

Program for Assisting the Replacement of Industrial Solvents (PARIS III)

Paul Harten, Physical Scientist

US EPA Disclaimer

 The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Problem

 Solvents are used in industry because of. their effective performance. Unfortunately, some of these solvents are particularly harmful to the environment

Solution

3

 Solvent replacements may be found with similar performance, but much less toxicity. Use of these replacements reduce harm to the environment without sacrificing performance.

U.S. Environmental Protection Agency

PARIS III - EPA Solvent Substitution Software Tool

 PARIS III implements extensive searches for solvent mixtures with properties similar to solvent mixtures they replace, but with less impact to the environment.

PARIS III Solvent Database

- 1. Contains over 5000 Chemicals.
- 2. Each chemical record has values, numbers, and coefficients to get:
 - 8 physical properties.
 - 10 chemical properties.
 - 8 environmental indicators.

Replacement Example

Mixture to be replaced is entered by its chemical make-up, or loaded from file.
"RollerWash" is a solvent mixture used to wash the ink from the rollers of a printing press.

Example: Screenshot 1 United States Environmental Protection

Jnited States

Agency

PARIS III	828	
le Edit Action Help urrent Mixture Impact Factors Physical Properties Activity Coefficients Solvent Mixtures		
System Name RollerWash Units SI V Note: Units are converted to SI for calclulations. Temperature 25.0 V C Pressure 1.0 V Atm		
Chemical Display Options Chemical Na Search for Chemicals by Name	me	
Chemicals		Wt%
(+/-)-3-Hydroxybutanoic acid ethyl ester (+/-)-alpha-Pinene (1-acetyloxy-2-chloranyl-prop-2-enyl) ethanoate (1-acetyloxy-2-methyl-prop-2-enyl) ethanoate (1-chloranyl-2-methyl-propan-2-yl) benzene (1-chloranyl-3-nitrooxy-propan-2-yl) benzene (1-chloranyl-3-nitrooxy-propan-2-yl) nitrate (1-hexoxy-1-oxidanylidene-propan-2-yl) 2-oxidanylprop (1-methylpiperidin-3-yl)methanol		40.0 35.0 25.0
(1-nitrooxy-3-oxidanyl-propan-2-yl) nitrate (1E)-1-chloranylbuta-1,3-diene (1E)-1-methoxybuta-1,3-diene (1R,2R)-2-methylcyclopentan-1-ol		

EPA United States Environmental Protection Example: Screenshot 2

	5 Physical Pro									
		ential I res Fo				1011 March 1010 March 1010				
	000									
		Ingestion	Inhalation	Terrestrial Toxicity	Aquatic Toxicity	GWP	ODP	PCOP	Acid Rain	
Impact Factors	Default	5 ^	5 ^	5 ^	5 ^	5 ^	5 ^	5 ^	5 ^	
		· ·	~ ~	v	v	~	×	· •	v	
Chemicals	Wt%	S 								Totals
methylbenzene	40.0	7.65E-1	6.46E-3	7.65E-1	1.24E-2	0.00E0	0.00E0	1.35E0	0.00E0	5.79E0
pis(chloranyl)methane	35.0	3.04E-1	5.57E-2	3.04E-1	1.32E-3	4.68E-3	0.00E0	1.23E-2	0.00E0	1.19E0
propan-2-ol	25.0	9.64E-2	4.95E-3	9.64E-2	4.22E-5	0.00E0	0.00E0	1.96E-1	0.00E0	4.92E-1
				12						
										_
Totals	100.0	2.18E0	1.17E-1	2.18E0	2.71E-2	8.19E-3	0.00E0	2.96E0	0.00E0	7,48E0

Agency

Replacement Ex.. (cont.)

- The database is filtered to only use chemicals with lower environmental impact scores.
- Chemicals are then ranked by how close their properties are to those of the original mixture.

PARIS III X A Edit Action Help File Physical Properties Activity Coefficients Solvent Mixtures Current Mixture Impact Factors Physical Properties Single Mixture Lower Desired Upper Property Tolerance(%) Replacement Units Solvent Replacement Molecular kg/kmol 7: 2-Butenal, 2-methy A 11.0 70.512 84.12 19.221 87.942 Mass 7 _____ methylbut-2-enal 7: 2 chloranylbut-1-er Liquid kg/m3 14.0 8.14E2 9.47E2 1.08E3 8.30E2 7. (Z)-2-chloranylbut-Density 7: 1-chloranyl-2-meth K Boiling 10.0 301.377 334.863 368.349 390.15 8: 2-methylidenebutar Temperature 8: (E)-pent-2-enal Vapor kPa 8: 2,2-dimethylpropan 30.0 1.77E1 2.52E1 3.28E1 3.45E0 Pressure 8: cyclohexa-1,4-diene 8: 2-methylpropanoyl Surface kg/s2 16.0 1.68E-2 2.00E-2 2.32E-2 2.43E-2 8: methylsulfanylethar Tension 8: ethyl 2,2,2-tris(fluor kg/m-s 30.0 3.94E-4 5.63E-4 7.32E-4 5.40E-4 8: propyl 2-chloranyle Viscosity 8: methyl 2-chloranylr Thermal J/(m-s-K) 8: cyclohexen-1-yl eth 30.0 9.10E-2 1.30E-1 1.69E-1 1.46E-1 Conductivity 8: heptanoyl chloride 8: butyl 2-chloranyletł K 281.712 291.45 8: (E)-1,1-dimethoxyhi Flash Point 8: 1-chloranyl-2-fluora Air 1.06E0 7.61E-2 8: 1-chloranyl-2-meth Index Impact/Kg 8: 1,2,2-tris(chloranyl)-Environmental 7.48E0 8: 1-Butene, 1-chloro- V 2.24E0 Impact/Kg Index < > Tolerance Scale Factor A TOOL OC 15

🗼 PARIS III

File Edit Action Help

Current Mixture Impact Factors Physical Properties Activity Coefficients Solvent Mixtures

Infinite Dilution Activity Coefficients

Name	Tolerance(%)	Lower	Desired	Upper	Replacement
ethanol	25.0	1.51E0	2.02E0	2.52E0	1.19E0
diethyl ether	30.0	5.65E-1	8.07E-1	1.05E0	1.39E0
acetone	28.0	6.73E-1	9.35E-1	1.20E0	1.06E0
water	30.0	3.61E0	5.16E0	6.70E0	3.61E0
benzene	30.0	9.54E-1	1.36E0	1.77E0	1.11E0
cis-2- heptene	30.0	1.61E0	2.30E0	3.00E0	2.63E0
n-propyl chloride	30.0	8.88E-1	1.27E0	1.65E0	9.98E-1
n-hepta- decane	30.0	2.44E0	3.48E0	4.53E0	7.16E0
n-propyl- amine	30.0	3.47E-1	4.96E-1	6.44E-1	8.13E-1
dimethyl disulfide	30.0	1.59E-1	2.27E-1	2.95E-1	2.89E-1

Single Mixture Solvent Replacement 7: 2-Butenal, 2-methy 7: 3-methylbut-2-enal 7: 2-chloranylbut-1-er 7: (Z)-2-chloranylbut-7: 1-chloranyl-2-meth 8: 2-methylidenebutar 8: (E)-pent-2-enal 8: 2,2-dimethylpropan 8: cyclohexa-1,4-diene 8: 2-methylpropanoyl 8: methylsulfanylethar 8: ethyl 2,2,2-tris(fluor 8: propyl 2-chloranyle 8: methyl 2-chloranylr 8: cyclohexen-1-yl eth 8: heptanoyl chloride 8: butyl 2-chloranyleth 8: (E)-1,1-dimethoxyhi 8: 1-chloranyl-2-fluora 8: 1-chloranyl-2-meth 8: 1,2,2-tris(chloranyl) 8: 1-Butene, 1-chloro- ¥ < >

×

Replacement Mixtures

- Single chemical replacements are only part of the solvent substitute solution.
- Even better replacements for the initial solvent mixture may be found by examining thousands/millions of combinations of these ranked solvents.

urrent Mixture Impact Fa	actors Physical Properties	Activity Coefficients	Solvent Mixtures		
	Sc	olvent Mixtu	res	Miscibility Test	
Primary		O Tertiary	Mass Ratio	Best Mixtures	_
✓ Best Solvents All Green Solvents	I est Solvents I All Green Solvents	Best Solvents	8:2 7:3	4: 2-Butenal,; 1-chlorany; 6:4 5: 3-methylbu; 1-chlorany; 6: 5: 2-Butenal,; 1-chlorany; 7:3	:4
_ Initial Solvents _ All Solvents	Initial Solvents	All Solvents	6:4	5: 1-chlorany; 2-Butenal,; 5:5 5: 1-chlorany; 3-methylbu; 5: 5: cyclohexa-; 1-chlorany; 5:5	:5 5
2-Butenal, 2-methyl- 3-methylbut-2-enal 2-chloranylbut-1-ene	2-Butenal, 2-methyl- 3-methylbut-2-enal 2-chloranylbut-1-ene			6: (E)-pent-2; 1-chlorany; 6:4 6: 1-chlorany; (E)-pent-2; 5:5 6: 3-methylbu; 1-chlorany; 7:	:3
(Z)-2-chloranylbut-2- 1-chloranyl-2-methyl 2-methylidenebutana	(Z)-2-chloranylbut-2- 1-chloranyl-2-methyl 2-methylidenebutana	1		6: 2,2-dimeth; 1-chlorany; 5:5 6: (E)-pent-2; 2-chlorany; 7:3 6: cyclohexa-; 1-chlorany; 7:3	
(E)-pent-2-enal 2,2-dimethylpropanal cyclohexa-1,4-diene	(E)-pent-2-enal 2,2-dimethylpropanal cyclohexa-1,4-diene	1		6: cyclohexa-; 1-chlorany; 6:4 6: 1-chlorany; cyclohexa-; 6:4 7: 2-methylid; 1-chlorany; 6:4	4
2-methylpropanoyl cl methylsulfanylethane	methylpropanoyl cl methylsulfanylethane ethyl 2,2,2-mic@uorar			7: 2-methylid; 1-chlorany; 5: 7: 2,2-dimeth; 1-chlorany; 6: 7: 2,2-dimeth; (E)-pent-2; 5:5	5 4
ethyl 2,2,2-tris(fluorar propyl 2-chloranyleth methyl 2-chloranylpro	propyl 2-chloranyleth methyl 2-chloranylpro			7: (E)-pent-2; 1-chlorany; 7:3	
cyclohexen-1-yl ethar heptanoyl chloride butyl 2-chloranyletha	cyclohexen-1-yl ethar heptanoyl chloride butyl 2-chloranyletha			Solvent 2-Butenal, 2-methyl-	Wt% 60.0
(E)-1,1-dimethoxyhex	(E)-1,1-dimethoxyhex			1-chloranyl-2-methyl-pr	40.0

urrent Mixture Impact	Factors Physical Propertie	s Activity Coefficients So	lvent Mixtures		
	S	olvent Mixture	s	Miscibility Test	
● Primary ☑ Best Solvents □ All Green Solvents □ Initial Solvents	 Secondary Best Solvents All Green Solvents Initial Solvents 	 Tertiary Best Solvents All Green Solvents Initial Solvents 	7:2:1 6:3:1 6:2:2	Best Mixtures 4: 3-methylbu; 1-chlorany; 2- 4: 2-Butenal,; 1-chlorany; 2- 4: 3-methylbu; 1-chlorany; 2 4: 3-methylbu; 1-chlorany; 2- 4: 2-Butenal,; 1-chlorany; 2-o	chlorar Z)-2-cł -chlora
All Solvents 2-Butenal, 2-methyl- 3-methylbut-2-enal 2-chloranylbut-1-ene (Z)-2-chloranylbut-2- 1-chloranyl-2-methyl 2-methylidenebutana (E)-pent-2-enal 2,2-dimethylpropanal cyclohexa-1,4-diene 2-methylpropanoyl cl methylsulfanylethane ethyl 2,2,2-tris(fluorar propyl 2-chloranyleth methyl 2-chloranylpro	All Solvents 2-Butenal, 2-methyl- 3-methylbut-2-enal 2-chloranylbut-1-ene (Z)-2-chloranylbut-2- 1-chloranyl-2-methyl 2-methylidenebutana (E)-pent-2-enal 2,2-dimethylpropanal cyclohexa-1,4-diene 2-methylpropanoyl cl methylsulfanylethane ethyl 2,2,2-tris(fluorar propyl 2-chloranylpth methyl 2-chloranylptn	All Solvents	5:3:2 4:4:2 4:3:3	4: 3-methylbu; 1-chlorany; 2 4: 2-Butenal,; 1-chlorany; cy 4: 3-methylbu; 1-chlorany; cy 4: 1-chlorany; 2-chlorany; cy 5: 2,2-dimeth; (E)-pent-2; 1-c 5: 2,2-dimeth; 1-chlorany; 2,2 5: 2,2-dimeth; 1-chlorany; 2,2 5: 2,2-dimeth; 1-chlorany; 2,2 5: 2,2-dimeth; 1-chlorany; 2,2 5: 2,2-dimeth; 2-Butenal,; 1-c 5: 1-chlorany; (E)-pent-2; 2,2 5: 2,2-dimeth; 3-methylbu; 1 5: (E)-pent-2; 1-chlorany; 2,2 4: 1-chlorany; 2,2 5: 2,2-dimeth; 3-methylbu; 1 5: (E)-pent-2; 1-chlorany; 2,2 4: 1-chlorany; 2,2 5: 2,2-dimeth; 3-methylbu; 1 5: (E)-pent-2; 1-chlorany; 2,2 5: 2,2-dimeth; 3-methylbu; 1 5: (E)-pent-2; 1-chlorany; 2,2 5: 2,2-dimeth; 3-methylbu; 1 5: (E)-pent-2; 1-chlorany; 2,2 5: (E)-pent-2; 2,2 5: (E	-chlora clohexa clohexa chlorar methy -dimet methy ,2-dim chlorar -dimet -chlora
cyclohexen-1-yl ethar heptanoyl chloride butyl 2-chloranyletha (E)-1,1-dimethoxyhex	cyclohexen-1-yl ethar heptanoyl chloride butyl 2-chloranyletha	cyclohexen-1-yl ethar heptanoyl chloride butyl 2-chloranyletha		Solvent 3-methylbut-2-enal 1-chloranyl-2-methyl-pr 2,2-dimethylpropanal	Wt% 50.0 40.0 10.0

urrent Mixture Impact	Factors Physical	Properties	Activity Coefficients	Solvent Mixtures		
		Sc	olvent Mixtu	res	Miscibility Test	
Primary Best Solvents	Secondary Best Solvent		O Tertiary		Best Mixtures 2: 1- hlorany; 2-methylpr; 7: 2: 1- chlorany; 2-Buten-1-; 7:	
All Green Solvents Initial Solvents All Solvents	All Green So Initial Solver		All Green Solvents	7:3	2: 1-chlorany; but-3-en-1; 7: - 1-chlorany; propan-2-o; 7: 3: 1-chlorany; propan-1-o; 7: 3: 1-chlorany; 2-methylpr; 7:	3 :3 :3
2-Butenal, 2-methyl- 3-methylbut-2-enal 2-chloranylbut-1-ene (Z)-2-chloranylbut-2- 1-chloranyl-2-methyl 2-methylidenebutana (E)-pent-2-enal 2,2-dimethylpropanal cyclohexa-1,4-diene	 2-Butenal, 2-m 3-methylbut-2 2-chloranylbut (Z)-2-chloranyl-2- 2-methylidenee (E)-pent-2-ena 2,2-dimethylpucyclohexa-1,4- 	-enal -1-ene Ibut-2- methyl butana I opanal			3: 1-chlorany; 2-butanol; 7:3 3: 1-chlorany; propan-2-o; 8: 3: 1-chlorany; propan-1-o; 8: 3: 1-chlorany; 3-methylpe; 6: 3: 1-chlorany; hexa-1,5-d; 7: 3: (E)-pent-2; 2-chlorany; 6:4 3: 1-chlorany; 5-methylhe; 5: 3: 2-Butenal,; 2-chlorany; 6:4 3: 3-methylbu; 2-chlorany; 6:4	:2 :4 3 4 :5 4 :4
2-methylpropanoyl cl methylsulfanylethane ethyl 2,2,2-tris(fluorar propyl 2-chloranyleth methyl 2-chloranylpro	2-methylpropa methylsulfany ethyl 2,2,2-trisi propyl 2-chlor methyl 2-chlor	ethane fluorar anyleth			4: 1-chlorany; 1-deuterio; 7:3 4: 1-chlorany; 1-deuterio; 6:4 4: 1-chlorany; cyclobutan; 7: 4: 1-chlorany; 2-methylbu; 6 4: 1-chlorany; 2thanol; 7:2	4 3
cyclohexen-1-yl ethar heptanoyl chloride butyl 2-chloranyletha (E)-1,1-dimethoxyhex	cyclohexen-1- heptanoyl chlo butyl 2-chlora	/l ethar ride iyletha			Solvent 1-chloranyl-2-methyl-pr 2-methylprop-2-en-1-ol	Wt% 70.0 30.0

Replacement Mixtures (cont.)

 Mixtures may be examined on the Physical Properties screen to find those that significantly reduce the air and environmental impact, but still have properties close to those of the original solvent mixture.

A PARIS III

 \Box \times

File Edit Action Help

Current Mixture Impact Factors Physical Properties Activity Coefficients Solvent Mixtures

Physical Properties

Property	Tolerance(%)	Lower	Desired	Upper	Replacement	Units	⊖ Single ● Mi Solvent Replace	
Molecular Mass	11.0	70.512	79.227	87.942	108.217	kg/kmol	2: 1-chlorany; 2-m 2: 1-chlorany; 2-B	
Liquid Density	14.0	8.14E2	9.47E2	1.08E3	8.44E2	kg/m3	2: 1-chlorany; but 3: 1-chlorany; pro	pan-
Boiling Temperature	10.0	301.377	334.863	368.349	354.504	К	3: 1-chlorany; pro 3: 1-chlorany; 2-m 3: 1-chlorany; 2-b	hethy
Vapor Pressure	30.0	1.77E1	2.52E1	3.28E1	1.49E1	kPa	3: 1-chlorany; pro 3: 1-chlorany; pro	pan-
Surface Tension	16.0	1.68E-2	2.00E-2	2.32E-2	2.32E-2	kg/s2	3: 1-chlorany; 3-m 3: 1-chlorany; hex	nethy a-1,5
Viscosity	30.0	3.94E-4	5.63E-4	7.32E-4	6.61E-4	kg/m-s	3: (E)-pent-2; 2-ch 3: 1-chlorany; 5-m 3: 2-Butenal,; 2-ch	nethy
Thermal Conductivity	30.0	9.10E-2	1.30E-1	1.69E-1	1.27E-1	J/(m-s-K)	3: 3-methvlbu: 2-c	
Flash Point		281.712		~~	209.014	к	Solvent	Wt
Air Index			1	1.06E0	1.55E-1	Ir pact/Kg	1-chloranyl-2 5-methylhepta	50.0 50.0
Environmental Index				7.48E0	1.25E0	impact/Kg	<	1
Tolerance Scale Factor				_				

urrent Mixture	Impact Factors	Physical Pr	operties	Activi	ity Coefficients	Solvent Mixtu	res		
			Ph	ysic	al Prope	erties			
Property	Tolerance(%)	Lower	Desi	red	Upper	Replacement	Units	○ Single ● Mi Solvent Replace	
Molecular Mass	38.0	49.121	79.2	227	109.333	108.217	kg/kmol	2: 1-chlorany; 2-m 2: 1-chlorany; 2-B	
Liquid Density	14.0	8.14E2	9,47	7E2	1.08E3	8.44E2	kg/m3	2: 1-chlorany; but 3: 1-chlorany; pro	pan-
Boiling Temperature	10.0	301.377	334.	863	368.349	354.504	К	3: 1-chlorany; pro 3: 1-chlorany; 2-m	nethy
Vapor Pressure	42.0	1.46E1	2.52	2E1	3.58E1	1.49E1	kPa	3: 1-chlorany; 2-b 3: 1-chlorany; pro 3: 1-chlorany; pro	pan-
Surface Tension	16.0	1.68E-2	2.00	E-2	2.32E-2	2.32E-2	kg/s2	3: 1-chlorany; 3-m 3: 1-chlorany; hex	nethy
Viscosity	30.0	3.94E-4	5.63	E-4	7.32E-4	6.61E-4	kg/m-s	3: (E)-pent-2; 2-ch 3: 1-chlorany; 5-m	nethy
Thermal Conductivity	30.0	9.10E-2	1.30	E-1	1.69E-1	1.27E-1	J/(m-s-K)	3: 2-Butenal,; 2-ch 3: 3-methvlbu: 2-c <	
Flash Point		281.712				300.014	К	Solvent	Wt%
Air Index	-				1.06E0	1.55E-1	Impact/Kg	1-chloranyl-2 5-methylhepta	50.0 50.0
Environmental Index					7.48E0	1.25E0	Impact/Kg	<	>

irrent Mixture Impact F	actors	Physical Properties	Activity Coefficients	Solvent Mixtures	;	
		Sc	olvent Mixtu	res	Miscibility Test	
● Primary ☑ Best Solvents □ All Green Solvents		ondary t Solvents Green Solvents	O Tertiary Best Solvents All Green Solvents		Best Mixtures 0: 1: hlorany; 5-methylhe; 5: 1: chlorany; 3-methylpe; 6:	
All Green Solvents Initial Solvents All Solvents	 Initi	al Solvents Solvents	Initial Solvents	7:3 6:4 5:5	1: 1-chlorany; 4-methylhe; 5: 1: 1-chlorany; 6-methylhe; 5: 1: 1-chlorany; 3-methylhe; 5: 1: 1-chlorany; 2,5-dimeth; 5:	:5 :5
2-chloranylbut-1-ene (Z)-2-chloranylbut-2- 1-chloranyl-2-methyl 2-Butenal, 2-methyl- 3-methylbut-2-enal 2-methylpropanoyl cl 1-chloranyl-2-methyl 1-Butene, 1-chloro-3- 2-methylidenebutana (E)-pent-2-enal 2,2-dimethylpropanal 1-chloranyl-3-methos propan-2-yl ethanoat 2,3-dihydrofuran	(Z)-2- 1-chid 2-Bute 3-met 2-met 1-chid 1-Bute 2-met (E)-pe 2,2-dii 1-chid propa 2,3-dii	ranylbut-1-ene chloranylbut-2- oranyl-2-methyl enal, 2-methyl- hylbut-2-enal hylpropanoyl ctor oranyl-2-methyl ene, 1-chloro-3- hylidenebutana nt-2-enal methylpropanal oranyl-3-methox n-2-yl ethanoat hydrofuran			1: 1-chlorany; 2,3-dimeth; 5: 1: 1-chlorany; 3,4-dimeth; 5: 1: 1-chlorany; 2-methylhe; 5: 2: 1-chlorany; 2-methylpr; 7: 2: 1-chlorany; 2-Buten-1-; 7: 2: 1-chlorany; 2-Methylpe; 6: 2: 1-chlorany; 2-Penten-1; 6: 2: 1-chlorany; 2,3-dimeth; 6: 2: 1-chlorany; 3,3-dimeth; 6: 2: 1-chlorany; 4-methylpe; 6: 2: 1-chlorany; 4-methylpe; 6: 2: 1-chlorany; 4-methylpe; 6: 2: 1-chlorany; 3-methylpe; 6: 3: 1-chlorany; 3-methylpe; 3: 3: 1-chlorany; 3-methylpe; 3: 3: 1-chlorany; 3-methylpe; 3: 3: 1-chlorany; 3-methylpe; 3:	5 5 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4
cyclohexa-1,4-diene		1exa-1,4-diene 2,2,2-tris(fluorar			Solvent	Wt%

Replacement Mixture (cont.)

A replacement mixture for RollerWash was found with all properties within bounds; and it reduces impact to the:

- air by a factor of 6.84.
- environment by a factor of 5.98.

Toxic Substance Control Act (TSCA) Chemical Replacements

 Using this same process, mixture replacements may be found for industrial solvents containing TSCA chemicals, and significantly reduce impact to the air and the environment.

Impact Reduction for TSCA Chemical Replacements

TSCA Chemical	CAS#	Air Impact Reduction	Env. Impact Reduction
Benzene	71-43-2	8.04	3.58
Toluene	108-88-3	8.90	9.08
PCE	127-18-4	7.64	2.76
TCE	70-01-6	9.56	2.98
nPB	106-94-5	9.95	12.74

Verify Replacements

 The final step of finding greener solvent replacements is to verify they serve as good substitutes in original industrial processes.

Conclusions

 PARIS III is a very strong and versatile solvent substitution software tool that can find significantly less harmful replacements for solvents currently used by industry.

Acknowledgements

Chemical Safety for Sustainability Program National Risk Management Research Laboratory Land and Materials Management Division

- Dr. Todd Martin, Chemical Engineer
- Dr. Douglas Young, Chemical Engineer
- Dr. Heriberto Cabezas, Chemical Engineer
- Dr. Michael Gonzalez, Chemist

Free Public Domain Software at EPA Website

https://www.epa.gov/chemical-research/programassisting-replacement-industrial-solvents-paris-iii

