

Status of Hg⁰ and HgCl₂ and HCI Reference Gas Standards

Jeff Ryan US EPA – Office of Research and Development

Stephen E. Long National Institute of Standards and Technology

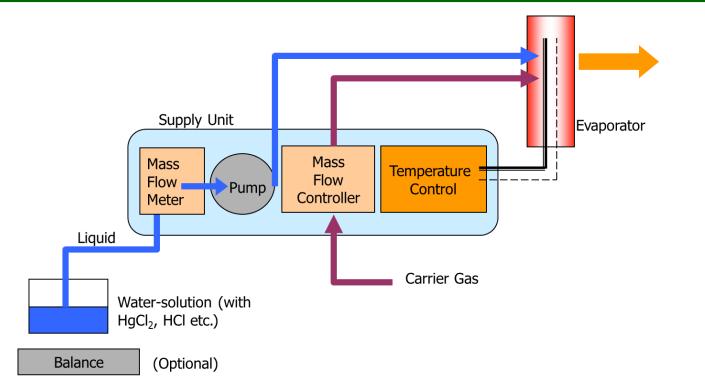
Office of Research and Development National Risk Management Research Laboratory. The 27th EPRI Continuous Emissions Monitoring User Group Meeting May 2 - 3, 2018 – St. Louis, Missouri

Presentation Overview

- The problem with elemental and oxidized Hg reference gas standards
- Joint EPA/NIST study on oxidized Hg reference gas measurement quality
 - The NIST approach for low uncertainty reference gas standard measurements
 - EPA's approach to develop low uncertainty measurement capabilities
 - Applying these techniques to measure the output of evaporative HgCl₂ generators
- Update on Hg⁰ and HCl gas standards

Status of Oxidized Hg Reference Gases

Hg⁰ ≠ HgCl₂


- Early Hg CEM demonstration studies found that NIST-traceable Hg⁰ generators and evaporative HgCl₂ reference gas generators did not agree
 - ~7-10% differences have been observed
 - Many reasons suggested for this discrepancy
- The Traceability Protocol for Oxidized Hg Generators allows a "correction factor" to make them functionally agree

Status of Oxidized Hg Reference Gases

Hg⁰ ≠ HgCl₂

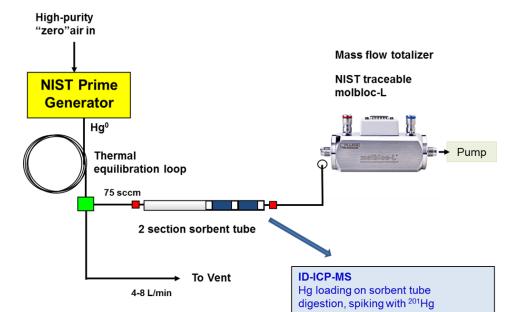
- Currently, evaporative HgCl₂ reference gases are not accepted as the same quality as Hg⁰ reference gas standards and cannot be used for emissions quantitation
- Appendix A of MATS Rule now prohibits use of HgCl₂ gases for daily checks:
 "5.1.2.1 Calibration error tests of the Hg CEMS are required daily, except during unit outages. Use a NIST-traceable elemental Hg gas standard for these calibrations. If your Hg CEMS lacks an integrated elemental Hg gas generator, you may continue to use NIST-traceable oxidized Hg gases for the 7-day calibration error test (or the daily calibration error check) until such time as NIST-traceable compressed elemental Hg gas standards, at appropriate concentration levels, are available from gas vendors.
- NIST-traceable HgCl₂ reference gases of the same functional quality as NIST-traceable Hg⁰ reference gases remains the ultimate goal
- NIST and EPA are collaborating to investigate the discrepancy

HgCl₂ Evaporative Generators

Traceability for Evaporative HgCl₂ Generators

- EPA Traceability Protocol for Qualification and Certification of Oxidized Mercury Gas Generators
 http://www3.epa.gov/ttn/emc/metals/OxHgProtocol.pdf
- The NIST-traceable concentration and associated uncertainty is theoretical, not measured
- Based on the following components:
 - Working solution concentration
 - Liquid feed rates
 - Carrier gas flow rate
- Traceability and uncertainty of working feed solution established by use of commercially available NIST-traceable HgCl₂ liquid standards
- Traceability and uncertainty of liquid feed rates established by gravimetrically calibrating the feed rate meter using a balance and NIST- traceable weights
- Traceability and uncertainty of carrier gas flow established by comparison with NIST- traceable reference standard flow measurement device
- Calculations provided to determine combined, expanded uncertainty of the generated concentrations
- The theoretical concentration is NOT empirically verified

Scientific Premise


- NIST Standard Reference Material (SRM) 3133 is the common denominator Hg reference material
 - SRM 3133 traceable solution used to analyze NIST prime certification sorbent traps
 - SRM 3133 traceable HgCl₂ feed solution used for evaporative generators
 - SRM 3133 traceable calibration solution used for Method 30B trap analysis
- In theory, Hg⁰ and HgCl₂ evaporative generators should agree at identical concentrations as both tied to SRM 3133
- In theory, Method 30B trap analyses should agree with NIST trap analyses as both analyses tied to SRM 3133
- NIST and EPA collaborating to investigate these theories

Research Objectives

- Revisit the Hg⁰ generator HgCl₂ evaporative generator discrepancy issue
- Accurately measure the output from NIST-certified Hg⁰ and NISTtraceable evaporative HgCl₂ generators and quantitatively determine the difference(s), if any ...
- Quantitatively compare NIST's sorbent trap analytical approach with the conventional Method 30B thermal sorbent trap analytical approach used for Hg emissions regulatory compliance
- Ultimate goal is to demonstrate acceptable, low uncertainty measurement capabilities applicable to *both* Hg⁰ generators and HgCl₂ evaporative generators
- Can the conventional 30B thermal analysis approach be a suitable verification tool?

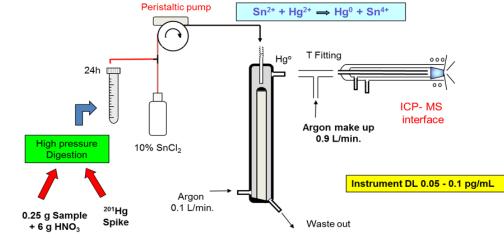
NIST Sorbent Trap Loading System

- Approach used to certify NIST Prime Hg⁰ generators for regulatory reference gases:
- Based on EPA Method 30B:
 -lodated carbon sorbent traps
- Traps suitable for multiple analytical approaches:
- Low uncertainty total sample volume: ~0.3 % U

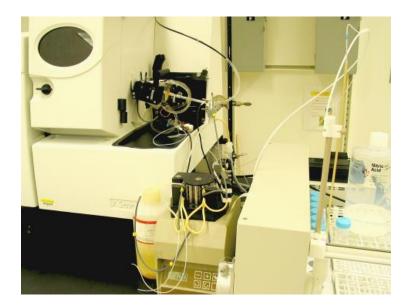
NIST Isotope Dilution - ICP-MS Method

- Analytical Blank: Extremely low, 5-10 pg
- Repeatability: 0.1 % 0.3 %
- Memory Effects: Low
- Quantitation Limit: Approximately 20 pg/g in any matrix
- Matrix Effects:

None; No need to use large dilution factors


Sample Throughput:

Instrument throughput 10 - 20 samples/hour


• Uncertainty:

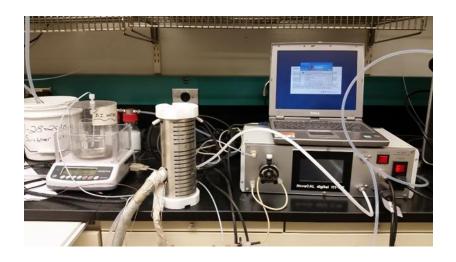
~1%

 Combined measurement uncertainty: ~2%

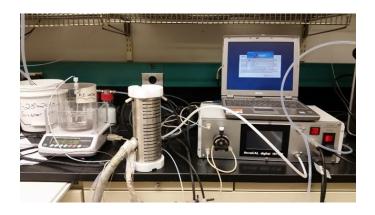
Gas - Liquid Separator

EPA Sampling and Analytical Systems

- EPA's sampling system very similar to NIST's:
 - Alicat MFM for total sample volume
 - Includes moisture removal
 - All components heated to sampling point
 - Nominal Hg sample loading 100 ng
 - Sampling volume uncertainty ~0.5%
- Ohio Lumex Thermal Analysis System:
 - Direct combustion of carbon material
 - Calibration by Hg solution
 - 100 ng Hg nominal calibration mass
 - Analytical uncertainty ~2%
- Combined measurement uncertainty ~3%



Experimental Approach


- Measure the outputs from a NIST-certified Hg⁰ generator and a NIST-traceable HgCl₂ evaporative generator
- Low uncertainty sorbent trap sampling followed by NIST's low uncertainty isotope dilution – inductively coupled plasma mass spectrometry (ID-ICPMS) analysis and EPA's Method 30B thermal analysis

Initial Experiments

- Optimize EPA thermal analysis approach:
 - Calibration volume
 - Calibration solution (3133 or 3177?)
- Verify analytical agreement of 3133 and 3177 Hg SRMs:
 - Direct liquid calibration
 - Spike each SRM solution in SnCl₂ sparger to result in Hg⁰ on traps
- EPA analyze NIST Prime Hg⁰ generator trap samples by thermal technique
- Collect sorbent trap samples from NIST-traceable, HgCl₂ evaporative generator
 - HovaCAL evaporative generator
 - HgCl₂ feed solution from 3177 SRM
 - 100 ng Hg target mass
- Spike additional SnCl₂/Hg⁰ traps
- Distribute traps to NIST and EPA for analysis

Results and Discussion

- EPA tests to optimize thermal analysis approach:
 - All measurements based on fixed nominal 100 ng target mass
 - All quantitation based on area counts/ng
 - Compared 20 μl and 100 μl liquid injections (3133 and 3177 SRMs)
 - 20 µl better to calibrate with than 100 µl (precision)
 - Bias observed between 3133 and 3177 SRM responses (3177 3-4% lower)
 - All calibrations going forward based on 20 µl (100 ng) injections of 3133 solution
- EPA tests to quantitatively compare 3133 and 3177 SRMs:
 - Measured 3133 and 3177 solutions as Hg⁰
 (20 µl and 100 µl liquid injections through SnCl₂)
 - 100 µl performed better (precision)
 - Excellent agreement between 3133 and 3177 SRMs
 - 3133 recovery 99.3%
 - 3177 recovery 100.0%
- 3133 and 3177 SRMs functionally agree
- Negative bias associated with thermal analysis of HgCl₂ solution

Results and Discussion

Comparison of EPA and NIST analytical approaches

- EPA analyzed traps from NIST Prime Hg⁰ generator
 - Traps sampled by NIST during NIST Prime certification
 - Traps analyzed by EPA with thermal system
- EPA measured value 99.8% of expected value (expected value based on NIST ID/ICP-MS approach)
- NIST analyzed SRM 3133 Hg⁰ traps
 - Traps prepared by EPA
- NIST measured value 99.3% of expected value

Demonstrates fundamental agreement between analytical techniques for Hg⁰

Results and Discussion

NIST-traceable HgCl₂ evaporative generator trap measurements

- HovaCAL run with SRM 3177 solution
- Traps sampled by EPA
- Traps analyzed by NIST and EPA
- NIST measured value 101.0% of expected value

NIST measured value confirms **NIST**-traceable theoretical concentration

• EPA measured value 95.2% of expected value

EPA thermal analysis technique currently not suitable for HgCl₂ trap measurements

Preliminary Study Conclusions

- NIST's low uncertainty, gaseous Hg measurement approach provides a valuable tool for absolute measurement of Hg⁰ and HgCl₂
- NIST's gaseous Hg measurement approach confirms the theoretical output of evaporative HgCl₂ generators
- This output agrees with the current output of NIST-traceable Hg⁰ generators

$Hg^0 = HgCl_2$

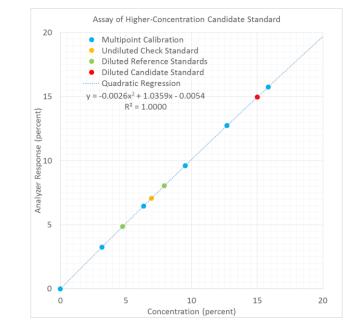
- While EPA's analytical approach is in agreement with NIST's for Hg⁰, it appears there is a negative bias with EPA's analytical approach for HgCl₂
- EPA's low uncertainty measurement approach may be useful for Hg⁰ generator QA/QC measurements

What's next ...

- Hg⁰ and HgCl₂ gases of the same functional quality is the ultimate goal
 Uncertainties ≤ 5%, based on measured, not theoretical, output
- EPA and NIST plan to perform more comprehensive HovaCAL tests and include a Tekran 3315 HgCl₂ evaporative generator
- We also want to obtain a NIST-certified Vendor Prime to confirm certified Hg⁰ values by NIST and EPA measurement approaches
- We also intend to explore other options for confirming the output of HgCl₂ evaporative generators
- Is there a need to demonstrate agreement on a Hg CEMS?

Status of Hg⁰ Reference Gases

- NIST providing routine Hg⁰ generator services
 - Hg CEMS vendors
 - Utilities/Hg CEMS integrators
 - Gas vendors
- Recent NIST Prime re-certifications
- NIST working on a new measurement approach
- Gas Manufacturers Alternative Certified Standards (GMACS) Hg⁰ cylinders are now available


Status of HCI Reference Gases

- What's currently available are GMACS
- Available from multiple vendors
- NIST about to release a group of RGMs to multiple vendors
- HCI Protocol gases will again be available

Green Book Revisions? ...

- EPA working on several Green Book issues
- Mostly minor changes (e.g., updates to Tables 2-2, 2-3, etc)
- Demand for additional gases
- Dilution approach for high level Protocol gases still a need
 - Procedure for diluting Protocol candidate to level comparable to available RGMs/NTRMs
 - Expands working ranges of Protocol gases
- A formal revision is not imminent

Link to Green Book questions:

www.epa.gov/air-research/epa-traceability-protocol-assay-and-certification-gaseous-calibration-standards

The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names, products, or services does not imply an endorsement by the US Government or the United States Environmental Protection Agency. EPA does not endorse any commercial products, services, or enterprises.