A	Analys	sis Date: 3/15	/2018 1:50:	00 PM	Prep Date:	3/14/2	2018	
Analyte				Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimit	Qual
Aluminum				262	37.5	250.0	0	105	80	120	2.89	25	
Cesium				50.3	2.00		0	101	80	120	3.18	25	Ν
				00.0	2.00	50.00	0	101	00	120	5.10		
Potassium				1320	37.5	50.00 1250	0	101 105	80 80	120	1.85	25	
Potassium Silicon												25 25	N
				1320	37.5	1250	0	105	80	120	1.85		N
Silicon				1320 256	37.5 37.5	1250 250.0	0 0	105 102	80 80	120 120	1.85 2.04	25	Ν
Silicon Sodium				1320 256 1320	37.5 37.5	1250 250.0 1250	0 0	105 102 106	80 80 80	120 120 120	1.85 2.04 2.01	25 25	Ν
Silicon Sodium IS: Indium	ium(1)	7-41A SD	Batch ID:	1320 256 1320 50.0	37.5 37.5	1250 250.0 1250 200.0	0 0 0	105 102 106 98.5	80 80 80 70	120 120 120 200	1.85 2.04 2.01 0	25 25 0 0	N
Silicon Sodium IS: Indium IS: Scandi	ium(1) 1802197	7-41A SD	Batch ID: Run ID:	1320 256 1320 50.0 50.0	37.5 37.5 37.5	1250 250.0 1250 200.0 200.0 TestNo	0 0 0	105 102 106 98.5 95.7	80 80 80 70 70	120 120 120 200 200	1.85 2.04 2.01 0 0 μg/Filt	25 25 0 0	N
Silicon Sodium IS: Indium IS: Scandi Sample ID	ium(1) 1802197	7-41A SD		1320 256 1320 50.0 50.0 84700	37.5 37.5 37.5	1250 250.0 1250 200.0 200.0 TestNo	0 0 0	105 102 106 98.5 95.7	80 80 70 70 00 PM	120 120 120 200 200 Units:	1.85 2.04 2.01 0 0 µg/Fil ⁺ 3/14/2	25 25 0 0 ter	
Silicon Sodium IS: Indium IS: Scandi Sample ID SampType:	ium(1) 1802197	7-41A SD		1320 256 1320 50.0 50.0 84700 ICP-MS4	37.5 37.5 37.5 _ 180315A	1250 250.0 1250 200.0 200.0 TestNo Analys	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	105 102 106 98.5 95.7 6020A 5/2018 1:56:	80 80 70 70 00 PM	120 120 200 200 Units: Prep Date:	1.85 2.04 2.01 0 0 µg/Fil ⁺ 3/14/2	25 25 0 0 ter	
Silicon Sodium IS: Indium IS: Scandi Sample ID SampType: Analyte	ium(1) 1802197	7-41A SD		1320 256 1320 50.0 50.0 84700 ICP-MS4 Result	37.5 37.5 37.5 180315A RL	1250 250.0 1250 200.0 200.0 TestNo Analys	0 0 0 5: SW6 5is Date: 3/15 Ref Val	105 102 106 98.5 95.7 6020A 5/2018 1:56:	80 80 70 70 00 PM	120 120 200 200 Units: Prep Date:	1.85 2.04 2.01 0 0 µg/Fil 3/14/2 6RPD R	25 25 0 0 ter 2018	
Silicon Sodium IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum	ium(1) 1802197	7-41A SD		1320 256 1320 50.0 50.0 84700 ICP-MS4 Result <188	37.5 37.5 37.5 37.5 	1250 250.0 1250 200.0 200.0 TestNo Analys SPK value 0	0 0 0 5: SW 5is Date: 3/15 Ref Val 0	105 102 106 98.5 95.7 6020A 5/2018 1:56:	80 80 70 70 00 PM	120 120 200 200 Units: Prep Date:	1.85 2.04 2.01 0 0 µg/Fil 3/14/2 6RPD R	25 25 0 25 0 0 2018 RPDLimit	Qual
Silicon Sodium IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum Cesium	ium(1) 1802197		Run ID:	1320 256 1320 50.0 50.0 84700 ICP-MS4 Result <188 <10.0	37.5 37.5 37.5 180315A RL 188 10.0 188	1250 250.0 1250 200.0 200.0 TestNo Analys SPK value 0 0 0 0	0 0 0 5: SW 5is Date: 3/15 Ref Val 0 0	105 102 98.5 95.7 6020A 5/2018 1:56: %REC	80 80 70 70 00 PM	120 120 200 200 Units: Prep Date:	1.85 2.04 2.01 0 0 µg/Fil 3/14/2 6RPD R 0 0	25 25 0 0 ter 2018 RPDLimit	Qual
Silicon Sodium IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum Cesium Potassium	ium(1) 1802197 SD	Analyte dete	Run ID:	1320 256 1320 50.0 50.0 84700 ICP-MS4 Result <188 <10.0 <188	37.5 37.5 37.5 I80315A RL 188 10.0 188 thod Blank	1250 250.0 1250 200.0 200.0 TestNo Analys SPK value 0 0 0 0 0 DF	0 0 0 0 0 0 0 0 0 0 0	105 102 98.5 95.7 6020A 6020A 602018 1:56: %REC	80 80 70 70 00 PM	120 120 200 200 Units: Prep Date:	1.85 2.04 2.01 0 0 µg/Fil 3/14/2 6RPD R 0 0 0	25 25 0 0 ter 2018 RPDLimit	Qual
Silicon Sodium IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum Cesium Potassium	ium(1) 1802197 SD	Analyte dete Analyte dete	Run ID:	1320 256 1320 50.0 50.0 84700 ICP-MS4 Result <188 <10.0 <188	37.5 37.5 37.5 180315A RL 188 10.0 188 thod Blank L	1250 250.0 1250 200.0 200.0 TestNo Analys SPK value 0 0 0 0 DF MDL	0 0 0 Sis Date: 3/15 Ref Val 0 0 0 0	105 102 98.5 95.7 6020A 6/2018 1:56: %REC	80 80 70 70 00 PM LowLimi	120 120 200 200 Units: Prep Date:	1.85 2.04 2.01 0 0 µg/Fil 3/14/2 6RPD R 0 0 0	25 25 0 25 8 2018 2018 2018 2018 2018 2010 2010 20	Qual
Silicon Sodium IS: Indium IS: Scandi Sample ID SampType: Analyte Aluminum Cesium Potassium	ium(1) 1802197 SD B J	Analyte dete Analyte dete	Run ID: ected in the a ected betwee ed at the Metl	1320 256 1320 50.0 50.0 84700 ICP-MS4 Result <188 <10.0 <188 ssociated Me n MDL and R	37.5 37.5 37.5 180315A RL 188 10.0 188 thod Blank L	1250 250.0 1250 200.0 200.0 TestNo Analys SPK value 0 0 0 0 DF MDL R	0 0 0 So: SW6 Sis Date: 3/15 Ref Val 0 0 0 Dilution Factor Method Detect	105 102 106 98.5 95.7 6020A 6/2018 1:56: %REC	80 80 70 70 00 PM LowLimi	120 120 200 200 Units: Prep Date: t HighLimit %	1.85 2.04 2.01 0 0 µg/Fil 3/14/2 6RPD R 0 0 0	25 25 0 25 8 2018 2018 2018 2018 2018 2010 2010 20	Qual

Work Order:	1802197				Ar		ICAL (in the second se	JMIMAR		LFU	KI
Project:	Thermal I	Destruction	of CBR	Contaminar	nts		RunII): I	CP-MS4_	18031	15A	
Sample ID 180219	97-41A SD	Batch ID:	84700		TestNo	: SW6	6020A		Units:	μg/F	ilter	
SampType: SD		Run ID:	ICP-MS	4_180315A	Analys	is Date: 3/15	/2018 1:56:	00 PM	Prep Date:	3/14	/2018	
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimi	t Qual
Silicon			<188	188	0	0				0	10	Ν
Sodium			<188	188	0	0				0	10	
IS: Indium			250		200.0		101	70	200	0	0	
IS: Scandium(1)			250		200.0		97.1	70	200	0	0	
Sample ID 18021	97-41A PDS	Batch ID:	84700		TestNo	: SW6	6020A		Units:	μg/F	ilter	
SampType: PDS		Run ID:	ICP-MS	4_180315A	Analys	is Date: 3/15	/2018 2:17:	00 PM	Prep Date:	3/14	/2018	
Analyte			Result	RL	SPK value	Ref Val	%REC	I owl im	it HighLimit %	6RPD	RPDLimi	t Qual
					0		701 CE O		, in the second s			
Aluminum			1220	37.5	1250	0	97.7	80	120			
Aluminum Cesium			1220 48.0	37.5 2.00					5			N
					1250	0	97.7	80	120			N
Cesium			48.0	2.00	1250 50.00	0 0	97.7 95.9	80 80	120 120			N N
Cesium Potassium			48.0 1240	2.00 37.5	1250 50.00 1250	0 0 0	97.7 95.9 99.5	80 80 80	120 120 120 120			
Cesium Potassium Silicon			48.0 1240 1240	2.00 37.5 37.5	1250 50.00 1250 1250	0 0 0 0	97.7 95.9 99.5 99.2	80 80 80 80	120 120 120 120 120			

Qualifiers:

CLIENT:

US EPA

Analyte detected in the associated Method Blank

Analyte detected between MDL and RL J ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL DF Dilution Factor

MDL Method Detection Limit R RPD outside accepted control limits

S Spike Recovery outside control limits

Ν Parameter not NELAC certified

88

ANALVTICAL OC SUMMARY REPORT

Page 9 of 12

CLIENT: US EPA

1802197

ANALYTICAL OC SUMMARY REPORT

RunID:

ICP-MS4 180315A

Project:

Work Order:

Thermal Destruction of CBR Contaminants

Sample ID ICV-180315 Batch ID: TestNo: SW6020A R96921 Units: mg/L SampType: ICV Run ID: ICP-MS4_180315A Analysis Date: 3/15/2018 12:23:00 PM Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 2.42 0.0300 2.50 0 96.6 90 110 Aluminum Cesium 0.0982 0.00500 0.100 0 98.2 90 110 Ν 101 2.53 0.300 2.50 0 90 Potassium 110 0.100 0 Silicon 2.49 2.50 99.7 90 110 Ν Sodium 2.62 0.300 2.50 0 105 90 110 IS: Indium 0.200 0.200 99.1 70 200 IS: Scandium(1) 0.200 0.200 95.4 200 70 Sample ID LCVL-180315 Batch ID: R96921 TestNo: SW6020A Units: mg/L SampType: LCVL Run ID: ICP-MS4_180315A Analysis Date: 3/15/2018 12:27:00 PM Prep Date: LowLimit HighLimit %RPD RPDLimit Qual Analyte Result RL SPK value Ref Val %REC 0.0952 0.0300 0.100 0 95.2 70 130 Aluminum 0.00192 0.00500 0.00200 0 96.2 70 Cesium 130 Ν Potassium 0.0991 0.300 0.100 0 99.1 70 130 0.100 0 Silicon 0.0973 0.100 97.3 70 Ν 130 Sodium 0.108 0.300 0.100 0 108 70 130 70 IS: Indium 0.200 0.200 99.9 200 IS: Scandium(1) 0.200 0.200 96.8 70 200 Sample ID CCV1-180315 SW6020A Batch ID: R96921 TestNo: Units: mg/L Run ID: Prep Date: SampType: CCV ICP-MS4_180315A Analysis Date: 3/15/2018 1:06:00 PM Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 4.92 0 Aluminum 0.0300 5.00 98.5 90 110 Cesium 0.197 0.00500 0.200 0 98.5 90 Ν 110 5.00 0 90 Potassium 5.16 0.300 103 110 Silicon 4.99 0.100 5.00 0 99.8 90 110 Ν Sodium 5.21 0.300 5.00 0 104 90 110 IS: Indium 0.200 0.200 97.4 70 200 IS: Scandium(1) 0.200 0.200 94.6 200 70 Sample ID LCVL1-180315 Batch ID: R96921 TestNo: SW6020A Units: mg/L SampType: LCVL Run ID: ICP-MS4 180315A Analysis Date: 3/15/2018 1:10:00 PM Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Analyte 70 Aluminum 0.0999 0.0300 0.100 0 99.9 130 Cesium 0.00195 0.00500 0.00200 0 70 130 97.3 Ν Potassium 0.104 0.300 0.100 0 104 70 130 Silicon 0.104 0.100 0.100 0 104 70 130 Ν Sodium 0.105 0.300 0.100 0 105 70 130 **Qualifiers:** В Analyte detected in the associated Method Blank DF **Dilution Factor** Analyte detected between MDL and RL J MDL Method Detection Limit Page 10 of 12 ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL R RPD outside accepted control limits

S Spike Recovery outside control limits

Parameter not NELAC certified Ν

		J MMA CP-MS4_	-	CAL (RunII	ALYT]		Contaminar	1 of CBR (Destruction	US EPA 1802197 Thermal I	CLIENT: Work Order: Project:
	mg/L	Units:		020A	SW6	TestNo:		R96921	Batch ID:	1-180315	Sample ID LCVL1
	:	Prep Date:	00 PM	/2018 1:10:	Date: 3/15/	Analysis	_180315A	ICP-MS4	Run ID:		SampType: LCVL
DLimit Qua	%RPD RF	it HighLimit	LowLim	%REC	Ref Val	SPK value	RL	Result			Analyte
		200	70	102		0.200		0.200			IS: Indium
		200	70	96.5		0.200		0.200			IS: Scandium(1)
	mg/L	Units:		020A	SW6	TestNo:		R96921	Batch ID:	180315	Sample ID CCV2-
	:	Prep Date:	00 PM	/2018 1:36:	Date: 3/15/	Analysis	_180315A	ICP-MS4	Run ID:		SampType: CCV
DLimit Qua	%RPD RF	it HighLimit	LowLim	%REC	Ref Val	SPK value	RL	Result			Analyte
		110	90	99.1	0	5.00	0.0300	4.95			Aluminum
Ν		110	90	97.7	0	0.200	0.00500	0.195			Cesium
		110	90	101	0	5.00	0.300	5.06			Potassium
Ν		110	90	100	0	5.00	0.100	5.02			Silicon
		110	90	104	0	5.00	0.300	5.18			Sodium
		200	70	97.3		0.200		0.200			IS: Indium
		200	70	94.7		0.200		0.200			IS: Scandium(1)
	mg/L	Units:		020A	SW6	TestNo:		R96921	Batch ID:	2-180315	Sample ID LCVL2
	:	Prep Date:	00 PM	/2018 1:41:	Date: 3/15/	Analysis	_180315A	ICP-MS4	Run ID:		SampType: LCVL
DLimit Qua	%RPD RF	it HighLimit	LowLim	%REC	Ref Val	SPK value	RL	Result			Analyte
		130	70	96.6	0	0.100	0.0300	0.0966			Aluminum
Ν		130	70	94.8	0	0.00200	0.00500	0.00190	(Cesium
		130	70	103	0	0.100	0.300	0.103			Potassium
Ν		130	70	96.3	0	0.100	0.100	0.0963			Silicon
		130	70	104	0	0.100	0.300	0.104			Sodium
		200	70	102		0.200		0.200			IS: Indium
		200	70	96.5		0.200		0.200			IS: Scandium(1)
	mg/L	Units:		020A	SW6	TestNo:		R96921	Batch ID:	180315	Sample ID CCV3-
	:	Prep Date:	00 PM	/2018 2:19:	Date: 3/15/	Analysis	_180315A	ICP-MS4	Run ID:		SampType: CCV
DLimit Qua	%RPD RF	it HighLimit	LowLim	%REC	Ref Val	SPK value	RL	Result			Analyte
		110	90	99.6	0	5.00	0.0300	4.98			Aluminum
Ν		110	90	97.3	0	0.200	0.00500	0.195			Cesium
		110	90	104	0	5.00	0.300	5.18			Potassium
Ν		110	90	100	0	5.00	0.100	5.01			Silicon
		110	90	105	0	5.00	0.300	5.25			Sodium
		200	70	96.6		0.200		0.200			IS: Indium
		200	-								

Qualifiers: В Analyte detected in the associated Method Blank DF Dilution Factor Page 11 of 12 Analyte detected between MDL and RL MDL Method Detection Limit J ND Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν Parameter not NELAC certified

CLIENT: US EPA

Work Order: 1802197

Thermal Destruction of CBR Contaminants

ANALYTICAL QC SUMMARY REPORT

ICP-MS4_180315A

RunID:

Project:

Sample ID LCVL3-180315	Batch ID:	R96921		TestNo	SW	6020A		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS4	_180315A	Analysi	s Date: 3/15	5/2018 2:24:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD F	RPDLimit Qual
Aluminum		0.121	0.0300	0.100	0	121	70	130		
Cesium		0.00194	0.00500	0.00200	0	97.2	70	130		Ν
Potassium		0.103	0.300	0.100	0	103	70	130		
Silicon		0.0989	0.100	0.100	0	98.9	70	130		Ν
Sodium		0.103	0.300	0.100	0	103	70	130		
IS: Indium		0.200		0.200		98.3	70	200		
IS: Scandium(1)		0.200		0.200		94.7	70	200		
Sample ID CCV4-180315	Batch ID:	R96921		TestNo	SW	6020A		Units:	mg/L	
SampType: ССV	Run ID:	ICP-MS4	_180315A	Analysi	s Date: 3/15	5/2018 2:49:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD F	RPDLimit Qual
Aluminum		5.02	0.0300	5.00	0	100	90	110		
Cesium		0.198	0.00500	0.200	0	98.8	90	110		Ν
Potassium		5.10	0.300	5.00	0	102	90	110		
Silicon		5.02	0.100	5.00	0	100	90	110		Ν
Sodium		5.18	0.300	5.00	0	104	90	110		
IS: Indium		0.200		0.200		95.2	70	200		
IS: Scandium(1)		0.200		0.200		92.7	70	200		
Sample ID LCVL4-180315	Batch ID:	R96921		TestNo	sw	6020A		Units:	mg/L	
SampType: LCVL	Run ID:	ICP-MS4	_180315A	Analysi	s Date: 3/15	5/2018 2:54:	00 PM	Prep Date	:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD F	RPDLimit Qual
Aluminum		0.123	0.0300	0.100	0	123	70	130		
Cesium		0.00189	0.00500	0.00200	0	94.7	70	130		Ν
Potassium		0.104	0.300	0.100	0	104	70	130		
Silicon		0.0998	0.100	0.100	0	99.8	70	130		Ν
Sodium		0.104	0.300	0.100	0	104	70	130		
IS: Indium		0.200		0.200		98.6	70	200		
IS: Scandium(1)		0.200		0.200		94.6	70	200		

Qualifiers:

В Analyte detected in the associated Method Blank

- J Analyte detected between MDL and RL ND
 - Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit R RPD outside accepted control limits

Page 12 of 12

- S Spike Recovery outside control limits
- Ν Parameter not NELAC certified

Silicon Sodium

CLIENT:	US EPA
Work Order:	1802197
Project:	Thermal Destruction of CBR Contaminants
TestNo: SW6020A	MDL MQL

12.5

37.5

Qualifiers:	MQL -Method Quantitation Limit as defined by TRRP
	MDL -Method Detection Limit as defined by TRRP

Date: 19-Mar-18

Project:	Therma	l Destruction of C	BR Contam
TestNo: SW60)20A	MDL	MQL
Analyte		µg/Filter	µg/Filter
Aluminum		12.5	37.5
Cesium		0.0500	2.00
Potassium		12.5	37.5
Silicon		12.5	37.5

MQL SUMMARY REPORT

Appendix F: MOUDI Data Sheets

Operator	L. Virtaranta	
Condition	Notral Cars 1	
Run Number	KI	6.4
Date	9-26-2017 9-27-2017	(12-1-17) 9-26-17 12-1-17
Start time	1314	es
Stop time	1334	

Time		N2 Flow (L/min)	MOUDI T, (°F)	Duct T (°C)	Probe T (°F)	₩ OUDI' T (°E)	Pump T (°F) ^የ	Magnahelic (in. WÇ)	Flow Meter	Nox MOUDI (ppm)	Nox Stack (ppm)
	0	27	89	559	89		113	>25/10	1.44		/
	5	12	91	559	94		135	>25/10	1.77	1.65	54
	10	27	12	559	101		,44	725/208	1.49	3.31	54
	15	17	93	559	99		154	>25/5	1.46	3.01	54
	20	17	94	559	98		162	725/5	1.45	3.00	53
) 		

Operator	L. Virtamale
Condition	Natural Gas 1
Run Number	R2 20
Date	9-27-2012 (P12-112)
Start time	1403 -
Stop time	1423

Time		N2 Flow (L/min)	MOUDI T (°F)	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Magnahelic (in. WC)	Flow Meter	Nox MOUDI (ppm)	Nox Stack (ppm)
	0	22	87	554	91	\land	124	25/5	1.46	-	53
	5	27	70	559	77	\backslash	148	>25/5	1.46	3.26	54
	10	77	12	559	99		158	225/5	1.46	2.62	53
	15	27	93	559	100		166	725/5	1.45	3.50	53
	20	27	१५	559	79		171	725/5	1.45	2.99	53

Operator	L. Virtarante
Condition	Natural Gas 1
Run Number	R3.
Date	9-27-2017 (PW)2)
Start time	1440
Stop time	1500

Time	N2 F	low	MOUDI T	Duct T	Probe T	MOUDI T	Pump T	Magnahelic	Flow Meter	Nox MOUDI	Nox Stack
	(L/n	nin)	(°F)	(°C)	(°F)	(°F)	(°F)	(in. WC)	٠	(ppm)	(ppm)
	רג ו		88	559	93	1	147	725/5	1.46		53
	5 27		90	559	97	\backslash	157	725/5	1.45	3.71	55
1	27		92	559	77		164	>25/5	1.45	3.36	53
1:	5 17		94	559	98		172	725/5	1.45	3.08	54
20	7 7		94	559	97		176	>25/5	1.45	2.87	78
-											
						-					

.

Operator	L. Virtarante
Condition	Field Blank 1
Run Number	FB.1
Date	2-26-107 (121) 9-26-17
Start time	1534
Stop time	1554

(°C)	(°F) 87 87 87 87 87 87	(°F)	(°F) 132 152 162 168	(in. WC) 725/5 725/5 725/5 725/5	* 1.46 1.46	(ppm)	(ppm)
	87 87 87		152 162	>25/5 >25/5	1.46		
	87 87	\mathbf{i}	162	>25/5 >25/5	1.46		
	87			725/5	1.46		
			168		1.117		
	87				1.46		
			172	725/5	1.46		
K							
						ALC WARTS	
					Image: state stat	Image: state stat	Image: state in the state

Operator	L. Virtaranta	
Condition	Nin+ Biomass	
Run Number	RI	
Date	9-27-2017	10
Start time	1048	
Stop time	11 08	

Time		N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag	Bottom Mag	NO MOUDI	NO Stack
		(L/min)	*	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
	0	25.3	1.46	558	96	94	96	725	5	-	53
	5	25.3	1.46	559	106	25	75	>25-	5	5.6	51
	10	25.3	1.46	559	112	96	25	725	5	5.85	53
	15	25.3	1.45	559	1)2	97	55	>25	10	6.35	55
	20	253	1.44	559	113	ঀৢ	95	725	5	5.83	\$4
1								9			
						· · · · · · · · · · · · · · · · · · ·	ļ				
								· · · · · · · · · · · · · · · · · · ·			
	+								(K. 1993)		

Operator	L. Virtumata
Condition	Biomass
Run Number	R9 82 (1011/2)
Date	9-29-12
Start time	8:40
Stop time	9:00

	N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag	Bottom Mag	NO MOUDI	NO Stack
	(L/min)	*	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
	26-3		559	71	87	93	>25	5	•	48
	-	1.45	557	93	90	93			3.40	44
		1.45	559	96	21	93	225	5		60
			561	99	92	23	>25	5		57
20	*	1.45	561	160	93	93	725	5	4.17	59
_	-									
+										
	0 5 10 15 20	(L/min) 0 26-3 5 10 15	(L/min) * 0 26-3 26-1.45 5 1.45 10 1.45 15 1.45	(L/min) * (°C) 0 26-3 26-1.45 559 5 1.45 559 10 1.45 559 15 1.45 561	(L/min) * (°C) (°F) 0 26-3 26-1.45 559 91 5 1.45 557 93 10 1.45 559 96 15 1.45 561 99	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Operator	L. Virteranla
Condition	Brannes)
Run Number	R3
Date	9-29-12
Start time	914
Stop time	934

Time	N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag	Bottom Mag	NO MOUDI	NO Stack
	(L/min)	*	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
(26.3	1.45	567	98	89	94	725	5	1	54
5		1.46	561	102	92	24	>25	5	4,94	66
10		1.44	562	102	93	93	725-	5	4.86	65
15		1.44	562	102	74	93	>25	5	5.18	64
20) V	1.47	561	(02	94	93	>25-	5	5.01	58
		v								
0										
					-					

Operator	L. Virterantz
Condition	Btomass
Run Number	RU
Date	9-29-2017
Start time	944
Stop time	1004

Time	N2 Flow	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
0	(L/min) 26.3	1.44	560	99	91	94	>25	5	_	65
5		1.44	560	102	72	93	>25	5	5.52	62
10		1.43	561	103	94	73	>25	5	5.02	61
15		1.43	561	103	94	93	>25-	5	5.59	65
20		1.43	560	103	95	94	>25	5	5.59	65
		-								
							_			

Operator	L. Virtaranta
Condition	Field Blank 2
Run Number	F 13 - 2
Date	9-29-2012
Start time	1015
Stop time	1035

Time		N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag	Bottom Mag	NO MOUDI	NO Stack
		(L/min)	*	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
	0	26.3	1. 44	NA	78	72	74	>25	5	N 4	NA
	5	26.3	1.45	I	78	74	74	>25	5-		
	10	26.3	1.45		78	74	74	-25	5		
	15	26.3	1.45		78	75	74	225	5		
	20	26.5	1.44	Ţ	78	75	74	>25	5	+	1
							and a second				
								· · · · · · · · · · · ·			1

.

Operator	L. Virtarant
Condition	Biomass + Surbeat
Run Number	RI
Date	10.3.17
Start time	1354
Stop time	1414

Time	N2 Flow (L/min)	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
0	1	1.44	560	92	91	21	>25	5	-	73
5		1.44	560	97	92	21	>25	5	5.21	74
10		1.44	561	100	93	91	>25	5	5.73	72
15		1.44	562	101	93	91	>25	5	5.84	75
20		1.44	564	102	94	91	>25	5	5.69	71
								-		

Operator	L. Virturanta
Condition	Rimmass + Soubert
Run Number	RZ
Date	10-3-2012
Start time	1431
Stop time	1-(5)

Time	N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag		NO MOUDI	
	(L/min)	*	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
0	26.3	1.44	566	97	87	93	>25	5	-	69
5	1	1.44	565	103	91	13	>25	5	7.36	73
10		1.43	566	104	93	92	>25	5	6.71	74
15		1.42	567	103	94	93	>25	5	6.68	75
20		1,42	517	,03	94	91	>25	5	6.00	74
		_	[
										-
		-								

Operator	L. Victoria
Condition	Biomass + Sorbont
Run Number	K3
Date	10-3-2017
Start time	1504
Stop time	1524

Time		N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag	Bottom Mag	NO MOUDI	NO Stack
		(L/min)	*	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
	0	26.3	1.42	568	92	90	୭୳	>25	5	I	73
	5	1	1.41	567	101	93	92	>25	5	7.45	75
	10		1.41	569	101	92	94	>25	5	5.63	74
	15		1.41	561	101	95	92	>25	5	5.43	72
	20	Y	1.40	569	102	96	92	>25	5	5.19	70
											America Territoria (11 c. http:///11
	-										
	-										
							L				
	_										
	-										
	_										
	-										

Operator	L. Virtacanta
Condition	Field Blank 3
Run Number	FU.3
Date	10.3-17
Start time	1540
Stop time	1600

Time	N2 Flow (L/min)	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
0	26.3	1.44	Nr	78	76	75	>25	5	NA	NI
5		1.44		78	76	75	725	5-	1	1
10		1.44		79	76	76	>25	5		
15		1.44		79	77	76	>25	5		
20	\downarrow	1.44	X	79	77	76	>25	5-	J.	\checkmark
							*			

53

Operator	L. Virtaranta
Condition	Natural lips 2
Run Number	RI
Date	12-7-2017
Start time	9:40
Stop time	(0:00

Time		N2 Flow (L/min)	Flow Meter *	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
	0	26.3	1.43	559	90	86	91	>25	5	(ppiii) —	61
	5	26.3	1.74	559	94	88	90	225	5	4.10	60
	10	26.3	1.44	559	97	96	1.	>25	5	4.57	6.1
	15	26.3	1.43	558	97	91	91	>25	5	4.34	61
	20	26.3	1.44	558	100	92	91	725	5	5.12	61
						-					

Operator	L. Victorianta
Condition	Natural Cas 2
Run Number	R2
Date	12-7-17
Start time	10:11
Stop time	6:31

Time		N2 Flow (L/min)	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
	0	26.3	1.44	558	96	88	71	>25	5	-	61
	5	26.3	1.45	559	107	90	71	>25	5	7.62	60
	10	26.3	1.45	558	107	92	71	>25	5	7.48	62
	15	26.3	1. 44	559	107	23	91	>25	5	6.53	62
	20	26.3	1.44	559	108	१५	91	>22	5	6.73	62
	_										
				Ne in company p							
		11-11-1									
											1

×...

Operator	L. Virbarante
Condition	Natural Ges 2
Run Number	R3
Date	12-7-17
Start time	1041
Stop time	

Time		N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag	Bottom Mag	NO MOUDI	NO Stack
		(L/min)	*	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
	0	26.3	1.44	558	101	89	72	>25	5	-	61
	5	26.3	1.46	557	107	92	92	>25	5	7.77.	62
	10	26.3	1.45	559	107	93	92	725	5	6.52	57
	15	26.3	1.44	559	107	94	92	225	5	6.95	61
	20	26.3	1,44	559	107	95	ዓአ	>25	5	6.74	62
								· · · · · · · · · · · · · · · · · · ·			
											4
											12
								1			
						анын алтан 					
											-

OperatorL. VicherandeConditionBiomass + CesiminRun Number R_1 Date $12-7 \cdot 17$ Start time1232Stop time1252

Time		N2 Flow (L/min)	Flow Meter	Duct T			Pump T	Top Mag		NO MOUDI	
	0		1.44	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
	5	26.3	1.10	559	91	85	94	725	5	-	71
	10	26.3	1.45	557	98	88	94	>25	5	5.18	70
		263	1.44	560	101	91	93	>25	5	5.78	73
	15	26.3	1.44	560	102	92	93	>25	5	6.15	72
	20										
								and a second second			0.9942
								1			
				-							

Operator	1 Virtacante
Condition	Bromass + Cesinin
Run Number	RZ
Date	12-7-17
Start time	1314
Stop time	1334

Time		N2 Flow (L/min)	Flow Meter	Duct T · (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
	0	26.3	1.44	560	97	70	94	>25	5	(ppiii) ~	(ppiii) ⊋2
	5	26.3	1.45	560	161	22	94	>25	775	8.84	74
	10	26.3	1.46	560	109	૧૫	94	>25	5	8.61	75
	15	26.3	1.45	561	106	95	93	>25	5	7.10	72
1	20	26.3	1.14	560	107	96	94	>25	5	7.70	71

Operator	L. Virtaranta
Condition	Biomass + Cesium
Run Number	R3
Date	12-7-17
Start time	1550
Stop time	1410

Time		N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag	Bottom Mag	NO MOUDI	NO Stack
		(L/min)	*	(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
	0	26.3	1.45	560	78	88	94	>25	5	-	69
	5	26.3	1.45	561	102	91	94	525	5	8.16	63
	10	26.3	1.45	561	109	94	94	>25	5	8.20	67
	15	26.3	1.45	560	110	95	94	>25	5	8.63	72
	20	26.3	1.45	560	110	96	94	> 25	5	8.34	68
								1			

Operator	L. Victorante
Condition	Biomass + Crisian
Run Number	RY
Date	12-7-2017
Start time	1427
Stop time	1447

Time		N2 Flow (L/min)	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
	0	26.3	1.45	561	101	89	92	>25	5	-	67
	5	26.3	1.45	561	109	92	93	222	5	9.16	70
	10	26.3	1.46	56,	113	95	94 (PW)	>25	5	8.64	70
	15	26.3	1.46	561	113	95	25-94	>25	5	9.11	69
	20	<u> </u>	1.46	561	112	96	26 94	>25	5	9.10	72
						-					
	-										
	+										

Operator	L. Virtarante
Condition	Field Blank 4
Run Number	FB-4
Date	12 . 7-12
Start time	1500
Stop time	1520

Time	N2 Flow (L/min)	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
0	26.3	1.44	NA	78	75	75	>25	5	MA	MA
5	1	1.49	1	78	75	75	>25	5	1	(
10		1.49		78	76	75	>25	5		
15		1.44		79	76	75	>25	5		
20	¥	1.44	V	71	76	76	>25	5	4	J.

Operator	L. Virterante					
Condition	Biomass + Cs + Surpert					
Run Number	RI					
Date	12-8-17					
Start time	1022					
Stop time	1042					

Time	N2 Flow	Flow Meter	Duct T	Probe T	MOUDI T	Pump T	Top Mag		NO MOUDI	NO Stack
	(L/min)		(°C)	(°F)	(°F)	(°F)	(in. WC)	(in. WC)	(ppm)	(ppm)
0	26-3	1.44	560	90	80	90	725	5	-	67
5	26.3	1.44	560	95	83	20	> 25	5	5.09	68
10	26.3	1.45	561	99	87	10	>25	5	5.15	67
15	26.3	1.45	562	100	90	90	>25	5	5.98	67
20	26.3	1.44	563	101	21	90	> 25	5	5.72	68
			1							
								-		

L. Virtanala
Biomass + Cs + Sorbeat
_ 22
12-8-12
1058
11 JB

N2 Dewar started unnag low up a 3 min left in the run (a 24 Lems

Time		N2 Flow (L/min)	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
	0	26.3	1.45	563	87	86	92	725	5	-	71
	5	26.3	1.45	564	101	90	92	>25	5	6-86	65
	10	26.3	1.45	566	104	92	92	>25	5	6.20	64
	15	26.3	1.45	566	112	14	92	225	5	6.18	66
	20	24	145	567	126	96	92	>25	5	11.17	67
			1.44 (w)	a							
										3	
		62									
								8			
				10							

Operator	L. Virtaranta
Condition	Biomass + () + Sorbert
Run Number	£3
Date	· み- 8 - 1 み
Start time	1129
Stop time	11 49

Time		N2 Flow (L/min)	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
	0	26.3	1.45	567	97	90	92	> 25	5	~	68
	5	26.3	1.46	562	111	194	93	>25	5	8.32	65
	10	26.3	1.46	568	109	94	93	>25	5	7.50	68
	15	26.3	1.46	568	169	95	93	>25-	5	7.27	67
	20	26.3	1.46	569	109	96	93	>25	5	6.94	69
					25,						
								-			

Operator	L. Virtaranta
Condition	Field Blank . 5
Run Number	E8-5
Date	12-8-17
Start time	1200
Stop time	120

Time	N2 Flow (L/min)	Flow Meter	Duct T (°C)	Probe T (°F)	MOUDI T (°F)	Pump T (°F)	Top Mag (in. WC)	Bottom Mag (in. WC)	NO MOUDI (ppm)	NO Stack (ppm)
0	26.3	1.44	NA	80	77	76	>25	5	N4	NA
5		1,44	1	80	78	76	>25	5	i i	
10		1.44		80	78	72	225	5-		
15		1.44		81	78	72	>25	5		
20	J.	1.44	ł	81	71	72	>25	5-	1	
			8							
						8				

J

Office of Research and Development (8101R) Washington, DC 20460

Official Business Penalty for Private Use \$300 PRESORTED STANDARD POSTAGE & FEES PAID EPA PERMIT NO. G-35