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Problem statement

• Automated HTS assays enable rapid screening to help ‘decode the toxicological 
blueprint of active substances that interact with living systems’ [Sturla et al. 2014].

• Vast HTS data now in hand [https://comptox.epa.gov/dashboard], the need arises for 
novel in silico models that can advance efforts toward predictive toxicology.  

• Reducing a complex biological system to simpler assays for chemical profiling disrupts 
the spatial and temporal dynamics that render a system complex in the first place. 

• Toward predicting the potential for human toxicity with less reliance on vertebrate 
animal testing, we need in silico models that can rebuild this complexity. 
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https://comptox.epa.gov/dashboard


3SOURCE: https://embryology.med.unsw.edu.au/embryology

TIMELINE OF HUMAN
EMBRYONIC DEVELOPMENT

Week 8
(Carnegie Stage 20)Week 4

(Carnegie Stage 13)

Week 3
(Carnegie Stage 8)

In vitro models

• Commonly evaluated by exposing pregnant rats and/or 
rabbits during gestation of major organ systems.

• Alternative (non-animal) methods must deal with the 
embryo and pregnancy as complex dynamical systems.

Developmental Toxicity



Anatomical homeostasis in a self-regulating ‘Virtual Embryo’

SOURCE: Andersen, Newman and Otter 
(2006) Am. Assoc. Artif. Intel.

4



5

Hypothesis: cellular agent-based models (ABMs) can translate biomolecular lesion(s) 
into predictive models for developmental processes and toxicities. 

Approach: build and test self-organizing morphogenetic fields in silico using an open-
source modeling environment [www.compucell3d.org]. 

Input: A.I. cast into mathematically-defined cells (agents), synthetic gene circuits, and 
viscoelastic properties that can be perturbed with in silico or in vitro data.

Emergence: simulation expresses individual cellular behaviors that collectively result in a 
morphogenetic series of events for the normal or perturbed system (cybermorphs). 

Output: probabilistic rendering of where, when and how a developmental defect might 
occur in response to defined lesions (genetic, environmental). 

Computational dynamics in a virtual embryo

http://www.compucell3d.org/


6



Somite development

SOURCE: Dias et al. (2014) Science

Hes1-EGFP time-lapse (3h)
Masamizu et al. 2006 

Differential cell adhesion
•clock genes do not oscillate
•somites form simultaneously
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• FGF8 wavefront restores 
sequentiality

• oscillatory clock improves 
regularity



cell field FGF8 FGF4 FGF10

SHH GREM-1 BMP4 BMP7

Limb-bud outgrowthControl Network
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SOURCE: Zurlinden, Kate Saili (2018) – NCCT, unpublished

VEGF-A gradient: NPCs in subventricular zone

endothelial tip cell
endothelial stalk cell
microglial cell

Microglial-Endothelial network

Brain angiogenesis 
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Tata et al. (2015) Mechanism Devel



Executing a simulated dose-response
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Critical concentration of Mancozeb on brain angiogenesiis:
• predicted from in silico model ~0.5 µM (Zurlinden, NCCT)
• observed in 3D organotypic culture model of the hNVU ~0.3 µM (Daly, UWisc)



Sexual dimorphism: genital tubercle development

androgen SHH field FGF10 field no androgen

Genital tubercle (GT)                                                Control Network (mouse)

ABM simulation for sexual dimorphism (mouse GD13.5 – 17.5)
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SOURCE: Leung et al. (2016)  Reproductive Toxicology



Androgen virulization: closure rates @4000 MCS ׬𝑎𝑛𝑑𝑟𝑜𝑔𝑒𝑛 𝑠𝑢𝑝𝑝𝑙𝑦
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Closure indices (simulated, n=10)
LEFT: androgen insufficiency 

RIGHT: delayed virulization
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Palate morphogenesis: structurally simple, genetically complex

SOURCE: Hutson et al. (2017) Chem Res Toxicol

• A.I. = synthetic cell signaling networks



Hacking the control network
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15Baker et al. (manuscript in clearance)

Cleft palate: multiple mechanisms inferred from ToxCast
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Mathematical model: EGF/TGF β3 bistable switch
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OUTPUT: tipping point 
mapped to concentration 

response (4 µM)

tipping point predicted by
computational dynamics

(hysteresis switch)

Captan in ToxCast
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human HTTK model 
2.39 mg/kg/day would 

achieve a steady state of 
4 µM in fetal plasma

Captan in ToxRefDB
NOAEL = 10 mg/kg/day
LOAEL  = 30 mg/kg/day

INPUT: switch dynamics



Messin’ with the switch: two scenarios for bistable dynamics
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Narrow 
hysteresis: 

less resilient 
but reversible

Broad 
hysteresis: 

more resilient 
but irreversible



FR167356: EGFR signaling

Simulated dose-response

Tipping point predicted 
in topological context
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Read across: CompTox chemicals dashboard
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• FR 167356 developed as a selective inhibitor of osteoclast vacuolar H+-ATPase (V-ATPase)
• V-ATPase functions in a critical bone formation pathway and lytic bone disease (osteoporosis)
• No DevTox information available in open literature
• Chemotype neighbors Indomethacin and Diclofenac are NSAIDs that disrupt murine palatal fusion in vitro

SOURCE: Nancy Baker, NCCT
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• reconstruct basic modules of embryogenesis in silico
cell-by-cell and interaction-by-interaction;

• execute tissue simulations that advance through critical determinants 
of phenotype;

• simulate in vitro data under various in vivo scenarios - dose or stage 
response, critical pathways, non-chemical stressors, …;

• probabilistic rendering of where, when and how a defect might occur 
under different exposure scenarios. 

Computer modeling and simulation:

Computer modeling 
is 3R’s compliant!
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