

Stream Mesocosm Phosphorus Dose Response Validation Study

Christopher Nietch¹, Paul Weaver², Jim Lazorchak³, and Nathan Smucker³

¹USEPA/ORD/ National Risk Management Research Lab ² APTIM ³USEPA/ORD/National Exposure Research Lab

*Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent the views or policies of the US Environmental Protection Agency (EPA). Mention of trade names or commercial products does not constitute EPA endorsement or recommendations for use.

- Ohio EPA's rebirth of the Total Maximum Daily Load (TMDL) process
- Nutrient criteria in the East Fork Watershed Case Study
- Stream mesocosm nutrient criteria validation studies
 - Set-up and experimental design
 - Response variables
- Nominal and realized water chemistries
- Data analysis approach
- Preliminary results
- Plausible mechanisms linking phosphorous content to biota hypothesis
- Conclusions and relevance

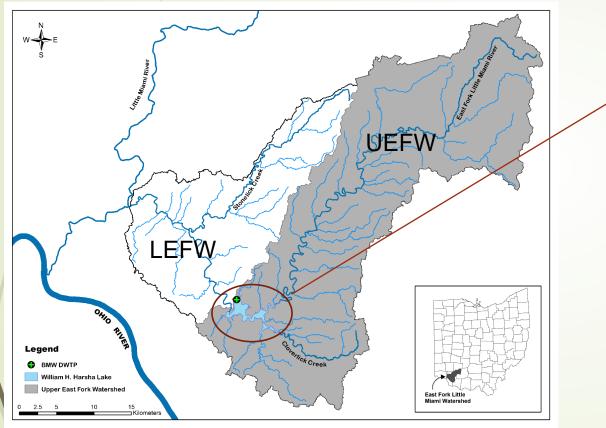
Ohio EPA's TMDL program

- Total Maximum Daily Load (TMDL) Defines the maximum load (or amount) of pollution that a waterbody can hand and still be considered healthy and recommends a clean-up plan
- Section 303(d) of the Clean Water Act requires TMDLs for water bodies that are not meeting WQ goals and are considered impaired
- The Supreme Court of Ohio on 3/24/2015 determined that an OEPA TMDL is a "rule" that must follow the rulemaking procedure in R.C. Chapter 119 before being submitted to USEPA for approval and implemented in an NPDES permit
- Because none of OEPA's TMDLs had been adopted as rules the effect of the ruling invalidated all previously approved TMDLS and required a process for the development of a new process for future TMDLs

background load
point source load
nonpoint source load
margin of safety

Ohio's New TMDL process

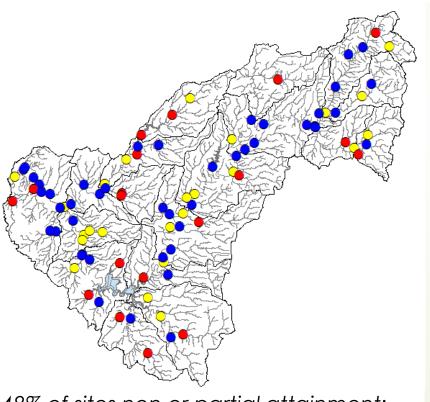
- On 6/30/2017 House Bill 49 was signed into law, included were new requirements for OEPA's TMDL program including:
 - Reinstatement of TMDLs approved prior to 3/24/2015
 - Challenges to TMDL-based effluent limits occur through the permits appeal process
 - Formalizing stakeholder involvement throughout the TMDL development
 - Additional items of consideration in implementation and wasteload/load allocation
 - Requirement to undertake rulemaking for <u>stakeholder</u> notification and determining significant public interest
 - The OEPA will standardize the documentation of:
 - Relative contribution of point and non-point sources, watershed flow dynamics, how reductions will
 influence attainment, assurances that reductions can be implemented, site impairment relative to source
 location, how habitat affects impairment, feasibility of available treatment technology, sources of
 funding, alternative approaches, implementation through scheduled compliance over multiple permit
 cycles, estimated economic impacts, information submitted by stakeholders.



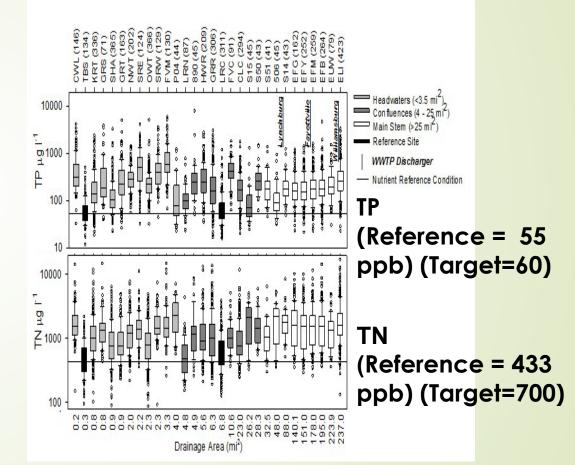
Enter ORD's East Fork Watershed Study and The East Fork Watershed Cooperative

The East Fork Little Miami River Watershed in Southwestern Ohio

Harsha Lake – Drinking water, recreation, & flood control resource


Harsha Lake experiences severe harmful algal blooms

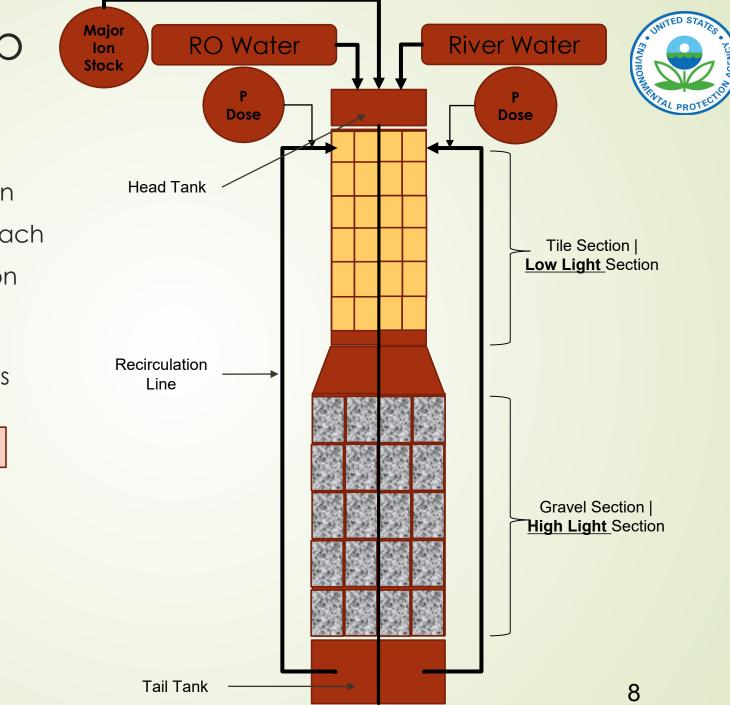
One primary focus of research has been the consideration of market-based approaches to nutrient pollution reduction. Large number of new requirements for TMDL process are in place


East Fork Watershed TMDL: account for impaired streams at HUC12 scale and Lake experience severe HABs

Biological Attainment Map for the East Fork Watershed from **Ohio EPA 2012** Survey

48% of sites non or partial attainment; full attaining sites mostly along mainstem

ORD's Nutrient Criteria established for research purposes


Stream mesocosm studies

- Validate nutrient criteria
 - EPA's experimental stream facility resides in the East Fork Watershed
 - Colonizing biota and water chemistry conditions can be configured to be highly relevant to the TMDL development
- Use mesocosm approach to better understand the linkages between nutrients and stream biotic structure and function
 - Characterizing mechanisms lends confidence to the nutrient criteria
 - Presently the linkages among nutrients and biota are weaker than expected and confusing (e.g. strongest correlate with macroinvertebrate impairment is organic Nitrogen (Miltner 2014)

Mesocosm Set-up

- Dose Response Design
- Ecotoxicology Approach
 - ~ 1 month colonization period followed by 2 month dosing period
- Individual Experiments
 - Nitrate Dose
 - Phosphate Dose
 - N+P Dose
 - Etc.

Response Variables

9

Variable / Variable Class
Macroinvertebrates - Insect Emergence
Macroinvertebrates - taxa drift, dry weight, LOI
Macroinvertebrates - gravel benthos
Periphyton, gravel & tile (tile/gravel extraction days) _ <u>BenthoTorch</u> biomass
Periphyton - tile - low and high light sections - BenthoTorch biomass trend
Periphyton - tile - short term growth rate - <u>BenthoTorch</u> biomass
Periphyton - tile - reciprocal transplant study - <u>BenthoTorch</u> biomass
Periphyton - nutrient diffusing substrate - BenthoTorch biomass
Periphyton - nutrient diffusing substrate - specific DO metabolism
Periphyton - gravel/tile/nutrient diffusing substrate - chlorophyll extraction
Periphyton - gravel/tile/nutrient diffusing substrate - AFDM
Periphyton - gravel/tile/nutrient diffusing substrate - <u>CNP</u>
Periphyton - gravel/tile - algal taxonomy (300)
Periphyton - gravel/tile - diatom taxonomy (500)
Periphyton - gravel/tile - DNA metabarcoding
Periphyton - cyanotoxins - ELISA tests
Leaf Litter - Lirodendron tulipifera - Dry Weight, LOI, CN&P
Nutrient Uptake - whole mesocosm - short term study
Single Species Toxicity - N. triangulifer Mortality and Growth - WET Format
Single Species Toxicity - H. azteca- WET Format
Single Species Toxicity - C. dubia - WET Format
Single Species Toxicity - larval P. promelas - WET Format
Single Species Toxicity - N. triangulifer Mortality and Growth - ExSitu Format
Single Species Toxicity - H. azteca Mortality and Growth - ExSitu Format
Single Species Toxicity - C. fluminea, survival and growth - In-situ Format
Single Species Toxicity - adult P. promelas Survival and Fecundity - In-situ Format

Gravel/Litter

Emergence

In-situ bivalves

In-situ Fish

Lab assay

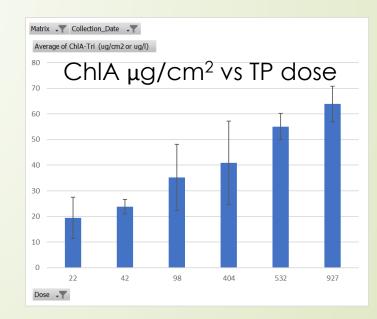
Water Chemistries – Phosphate Dosing Period

Set-up				Major Ions and Nutrients (mg/l)											Nutrient Ratios	
Mesocosm	Nominal P as Phosphate Target (ppb)	Chem Tank	Stock Tank Vol (gal)	Cl-	SO4-	Ca	Na	Mg	К	N as TN	N as NO3	P as TP	P as OrthoP	Ing N:P	TN:TP	Throuh rate to ESF Discharge (I/min)
E03.2	15	9	300	46.38	31.35	34.55	20.62	8.04	4.11	0.114	0.098	0.019	0.013	7.65	5.87	2.73
E07.1	15	9	300	46.38	31.35	34.55	21.62	9.04	4.11	0.114	0.098	0.019	0.013	7.83	5.65	2.73
E08.1	15	/ 9	300	46.38	31.35	34.55	22.62	10.04	4.11	0.114	0.098	0.019	0.013	7.83	5.65	2.73
E01.2	40	1	125	46.38	31.35	34.55	23.62	11.04	4.11	0.114	0.098	0.050	0.043	2.31	2.20	2.73
E03.1	40	4	125	46.38	31.35	34.55	24.62	12.04	4.11	0.114	0.098	0.050	0.043	2.31	2.20	2.73
E04.2	40	4	125	46.38	31.35	34.55	25.62	13.04	4.11	0.114	0.098	0.050	0.043	2.31	2.20	2.73
E02.2	100	2	125	46.38	31.35	34.55	26.62	14.04	4.11	0.114	0.098	0.110	0.103	0.97	1.00	2.73
E05.1	100	8	125	46.38	31.35	34.55	27.62	15.04	4.11	0.114	0.098	0.110	0.103	0.97	1.00	2.73
E08.2	100	8	125	46.38	31.35	34.55	28.62	16.04	4.11	0.114	0.098	0.110	0.103	0.97	1.00	2.73
E07.2	300	7	125	46.38	31.35	34.55	29.62	17.04	4.11	0.114	0.098	0.310	0.303	0.33	0.35	2.73
E05.2	300	3	125	46.38	31.35	34.55	30.62	18.04	4.11	0.114	0.098	0.310	0.303	0.33	0.35	2.73
E06.1	300	7	125	46.38	31.35	34.55	31.62	19.04	4.11	0.114	0.098	0.310	0.303	0.33	0.35	2.73
E01.1	600	5	300	46.38	31.35	34.55	32.62	20.04	4.11	0.114	0.098	0.610	0.603	0.17	0.18	2.73
E04.1	600	5	300	46.38	31.35	34.55	33.62	21.04	4.11	0.114	0.098	0.610	0.603	0.17	0.18	2.73
E06.2	1200	6	300	46.38	31.35	34.55	34.62	22.04	4.11	0.114	0.098	1.210	1.203	0.08	0.09	2.73
E02.1	1200	6	300	46.38	31.35	34.55	35.62	23.04	4.11	0.114	0.098	1.210	1.203	0.08	0.09	2.73
River Water	na na	na	na	28.25	21.00	44.70	14.60	10.25	4.50	1.94	1.28	0.23	0.17	7.63	8.34	1892.50
osms -Coloni	iz na	na	na	46.38	31.35	34.55	11.08	7.80	4.11	0.11	0.10	0.02	0.01	7.83	5.65	43.69

Characterizing Responses – Data analysis objectives – Ecotox "SSD" approach

Dose

Dose – Response for **Effective** Concentration **Response Sensitivity Distribution** for Hazard Concentration Determination 150 100 IO Q ö 50 Ø 0 CDF 0 4 HC_{20} 12 % Triclosan Resistant Colonies Dosing Period Mean 10 Quadratic Curve Fit 0 EC20 for Fitted Curve = 0.22 µg/L logistic 8 6 1.6 1.0 1.2 14 4 log10(IS EC50) 2 0 0.1 0.5 1 5 10


Summary of results compiled to date

Nutrient Diffusing Substrate Samplers

Control +N +P +NP

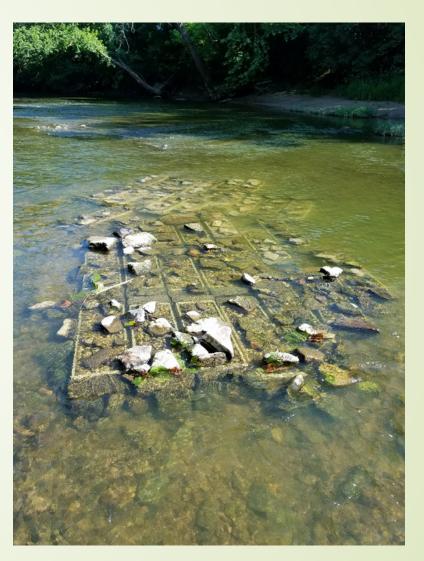
All mesocosms were N-limited


- Macroinvertebrate responses varied by group, most non-significant – but chironomids show a threshold response (EC20=140 ppb)
- Hysteresis in specific periphyton colonization rate as well as macroinvertebrate drift response
- By the end of the study Cyanobacteria biomass is decreasing with increasing TP while Chlorophyll content of periphyton increases (EC20 ~ 60 ppb)

Plausible Mechanisms

- Intermediate [P] (i.e. ca. 100 ppb) increases food quality, but N-stressed system overloads biofilm biomass to sequester N (i.e. TN higher in IG) – causing stress to some macroinvertebrates sensitive to D.O. variability
- At higher [P] (i.e., > 300 ppb), system saturates and less palatable periphyton species favoring high P become dominant, producing an overall decline in macroinvertebrate diversity and biomass
- Hypothesis: 2 stage threshold response at the community scale when N is low and P is in excess

Conceptual model of P effects



Conclusions and Relevance

 Results thus far tend to support the current criteria (i.e., 60 ppb target)

- This appears to correspond to a P threshold where food quality is effected increasing the relative abundance of macros less sensitive to abiotic stress posed by excess biofilm biomass
- Considering responses for a single nutrient, don't make much ecological sense, but are relevant to policy makers
 - N concentrations were very low, albeit not completely irrelevant based on monitoring data in the EFW
- Experiments like these are needed to indicate the plausible mechanisms that lend credence to proposed criteria

