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Figure 9: Plots of observed versus predicted POD values for the best rat and mouse model (random forest model) for 5-fold internal cross-validation (red scatter plots) and 
external validation (green scatter plots) with 95% confidence intervals (green error bars) for n = 100 bootstrap models. 
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Human health risk assessment associated with environmental chemical exposure is limited by the tens of thousands of chemicals with 
little or no experimental in vivo toxicity data. A complete battery of regulatory tests for risk assessment associated with a single 
chemical relies on multiple animal testing's and can costs millions of dollars. A more effective and alternative way to evaluating a large 
number of environmental chemicals is to prioritize them for testing based on alternative methods for predicting experimental data.

Data gap filling techniques, such as quantitative structure activity relationship (QSAR) models based on chemical structure information, 
are commonly used to predict risk in the absence of experimental data. This study presents a set of QSAR models developed using 
chemical structural and physicochemical properties for in vivo points of departure (POD, the point on the dose-response that marks the 
beginning of a low-dose extrapolation). The in vivo data is taken from the EPA’s ToxValDB, a compilation of information on ~3000 
unique chemicals from a variety of public data sources. The QSAR models presented here provide estimates of POD and are evaluated 
for enrichment of most potent chemicals. These models will be used to inform chemical screening and prioritization efforts. 

1.  Experimental Variability
• Data from different labs (sources) running the “same” 

experiment may get different answers 
• Sources of variability: Species, strain, dose range, dose 

spacing, length of study etc. 

2.  Model Uncertainty
• A model gives a result (a POD), but this is an estimate of the 

“true” POD. The true POD is mostly unknown.
• Uncertainty in the evaluation data will lead to uncertainty in 

the model and our estimate of its quality

1. Point-estimate models • Regression models were built to predict a POD value for each chemical.
• Experimental POD = Minimum POD value from all studies (same species, study type)

2. Point-estimate, balanced-
dataset models

• The training data was re-constructed to reduce skewness by adding 10% duplicate data from 
the long tail.

• Regression models were built to predict a POD value for each chemical using the re-
constructed data. The process was repeated n times.

• Experimental POD = Minimum POD value from all studies (same species, study type)

3. Point-estimate with 
confidence interval models

• A POD distribution was constructed for each chemical using mean = experimental POD value 
(= Median POD value from all studies) and standard deviation = 0.5 log-units, based on the 
typical lab to lab variability.

• n bootstrap models were built with random sampling of POD values for each chemical from 
the pre-generated POD distribution.

Given the variability and skewness in the training dataset, 3 types of models were developed:

RESULTS
1. Point-estimate models

Figure 1: Schematic of data selection from the ToxValDB for developing 
predictive models for POD. Models were developed for each risk assessment 
class and species combination. E.g. 
Model 1: study type = chronic, sub-chronic | species = rat
Model 2: study type = chronic, sub-chronic | species = mouse 
Model 3: study type = chronic, sub-chronic | species = rat and mouse 
(use_me category is an expert assigned measure of data quality.)

For demonstration of research conducted for this poster, 
data and results for only chronic, sub-chronic | rat and 
mouse models (models 2 and 3) are presented.
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Study type| Species (Number of chemicals)

- [chronic (CHR), subchronic (SUB) | rat (1873), mouse (719)]
- [reproductive (REP)| rat (633), mouse (107), rabbit (219)]
- [developmental  (DEV)| rat (668), mouse (90), rabbit (437)]
- [subacute (SAC) | rat (689)]

toxval_units = mg/kg-day

toxval_type != [RfD, RfC]

use_me > 1
Table 2: Performance metrics for the point-estimate balanced-dataset models for 5-fold internal cross-validation and external validation.

Figure 7: Sample histogram of re-constructed
data for (a) rat and (b) mouse. Total number of
samples in the re-constructed training dataset
for rat data is N = 1589 and mouse data is N =
606.

Randomly 
sample 10% data from
the long tail and add as 

duplicate data to the 
training data get a new 

training distribution
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2. Point-estimate, 
balanced-dataset
models

Random Forest
Hyper-parameters

5-fold Internal Cross-validation External Validation

RMSE RMSE/σ R2 RMSE RMSE/σ R2

Rat Max features = auto/sqrt
Number of trees = 1000/1250/1500 0.95 0.75 0.45 1.00 0.80 0.36

Mouse Max features = auto/sqrt
Number of trees = 1000/1500 0.90 0.79 0.39 1.03 0.87 0.24

MOLECULAR FEATURES 
• PubChem fingerprints (881 bits)
• Chemistry development kit (CDK) descriptors (18)
• PaDEL descriptors (1875)
Models were developed using combinations of PubChem, CDK and/or PaDEL
descriptors

Figure 2: The chronic, sub-chronic POD values were log-transformed for both rat and mouse 
datasets. (a) Histogram of untransformed POD data, (b) Histogram of transformed POD (PODtr) 
data, and (c) Histogram of training and test data relative to each other. 

Transform           

PODtr = Log10(POD)
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3. Point-estimate with confidence interval models

PODtr Distribution
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µ = 2.176
σ = 0.5
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1. Unsupervised 80% 
variance threshold
2. 80% collinearity 
threshold

Descriptors
1. Normalization to 
mean=0 and variance=1
2. Supervised recursive 
feature elimination 
using linear regression
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1. k nearest neighbors 
(kNN)
2. Support vector 
regression (SVR)
3. Random forest (RF)
4. Gradient boosting 
regression (GBR)
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5-fold GridSearchCV

1. kNN: k, weights, 
algorithm
2. SVR: Epsilon, C, 
gamma, kernel
3. RF: Max features, 
N trees
4. GBR: N trees, max 
depth, loss function, 
learning rate
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Internal validation
5-fold internal cross-
validation on 80% 
training set

External validation
20% test set

Species 
[Molecular Features (number)]

Random Forest
Hyper-parameters

5-fold Internal
Cross-validation

External 
Validation

RMSE RMSE/σ R2 RMSE RMSE/σ R2

Rat 
[PubChem (43) + CDK (5) + PaDEL (5)]
Coverage = 1807

Max features = auto
Number of trees = 1250 1.02 0.80 0.35 0.98 0.78 0.39

Mouse
[PubChem (49) + CDK (5)]
Coverage = 719

Max features = auto
Number of trees = 750 0.99 0.85 0.27 1.02 0.86 0.26

Figure 5: Plots of observed versus predicted POD values (transformed scale) for the best rat and 
mouse model (random forest model) for 5-fold internal cross-validation (red scatter plots) and 
external validation (green scatter plots).
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Table 1: Performance metrics for the best (random forest) point-estimate models for 5-fold internal cross validation and external validation for CHR-SUB rat and mouse datasets. 

Figure 4: (a). Workflow for development of QSAR models, and (b). Algorithm for model enrichment analysis. All the models were developed and evaluated for enrichment for each 
combination of study type and species. A summary of comparative predictive ability of the best model for each of the combinations is presented in the results.
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Figure 3: Distribution of the range of POD values for the CHR-SUB (a) rat 
and (b) mouse datasets. Variability in experimental data leads to 
uncertainty in the model predictions. Roughly, the root mean squared 
error (RMSE) in the models can be estimated to be around 1.17 (=√1.36) 
for rat and 1.13 (=√1.28) for mouse models by just looking at the 
distribution of POD values for both datasets.

Figure 6: Enrichment analysis for 
(a) rat, and (b) mouse data. 80% of 
the 20% most potent chemicals are 
enriched within 40% of predicted 
data for the rat model and 60% of 
predicted data for the mouse 
model. These results demonstrate 
the utility of these models for 
chemical prioritization and testing.

2. Point-estimate with balanced dataset models
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Skew = -0.17
µ = 1.25
σ = 1.17

% of X% most potent chemicals (predicted)

• Point-estimate model results demonstrate that independent study type and species combinations did not result in significantly better 
models than combining the data for all the classes and species together. 
- The RMSE for the all the models are within the variance in the underlying POD data (Figure 3 and 5).
- Enrichment analysis results demonstrate the utility of these models for chemical screening and prioritization efforts. 

• Point-estimate with balanced dataset model results improved the training set results but did not show improved results on the 
external test sets.

• Point-estimate with confidence interval models presented a technique to estimate uncertainty associated with model predictions. 
The results demonstrate the impact of variability in training data (experimental POD) on uncertainty associated with model results.
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Figure 5: A summary of 
the best model metrics 
and the estimated error 
(Figure 3) for each 
combination of study 
type and species on the 
external test set. As 
seen, there is not much 
variation in the metrics 
across different model 
combinations. (r: rat, m: 
mouse, ra: rabbit, sp: 
species, st: study type) 

ENRICHMENT ANALYSIS

Each model was evaluated on the 
external test set for enrichment of 
N% most potent chemicals. 

1. The chemicals in the predicted 
external test set were sorted in the 
order of potency.
2. X% of above sorted list was then 
evaluated for % enrichment of the 
N% most potent chemicals
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(b)(a)

% of X% most potent chemicals (predicted)

1. Point-estimate models: Enrichment Analysis
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