

Formation of the Blood-Brain Barrier and Susceptibilities to Toxicants

Katerine S. Saili

US EPA/ORD
National Center for Computational Toxicology (NCCT)
Research Triangle Park, NC

Disclosure

- The authors of this research have no financial or other interests which pose a conflict of interest.
- This research was funded by the US EPA.
- Some of the data presented here was collected by Vala Sciences Inc. or ArunA Biomedical under contract to the US EPA.
- Some of the data presented here was collected by the Singapore Immunology Network (SIgN)/A*STAR or Finnish Center for Alternative Methods (FICAM) under cooperative research agreements with the US EPA.
- The views expressed in this presentation do not reflect US EPA policy.

Roadmap

Background / hypothesis

Timeline of brain / BBB development

Modeling BBB developmental susceptibility

Background / hypothesis

The 'black box' underlying neurodevelopmental disorders

Genetic mutations
Infection
Chemical exposure
Nutrient deficiency
Metabolic disorder

Autism (ASD):

1 in 59 children aged 8 (1.7%)

300,000+ children

11 US survey sites (2014)

ADDM 2018 report

Four types of barriers in the brain

Blood-brain barrier transporters linked to neurodevelopmental disorders

- SLC7A5 (LAT1) linked to autism*
- GLUT1 deficiency syndrome
 - Epilepsy, learning disabilities

SLC7A5 GLUT1 Large, neutral Glucose amino acids

Neurovascular unit (NVU)

Hypothesis

Putative
BBB
disrupting
compounds

Chemical disruption of blood-brain barrier (BBB) formation leads to abnormal brain development and function

Newborn/child

Functional deficits: motor, sensory, social, learning

AOP framework of BBB developmental toxicity

The Dynamic and Vulnerable Teenage Brain (special issue)

Timeline of human brain development

Timeline of blood-brain barrier (BBB) development

Sprouting angiogenesis leads BBB formation

- Hypoxic NPCs release VEGFA
- VEGFA attracts tip cells that express VEGFR2
- Tip cell recruits pericytes via PDGFB

Maturation follows barrier differentiation

The neurovascular unit is a 'target organ' of toxicity

- 1. Chemical disrupts NVU interactions to perturb BBB formation
- 2. Chemical accesses brain cells

BBB transporter expression changes during development

Daneman et al. 2010. PLoS ONE

Evolution of the neurovascular unit (NVU)

Key BBB transporters are evolutionarily conserved

Species	GLUT1	P-gly	SLC7A5
Human	100	100	100
Chimpanzee	99.7	99.5	99.6
House mouse	97.3	87.1	81
Zebrafish	81.3	64.8	77.7
Australian ghostshark	82.7	65.7	72.7
Amphioxus	38	54.5	61.6
Waterflea	46.1	48.5	45.4
House fly	50	41.5	48.5
Arctic lamprey	64.4		
Giant Pacific octopus			

Barriers of the choroid plexus and circumventricular organs

Choroid plexus

- Secretes CSF
- Glial, ependymal cells line the ventricles
- Barrier is more permissive than BBB

8 circumventricular organs

Fenestrated capillaries

Modeling BBB developmental susceptibility

Modeling the control circuit for BBB development

Classifying putative developmental neurovascular toxicants by ToxPi score

Ranking chemicals by predicted toxicity helps prioritize chemicals for follow-up *in vivo* testing and reduce animal use

Saili et al. In prep

Evaluating predictions with in vitro angiogenesis/neurogenesis assays

Wilcoxon Rank Sum Test (ranks based on classification model)

C > D; p = 0.005

A > D; p = 0.018

B > D; NS

Putative developmental neurovascular toxicant examples

AOP framework of BBB developmental toxicity

AOP framework of BBB developmental toxicity

In silico CC3D model predicts perturbed BBB development

T. Zurlinden

Microglia are required to establish fetal BBB integrity

- 1. α-CSF1R at E6.5 & E7.5
- 2. Harvest embryo at E14.5
- 3. Perfuse Dextran-FL
- 4. Fix, immunostain
- 5. Optical clearing
- 6. Ultramicroscope imaging

Summary

- Perturbed BBB development may lead to neurodevelopmental disorders (hypothesis)
- 2) The BBB is functional as soon as it forms (e.g., tight junctions)
- Changes in susceptibility during gestation may reflect differences in transporter activity
- 4) Model species have conserved BBB features (e.g., transporters), but different timelines for BBB formation compared to humans
- 5) Human BBB develops between gestational weeks 6 and 14
- 6) In silico and in vivo models focusing on microglia suggest a key role for brainresident macrophages in mediating developmental neurotoxicity via BBB disruption

Special Thanks

Tom Knudsen (NCCT/ORD/EPA)

Aymeric Silvin (A*STAR/SIgN)

Todd Zurlinden (NCCT/ORD/EPA) Tuula Heinonen (FICAM/U Tampere)

Nancy Baker (Leidos)

Tarja Toimela (FICAM/U Tampere)

Sid Hunter (NHEERL-ISTD) David Reif (NCSU)

Andrew Schwab (NHEERL-ISTD/ORISE) Carlie LaLone (NHEERL/ORD/EPA)

Virtual Tissue Models group (EPA) Molly Windsor (CSRA)

Richard Spencer (ARA) Kevin Crofton (NCCT/ORD/EPA, retired)

Florent Ginhoux (A*STAR/SIgN)

John Cowden (NCCT/ORD/EPA)