

Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

Gerardo J. Ruiz-Mercado (1), Ana Carvalho (2), and Heriberto Cabezas (1)

(1) National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA (2) CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

7th International
Congress on
Sustainability Science &
Engineering
Cincinnati, OH, USA

Disclaimer

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Outline

- Sustainability: Conceptual
- Process Design
- Sustainable Process Screening: WAR Algorithm
- Sustainable Process Assessment: GREENSCOPE
- Sustainable Process Retrofit: SustainPro
- Sustainable Process Design: Bringing it Together

Sustainability: Conceptual

Historical World Population

(https://en.wikipedia.org/wiki/World_population)

Real Gross World Product

(https://en.wikipedia.org/wiki/Gross_world_product) (\$US billions, 1990 intl \$US)

SEPA World Ecological Footprint & United States Environmental Pro World Biocapacity

Source: National Footprint Accounts 2010 edition

www.footprintnetwork.org

Courtesy of M. Hopton, U.S. EPA

How does the biophysical world work?

(Mostly Closed to Mass & Open to Energy)

Process Design

Processes/Industrial Manufacturing

Sustainable Processes

IT HAS TO BE SYSTEMATIC SO THAT GOOD OPTIONS DONOT GET OVERLOOKED!

- 1. There is a hierarchical scheme for sustainable process design:
 - a. WAR Algorithm for initial screening and analysis of new and existing designs.
 - b. **GREENSCOPE** for detailed process analysis.
- 2. For established process designs, SustainPro provides an effective algorithm for retrofitting
 to make processes more sustainable.

Sustainable Process Design: WAR Algorithm

Potential Environmental Impact (*I or PEI*)

$$\dot{I}_{k}^{(i)} = \frac{dI_{k}^{(i)}}{dt} = \frac{dM_{k}^{(i)}}{dt} \sum_{l} x_{kl} \psi_{l}$$

$$\psi_l = \sum_m \alpha_m \psi_{lm}$$

Potential Environmental Impact Balances

General Expression:

$$\frac{dI^{System}}{dt} = \sum_{k=f} \frac{dI_k^{(f)}}{dt} - \sum_{k=p} \frac{dI_k^{(p)}}{dt} - \sum_{k=w} \frac{dI_k^{(w)}}{dt} + \frac{dI_{gen}}{dt}$$

Steady State:

$$\frac{dI_{gen}}{dt} = \sum_{k=p} \frac{dI_k^{(p)}}{dt} + \sum_{k=w} \frac{dI_k^{(w)}}{dt} - \sum_{k=f} \frac{dI_k^{(f)}}{dt}$$

Design Criteria

Either Consume PEI or Minimize PEI Generation:

$$\frac{dI_{gen}}{dt} \le 0$$

Minimize the Output of PEI:

$$\left[\sum_{k=p} \frac{dI_k^{(p)}}{dt} + \sum_{k=w} \frac{dI_k^{(w)}}{dt} \right] \ge 0$$

Sustainable Process Design: GREENSCOPE

Chemical Process Indicators

- Triple dimensions of sustainable development
 - -Environment, Society, Economy
 - –Corporate level indicators
 - Assessment at corporate level

- Four areas for promoting & informing sustainability
- Environmental, Efficiency, Economics, Energy (4E's)
- Decision-making at process design level
- Taxonomy of chemical process indicators for use in process design

GREENSCOPE Indicators

Environmental (66)

- Specifications of process input material (e.g., hazardous)
- Operating conditions and process operation failures (health and safety hazards)
- Impact of components utilized in the system
- Potential impact of releases
- 100% sust., best target, no pollutants release, & no hazardous material use or generation

Efficiency (26)

- Quantities of inputs required/product or a specific process task (e.g., separation)
- Mass transfer
 operations, energy
 demand, equipment size,
 costs, raw materials,
 releases
- Connect input/output
 with product,
 intermediate or
 operation unit
- •The reference states are defined as mass fractions $0 \le x \le 1$

Economic (33)

- A sustainable economic outcome must be achieved
- Based on profitability criteria for projects (process, operating unit), may or may not account for the time value of money
- Some cost criteria
 Indicators: capital &
 manufacturing costs;
 Input costs: raw
 material cost; Output
 costs: waste treatment
 cost

Energy (14)

- Different thermodynamic properties used to obtain energetic sustainability scores
- Energy (caloric); exergy (available); emergy (embodied)
- Zero energy consumption per unit of product trend can be best target
- Most of the worst cases depend on the particular process or process equipment

GREENSCOPE Sustainability Framework

- Identification and selection of two reference states for each sustainability indicator:
- Best target: 100% of sustainability
- Worst-case: 0% of sustainability
- Two scenarios for normalizing the indicators on a realistic measurement scale
- Dimensionless scale for evaluating current process or tracking modifications/designs of new (part of a) process

% Sustainabilty Score =
$$\frac{\text{(Actual-Worst)}}{\text{(Best-Worst)}} \times 100\%$$

Sustainability Assessment & Design: GREENSCOPE Tool

Efficiency Indicator Results

Indicator	Description	Sust. (%)
2. AE _i	Atom economy	5.8
7. MI _v	Value mass intensity	0
15. MRP	Material recovery parameter	0
17. pROI _M	Physical return on investment	99.4
23. V _{water,} tot.	Total water consumption	100

Environmental Indicator Results

Indicator	Description	Sust. (%)	
1. N _{haz. mat.}	Number of hazardous	75	
• 1 haz. mat.	materials input	/ 5	
6 UU	Health hazard,	68.5	
6. HH _{irritation}	irritation factor	06.5	
10 CH	Safety hazard, reaction	88.3	
10. SH _{reac/dec I}	/ decomposition I	88.3	
	Environmental hazard,		
22. EH _{bioacc} .	bioaccumulation (the 89.3		
	food chain or in soil)		
43. EP	Eutrophication	100	
43. EP	potential	100	

Energy Indicator Results

Indicator	Description	Sust. (%)
2. R _{SEI}	Specific energy	00.0
	intensity	98.9
6. η_E	Resource-energy	77.0
	efficiency	
8. BF _E	Breeding-energy	100.0
	factor	100.0
10. Ex _{total}	Exergy	0.0
	consumption	0.0
14. BF _{Ex}	Breeding-exergy	36.1
	factor	30.1

Economic Indicator Results

Indicator	Description	Sust. (%)
1. NPV	Net present value	45.9
8. PBP	Payback Period	92.0
19. COM	Manufacturing cost	68.0
23. C _{E, spec.}	Specific energy costs	63.1
33. $C_{\text{pur. air}}$ fract.	Fractional costs of purifying air	0.0

Process Retrofit: SustainPro

Process Retrofit

Retrofit design has been defined by Guinand (2001) as follows: "Process retrofitting is the redesign of an operating chemical process to find new configuration and operating parameters that will adapt the plant to changing conditions to maintain its optimal performance."

Retrofit Generic Methodology

SustainPro- Retrofit Tool

SustainPro- Retrofit Tool.

Step I- Data Collection

OR

Step 2- Flowsheet Decomposition

Continuous Process

Batch Process

SustainPro- Retrofit Tool: Indicators

Step 3- Indicators Calculation

Indicator	Description	Definition
MVA	Material Value Added	$MVA = M_{T}^{*}(P_{sale}^{-}P_{cost}^{-})$
EWC	Energy & Waste Cost	$EWC = E P_E M_i \theta_i / (\Sigma_i M_i \theta_i)$
TVA	Total Value Added	TVA = MVA - EWC
RQ	Reaction Quality	$RQ = R_X \theta_R / (\Sigma_p M_p)$
AF	Accumulation Factor	$AF = M_{i-cycle} / (\Sigma_{k-cycle} M_{k-cycle})$
REF	Reusable Energy Factor	$REF = E_{used-cycle} / E_{exit-cycle}$
DC	Demand Cost	$DC = P_{utility} E_{open-path}$
TDC	Total Demand Cost	$TDC = \Sigma DC_k$

SustainPro- Retrofit Tool: Algorithm

SustainPro- Retrofit Tool: Alternatives

Sustainable Processes: Bringing It All Together

Some Final Thoughts

- There is a hierarchical scheme for sustainable process design of new designs:
 - WAR Algorithm for initial screening analysis.
 - GREENSCOPE for detailed process analysis.
- For established process designs, SustainPro provides an effective algorithm for retrofitting to make processes more sustainable.
- However, these tools do not and can not substitute for the skill of the engineer. A fine hammer is wonderful in the hands of a skilled carpenter but useless in unskilled hands.