Environmental Aging of Polymer-Nano Composites and Release of Carbon Nanotube

• E. Sahle-Demessie, Changseok Han, Amy Zhao

- EPA, Office of Research and Development, Cincinnati, OH
- <u>Sahle-demessie.Endalkachew@epa.gov</u>

• Nickolas Gagliardi

• University of Dayton, Material Research Institute, Dayton, OH

May 15, 2018

Life Cycle Specific Exposure of Nanomaterials

Nanomaterial Implication EPA's Research

Distribution in soils, water, air

- Transport, transformation and fate
- Reactivity
- Unique challenges?

Impacts on ecosystems and particular species

- Either direct (toxicity)
- Indirect (changes local conditions or prey)

Toxics - Impacts on human health -

- Exposure--Inhalation, ingestion, contact
- Dose-Response
- Bioaccumulation, biotransformation, bioavailability

Analysis of ENM in different matrices is critical!

Consumer nanomaterial research

Objectives of weathering study

- To reduce the risk of product failure
- Meet product codes, compliance requirements
- Discover and mitigate failure modes
- Demonstrate durability and performance
- Test to various climates, predict service life
- Improve product or reduce cost
- Assess possible risk to human and the environment

Polymers and nanoparticles in the environment

- Persist in the environment ~ 10^3 years
- Release persistent organic pollutants (POP)
- Accumulate POP such as PAHs, PCBs, DDT
- Release chemical additives -

Factors influencing Nanorelease from composites

Diffusion of NP in Polymer and Mass transfer for Surface Release

Diffusion of Nanoparticles in Polymers

- Weakly interacting mixtures of nanoparticles (NPs) and ring/linear polymers
- NPs of diameter *d* are well dispersed at $\varphi_{NP} \sim 0.1$

Figure 1. Unentangled polymer network modeled by overlapping

"elementary" networks. (a) Schematic visualization of a particle of size

50 - 500 μm For semi-crystalline polymers below the glass

transition temperatures

$$t_D\sim rac{L^2}{D}$$
 , D – 10⁻⁵ μ m²/s

Grabowski et al., Macromolecules 2014, 47, 7238-7242

Diffusion → surface release

Mechanism of Nanorelease matrix degradation

Main mechanism for nanorelease

Materials Tests

Polypropylene (PP) (Pristine)	PP-MWCNT 4 Wt.%	Ероху	
PP01, $L = 0.25 \pm 0.01 \text{ mm}$	$L = 0.35 \pm 0.03 \text{ mm}$	Neat	
PP02, $L = 0.39 \pm 0.02 \text{ mm}$	L = 0.50 ± 0.01 mm	Epoxy-CNT	
PP03, $L = 0.69 \pm 0.04 \text{ mm}$	L = 2.07 ± 0.06 mm	Epoxy-CNT-COOH	
		Epoxy-CNT-NH2	
T _g = -13 °C		Epoxy-Graphene	
	2 X EPON 862 0-CH ₂ -HC-CH ₂ 0-CH ₂ -CH	$\begin{array}{c} O \\ C \\ -CH_2 \\ 0 \\ H_2 \\ -CH_2 \\ -CH_2$	H ₂ CH ₃ =

 $T_{a} = 60 - 110 \circ C$

Preparation of polypropylene (PP) and PP-MWCNT film

Operating conditions

Parameter	Condition
A cycle of weathering	120 min (sunshine: 108 min and rain: 12 min)
Humidity	8-20% for Sunshine and over 60% for Rain
Solar light irradiation	700 W/m ²
Wavelength of solar light	300-800 nm
Chamber Temperature	33-37 °C
Black Substance Temperature	65 °C

June 21, clear day

Wavelength range	Arizona	Florida	Frankfurt	Barcelona	CIE No. 85 (Tab. 4)
nm	E (W/m²)	E (W/m²)	E (W/m²)	E (W/m²)	E (W/m²)
280-300	0.016	0.017	0.008	0.018	0.010
300-400	60	62	48	61	66
400-800	566	584	469	542	617
800-4000	420	387	350	373	434
280-4000	1046	1033	867	976	1117

Aging and thermal stability of Composites

30 °C hold for 1min, to 850 °C @ 10 °C/min, Air flow 20 ml/min.

TGA Data for aged PE and PE-nanoclay

Laboratory Accelerated Weathering System

Xenon Arc Weathering – simulates terrestrial solar irradiation
Irradiation: 700 W/m² and Wavelength: 300-800 nm
Chamber Temp: 33-37 °C, Black Substance Temp.: 65 °C, air cooled
Standard method- ISO – 4892-2/2013

The primary weathering factors

The Formation of Ozone during Weathering

Procedure

- 1. The air next to polymer samples was taken out and bubbled into KI solution for 15 hr.
- 2. Perform "Iodometric Method" test for O3.
 - a. 2.5 mL of 4.5 M H_2SO_4 was added in 100 mL of the bubbled water.
 - b. $0.1 \text{ M Na}_2\text{S}_2\text{O}_3$ solution was added to the acidified water (#2).
 - c. Observe color changes of the solution from transparent to pale yellow.

Air bubbled Water

Due to dissolved O₃, color became pale yellow.

Weathering of Polymer Nanocomposite

Surface Degradation by Weathering

Han, Sahle-Demessie, *NanoImpact*, Vol. 9, pp 102-113, January 2018. Han, Sahle-Demessie, *Carbon, Vol 129, pp 137-151, April, 2018*

Effects of Weathering on CNT-Polypropylene

Time (h)	Melting Temperat ure (°C)	Recrystallizat ion Temperature (°C)
0	162.9	117
756	152.5	114
1055	149.9	112.3
1490	148.4	111.1
1512	142.5	108.1

$$\Delta \frac{dH}{dt} = \left(\frac{dH}{dt}\right)_{sample} + \left(\frac{dH}{dt}\right)_{Reference}$$

Melting point depression due to molecular chain scission and formation of carbonyl and hydroperoxide groups

Han, Sahle-Demessie, Carbon, Vol 129, pp 137-151, April, 2018

Reaction kinetics

Radical chain oxidation mechanism

Initiation:
$$Polymer \xrightarrow{k_1} P^*$$
(1)Propagation: $P^* + O_2 \xrightarrow{k_2} PO_2^*$ (2)Termination $PO_2^* + PH \xrightarrow{k_3} PO_2H + P^*$ (3) $P^* + P^* \xrightarrow{k_4}$ $P^* + PO_2^* \xrightarrow{k_5}$ Inactive species $PO_2^* + PO_2^* \xrightarrow{k_6}$ $PO_2^* + PO_2^* \xrightarrow{k_6}$

 $-\frac{d[O_2]}{dt} \cong k_2 {\binom{r_i}{k_4}}^{\frac{1}{2}} [O_2]$

 $r_i = aI^{2\gamma}$ where *a* and $\gamma =$ constants depending on the mechanism, and γ is usually between 0.5 and 1.0 for the chain mechanism

Thickness distribution of degradation during photochemical aging

Kinetic equation

Fick's second law with pseudo first order rate constant

•
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - kC$$

D= diffusion coefficient for small molecules

k = reaction rate constant

Thickness of oxidized layer (TOL)

Transmitted UV light through solar aged samples

Intensity of the light source: $10.06 \pm 0.1 \text{ mW/cm}^2$

 \rightarrow UV transmittance decreased as PP aged showing thermo-oxidative degradation

Intensity of transmitted UV light

NanoRelease: Particle size distribution

Released MWCNT aged polypropylene-CNT composites determined using sp-ICP-MS

Aging of Nanocomposite as a Multiscale System

- Macroscale composite structures
- Clustering of nanoparticles micron scale
- Interface affected zones several to tens of nanometers - gradient of properties
- Polymer chain immobilization at particle surface is controlled by electronic and atomic level structure

Experimental setup

- □ Total Irradiance (MJ/m²): 6588
- □ Solar Irradiance (W/m²): 700

Modified ISO 4892-2:2013 (E) Sample location

- Black Substrate Temperature (°C): 65
- □ Weather: 111 min of daylight and 9 min of raining

PE-3 months (1)	PE-6 months (2)	PE-12 month s (3)	EPC-3 months (4)
ECC-6 months (8)	ECC-3 months (7)	EPC-12 months (6)	EPC-6 months (5)
ECC-12 months (9)	ECN-3 months (10)	ECN-6 months (11)	ECN-12 months (12)

Sample positions are rotated daily for even spraying

Water evaporation setup

- □ Water from the beakers in the SunTest equipment will be collected every day.
- □ The water will be transferred to bottles for each sample.
- □ The transferred water in the bottles will be evaporated.
- □ Water temperature in the bottles is 60-65 °C.

Wash water samples collected in individual Sample-beaker

EPON 862

Curing agent

Bisphenol A – common leachate organic from epoxy based polymers – LC-MS-MS

UV-vis spectroscopy nano-release

Raman Spectroscopic characterization of released MWCNT

Wavenumber (cm -1)

514 nm Ar-ion laser

G band – at 1580 cm-1 in-plane vibration of C-C bond

D band – activated by the presence of disorder in carbon

G' band – overtone of the D band

	3 Months		6 Months			12 Months			
	Pure CNT	CNT COON	CNT NH2	Pure CNT	CNT COON	CNT NH2	Pure CNT	CNT COON	CNT NH2
G peak Wavenumber (cm-1)	1580.46	1586.44	1590.91	1575.98	-	1580.46	-	1586.44	
D peak Wavenumber (cm-1)	1351.74	1359.42	1359.42	1348.67	1339.45	1362.49	1359.42	1356.35	1362.49

The Raman band of the functionalized NTs shifted to higher wavenumber \rightarrow intertube interaction is less and physical interaction of the polymer

Summary

- Weathering of nan-polymer composites is a combination of UV-photolysis, photooxidation, ozonation, and thermal effects
- Main factors affecting degradation are the polymer matrix, environmental conditions, type of nano-reinforcement,
- > The reaction rate is influenced by thickness above which the process in kinetically controlled by diffusion of O_2 , H_2O in the polymer.
- > Superficial oxidation (200 μ m) causes cracks and brittle failure of wafer samples.
- > The thickness of the degradation layer is order of magnitude $\sqrt{\frac{D}{k}}$
- Polymer thickness influence particle release per mass

Thank you

Sahle-demessie.Endalkachew@epa.gov

Disclaimer

The findings and conclusions of this presentation have not been formally disseminated by U.S. EPA and should not be understood to represent any agency determination or policy.