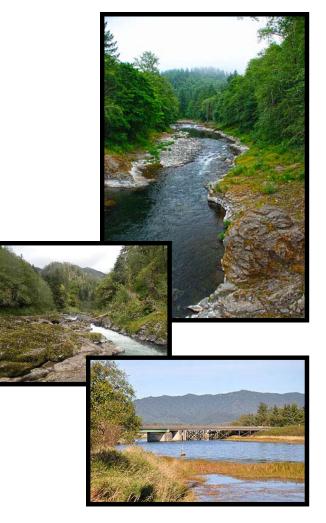
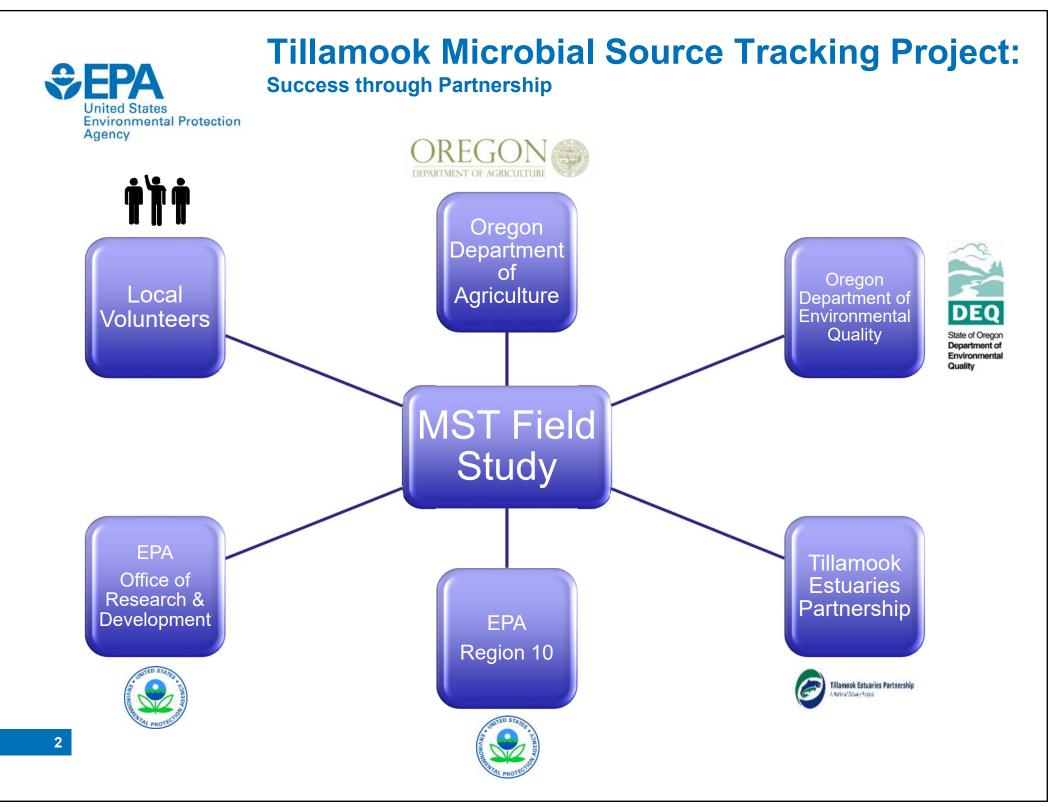


Quantitative Microbial Source Tracking in the Tillamook Basin

Xiang Li, M. Sivaganesan, C.A. Kelty, A. Zimmer-Faust, P. Clinton, J.R. Reichman, Y. Johnson, W. Matthews, Bevin Horn, S. Bailey, and O.C. Shanks

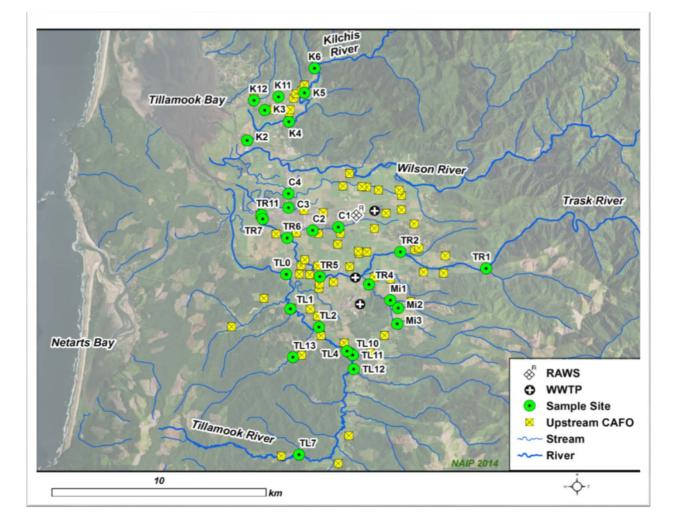
Office of Research and Development National Risk Management Research Laboratory, Water Supply and Water Resources Division


Tillamook Microbial Source Tracking Project: Background Information


Important resource

- > Dairy, cheese-making and shellfish industries
- Local human and wildlife populations

Impact of fecal pollution


- Economic loss
- Poor conditions for recreational use
- Endangerment of local wildlife
- Complex challenge
 - Multiple pollution sources
 - Limited resources for management and remediation

Tillamook Microbial Source Tracking Project: Sampling Approach

- Tillamook Basin (Oregon)
- Three river systems
 - Tillamook
 - Trask
 - Kilchis
- 29 sampling sites
- 12-month sampling period
- Bimonthly sampling
 696 total samples

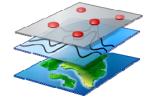
Tillamook Microbial Source Tracking Project: Data Collection Methods

- Historical Water Quality Information
- Geographic Information System (GIS) mapping
- Weather Information
- Local Water Quality Metric
 E. coli (IDEXX Colilert)
- MST Genetic Markers of Fecal Pollution
 - Human-associated (HF183/BacR287 and HumM2)
 - Ruminant (Rum2Bac)
 - Cattle (CowM2 and CowM3)
 - Dog (DG3 and DG37)
 - Avian (GFD)

Tillamook Microbial Source Tracking Project: Historical Water Quality Trends

- State water quality definition (E. coli 406 MPN/100mL)
- Historical E. coli exceedance trends
- Previous MST study
 - End-point PCR
 - Spatial and temporal trends in ruminant and human sources

Vol. 72, No. 8

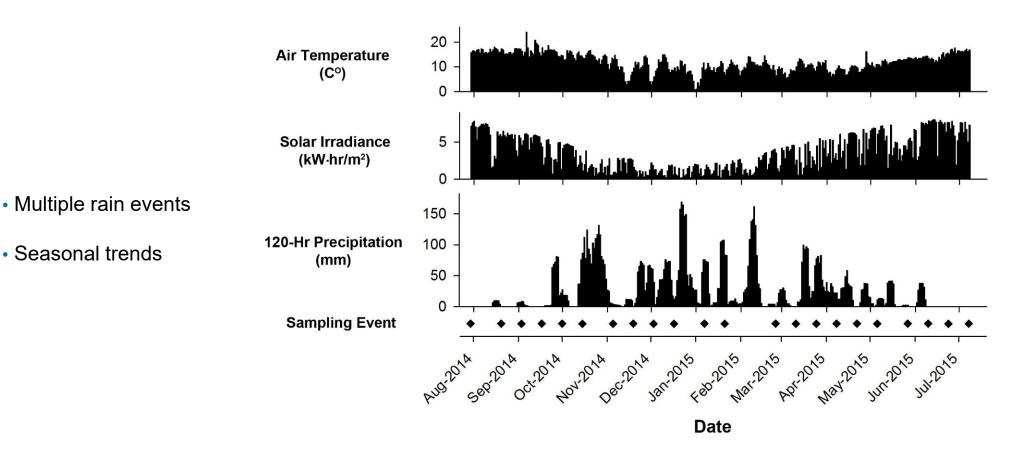

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 2006, p. 5537–5546 0099-2240/06/\$08.00+0 doi:10.1128/AEM.03059-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Basin-Wide Analysis of the Dynamics of Fecal Contamination and Fecal Source Identification in Tillamook Bay, Oregon Orin C. Shanks,¹ Christopher Nietch,¹ Michael Simonich,² Melissa Younger,² Don Reynolds,³ and Katharine G. Field^{2*}

River	Site	n	<i>E. coli</i> ≥ 406 MPN/100mL			
System	Citto		% ± SE	Trend	p-value	
	K12	230	28.3 ± 3.0			
	K3	227	34.4 ± 3.2	\downarrow	0.01	
Kilchis	K6	229	0.4 ± 0.4			
KIICIIIS	K5	234	0.4 ± 0.4			
	K4	234	2.1 ± 0.9	\downarrow	0.06	
	K2	229	1.3 ± 0.8			
	C4	234	12.4 ± 2.2			
	C3	225	69.3 ± 3.1	\downarrow	< 0.0001	
	C1	172	61.6 ± 3.7			
	C2	175	58.3 ± 3.7			
	TR1	237	0.8 ± 0.6			
	TR2	237	3.4 ± 1.2			
Trask	TR5	237	5.1 ± 1.4			
Trask	TR6	237	59.5 ± 3.2	\downarrow	< 0.0001	
	TR7	237	7.2 ± 1.7			
	TR11	237	8.0 ± 1.8			
	Mi3	236	77.5 ± 2.7			
	Mi2	236	11.4 ± 2.1			
	Mi1	237	15.2 ± 2.3			
	TR4	237	28.3 ± 2.9			
	TL7	230	37.0 ± 3.2	\downarrow	0.07	
	TL12	231	5.2 ± 1.5			
	TL11	231	14.3 ± 2.3	\downarrow	0.03	
	TL10	231	13.0 ± 2.2	\downarrow	0.08	
Tillamook	TL4	231	11.7 ± 2.1			
	TL2	231	27.3 ± 2.9	\downarrow	< 0.0001	
	TL1	231	26.4 ± 2.9	\downarrow	< 0.0001	
	TL0	231	16.0 ± 2.4			
	TL13	231	12.6 ± 2.2			

ERA United States Environmental Protection Agency

Tillamook Microbial Source Tracking Project: Land Use GIS Mapping



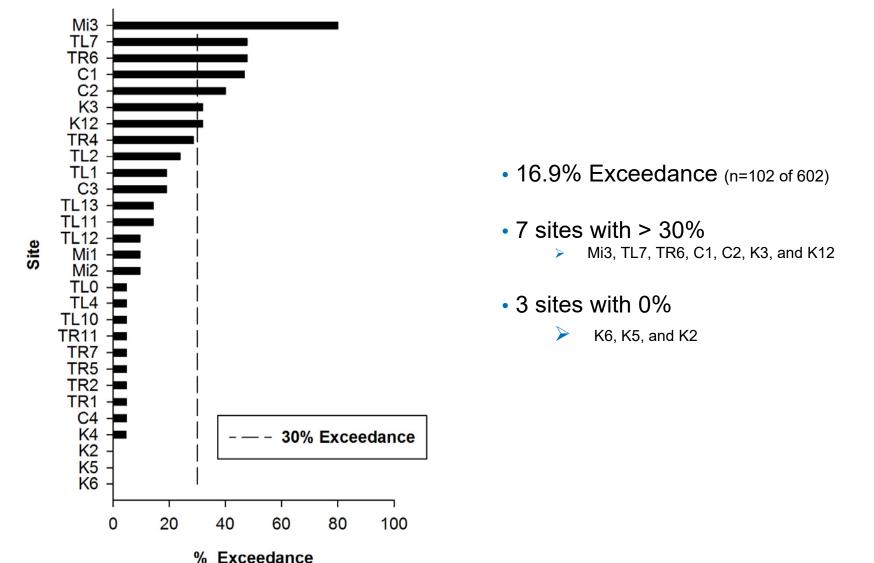
- Hydrology defined catchment area
- Cattle and human populations
- Percent non-sewer and crop land
- Investigate links to water quality data

Туре	Parameter	Mean	Median	Std.	Min.	Max.
	Human Population	1051.6	533	1727.1	2	6395
Land	Permitted Cattle					
Use	Population	2418.9	826	3472.7	0	12,371
USe	Non-sewer (%)	1.06	0.18	1.83	0.006	7.44
	Cropland (%)	1.97	0.53	4.89	0.08	25.7

Weather Conditions over Study Period

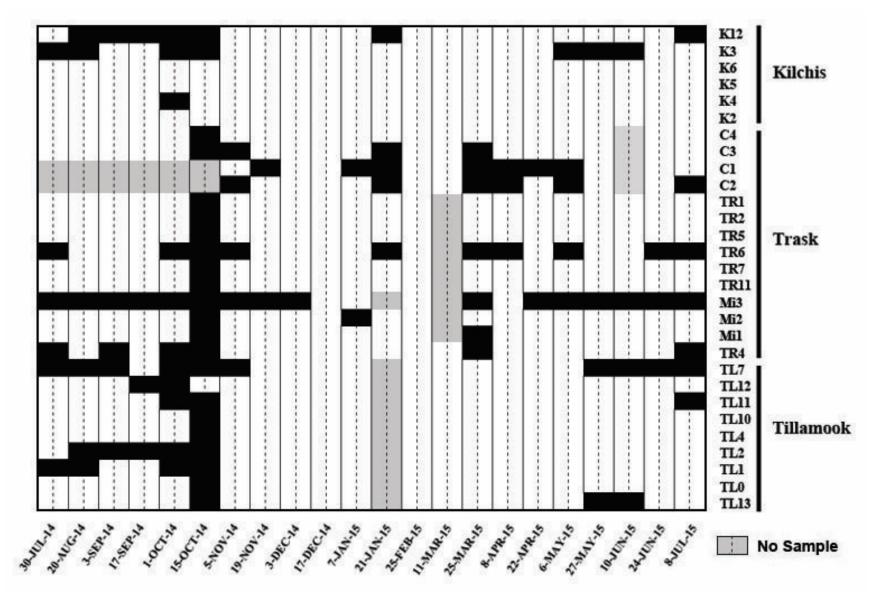
Туре	Parameter	Mean	Median	Std.	Min.	Max.
	120-hr precipitation (mm)	27.3	9.5	36.6	0	168.9
Weather	72-hr precipitation (mm)	16.4	3.8	25.9	0	144.5
Condition	24-hr precipitation (mm)	5.5	0.1	12.3	0	101.1
	Solar Irradiance (kW-hr/m ²)	3.5	2.9	2.3	0.1	8
	Air Temperature (°C)	11.9	12	3.6	0.7	23.9

United States

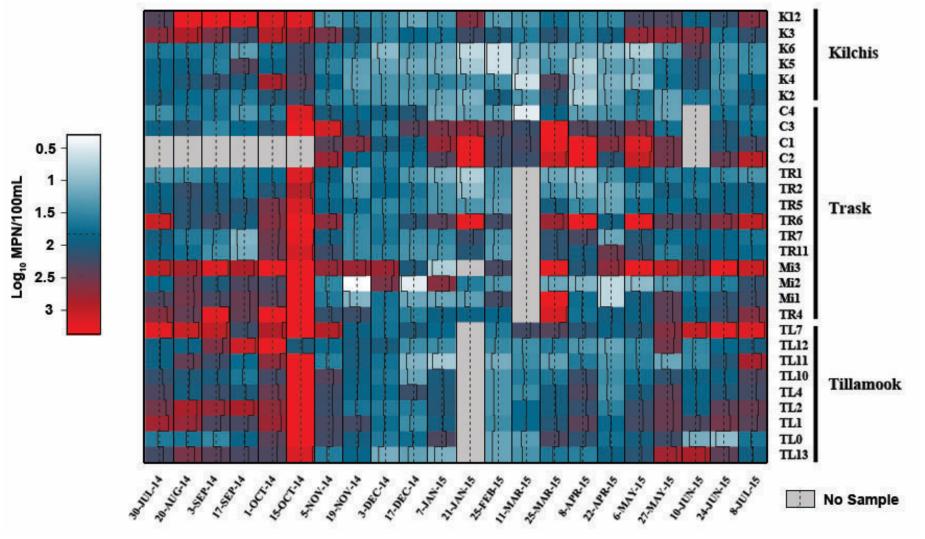

Agency

Environmental Protection

The Water Quality Management Perspective

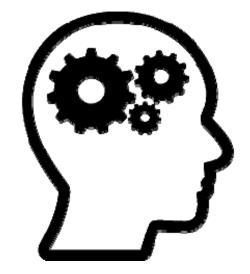

 Single-Day Maximum of 406 MPN/100mL

The Water Quality Management Perspective


Single-Day Maximum of ≥ 406 MPN/100mL

9

E. coli Spatial and Temporal Trends



 Present across all sites tested Evident temporal and spatial trends

qPCR MST Data Interpretation Considerations

- Each MST genetic marker is a discrete measurement
 - Different bacterial species
 - Different DNA sequence
- MST genetic marker shedding can vary by:
 - Animal diet, age, and health
 - Cohabitation behaviors
- Incompatibilities between cultivated *E. coli* and MST genetic markers
 - > E. coli = live cells that can be cultivated in lab
 - MST genetic markers = any live or dead cell + free-DNA
 - Live cells and genetic material respond differently to environmental stressors
- Inconsistencies between *E. coli* and MST measurements prevent accurate source apportionment
- Recommend independent interpretation of each water quality measurement indicator/identifier data set

qPCR Data Quality Controls

Standard curve performance

- Outlier removal
- Amplification efficiency (E)
- Correlation coefficient (R²)
- Amplification inhibition testing
 - Instrument run proficiency test
 - Internal amplification control with every sample
- Contamination screening
 - Field blanks
 - Method extraction blanks
 - No template controls
- Optimal DNA recovery monitoring
 - Batch proficiency test
 - Sample processing control with every sample

Tillamook Microbial Source Tracking Project: qPCR Performance in Study Area

- Pollution source reference collection (n=114)
- · Determine sensitivity and specificity in Tillamook study area

Ruminant and		Sensi	Specificity/	
Cattle	Assay	Adult	Juvenile	Specificity
	Rum2Bac	93%	0%	100%
	CowM2	36.5%	0%	99.4%
	CowM3	82.3%	0%	100%

A	٩v	'İa	ar	١

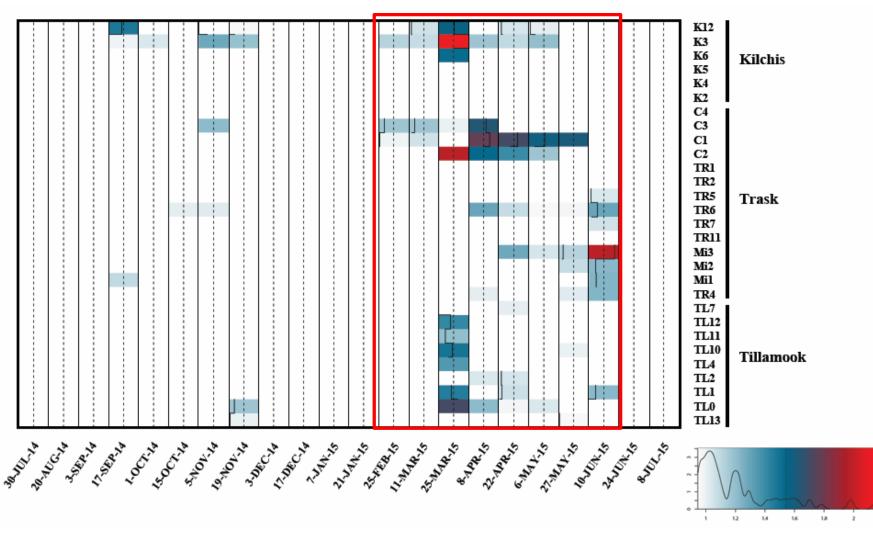
an	A 0001/	Sensi	Specificity	
Assay	Wildlife	Chicken	Specificity	
	GFD	24.4%	0%	100%

Human

13

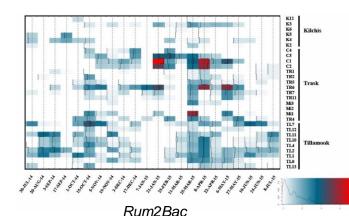
Assay	Sensitivity	Specificity
HumM2	100%	99.1%
HF183	100%	99.4%

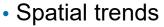
Dog	Assay	Sensitivity	Specificity
	DG3	97%	100%
	DG37	36.4%	100%


Source	n
Adult Cattle	32
Juvenile Cattle	19
Dog	11
Sewage	4
Wildlife Birds	15
Chickens	11
Elk	11
Horse	11

Key Observations:

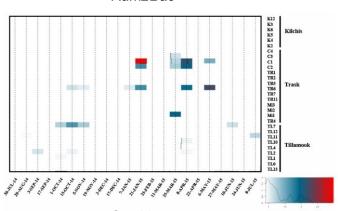
- High specificity for all assays
- Age and diet important factors
- Avian method limitations
- DG3 superior host distribution

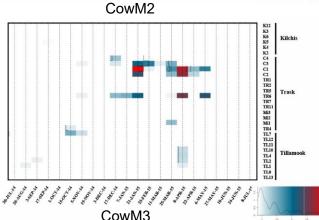

Watershed Spatial and Temporal Trends in Avian Pollution

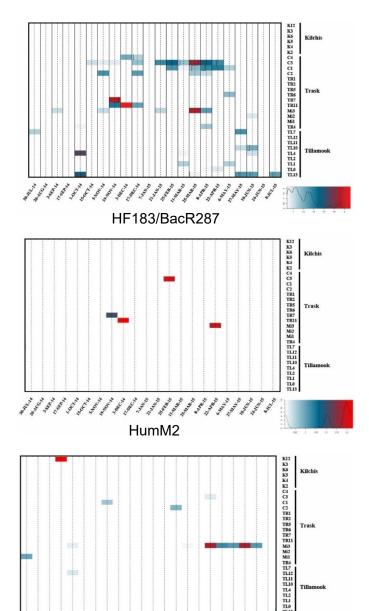


Potential bird migration water quality impact

Watershed Spatial and Temporal Trends in Fecal Sources

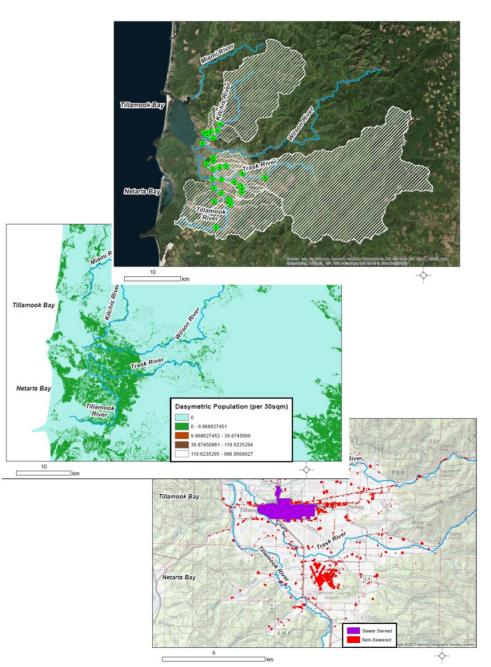





- Land use
- Waste management practices

Temporal trends

- Weather conditions
- Agricultural practices
- Wildlife activities
- Varies by MST assay


DG3

ERPA United States Environmental Protection Agency

Tillamook Microbial Source Tracking Project:

Watershed Land Use and Water Quality Trends

- Identify pollution trends by fecal pollution metric and land use information
- Percent non-sewer most influential parameter
 - E. coli (+, R²=0.23, p=0.081)
 - > HF183/BacR287 (+, R²=0.32, p=0.009)
 - > GFD (+, R²=0.31, p=0.014)
- Ruminant pollution closely linked to maximum number of permitted cattle
 - Rum2Bac (+, R²=0.50, p=0.001)

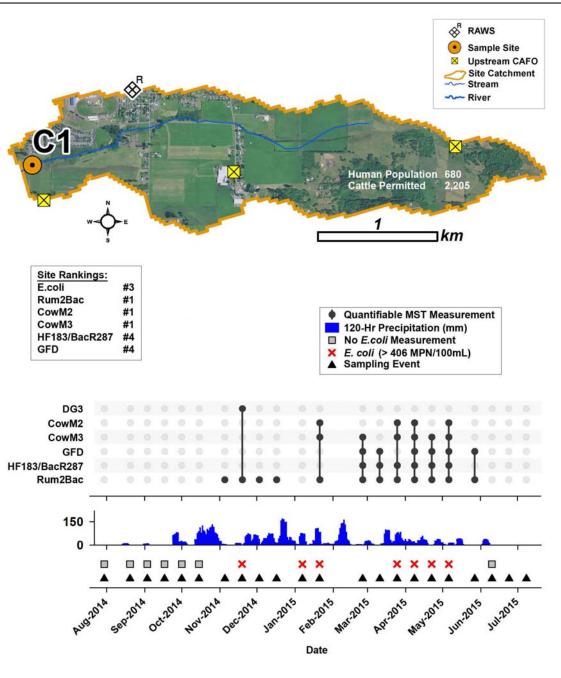
Watershed Weather Conditions and Water Quality Trends

Weather		Fecal Pollution Metric				
Parameter	Count	E. coli	Rum2Bac	CowM3	HF183/BacR287	GFD
24-Hr Precipitation	208	0.003	<0.0001	0.247	0.455	0.167
72-Hr Precipitation	160	0.134	<0.0001	0.157	0.354	0.114
120-Hr Precipitation	207	0.184	<0.0001	0.193	0.381	0.499
Solar Irradiance	322	<0.0001	0.002	0.127	0.151	0.218
Air Temperature	294	<0.0001	<0.0001	0.005	0.033	0.170

- *E. coli* levels significantly associated with 24-Hr precipitation, solar irradiance, and air temperature
- Ruminant pollution concentration closely linked to all weather conditions
- Avian pollution not linked to weather conditions

Tillamook Microbial Source Tracking in Action: C1 Site Profile

Trask River System


United States

Agency

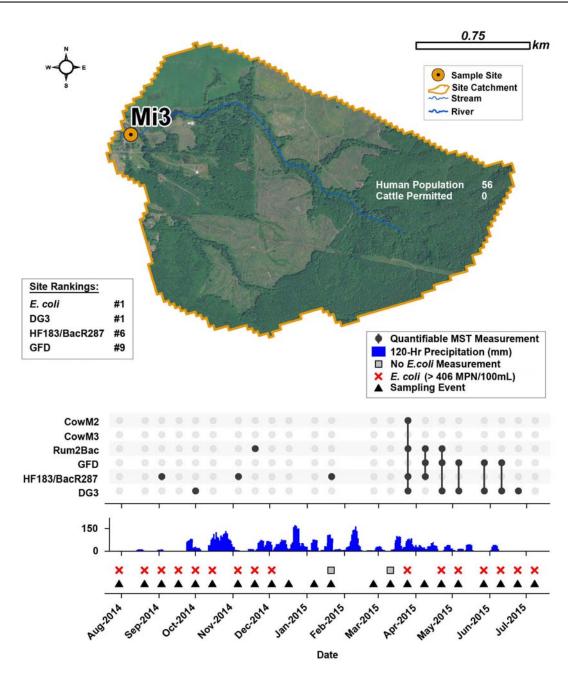
Environmental Protection

- E. coli exceedance (46.7%)
- Possible bird migration impact
- Human impact during spring
- Consistent ruminant impact
- Management recommendations
 - Sanitary survey in Spring
 - Prioritize by fecal source

Tillamook Microbial Source Tracking in Action: Mi3 Site Profile

Trask River System

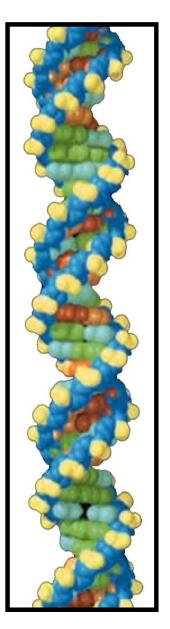
United States


Agency

• E. coli exceedance (80%)

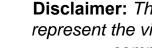
Environmental Protection

- Seasonal dog pollution, target local breeding facility
- Possible bird migration impact
- Human impact during wet season
- Ruminant in spring, likely AFO
- Management recommendations
 - Sanitary survey in Spring
 - Target AFO, septic system, and dog facility



Conclusions

- Full-scale field study implementing quantitative MST methods
- Success via partnership
- Evident temporal, spatial, weather, and animal source pollution patterns
 - Watershed level
 - Site level
- Quantitative MST enhances water quality management
 - Site prioritization by pollution source
 - Strategic sanitary survey planning
 - Identification of non-point pollution sources
 - Evidence-based wildlife impact information
 - Increase public awareness and acceptance



QUESTIONS?

Orin C. Shanks, Ph.D. Senior Scientist **EPA Office of Research & Development** Phone: (513) 569-7315 Email: shanks.orin@epa.gov

Disclaimer: The views expressed in this presentation are those of the author[s] and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.