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The Challenge

• Aging infrastructure and costs associated 
with upgrading or expanding of centralized 
treatment systems and distribution systems

• Water scarcity and challenges in meeting 
water system demands

• Meeting green building and net-zero 
development goals
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Energy, Greenhouse Gas (GHG) & 
Cost Analysis of MBRs

• Understand environmental and cost impacts of transitional 
decentralized MBR systems with sewer mining

• Investigate life cycle assessment (LCA) and life cycle cost 
(LCC) performance of MBRs under various regional and 
technological parameters
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General Decentralized 
Treatment System 
Boundaries
• Boundaries start at household 

wastewater collection
• End at downstream use of 

recycled water
o Recycled water displaces 

production of potable water
• MBR treatment systems 

transitional, use existing 
infrastructure for sludge processes

• For AnMBR, CH4 from headspace 
and is recovered converted to 
electricity/heat
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Scale and Land Use Scenarios
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Land Use 
Type

0.05MGD 
(500 ppl 
served)

0.1MGD
(1,000 ppl 
served)

1MGD
(10,000 ppl 

served)

5MGD
(50,000 ppl 

served)

10MGD
(100,000 

ppl served)
100,000 
#ppl/sqm

High 
density 
urban

0.005 
sqm 0.01 sqm 0.1 sqm 0.5 sqm 1 sqm

50,000 
#ppl/sqm Multi family 0.01 sqm 0.02 sqm 0.2 sqm 1 sqm 2 sqm

10,000 
#ppl/sqm Single 

family 0.05 sqm 0.1 sqm 1 sqm 5 sqm 10 sqm

2,000 
#ppl/sqm

Semi-rural 
single 
family

0.25 sqm 0.5 sqm 5 sqm N/A N/A

-Scenarios applied to AeMBR, mesophilic AnMBR (35˚ C), psychrophilic AnMBR (Ambient). 
-Average U.S. weather conditions (21.5˚ C).
-Note: ppl = people



Psychrophilic AnMBR Scenarios
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Influent Temperature = 17.9˚ C

Cold Climate 
(6˚ C)

Reactor Insulation:
-Included
-Excluded

Methane Recovery Options
-With and without methane 
permeate recovery
-Recovery options: flare, 
CHP, conversion to elect. 
only

Warm Climate 
(26.4˚ C)

1 MGD Scale

Psychrophilic 
AnMBR

Multi Family 
Land Use

Influent Temperature = 26.4˚ C



Methods and Data Sources
• MBR technology modeled using flux, cleaning, and module 

specifications for GE ZeeWeed® 500D hollow-fiber membrane 
with LEAPmbr aeration

• CAPDETWorks™ software used to develop life cycle inventory 
for preliminary treatment, fine screening, AeMBR operation and 
infrastructure, AnMBR infrastructure, and disinfection with 
chlorine

• Energy modeling for AnMBR process derived from Feickert et 
al., 2012

• Quantity of methane dissolved in permeate and energy use for 
dissolved methane recovery based on engineering calculations

• Recycled water delivery based on engineering calculations for 
pumping friction losses and infrastructure

• Completed full LCA using openLCA software
8



Influence of Population Density and Scale 
on Global Warming Potential (GWP) 
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Influence of Methane Recovery 
Options on GWP 
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Influence of Reactor Scale

Global Warming Potential Cumulative Energy Demand
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Effect of MBR Improvements 
Strategies on GWP under Different 
Climate Conditions
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Influence of Parameters on Study 
Outcome
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FINDING NEW WATER – Urban Case Study
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Urban Case Study Scenarios
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Total Flow Rate
0.025 MGD  
0.05 MGD   

Flow Rate of Water 
Treated

0.016 MGD 
0.025 MGD 
0.031 MGD 
0.05 MGD  

People Served 1,100 2,249 1,100 2,249 1,100 

Building Footprint (Roof Area) 20,000 155,969 20,000 155,969 20,000 

Area Served (sq. ft) 380,000 754,981 380,000 754,981 380,000 



AeMBR System Boundaries
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Conclusions and Next Steps
• MBR LCA and cost impacts decrease as the scale 
increases due to economies of scales, scale strongly 
influences overall impacts esp. cost

• All assessed impacts decrease in both AeMBR and 
AnMBR as population density increases, but population 
density does not drive results

• In warmer climate, AnMBR results in notable energy and 
GHG benefits compared to the AeMBR

• Significant energy, GHG benefits from displaced drinking 
water and energy recovery (in case of AnMBR)

• Communities can adapt LCA/LCC model framework for 
specific technological and regional conditions
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LCA database development



Range of Displaced Potable Water Energy Demand 
Reported in Literature
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Regionalized Electrical Grid Profile
Fuel mix of electrical grid affects magnitude of environmental burdens for 
both the MBR life cycle and the displaced potable water  
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Influence of Electrical Grid and Displaced Water 
Assumptions on GWP
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Effect of MBR Improvements Strategies on Energy 
Demand under Different Climate Conditions
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