

Sensitivity of Solar Fossil Hybrid Electricity Technology Penetration to Price and Efficiency Projections

Kristen E Brown Postdoctoral Environmental Engineer US Environmental Protection Agency

> USAEE Meeting November 13, 2017 Houston, TX

Motivation

• New electricity generation capacity needed. Decision-makers consider:

- Fuel cost
- Capital cost
- Emissions
- Intermittency
- Previous studies analyze technological possibility of Hybrid solar gas combined-cycle*
 - Cost savings compared to independent fossil and renewable facilities
- Now evaluate market potential

ISCC

SEPA

Integrated Solar Combined Cycle

€PA

EPAUS9r MARKAL

• Bottom-up and technology-rich

- Captures the full system from energy resource supply/extraction technologies to end-use technologies in all sectors
- Energy technologies (existing and future techs) are characterized by cost, efficiency, fuel inputs, emissions
- Technologies are connected by energy flows
- Covers 9 US Census divisions

Optimization

- The model picks the "best" way (lowest system-wide cost) to meet energy demands choosing from the full "menu" of energy resources and technologies
- The model makes these choices from 2005 to 2055, giving us a snapshot of possible future energy mixes

Emissions and impacts

- All technologies and fuels have air and GHG emissions characterized
- Standards and regulations are included in the baseline, and additional policies can be modeled

*⇒***EPA**

Methods

- Used the EPA US 9-region MARKAL model (EPAUS9r)
- Added representation* of ISCC technology to regions 7, 8, and 9
- Tested various cost and fuel savings attributes for hybrid technology
- Altered how the technology fits into Renewable Portfolio Standards (RPS)

Set EPA

Nested Sensitivity

Possible Fuel Savings	15%	20%	25%	30%	Cost increases:
Possible Cost Increases	\$700	\$800	\$900	\$1,000	\$/kW compared
RPS fulfillment	Full	Partial	None		to NGCC investment

100% of electricity counts toward RPS Renewable Fuel Savings/ 30% 25% 20% 15% Solar Fraction Increased Cost \$900 \$1,000 \$700 \$800 \$900 \$1,000 \$700 \$800 \$900 \$1,000 \$700 \$800 \$700 \$800 \$900 \$1,000

	Does not count for RPS Not renewable				
Fuel Savings/ Solar Fraction	30	25%			
Increased Cost	\$700	\$800	\$700		

Without RPS incentive, ISCC not used when too expensive, inefficient

	Only Solar Fraction Counts toward RPS Partially Renewable										
Fuel Savings/ Solar Fraction	30%			25%				20%			
Increased Cost	\$700	\$800	\$900	\$1,000	\$700	\$800	\$900	\$1,000	\$700	\$800	\$900

■ \$1,000 ■ \$900 ■ \$800 ■ \$700

Region 7 Emissions Changes

Sensitivity to NG Price

⇔EPA

14

⇔EPA

Discussion

- ISCC can be economically viable
- Siting of ISCC facilities will be important
 - Tested parameters assume good solar resource
 - Large land area required
- RPS definitions are important to technology deployment and emissions
- Emissions reductions are not proportional to ISCC adoption

References

- Barigozzi, G., G. Bonetti, G. Franchini, A. Perdichizzi, and S. Ravelli. 2012. 'Solar Hybrid Combined Cycle Performance Prediction Influence of Gas Turbine Model and Spool Arrangements', *Journal of Engineering for Gas Turbines and Power-Transactions of the Asme*, 134:11.
- Lenox, C., R. Dodder, C. Gage, D. Loughlin, O. Kaplan, and W.Yelverton. 2013. "EPA US Nine-region MARKAL Database: Database Documentation." In. Cincinnati, OH: US EPA.
- Spelling, J., and B. Laumert. 2015. 'Thermo-economic Evaluation of Solar Thermal and Photovoltaic Hybridization Options for Combined-Cycle Power Plants', *Journal of Engineering for Gas Turbines and Power-Transactions of the Asme*, 137: 11.

Disclaimer: The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.