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U.S. EPA’s Rapid Exposure and Dosimetry 
(RED) project provides tools to rapidly 
generate quantitative human exposure and 
internal dose estimates. To support 
identification of likely sources of chemicals 
found in biological media through non-
targeted/suspect screening analysis 
(SSA/NTA), our project added substance 
relationships between chemicals and their 
transformation products to the CompTox
Chemistry Dashboard1. 

In this example, we sought to find whether any chemical names referring to DSSTox
identifications by mass:charge ratio and neutral monoisotopic mass of compounds 
detected in pooled human blood samples using LC-QTOF4 were in category 3b. After 
finding a high number of false positives (>99%) in a PubMed search for “metabolite of 
[name]”, we used the abstracts manually classified from that effort to build a natural 
language processing model to identify abstracts containing mappings more efficiently.

We propose five categories of substances found in human biomonitoring samples:
1) endogenous metabolome,
2a) exogenous nutrients, 
2b) markers of exposure to exogenous nutrients,
3a) xenobiotics, and 
3b) markers of exposure to xenobiotics.

Substances are defined by their generation source, and are expected to be structurally 
heterogeneous. Some compounds can appear in more than one category. For example,  
formaldehyde is formed in amino acid production (1), can be observed internally after 
occupational exposures (3a), and is also formed in the body when breaking down 
methanol (3b). Another example is cholesterol: it is present in cellular membranes (1), 
from consumption of animal fat (2a), or as an effect of glucocorticoid medication (3b).

Data sources for xenobiotic mappings
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We have over 10,000 rows of putative mappings of transformation products in our 
database, mostly xenobiotics. Future work toward developing methods to improve 
identification of substances measured in human blood and their sources supports 
specific research projects active within the agency (e.g. PFAS chemicals). 

This poster does not necessarily reflect U.S. EPA policy. 

Our effort is unique in that we include only empirically-validated relationships for a 
given species. Restriction to observed in vivo transformations allows development of 
exposure estimates based on dose levels demonstrated to yield a detectable amount 
of product. More thorough knowledge of exposome products and relationships can 
also identify candidate substances and pathways that lead to detectable internal 
doses to inform future high-throughput assay research.

Method
• Balanced positive and negative sets of 

abstracts (362 each) 
• Remove stop words (Stanford)
• Identify informative features from most 

common words (top √n of both sets)
• Train a suite of binary classifiers with 10-

fold cross-validation
• Create a consensus prediction from all 

classifiers with >90% accuracy

Results
The method was validated on 884 abstracts containing the chemical names of interest, 
220 of which were known to be positive. The F1 score of consensus predictions was 
98.0%, but there was no consensus for 9.5% of positives. 

Source Structure Chemical identifiers Records DSSTox Mappable
NHANES XML from parsed PDF name, CAS 164 75

TKKB MySQL name 1029 614

ChemBL MySQL name, InChI, SMILES 1245 101 (by name only)

T3DB CSV name, CAS, InChI 791 406

MeSH SCR XML name 2081 625

PubChem parsed search results name 344 117

HMDB PMIDs from XML name, CAS, InChI, SMILES 19362 203 (by name only)

DrugLabels XML from parsed PDF name 518 79

PubMed text name ≈109122 ≈14502 potential

A record was considered a positive mapping when it contained a description of an 
experiment where one named compound was dosed and different compound(s) were 
detected in tissue(s) or excreta. The initial search effort yielded 1417 unique 3a/3b 
pairs where both parent and transformation product were already curated into DSSTox.

↑ Confusion matrices for training 
performance of some tested algorithms 

Your input requested: Are these 
categories sufficient?

Your input requested: Any other data source ideas?

Your input requested: Do 
the annotations in the new 
tables adequately capture 
the relevant information?

Since the database seeks to support analytical 
chemists, we exclude compounds predicted based on 
pathways, which could represent intermediates that 
may not be detectable. We also don’t assume 
conservation across species, due to cases like 
bisphenol A, where the conjugating enzyme in rats is 
comparable, but the product is found in different 
tissues due to different enterohepatic recirculation2.  

Your input requested: How do 
you recommend identifying 
the origins of NTA compounds? 

Screenshot of Chemistry Dashboard with 
Related Substances tab ↗ and a 

transformation product ↘ circled

Your input requested: Please give feedback on making this product more helpful for your work.

The data model is instantiated in a MySQL 5.6 community edition 
relational database. We added data to two tables in DSSTox3 and 
created two new tables for metadata to contextualize the mappings.

← DSSTox
Close up of 
relevant tables ↘
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