

Microbial Source Tracking: From Basic Science to Management Tool

Orin C. Shanks

Office of Research and Development National Risk Management Research Laboratory, Water Systems Division

Presentation Overview

1. Overview

- 2. A Case Study
- 3. Some Observations

Disclaimer: The views expressed in this presentation are those of the author[s] and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Fecal Pollution is a Worldwide Problem

- Fecal microbes are a common biological contaminant in surface waters worldwide
- Public health, economic, and ecological impacts

DeFlorio-Barker et al. (2018) Environmental Health 17:3

EPA Responsibilities

Protect and Restore Waters for Recreational Use

Clean Water Act 1972

Risk Assessment of Beach Contaminants

- BEACH Act (2000)
- Development of new or revised ambient water quality criteria (AWQC)

Management of Point and Non-Point Pollution Sources

- Total Maximum Daily Load (TMDL) programs
- National Pollutant Discharge Elimination System (NPDES) programs
- National Estuary Program (NEP)
- Combined Sewer Overflow (CSO) consent decrees

Current Fecal Pollution Management Tools

- General fecal indicator bacteria
- Widely distributed in most animals
- Presence in water is a warning signal of public health risk
- Used worldwide to manage fecal and sewage contamination

Source of Fecal Pollution is Important

- Public health risk can vary by source
- Mitigation strategies can vary by source
- Source information improves water quality management and public safety

Agricultural and Human Sources of Feces in the U.S.

Estimated 1x10⁹ tons of fecal material produced in U.S. each year (human, ~0.01%). RL Kellogg, CH Lander, DC Moffitt, N Gollehon - NRCS and ERS GSA Publ. No. NPS00-0579. Washington, DC: USDA, 2000

A Microbial Source Tracking Solution

Method designed to collect, isolate, identify, and measure a **host-associated identifier** from an environmental sample.

The Science Behind a Host-Associated Identifier

• Gut Condition Differences

- Diet
- Digestive physiology
- Temperature

Resource Competition

- Space
- Nutrients

Many Applications for Water Quality Management

- Mixed use watershed management
- Impaired site prioritization for remediation
- Evaluation of a best management practices
- Nutrient discharge characterization
- Recreational water quality indicator
- Urban stormwater management tool
- Waterborne disease surveillance support
- Hazardous event response

Properties of an Ideal Microbial Source Tracking Management Tool

Goal	Description
Clear Host-Association	Strong evidence of close link with target pollution source
Known Host-Distribution	Broadly distributed across target population
Quantitative Metric	Absolute concentration information
Expert Consensus	Agreement among majority of experts
Standardization	Complete standard operating procedure available
Data Acceptance Metrics	Performance benchmarks to ensure high quality results
Validation	Multiple laboratory confirmation that the method adequately meets application needs
Field Demonstrations	Real-world examples with guidance for implementation
Technology Transfer Tools	Easy to use process, training opportunities, lab proficiency testing, troubleshooting tools, etc.

A Management Tool Development Map

A Case Study: The HF183 Human Host-Identifier

- First reported in 2000 (Bernhard and Field 2000)
- Extensively studied:
 - Over 2,000+ citations
 - Wide range of applied science information:
 - -Host distribution
 - -Field applications (> 15 countries)
 - -Fate and transport
 - -Link to public health
- Strong track record in performance studies:
 - Top human method, 22 expert labs (Griffith et al. 2003)
 - Top human method, 27 expert labs (Boehm et al. 2013)

12

Is Cultured *Bacteroides* spp. an Ideal Fecal Indicator Bacteria?

B. fragilis (ATCC[®] 25285) colonies growing on Brucella Agar. Incubated anaerobically for 24 hours at 35°C.

- Highly abundant in feces and sewage
 - (~1,000-fold > fecal coliforms)
- Strict anaerobe
- Difficult to cultivate
- Not prevalent in birds (Fogarty and Voytek, 2005)

Alsop and Stickler (1985). An Assessment of *Bacteroides fragilis* group organisms as indicators of human faecal pollution. *Journal of Applied Bacteriology* 58:95-99.

Fiksdal et al. (1985). Survival and detection of Bacteroides spp., prospective indicator bacteria. Applied Environmental Microbiology. 49:148-150.

13

Bacteroides Species as a Host-Identifier

Kreader et al. (1995). Design and Evaluation of *Bacteroides* DNA Probes for the Specific Detection of Human Fecal Pollution. *Applied and Environmental Microbiology*. 61:1171-1179.

Targeting Uncultivated *Bacteroides* starts Present-Day Microbial Source Tracking Field

HF183 DNA Target Sequence Anatomy

- End-point PCR platform
- Forward primer HF183 (specificity for human-associated *Bacteroides*)
- Reverse primer 708R
 (non-specific to maximize sensitivity)

A *Bacteroides* Strain Bearing the HF183 DNA Target Sequence Isolated in 2006

16

International Journal of Systematic and Evolutionary Microbiology (2006), 56, 1639-1643

Bacteroides dorei sp. nov., isolated from human faeces

Mohammad Abdul Bakir,¹ Mitsuo Sakamoto,¹ Maki Kitahara,¹ Mitsuharu Matsumoto² and Yoshimi Benno¹

¹Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Center, Wako, Saitama 351-0198, Japan

²Laboratory of Dairy Science and Technology, Kyodo Milk Industry Co. Ltd, Hinode, Tokyo 190-0182, Japan

- *B. dorei* isolated from human feces
- 100% sequence identity to HF183 target sequence
- 4% 16S rRNA sequence divergence from *B. vulgatus*

THE

Quantitative PCR Allows Estimation of DNA Target Concentration in Test Sample

- Mainstream scientific technology
- "Gold standard" for many applications
- No cultivation requirement
- Sensitive and specific in complex systems
- Highly reproducible when standardized
- Established quality control guidelines (Bustin et al. 2010)
- Specialized reagents for environmental testing

Concept Formulation Review

Quantitative Human-Associated Microbial Source Tracking Tool for Water Quality Management

HF183 Adapted to qPCR Platform

	5'	ATCATGAGTTCACATGTCCGCATGATTAAAGGTATTTTCCGGTAGAGCGATGGGGATGCGTTCCATTAGATAGTAGGCGGGGTAACGGCCCACCTAGTCA
		HF183 SYBR HF183
		HF183/BFDrev
		HF183/BacR287
		BacHum-UCD
HF183 SYBR (Seurinick et al. 2005)		
	5'	ACGATGGATAGGATAGGGGTTCTGAGAGGAAGGTCCCCCCACATTGGAACTGAGACACGGTCCAAACTCCTACGGGAGGCAGCAGTGAGGAATATTGGTCA
		++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ ++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ +++++ ++++++
• HUBAC (Layton et al. 2006)		HF183/BacR287
BacHum-UCD (Kildare et al. 2007)	5'	ATGGGCGATGGCCTGAACCAGCCAAGTAGCGTGAAGGATGACTGCCCTATGGGTTGTAAACTTCTTTTATAAAGGAATAAAGTCGGGTATGCATACCCGT
	5	•••••
		Bachuman
• HUIIIAIIBAC I (Okabe et al. 2007)		
	5'	
BacHuman (Lee et al. 2010)		BacHuman
		HuBac —
HE182/BEDrov (lauriand et al. 2010)		
	5'	${\tt GCGTAGATGGATGTTTAAGTCAGTTGTGAAAGTTTGCGGCTCAACCGTAAAATTGCAGTTGATACTGGATGTCTTGAGTGCAGTTGAGGCAGGC$
		++++ ++++ ++++ ++++ +++++ +++++ +++++++
• HF183/BacR287 (Green et al. 2014)		HumanBAC1
		HuBac
	5'	CGTGGTGTAGCGGTGAAATGCTTAGATATCACGAAGAACTCCGATTG
		BacHuman

HumanBAC1

HuBac —

20

HF183 Broadly Distributed in U.S. Sewage

Shanks et al. (2010). Performance of PCR-Based Assays Targeting Bacteroidales Genetic Markers of Human Fecal Pollution in Sewage and Fecal Samples. *Environmental Science & Technology* 44:6281-6288.

HF183 Also Found Worldwide

Mayer et al. (2018). Global distribution of human-associated fecal genetic markers in reference samples from six continents. *Environmental Science & Technology*. IN PRESS

- Argentina
- Australia
- Austria
- Bangladesh
- Belgium
- Brazil
- Canada
- France
- Germany
- India
- Japan
- New Zealand
- Puerto Rico
- Singapore
- Spain
- Tanzania
- Uganda
- United Kingdom
- United States

Both Sensitivity and Specificity Are Important for HF183 Performance

90% 10% (Non-Human Targets Only)

HF183 Cross-Study Sensitivity and Specificity Performance

OVERALL SENSITIVITY ESTIMATE

Feces

~98% (n=580)

Sewage

REPORTED SPECIFICITY RANGE

60% to 100%

Sporadic detection of cattle, racoon, chicken, dog, deer, rabbit, and gull sources

Lack of Method Standardization Influences Specificity Performance

DNA Polymerase

 Labs often use modified lab protocols

Good Practices:

 Use exact procedure reported by method developer

Bad Habits:

-Modify protocol without evidence of equivalent performance Sample Concentration

Amplification Buffer

Primer/Probe Concentrations

Reaction Volume

LIMIT OF DETECTION DEFINITION

Data Acceptance Criteria

Cycle Number **Reference Library**

DNA Extraction Procedure

Thermal Cycle Instrument

Specificity Influenced by Reference Library Composition

Specificity Influenced By Sample Test Concentration

- Test concentration not standardized between studies
- Good Practices:
 - -Equal test quantity
 - -Report test concentration
 - -Use standardized procedure
- Bad Habits:
 - -Unequal test quantities
 - -Poor methods reporting

Low Concentration

Test Concentration is Key: A Better Way to Evaluate HF183 Specificity

- Probability of qPCR measurement is function of test concentration
- Same dilution pattern across different sources
- HF183 concentration typically lower in nonhuman sources
- It takes more nonhuman fecal pollution to generate same result with human source

27

Wang et al. (2013). New Performance Metrics for Quantitative Polymerase Chain Reaction-Based Microbial Source Tracking Methods. *Environmental Science & Technology Letters* 1:20-25.

HF183 Decay ≠ Cultivated Fecal Indicator Bacteria Decay

Example from **Mattioli et al. (2017).** Decay of sewage-sourced microbial source tracking markers and fecal indicator bacteria in marine waters. *Water Research*. 108:106-114.

Common Human Fecal Pollution Sources Exhibit Different Decay Trends

Slope (95% Confidence Interval)

Public Health Risk Based **HF183 qPCR Interpretation**

Boehm et al. (2015). Human-associated fecal quantitative polymerase chain reaction measurements and simulated risk of gastrointestinal illness in recreational waters contaminated with raw sewage. Environmental Science & Technology Letters. 2:270-275.

HF183 qPCR Used in Diverse Settings

Key Matrices	Example Applications
Urban, Snowmelt, Agricultural Run-Off	Human Non-Point Identification
Recreational Marine/Freshwater	Recreational Site Prioritization for Remediation
Aquaculture Waters	Nutrient Discharge Characterization
Streams, Lakes, Rivers	Waterborne Disease Outbreak Response
Sediments	Urban Stormwater Outfall Management
Beach Sand	Best Management Practice Evaluation
Groundwater	Total Maximum Daily Load Management
Septic System Discharge	Recreational Water Monitoring
Stormwater Outfalls	Shellfish Water Management
Combine Sewer Overflows	Drinking Water Reservoir Protection

Regional Validation of HF183 qPCR

California Source Identification Protocol Project

- 5 organizations formed technical lead team
- Public challenge via blinded study
- 27 expert laboratories
- 41 methods
- Majority of experts (>90%) favor a PCR-based technology
- qPCR methods are highly reproducible across labs only when protocol is standardized
- Identification of top human-associated qPCR methods
 - > HF183
 - HumM2

Boehm et al. (2013) Performance of forty-one microbial source tracking methods: a twenty-seven lab evaluation study. Water Research 47: 6812-6828.
Ebentier et al. (2013) Evaluation of the repeatibility and reproducibility of a suite of PCR-based microbial source tracking methods. Water Research 47: 6839-6848.
Layton et al. (2013) Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. Water Research 47: 6897-6908.
Stewart et al. (2013) Recommendations following a multi-laboratory comparison of MST methods. Water Research 47: 6829-6838.

National Validation of HF183 qPCR

EPA National Study

-Office of Water -Office of Research & Development

- HF183/BacR287 qPCR
- 14 Lab Participants
- Supplied with:

 Standard protocols
 Reference DNA materials
 Sewage spike material
 Blinded filter set (n = 18)
 All reagents and consumables

Shanks et al. (2016) Data Acceptance Criteria for Standardized Human-Associated Fecal Source Identification Quantitative Real-Time PCR Methods. Applied and Environmental Microbiology 82: 2773-2782.

HF183 qPCR Data Acceptance for Management Tool Application

Туре	Metric
Calibration Curve Model	Linearity (R ²)
	Amplification efficiency (E)
Extraneous DNA	No-template controls (NTC)
	Method extraction blank (MEB)
Matrix and Amplification Control Proficiency	Internal amplification control proficiency
	Sample processing control proficiency
Test Sample	Inhibition screen with IAC
	Matrix interference with SPC
	Lower limit of quantification (LLOQ)

- Many potential sources of error in qPCR
- Benchmark metrics to ensure acceptable performance
- Required for scientific credibility of findings

34

Shanks et al. (2016). Data acceptance criteria for standardized human-associated fecal source identification quantitative real-time PCR methods. *Applied and Environmental Microbiology*. 82:2773-2782.

HF183 Management Tool Development Progress Review

What is the Deal with False Positives in Non-Human Sources?

- Are there predictable patterns to HF183 non-human occurrence?
- Recent study reports that gulls ingest human waste (Alm et al. 2018)
- Can some animals with HF183 be potential transport vectors of human pathogens too?

and/or

• Can *Bacteroides* with HF183 colonize a non-human gut?

We're so close with dogs, even our poop looks similar

A new study finds that human and dog microbiomes have more in common than you might expect.

Kat Eschner

Value of Method Standardization and Data Acceptance Criteria

Obvious Benefits:

- Required for multiple lab implementation
- > Enhance public acceptance
- Promote data compatibility

Less Obvious Benefits:

- Increases access
- Establishes shortcut for new technology development

One Protocol Does Not Fit All Applications

- Sampling strategies

 Site selection
 Sampling frequency
- Data interpretation

 Ancillary data requirements
 Additional data analysis procedures
- Resource logistics
 -Local laboratory capacity
 -Leveraging available resources
 - -Local partnerships

Some Research Gaps are Application-Specific

Non-Point Source ID

- Standardized methodology
- Standardized DNA reference materials

Spatial-Temporal Trends

- Standardized methodology
- Standardized DNA
 reference materials

Public Health Risk Indicator

- Standardized methodology
- Standardized DNA reference materials
- Established link to public health risk
- Approved application by regulatory agency

Enforcement

- Standardized
 methodology
- Standardized DNA reference materials
- Lab accreditation pathway
- Weight of evidence
 legal definition
- Approved application by regulatory agency

Technology Transfer is a Game Changer

- Develop a Scaling-Up Strategy
- Goals:
 - -Widespread implementation
 - -Public acceptance
 - -Improved feasibility
 - -Increased lab capacity
- Technology Transfer Priorities:
 - -Centralized standard reference materials
 - -Better data visualization and reporting tools
 - -Improved communication strategies
 - -Training opportunities

How Can We Streamline Future Method Development?

- Implement standardized procedures
- Promote multiple lab studies
- Blueprint for emerging MST technologies

Kate Field, OSU Anne Bernhard, CC

- Cathy Kelty, EPA
- Mano Sivaganesan, EPA
- Asja Korajkic, EPA
- Brian McMinn, EPA
- Richard Haugland, EPA
- Kevin Oshima, EPA
- Robin Oshiro, EPA
- Lindsay Peed, EPA
- Hyatt Green, SUNY
- Pauline Wanjugi, NYSD
- Amy Zimmer-Faust, EPA
- Xiang Li, ND
- Marirosa Molina, EPA
- Jorge Santo Domingo, EPA
- Hodon Ryu, EPA

Many, many, more ...

- John Griffith, SCCWRP
- Yiping Cao, Source Molecular
- Steve Weisberg, SCCWRP
- Jill Stewart, UNC

ACKNOWLEDGEMENTS:

Stefan Wuertz, NTU

Jody Harwood, USF Chris Staley, UM

- Dan Wang, Stanford
- Ryan Newton, UW-Milwaukee
- Mitch Sogin, MBL
- Susan Huse, BU
- Rob Knight, UC-San Diego
- Sandra McLellan, UW-Milwaukee
- Sam Dorevitch, UI-Chicago

- Rachel Noble, UNC
 - Satoshi Okabe, HU
 - Huw Taylor, U. of Brighton
 - James Ebdon, U. of Brighton
 - Anicet Blanch, U. of Barcelona
 - Joan Rose, MSU
 - Asli Aslan, USG
 - Thomas Edge, Environment Canada
 - Warish Ahmed, CSIRO
 - Mia Mattioli, CDC
 - Rene Mayer, TU Wein
 - Andreas Farnleitner, TU Wein
 - Georg Reischer, TU Wein
 - Tricia Coakley, UK
 - Zach Staley, Environment Canada
 - Dave Bachoon, GC
 - Christina Wadem, U. of Puerto Rico
 - Roger Fujioka, UH
 - Kristen Gibson, UA
 - David McCarthy, MU
- Stephen Bustin, ARUPatricia Holden, UC-Santa Barbara
- Jenny Jay, UCLA
- Jeff Soller, Soller Environmental
- Mark Borchardt, USDA
- Jean Pierre Nshimyimana, MSU
- Gary Sayler, UT-Knoxville
- Kelly Goodwin, NOAA

QUESTIONS?

Email: shanks.orin@epa.gov Phone: (513) 569-7314

U.S. Environmental Protection Agency 26 West Martin Luther King Drive Cincinnati, OH 45268