

Identification of an Immobilization Technology for Per- and Polyfluoroalkyl Substances (PFAS) Contamination in Soil and Sediments

Pictures courtesy: Wikimedia Commons, Firechief.com

John McKernan, Sc.D., CIH; Ed Barth, Ph.D., PE, CIH; Carolyn Acheson, Ph.D.; Marc Mills, Ph.D.; U.S. EPA, ORD Amy Dindal, PMP; Ramona Iery, Ph.D.; Kavitha Dasu, Ph.D. Battelle Memorial Institute

Office of Research and Development

National Risk Management Research Laboratory, Land and Materials Management Division, Remediation and Technology Evaluation Branch

Disclaimer

 The findings and conclusions in this presentation have not been formally disseminated by the U.S. EPA and should not be construed to represent any agency determination or policy.

Outline

- What are PFAS?
- How are PFAS used?
- Where are they used?
- Production and transport
- Health effects and select U.S. regulatory activity
- Examination of treatment options
- What is solidification and stabilization
- Experimental background and methodology for studying sorbents for stabilization

What are PFAS?

Perfluorosulfonic Acids

PFBS, PFHS, **PFOS**

Perfluorocarboxylic Acids

 C_6 acid – C_{12} acid **PFOA C8 acid**

<u>Fluorotelomer Alcohols</u> – produced chemical and manufacturing residual

6:2, 8:2 and 10:2

• Perfluoroalkyl Sulfonates

Perfluoroalkyl Carboxylates

Fluorotelomer Sulfonates

Fluorotelomer Sulfonamides Amines

 $\mathbf{F} = \mathbf{F} =$

Backe et al. 2013 ES&T

Jnited States

Agency

Environmental Protection

How are PFAS used?

Physical and chemical properties:

• Oil and water repellence

- Thermal stability and temperature resistance
- Friction reduction

Products include:

- Coatings for textiles, paper, surfaces, and cookware
- Thermal resistant plastics

• Hydraulic fluids

Where are PFAS used?

Manufacturing

- Primary manufacturing of PFAS products
- Secondary manufacturing and industrial use
 - Textiles and papers surface treatment to repel stains, oil, and water
 - Plastics coatings, resins, and flame retardants
 - Metal Plating and Etching corrosion prevention, mechanical wear prevention, fume suppressant, post-plating cleaner
 - **Photolithography, semi-conductor** photoresists, etchants, wetting agents
 - Aqueous Film Forming Foams fire suppression, fire training, flammable vapor suppression, and asphyxiation of diseased poultry CAFOs

Commercial and Consumer Use

- Textiles and paper products
- Hydraulic fluids
- Surface preparation agents cleaning agents, polishes, paints, varnishes, dyes, and inks

Medical Products

PFOS Production in 2000 by 3 M

Schultz et al, 2003 Env Engr Sci

Transport in the environment

- Air and water discharges can carry PFAS contamination
- PFAS may deposit on soil and sediment which then become a source
- Previous remediation activities may affect transport at a site
- Mobility dependent on
 - Chain length
 - Geochemistry of water and soil and sediment, especially pH
 - Hydrology of the site

PFAS Health Effects

- PFOA and PFOS
 - Low birth weights for infants
 - Affects the immune and thyroid systems, cholesterol metabolism
 - Kidney and testicular cancer
- Other PFAS
 - Data gaps exist
 - Cross Agency Human Health/Toxicity work group gather information from literature and conduct studies

Regulatory Levels

Selected Concentrations for Military Base Sampled

Chemical	Ground Water/ Surface Water		Soil/Sediment (mg/kg)	
	US EPA	State X	US EPA	State X
PFOA	70 ng/L ^a	400 ng/L ^d	1.26 ^c	1.6 to 0.0017 d
PFOS	70 ng/L ^a	400 ng/L ^d	1.26 ^c	1.6 to 0.003 ^d
PFBS	380 µg/L ^ь	-	1,600 ^b	-

a EPA 2016 "Drinking Water Health Advisory for Perfluorooctane Sulfonate (PFOS)", EPA 2016 "Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA)"

b EPA 2016 Regional Screening Level. <u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-may-2016</u>

c EPA risk-based screening levels calculated using the EPA Regional Screening Level calculator at https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search . (US EPA, OLEM)

d State X Department of Environment and Conservation. 2016.

United States Environmental Protection Why Examine PFAS Treatment Options?

- The problem seems insurmountable why bother?
 - Industrial societies have used PFAS compounds since the 1940s-50s
 - They don't degrade substantially when released into the environment
 - Health implications Prior slide on U.S. Regulatory Levels
 - PFAS compounds are found in an ever increasing number of sites and media
- Treatment options
 - A number of treatment options have been suggested, but few are proven for use in the number of media found to be impacted
 - RO and Activated Carbon are two used to treat for PFAS in drinking water
 - Other media such as solids (soils and sediments) not studied thoroughly

PFAS Stabilization Literature

Review

- Review of soil sorption technologies was conducted and published in The Military Engineer, Jan-Feb 2018 issue
- Literature review further indicated promise for the concept of binders to solidify PFAS in soil and sediment

http://themilitaryengineer.com/tme_online/TME_2018/2018JANFEB_online.pdf

Solidification/Stabilization Technology Application

- Solidification and stabilization (S/S) utilized at a number of Superfund contaminated sites since the program's inception
- Process where contaminated soil or sediment are 'contained' within a low-porosity matrix to reduce or eliminate leaching
- Immobilizes and encapsulates contaminants (does not destroy)
- Certain refuse materials from industrial processes can be 'beneficially reused' when concrete is used in the S/S process (e.g., fly ash)
- Low-porosity of treated, stabilized matrix keeps contaminants in the matrix and out of
 - Soils

14

- Sediments
- Surface water

Experimental Approach for Testing Sorbents for S/S

Task 3a Physico-chemical properties of 2 PFAS-contaminated field soils

Task 3b Soil-Sorbent Treatability Studies using SPLP protocol in 2 PFAS-contaminated field soils plus Ottawa sand control

Sorbent Screening Kinetics Study

5 sorbents selected

5.0 mg: 50 mL sorbent to solution 0.01 M NaCl background electrolyte

Triplicates for all treatments including blanks and controls

> Spike PFAS target analytes Initial conc. 500 µg L⁻¹

Analysis on LC-MS/MS

Sample dilution Surrogates & Internal standard spiked

Shaked at 125 rpm, 23±1°C and sampled over 0-20 d

Analytical Method and List of Six Native Analytes

- AB Sciex QTRAP 5500 Triple Quadrupole MS
- LC equipped with PEEK[™] tubing and solvent delay column
- Negative electrospray ionization mode with MRM
- Column: Kinetex 2.6 µm C18 100 A 50 x 4.6 mm
- Run time: 10 minutes
- Quantitation Method: Isotope Dilution

Native Analyte	Mass-labelled Surrogates	Internal Standards
PFBA	13C4-PFBA	13C3-PFBA
PFHxA	13C5-PFHxA	13C2-PFOA
PFOA	13C8-PFOA	13C2-PFOA
PFNA	13C9-PFNA	13C2-PFOA
PFBS	13C3-PFBS	13C4-PFOS
PFOS	13C8-PFOS	13C4-PFOS

Schedule

- April: Identify, acquire, and characterize sorbents
- May: Conduct sorbent kinetics study and select one sorbent for future study
- June/July: Laboratory Isotherm/Partitioning study using two soils from PFAS-contaminated sites (EPA Region 2 and EPA Region 8)
- July/August: Soil Treatability study using synthetic Precipitation Leaching Procedure (SPLP) Test results
- September/October: Final technical report summarizing results of the tested sorbents to stabilize U.S. EPA PFAS-contaminated field soils.