
• Deep Neural Networks (DNN)

• Support Vector Machine (SVM)

All used tools and resulting models are free and open source.

Machine Learning Algorithms

QSARs can be fast and accurate but they depend on the quality of the data used.
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• The logarithmic dissociation constant, pKa, strongly influences a 
chemical’s pharmacokinetic and biochemical properties. 

• pKa reflects the ionization state of a chemical, which affects 
lipophilicity, solubility, protein binding, and the ability to cross the 
plasma membrane and the blood-brain barrier. Thus, pKa affects 
absorption, distribution, metabolism, excretion and toxicity 
(ADMET).

• Chemicals with no charge at a physiological pH will passively 
cross the plasma membrane more easily than charged molecules 
and are therefore more likely to have biological activity than 
passively diffused charged chemicals.

• pKa is an important parameter for physiologically based 
pharmacokinetic (PBPK) modeling, in vitro to in vivo extrapolation 
(IVIVE), and predicting tissue:plasma partition coefficients.

• Commercial software tools such as ACD/Labs and ChemAxon predict 
the pKa of individual ionization sites independently of chemical class. 
However, current publicly available pKa models are limited to certain 
chemical classes.

QSAR modeling

pKa DataBackground

Data Preparation for Modeling

The pKa dataset was divided into acidic and basic pKa datasets, which were 
modeled separately.

Models were assessed using root mean squared error (RMSE) and the 
coefficient of determination (R2). Test set results are reported here below.

Model Performance
• An automated QSAR data preparation workflow was applied to a public data 

set of 7912 chemicals, created three data subsets, Acidic, Basic and 
Combined.  Model performance was evaluated using all data subsets with 
the DNN, SVM and XGB algorithms.

• The best models were compared and benchmarked with two commercial 
predictors showing different levels of concordance.

• The models and source codes will be available for download and use.
• This modeling effort will help provide predicted pKa values for all ionizable 

chemicals in the EPA DSSTox database.
• Predictions will be available on the EPA’s CompTox Chemistry 

Dashboard (https://comptox.epa.gov) 
• Predictions will also be used by the NICEATM’s Integrated Chemical 

Environment (ICE) Dashboard (https://ice.ntp.niehs.nih.gov/) in 
various pharmacokinetic calculations.

Summary and Next Steps
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Range of Predictions and Limitations

- pKa predictions generated by our models are ranging between about -5 and 
15 for both the acidic and basic datasets.

- The narrow predictions range of our models (in comparison with the two 
commercial tools) is certainly linked to DataWarrior data that has the same 
range as shown by the distribution of its acidic and basic pKa values 
(histograms above).

The different ranges in pKa predictions may also explain why:

- The disagreement between our models and the commercial models on the 
benchmark dataset (TSCA actives) is higher for the basic pKa predictions. 
This is particularly noticeable with ChemAxon, which generated a high 
number of predictions of pKas lower than -5 for the basic data set. 

- For the TSCA-actives list, the divergence between ACD/Labs and 
ChemAxon is higher for the basic pKa predictions compared to the acidic 
pKa predictions. Interestingly, this is the opposite of what occurred for the 
DataWarrior dataset. 

The predictions of our models can be considered more accurate in the 
range of -5 to 15 for both the acidic and basic pKas.

Concordance between the commercial tools and 
DataWarrior

To be able to use the predictions from the commercial tools as a benchmark to 
our models, we first needed to assess the concordance of their predictions with 
DataWarrior.

Benchmark with the Commercial Tools
• The pKa data was obtained from DataWarrior 

(http://www.openmolecules.org/) and included experimentally 
measured aqueous pKa values and associated SMILES strings for 
7912 heterogenous chemicals.

QSARs are based on the 
congenericity principle, which 
is the assumption that 
structurally similar 
compounds will have similar 
chemical properties. 
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Full dataset
7904 total valid structures
6245 unique QSAR-ready structures

Acidic dataset
3610 total valid structures
3260 unique QSAR-ready structures

Basic dataset
4294 total valid structures
3680 unique QSAR-ready structures

Structure Standardization

Acidic and Basic Datasets
The DataWarrior data set contained a high number of duplicates (1659) 
and amphoteric chemicals (chemicals with both an acidic and basic pKa). 
Data were processed in three different ways.

• Option 1: all duplicates removed

• Option 2: low variability duplicates averaged

• Option 3: all data included (strongest pKa rule)

Training and Test Sets
• For each data option, the structures were split into training (75%) and 

test sets (25%).
• Training/test set splitting was performed semi-randomly to:

• Keep similar distributions of pKa values
• Keep similar distribution of acidic and basic pKas for combined 

datasets

Molecular Descriptors
The QSAR-ready structures were used to calculate molecular descriptors and 
generate binary fingerprints and fragment counts using PaDEL.

• 1D and 2D continuous descriptors: 1444 descriptors.

• Binary fingerprints and counts: 9121 bits (CDK, Estate, MACCS, 
PubChem, Substructure, Klekota-Roth and 2D atom pairs). 

• DNN maps features through a 
series of nonlinear functions that are 
linked in a combinatorial fashion to 
maximize model accuracy

• Tensorflow and Keras packages 
were used to build a feed-forward 
DNN with 3 hidden layers of 256 
nodes each. 

• SVM defines a non-linear decision 
boundary that optimally separates 
two classes.

• The free and open source package 
LibSVM3.1 was used for SVM 
implementation.

• XGB is used for regression and 
classification problems, which produces a 
prediction model in the form of an 
ensemble of weak prediction models, 
typically decision trees. 

• The R package caret was used to 
implement XGB.

• Extreme Gradient Boosting (XGB)

DataWarrior Acidic Dataset (3260) DataWarrior Basic Dataset (3680)

ACD/Labs ChemAxon ACD/Labs ChemAxon

Predicted 
chemicals

3145 3206 1618 3649 3145 3206 1618 3649

R2 -0.21 -0.11 -0.05 0.23 -0.21 -0.11 -0.05 0.23

RMSE 3.72 3.52 3.00 2.79 3.72 3.52 3.00 2.79

Predictions ACD/Labs ChemAxon OPERA DNN XGB

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

ACD/Labs 1 0 0.47 4.48 0.60 3.46 0.34 4.95 0.23 5.36

ChemAxon 0.60 4.48 1 0 0.52 4.55 0.45 5.41 0.30 6.09

OPERA * * * * 1 0 0.51 2.09 0.44 2.27

DNN * * * * 0.74 2.09 1 0 0.51 2.39

XGB * * * * 0.43 2.27 0.15 2.39 1 0

Predictions ACD ChemAxon SVM DNN XGB

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

ACD/Labs 1 0 0.48 2.88 -0.14 4.57 -0.62 5.67 -0.80 5.99

ChemAxon 0.61 2.88 1 0 0.02 5.66 -2.62 9.77 -2.36 9.42

SVM * * * * 1 0 -0.90 3.41 0.37 1.97

DNN * * * * 0.15 3.41 1 0 0.35 2.99

XGB * * * * 0.28 1.97 -0.49 2.99 1 0
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Comparison of All Models for the Acidic pKa Predictions

Comparison of All Models for the Basic pKa predictions
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• A set of 8904 QSAR-ready structures (non overlapping with DataWarrior) from the 
TSCA-actives list (https://comptox.epa.gov/dashboard), was used as benchmark to 
compare the predictions of the models from this work and the commercial tools. 

• For this analysis, the SVM model was implemented in OPERA 
(https://github.com/kmansouri/OPERA) [2].

ACD/Labs pKa Predictor

ChemAxon pKa Predictor

• Here we provide free, open-source, fast, and reliable options for 
predicting pKa for heterogeneous chemical classes. 

• Modeling steps:
• pKa values for 7912 chemicals in water were obtained from 

DataWarrior, a freely available software package. 
• Chemical structures were standardized for QSAR modeling [1].
• Continuous molecular descriptors, binary fingerprints and 

fragment counts were generated using PaDEL. 
• Several machine learning approaches were applied: deep neural 

networks (DNN), support vector machine (SVM), and extreme 
gradient boosting (XGB).

• Models were 5-fold cross-validated and evaluated against an 
external test set. 

• The best models for each algorithm were compared to each 
other and to predictions from ACD/Labs and ChemAxon.

Study Goals and Procedure

QSAR-ready 
structures in 
Each of the 
Data Options

DataWarrior Acidic and Basic Datasets
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External Set Prediction and Model Concordance
Algorithm Best Acidic 

Model RMSE 
Best Acidic 
Model R2

Best Basic 
Model RMSE 

Best Basic 
Model R2

DNN 1.51 0.80 1.57 0.77

SVM 1.80 0.72 1.53 0.78

XGB 1.82 0.71 1.90 0.67

* Our models are not used as refence to evaluate ChemAxon and ACD/Labs predictions.

• Conceptual basis

• General Steps to Develop a QSAR model

• Curation of experimental data

• Standardization of the chemical structures

• Preparation of training and test sets

• Calculation of an initial set of descriptors 

• Selection of a machine learning algorithm

• Variable selection technique

• Validation of the model’s predictive ability

• Define the Applicability Domain

• Interpretation of the selected descriptors, if possible.
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