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Input Space Feature Space The different ranges in pKa predictions may also explain why:
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» pKa values for 7912 chemicals in water were obtained from 6245 unique QSAR-ready structures ._% Clean salts and _
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» Chemical structures were standardized for QSAR modeling [1].

Acidic dataset

Normalize Nitros

» Continuous molecular descriptors, binary fingerprints and
& tautomers

fragment counts were generated using PaDEL.

Summary and Next Steps

3610 total valid structures

Model Performance

3260 unigue QSAR-ready structures

» Several machine learning approaches were applied: deep neural

Chemaxon acidic prediction
Chemaxon basic prediction

networks (DNN), support vector machine (SVM), and extreme i o Eeml,ovi of ; ot e « An automated QSAR data preparation workflow was applied to a public data
; ; ( uplicates . . . . . o st AR & A T ; e ;

gradient boosting (XGB). Basic dataset ' P The pKa dataset was divided into acidic and basic pKa datasets, which were s PR Sal set of 7912 chemicals, created three data subsets_, Acidic, Basic and _
Model 5-fold lidated and luated inst : modeled separately ol ol ok o Combined. Model performance was evaluated using all data subsets with
ex(ierensalvree;(tese-to cross-valldated and evaluated against an 4294 total valid structures J  Final inspection ' T T ewrecpa the DNN, SVM and XGB algorithms.

' . 3680 unique QSAR-ready structures@>AR-ready Models were assessed using root mean squared error (RMSE) and the + The best models were compared and benchmarked with two commercial

 The best models for each algorithm were compared to each structures coefficient of determination (R?). Test set results are reported here below. o predictors showing different levels of concordance.
other and to predictions from ACD/Labs and ChemAxon. External Set Prediction and Model Concordance _ _
T . _ Best Acidic Best Acidic Best Basic Best Basic * The models and source codes will be available for download and use.
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The DataWarrior data set contained a high number of duplicates (1659) compare the predictions of the models from this work and the commercial tools. chemicals in the EPA DSSTox database.

and amphoteric chemicals (chemicals with both an acidic and basic pKa). For this analysis, the SVM model was implemented in OPERA . Predictions will be available on the EPA's CompTox Chemistry
QSA R mo d el in g Data were processed in three different ways. SVM 1.80 0.72 1.53 0.78 (https://github.com/kmansouri/OPERA) [2]. Dashboard (https:/comptox.epa.gov)
 Option 1: all duplicates removed XGB 1.82 0.71 Predictions will also be used by the NICEATM's Integrated Chemical

« Option 2: low variability duplicates averaged Comparison of All Models for the Acidic pKa Predictions Environment (ICE) Dashboard (https://ice.ntp.niehs.nih.gov/) in

i g g various pharmacokinetic calculations.
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DoteanicrRehhe phe DataWarrior basic pke ' ' ' ' (NIEHS) supported this poster. Technical support was provided by ILS under NIEHS contract
Option 1 Option 2 Option 3 . XGB . . _ _ HHSN273201500010C.

ACD/Labs 1 0 0.47 4.48 0.60 3.46 0.34 ACknowledgem ents

DMNN acidic pKa prediction
DONM basic pKa prediction
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QSARs can be fast and accurate but they depend on the quality of the data used. The views expressed above do not necessarily represent the official positions of any federal

agency. Since the poster was written as part of the official duties of the authors, it can be freely
copied.

M Acidic ® Basic Combined (no amphoteric)

 General Steps to Develop a OSAR model Training and Test Sets

Comparison of All Models for the Basic pKa predictions

» For each data option, the structures were split into training (75%) and
Curation of experimental data test sets (25%).

SVM acid pKa prediction
SVM basic prediction

Predictions A ACD ChemAxon | SVM DNN References

Standardization of the chemical structures » Training/test set splitting was performed semi-randomly to:
R2 ' RMSE R2 | RMSE  R2 RMSE | R2 RMSE

Preparation of training and test sets » Keep similar distributions of pKa values [1] Mansouri et al. EHP, 2016. (doi:10.1289/ehp.1510267)

5
DataWarrior acidic pKa

Calculation of an initial set of descriptors » Keep similar distribution of acidic and basic pKas for combined
datasets

ACD/Labs 1 0 0.48 | 2.88 -0.14 457 -0.62 | 5.67 [2] Mansouri et al. J. Cheminfo., 2018 (d0i:10.1186/s13321-018-0263-1)

Selection of a machine learning algorithm

Molecular Descriptors ChemAxon 0.61 2.88 1 0 0.02 5.66 -2.62  9.77

Variable selection technique

: SVM * * 1 0 -0.90  3.41
Validation of the model’s predictive ability The QSAR-ready structures were used to calculate molecular descriptors and

generate binary fingerprints and fragment counts using PaDEL.

Subscribe to the NICEATM News Email List

. L . DNN 0.15 | 341 1 0
Define the Applicability Domain

XGB acidic prediction
XGE basic pKa pradiction

» 1D and 2D continuous descriptors: 1444 descriptors.

» Binary fingerprints and counts: 9121 bits (CDK, Estate, MACCS,
PubChem, Substructure, Klekota-Roth and 2D atom pairs).

i i i i XGB 0.28 1.97 -0.49  2.99 To get announcements of NICEATM activities, visit the NIH mailing
Interpretation of the selected descriptors, if possible. T ook T

list page for NICEATM News at https://list.nih.gov/cgi-

© - P * Our models are not used as refence to evaluate ChemAxon and ACD/Labs predictions. o 3 bin/wa.exe?SUBED1=niceatm-l&A=1 and click “Subscribe.”
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